
Freescale Semiconductor
Application Note

Document Number: AN3579
Rev. 0, 11/2007

Contents

Introduction . 1
General Description. 2

2.1 System description . 2
2.2 Proximity Application Description 4
Proximity Module . 9

3.1 General Description. 9
3.2 Proximity Initialization Function 9
3.3 Electrode Sampling Function. 9
3.4 Update Electrode Status Function. 11
Hardware Setup. 15

4.1 Porting the Application to RS08, S08 and ColdFire V1
16

4.2 Configuring Electrodes and Buzzer Location 17
4.3 Timer Module. 18
Graphical User Interface . 19

5.1 GUI Setup . 19
5.2 Capacitance Bars . 19
5.3 Threshold Detection . 19
Conclusions . 20

6.1 Proximity Software Reusability 20

Enabling an MCU for Touch
Sensing with Proximity Sensor
Software
by: Eduardo Muriel Hernandez

Ulises Corales
RTAC Americas
1 Introduction
This application note describes how to enable an MCU
for touch sensing with a properly designed layout and a
simple software module. This free software is
compatible with any S08, RS08, and V1 Freescale
microcontroller. The flexibility of this software and use
of minimal hardware make this a solid base for simple
touch sensing applications. This document gives details
of hardware setup and software porting considerations.
This application can be used in conjunction with the
KITPROXIMITYEVM for a complete evaluation set.

1
2

3

4

5

6

© Freescale Semiconductor, Inc., 2007. All rights reserved.

General Description
2 General Description

2.1 System Description

Figure 1. Block Diagram

The main components of the system are:
• Electrodes — These are the user interface and provide the inputs to the system.
• Capacitance to digital converter — This provides digital values proportional to the input

capacitance of each electrode.
• Signal processing stage — This is where the measurements are processed and determines whether

the electrode is touched or not.
• Output — This is a buzzer. Here the user can have feedback of the processes inside the system.

2.1.1 Electrodes

The electrodes are conductive material areas in the PCB that serve as plates of a capacitor. To charge these
capacitors a pull-up resistor is connected to each of them forming a simple RC circuit.

Figure 2. Electrodes Equivalent Circuit

2.1.2 Capacitance to Digital Converter

The function of the RC circuit is to transform capacitance into time. This transformation is determined by
the time constant of the circuit (Equation 1).

 E1

E2

En

Capacitance
to Digital
Converter

Signal
Processing

Stage
Output

MCU
Vcc

Electrode

MCU
Vcc

Electrode

Finger

System’s
base

capacitance
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor2

General Description
Eqn. 1

With R as a constant any capacitance variation linearly modifies the time it takes for the capacitor to reach
a reference voltage. This time can be measured with a timer but a means to determine when the reference
voltage has been reached is needed. Any MCU’s input pin integrates a comparator to determine the logic
level of its input, therefore the pin’s threshold can be used as a reference voltage.

The capacitance to digital converter provides a value that is present in the input pin. The capacitance value
is then increased when an electrode is touched. This must not be considered an accurate capacitance
measurement. These values are meant to be processed and compared to determine the absence or presence
of an object in proximity to the electrode.

2.1.3 Signal Processing Stage

The samples provided by the capacitance to digital converter must go through signal processing for proper
interpretation. These samples are not accurate measurements but the capacitance variations can be detected
easily with these values. This is exactly what is needed for touch detection. In this stage a variety of
algorithms may be implemented to process the measurement values and improve the object detection. For
example, filters to reduce noise effects and debouncing mechanisms to avoid false detections.

2.1.4 System Output

After the capacitance to digital converter output values are processed and a touch is detected the system
must be capable of giving feedback of detection. In the described application a buzzer provides this
feedback emitting a fixed frequency sound when a touch detection occurs. Any other outputs can be
implemented.

2.2 Proximity Application Description
Figure 3 shows the system components described in the previous section that are implemented in the
evaluation software.

Figure 3. Application Block Diagram

RC=τ

E1

E2

En

GPIO Buzzer

Timer

Capacitance to Digital Converter

Proximity

Sampling
Function

Signal
Processing
Function
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 3

General Description
Each module has specific functions:
• GPIO module — Manages everything referred to the MCU’s I/O lines. This module provides the

interface with the electrodes and the system output, in this case a buzzer.
• Timer module — Manages all the hardware timer module functions used in the application. For

example, timer clocks and prescaler configuration, counter start, and stop and reset. The timer’s
ISR is also located in this module.

• Proximity module — This is the core of the application and interfaces with the GPIO and timer
modules to obtain capacitance measurements. This module processes the capacitance values and
evaluates if an electrode has been touched.

• Buzzer module — Provides functions to control the buzzer that produces sound when a touch has
been detected.

Figure 4. Flow Chart

The proximity application first initializes all necessary modules, then schedules the first sampling task and
enters the scan state where one or all electrodes are periodically sampled. After the sampling period has
elapsed the function in charge of sampling and processing is called and updates the status
(touch/untouched) of the selected electrode. The application then evaluates if any electrode has been

Init

State =
STATE_SCAN

Schedule next
sampling

State =
STATE_SCAN

?
fSample?fBuzz?

Any
electrode
touched?

Update
electrodes

State =
STATE_BUZZ

Schedule next
sampling

Buzz

State =
STATE_SCAN

Schedule next
sampling

Buzz counter - 1

YesNo

Yes

No

Yes

Yes

No

No

Yes

Buzz
counter
> 0 ?

No
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor4

General Description
detected as touched and if it has, it changes the state to buzz. If no electrode has been touched the next
sample is scheduled. During the buzz state a sound is emitted through a buzzer for 10 ms. After this period
is completed the next sample is scheduled and the application returns to the scan state.

2.2.1 Proximity Software Architecture

For this application, the software architecture model shown in Figure 5 is implemented.

Figure 5. Software Architecture Model

This model is composed of different layers:
• Hardware Layer (HL) — The hardware layer defines the interfaces from the upper layers to the

hardware resources, such as peripherals, configuration registers or any other hardware dependent
resource. No functional feature is defined into this layer. This layer is implemented in the header
file provided by CodeWarrior. For example the MC9S08QE128.h.

• Hardware Abstraction Layer (HAL) — The hardware abstraction layer is defined as the collection
of software components that make direct access to hardware resources. Peripheral drivers are
implemented in this layer. An example is, software modules that manage peripherals configuration,
and peripheral events handling. The access to hardware is done through the HL interface.

• Hardware Independent Layer (HIL) — The hardware independent layer groups are all software
modules that do not manage the microcontroller’s resources but could make use of them to execute
a specific task or function. These are groups that belong to this layer:
— Algorithms that do not require specific hardware. For example, filters, mathematical functions,

sorting, and searching algorithms.
— Drivers for external resources that require hardware resources and interface with the hardware

through the HAL. For example, a DAC communicating through I2C or SPI.
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 5

General Description
— Peripherals that are not present in the MCU but are constructed by software using available
hardware. For example, serial ports using GPIO lines and timers.

Because HIL software modules do not contain any hardware specific information they can easily
be ported to other platforms providing if needed, the appropriate HAL interface.

• Services Layer (SL) — The services layer is defined as the collection of software components that
provide basic services for modules in other layers that require them. This includes timing
management for task scheduling, memory management, system management, and power
management. For example, watchdog, system clocks configuration, and low power modes.

• Application Layer — All application-specific software is included in the application layer. All
other layers implement more abstract functions while the application layer integrates them to create
application specific functions. For example the softeware components required to manage a user
interface are contained in the HIL and HAL layers but the task to be executed depending on the
input is decided in the application layer.

Following this software architecture model the modules of the system must be accommodated in their
respective layers. It is clear that a timer and GPIO pins are the only MCU hardware resources needed for
touch sensing. They interact directly with the hardware and belong in the HAL. The proximity and buzzer
modules make use of HAL components. They provide support for resources external to the MCU and
therefore belong in the HIL. The MCU clocks initialization is part of the SL. The resulting application
model is shown in Figure 6.

Figure 6. Proximity Software Architecture

Each of these modules are composed by a code and a header file. The header files have two sections, one
named public and the other named private. This separation is for clarification because everything defined
in the file is actually public. However, these restrictions must be respected by the user to improve code
portability and reusability. The interfaces of each module are contained in the public section of each file
and are explained later in the document

Application

Sample Function

Init Funct. Update Funct.

Buzzer

GPIO ModuleTimer Module

Services .h

B
U

S
_C

LK
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor6

General Description
Figure 7. Proximity Files Structure

2.2.2 Services Layer

The SL provides basic system services. This includes clocks and timer initialization. Three files belong to
this layer:

• SL_HAL_Int.h. — This file is the interface between the SL and the HAL. The bus clock frequency
is defined here and is needed for timer configuration and for the MCU clock module configuration
(ICG or ICS for supported microcontrollers).

• Services.h. — All the clock modules configuration parameters are defined here as private. This is
managed in the SL and no other module can make use of these values. Basic scheduler
functionalities are provided as public and configure the timer to interrupt at a certain period. A flag
is also set to signal this event. This can be used by the application or the HIL modules to schedule
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 7

Proximity Module
tasks. The MCU_Init function prototype is also declared here and must only be called by the
application.

• Services.c. — The microcontroller initialization and clocks modules initialization functions are
located in this file. The application must call the MCU_Init function to initialize the necessary
modules for system operation. This function initializes the clocks and timer modules with the
Clocks_Init and TIMER_CONFIGURE functions.

3 Proximity Module

3.1 General Description
The proximity module is the core of the application. This module manages all the sampling processes for
each electrode. It processes the measurement data and evaluates whether an electrode must be reported as
touched or untouched. It makes use of the GPIO and timer modules. The GPIO is for interfacing with the
electrodes and the timer module is to measure the capacitance. The proximity module belongs to the HIL
and provides the application with a public variable to report the electrodes status and an array to perform
and store the average of the previous samples per electrode.

Table 1 shows the three functions that perform the above mentioned tasks.

3.2 Proximity Initialization Function
This function sets the initial state of averages by sampling every electrode and storing the reading as the
current average value. This reduces the settling time to 0 and avoids false detections that can occur through
the settling process. If a sample is invalid the average is set to 0xFF to avoid false detections while the
average stabilizes with future valid samples. It receives no arguments and returns a status code reporting
any possible malfunction.

3.3 Electrode Sampling Function
This function is private of this module and performs the actual measurement of the capacitance in the
selected electrode pin. This is done by making use of the GPIO and timer modules. The input arguments
are a pointer to the port where the desired electrode is connected, a mask of the specific pin where the
electrode is found, and a pointer to a variable where the measurement value must be stored. The function
returns a status code indicating whether the measurement is valid.

Table 1. Proximity Functions Table

Function Name Input Parameters Return Value

Proximity Init None Status code

Sample Electrode Port pointer, bit mask, buffer Status code

Update Electrode Status Electrode identifier Status code
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor8

Proximity Module
Figure 8. Sample Electrode Function Flow Chart

Discharge
Electrode

Counter stop
and reset

Set Timeout
value

Counter
start

Electrode
charged?

Timeout
event?

Counter
stop

Store counter
value

Return
Status

Yes Yes

No

No

Start

End
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 9

Proximity Module
In Figure 8, first, the selected electrode is discharged to set its initial state near to 0 V. This is done by
configuring an electrode’s pin as an output and setting it to a logic 0 causing the previous charge of the
capacitor to return to ground. Next, the measurement counter is stopped in case it is running, then reset and
started again.After, the electrode’s pin is configured as input. This allows the capacitor to recharge, and its
value is constantly polled. This begins the measurement process with the counter running and the capacitor
charging, although there is a delay between the counter start and the charge start the difference is always
the same, therefore the measured value is not affected. After the capacitor voltage reaches a certain level
the pin value is detected as a logic 1. After this happens, the counter is stopped and its value stored in the
specified memory location.

If for any reason the capacitor never reaches the threshold value, a timeout event can stop the pin polling.
This timeout event is signaled by the timer ISR through a software flag and the timeout value is configured
when the measurement counter is started. The timeout flag is polled along with the pin value ensuring that
the CPU is not deadlocked in a measurement forever. If a timeout event occurs the function returns a
timeout status code indicating the reading is not valid and the timeout flag is cleared. If the measurement
is valid the function returns an ok status code.

NOTE
When using the proximity module in any application it is important to keep
in mind that the CPU is deadlocked for the time the measurement takes. This
time depends on the base capacitance of the system. The worst case being
the configured timeout value (75 μs for this application). Also, if another
interrupt occurs during the pin polling the sample may not be valid and the
user must implement a method to detect it.

3.4 Update Electrode Status Function
This function is the interface for the application layer. It must be called by the application to refresh the
electrodes status. It performs the averaging of samples and compares the new sample with the previous
average to determine if a specific electrode has been touched. The SampleElectrode function is called
within the update function to obtain the new sample for the desired electrode. The only input parameter is
the electrode to be updated that can also be set to the SAMPLE_ALL constant that drives the function to
sample all the electrodes one by one.
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor10

Proximity Module
Figure 9. Electrode Status Update Function Flow Chart

Input
valid?

Sample all
electrodes? i = 0

Set electrode
status bit

Valid
sample?

Electrode
touched?

Clear electrode
status bit

Last
electrode

?

Sample i
electrode

Set electrode
status bit

Valid
sample?

Electrode
touched?

Clear electrode
status bit

Return
Status

Sample
Electrode

Calculate
averageCalculate

average

Start

Return out of
range status

code

End

Clear electrode
status bit

Clear electrode
status bit

End

i++

Yes

No

YesNo

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 11

Proximity Module
In Figure 9, the input parameter is first validated to avoid any system misbehavior. If it is not valid an out
of range status code is returned and the function exits.When the parameter is an electrode symbol (E1,
E2… En) the sampling function is called to obtain the current capacitance of that electrode. Before
processing this sample the status code is returned by the sampling function and checked to ensure that the
reading is valid. If not, the electrode is reported as untouched and the same status code is returned by the
update function. If the sample is valid the difference between the current sample and the average of the
previous samples are compared to a threshold value to determine if the variation is significant enough to
consider the electrode touched. The corresponding bit in the gesElectrodeStatus variable is then set or
cleared to reflect the result of the previous comparison. Finally, the average is calculated to integrate the
new sample and an ok status code is then returned. If the input parameter is the SAMPLE_ALL constant
the whole process described is done for every electrode in the same function call.

3.4.1 Average

Any average acts as a low pass filter and helps to reduce the effects of noise. In this module a function that
acts as an average is implemented (Equation 2). This approach does not require implementing a buffer to
store the previous samples and avoids the need of integration of these samples every time, although it does
have a slower response. Because the data is also processed with integer values a considerable steady state
error is present. This error represents no problem if the system’s sensitivity is good. If more precision is
needed the average value can be calculated using fixed point values. Depending on the base capacitance
of the system this can be done with eight bits or it may require to extend the values to sixteen bits.

Eqn. 2

N is a constant equal to the number of samples averaged. N = 8 for an 8 samples average.

Considering that a real average is defined by Equation 3 and substituting this in Equation 2, Equation 4 is
obtained.

Eqn. 3

Eqn. 4

For a signal in a constant steady state where all the previous samples have the same value, Equation 4 can
be expressed as:

N
AvgSampleAvgAvg)(−

+=

N

iSample
Avg

N

i
∑

−

==

1

0
][

N
NSample

N

iSampleN

N
N

iSample
NSample

N

iSample
Avg

N

i

N

i
N

i][
][)1()

][
][(][

2

1

0

1

0
1

0 +
−

=
−

+=
∑

∑
∑

−

=

−

=
−

=

Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor12

Proximity Module
Eqn. 5

Expressing Equation 5 in summations:

Eqn. 6

Note that the result in Equation 6 is almost equal to Equation 3 which is the original average, but in
Equation 6 the limits of the summation have been shifted. By observing the consequence of the process it
is determined that the operations in Equation 2 subtracts a sample from the average. This sample is
considered to be the oldest because all the samples are equal. The new sample is intergrated to the previous
average with its respective weight.

This works fine for steady states with minimal variation as seen in Figure 10. When the signal changes
level it takes longer for this function than the real average to reach the new value.

Figure 10. Average Plot

3.4.2 Threshold Comparison

The average values are used as a reference for comparison with every new sample to determine if the
electrode is touched. This is done by subtracting the average value to the sample and comparing this
difference to a predetermined threshold. If the difference exceeds the threshold value the status of the
electrode is reported as touched. If it is lower than the threshold value the status is set to untouched.
Figure 11 shows the difference between the samples and average of the plot in Figure 10. Every time this

N
NSampleSampleN

N
NSample

N
SampleNNAvg][)1(][)1(
2

+−
=+

−
=

N

iSample

N

iSampleiSample
Avg

N

i

N

Ni

N

i
∑∑∑

=−=

−

= =
+

= 11

1

1
][][][

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Sample
Filter
Integer filter
Real 8 sample avg
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 13

Hardware Setup
difference is higher than the threshold value, which is 10 for this example, the electrode is reported as
touched.

Figure 11. Threshold Comparison

3.4.3 Electrode Status Register

The proximity module provides the gesElectrodeStatus variable to report the status of every electrode.
Each bit of the variable represents an electrode with the LSB corresponding to the first electrode (E1). This
variable is an ELEC_STAT_REG and as default an unsigned eight bits. If more than eight electrodes are
desired for an application the ELEC_STAT_REG must be redefined to support sixteen bits. The definition
of this type along with many others is done in the proximity header file.

3.4.4 Proximity Header File

The proximity.h file contains the public and private definitions for the proximity module. The public
section is composed by the ELEC_STAT_REG definition, prototypes for the public functions, public
variables definitions, the electrodes symbols, and the parameter N_ELECTRODES that define the number
of electrodes supported by the module. If the electrode configuration is changed this parameter must be
redefined to meet the actual configuration. The private section contains macro definitions for electrode and
counter handling, and the timeout parameter defined as TIME_LIMIT. This parameter is expressed in
counter units.

4 Hardware Setup
When setting up the software for a specific system implementation the first variable to be defined is the
platform to be used. This determines the available hardware and the core capabilities. The RS08, S08 and
V1 platforms are currently supported by the application.

-15

-10

-5

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Delta
Threshold
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor14

Hardware Setup
4.1 Porting the Application to RS08, S08 and ColdFire V1
The implemented software architecture’s main purpose is the code’s portability. This allows for complete
applications to be easily ported to different platforms and for individual modules to be reused in different
applications. Taking advantage of this, all RS08, S08 and V1s MCUs have two different projects, one for
the RS08 and another for the S08 and V1.

After the proper project is opened the specific MCU must be selected. The RS08 project is set by default
for the RS08KA2, and the S08/V1 is set for the S08QE128. CodeWarrior provides a feature to change the
target MCU, this feature is called, Change MCU/Connection, located in the Project menu or in the Make
and Debug buttons area. This is shown in Figure 12.

Figure 12. Change MCU/Connection Function Location

When selecting this option, a window appears showing the list of available MCU families. The desired
MCU must be selected as well as the proper connection method for the debugger.
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 15

Hardware Setup
NOTE
When using the RS08 project, no other S08/V1 MCU may be selected, and
vice versa. The architectural differences between these two cores lead to the
creation of different projects.

Figure 13. MCU/Connection Selection Window

4.2 Configuring Electrodes and Buzzer Location
The next hardware settings to be defined are the GPIO pins that are used for the electrodes and the output
signal. Based on the hardware definition of the system the electrode pins and number of electrodes can be
configured in the project. When using an MCU demo board in conjunction with the
KITPROXIMITYEVM module the electrodes location can be found in the user guide. This location is
defined in the project inside the GPIO module.

4.2.1 GPIO Module

To improve flexibility all the MCU pins used for the electrodes are gathered in an array of pins. This
creates what can conceptually be seen as a virtual port dedicated to manage common signals for a specific
function. This array has no size restriction and any GPIO pin can be included and allows for any electrodes
and output configuration.
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor16

Hardware Setup
NOTE
Only input/output pins can be used for proximity sensing. Input or output
only pins must not be connected to electrodes and as a consequence must
not be part of the electrodes pin array.

These functions are contained in the GPIO module that belong to the HAL of the architecture. Each
module is composed of a header and a code file. For this module the contents of each file are the following:

• Header file — Contains the required macros for the interface with upper layers as well as the type
definition for the virtual ports.

• Code file — Contains the actual virtual ports definitions. Here is where modifications to electrodes
and buzzer location must be done.

The virtual port type is a structure that contains a pointer to an MCU port and a mask for the chosen pin
for that port. With this information any operation can be done to a specific pin and all the port pointer-pin
pairs can be grouped in one array for easy access. This kind of structure is flexible because an index
variable can be used for more dynamic pin access.

In the implemented module two virtual ports have been created: one for electrodes and another for the
output buzzer. For example, if a visual feedback were to be implemented turning on an LED for every
electrode the buzzer virtual port can be extended for the purpose of grouping all the output signals in one
structure.

4.2.2 Buzzer Module

A basic buzzer driver module was created for this application. It uses a GPIO pin that is part of a virtual
port defined in the GPIO module that sends a 10ms signal of a determined frequency. In the header file
different frequency indexes have been defined as well as the corresponding interface macros and functions.

The interface is composed by the frequency indexes, the BUZZER_INIT() macro that configures the
buzzer pin as output, the BUZZER_SOUND() macro that toggles the buzzer pin, and the BuzzerConfigure
function that calculates the necessary values for the timing control to produce the desired frequency sound.
This function receives the frequency index and a pointer to an eight bits variable to store the 10ms counter.

The BUZZER_OUTPUT value is located in the private section of the header file and selects the element
of the virtual port that is used for the buzzer. In this section the timing values for the sound generation are
also defined.

4.3 Timer Module
The timer module provides timing functions for this entire application. The TPM module is supported in
the S08/V1 project, and the MTIM is used for the RS08. This module makes use of the services layer to
obtain the MCU bus clock value to set the proper clock configuration for the desired timer clock frequency.

The public section of the header file contains the definition of a bits structure type that creates a flag that
reports interrupt events to the upper layers and all the macros required for the interface with this HAL
component. Even though the hardware modules used in the RS08 and S08/V1 are different the same
interface is provided for compatibility. When a different hardware is used the modules that make use of
this component do not need to be modified.
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 17

Graphical User Interface
All the necessary definitions for the hardware module configuration can be found in the private section. In
some microcontrollers more than one TPM module is available and the user can choose which one to use
in the first subsection. Here, the base address of the module is taken from the TPMxSC register and the
other module registers are defined later in the file as offsets of this base address. This allows the user to
change modules by simply changing the TPMxSC to the status and control register of the desired TPM
hardware module. The desired timer clock frequency must be configured in the TIMER_CLK parameter
and the appropriate prescaler is automatically defined to achieve the nearest clock frequency. This is only
true if the bus clock is used as the clock source. For this application it is a requirement.

5 Graphical User Interface
The proximity software GUI provides a powerful tool for system understanding configuration and
debugging. This application enables the user to see real-time data of the capacitance measurement and to
configure the desired threshold for touch detection in a graphic and more intuitive environment. It also
provides a non-intrusive interface with the embedded application because it communicates with the MCU
through the BDM interface. This avoids additional processing on the MCU software for communication.

Figure 14. Application Front End
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor18

Graphical User Interface
5.1 GUI Setup
This application reads the data values directly from RAM through the BDM interface without interfering
with the CPU processing. The GUI must be provided with the memory addresses where the data is located.
This is done by selecting the configuration option of the main windows and manually entering the
addresses of the first elements of the data arrays and selecting the number of electrodes enabled in the
system.

Figure 15. Data Configuration Option

5.2 Capacitance Bars
Figure 14 shows the bars that represent the capacitance present in every electrode. The orange bar
represents the average value and the white bar represents the current sample value. The numeric value of
the sample is shown in the box next to the bars. This allows the user to graphically observe the system’s
behavior, determine the base capacitance of the system, and detect the capacitance variations if an object
is in proximity to the electrodes.

5.3 Threshold Detection
The threshold for touch detection is configurable with the sliders located in every electrodes bar. The user
can observe the capacitance variations when touching an electrode and decide where to set its threshold.
Every time the capacitance bar crosses the threshold marker the button next to the bar turns green.
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 19

Conclusions
NOTE
The GUI must be started without touching any electrode for proper
threshold detection.

6 Conclusions

6.1 Proximity Software Reusability
The proximity module composed by proximity.c and proximity.h files is highly portable through platforms
and applications because it has no direct hardware dependencies. If the user wants to integrate touch
sensing capabilities in a different application the proximity module can be integrated into the project. The
interface functions from the lower layers must be provided to this module. This includes the timer handling
and the GPIO functions that the module makes use of. For the timer module the interface is composed by
the elements in Table 2.

In addition to these macros a flag contained in a bits structure to signal the timeout event is needed and
declared as frTimer_flags.Bits.Timeout. To use the proximity module in a microcontroller where no TPM
is available the corresponding timer module must be created integrating all the mentioned functions. The
hardware change then is transparent for the proximity module and no modifications are required.

For the GPIO module, Table 3 shows the elements of the interface. All macros receive a pointer to a port
and a mask of the specific pin.

Table 2. Timer Module Interface

Macro Description

TIMER_START() Starts the timer counter used for measurement

TIMER_STOP() Stops the counter

TIMER_RESET() Sets the timer counter to 0

TIMER_GET_COUNT() Returns an 8-bits counter value

TIMER_CONFIGURE() Called once to initialize the peripheral

TIMER_SET_MOD(x) Defines x as the counter value that triggers a timeout
event

Table 3. GPIO Module Interface

Macro Description

PIN_OUTPUT(x,y) Configures the pin y of port *x as output

PIN_INTPUT(x,y) Configures the pin y of port *x as input

PIN_SET(x,y) Sets the pin y of port *x

PIN_CLEAR(x,y) Clears the pin y of port *x

PIN_TOGGLE(x,y) Toggles the pin y of port *x
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor20

Conclusions
The port pointers and the pins masks are recommended to be stored in the VIRTUAL_PORT type declared
in the GPIO.h file of the provided application. The same macros and a structure like the vpPortx created
in the GPIO.c file must be provided to the proximity module if a different GPIO module is used.

6.2 Freescale Proximity Solutions
The proximity software solution explained through this document is capable of touch sensing, but not
suitable for real applications by itself. The level of data processing and the detection algorithm is not
reliable enough for integration in a commercial product although the user may implement other algorithms
over the proximity module. Freescale offers a variety of highly integrated proximity solutions that include
external digital and analog sensors. These are robust designs that integrate validated algorithms for
proximity sensing. For more information on the proximity line please visit www.freescale.com/proximity.
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 21

Conclusions
Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor22

Conclusions

Enabling an MCU for Touch Sensing with Proximity Sensor Software, Rev. 0

Freescale Semiconductor 23

Document Number: AN3579
Rev. 0
11/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 General Description
	2.1 System Description
	2.1.1 Electrodes
	2.1.2 Capacitance to Digital Converter
	2.1.3 Signal Processing Stage
	2.1.4 System Output

	2.2 Proximity Application Description
	2.2.1 Proximity Software Architecture
	2.2.2 Services Layer

	3 Proximity Module
	3.1 General Description
	3.2 Proximity Initialization Function
	3.3 Electrode Sampling Function
	3.4 Update Electrode Status Function
	3.4.1 Average
	3.4.2 Threshold Comparison
	3.4.3 Electrode Status Register
	3.4.4 Proximity Header File

	4 Hardware Setup
	4.1 Porting the Application to RS08, S08 and ColdFire V1
	4.2 Configuring Electrodes and Buzzer Location
	4.2.1 GPIO Module
	4.2.2 Buzzer Module

	4.3 Timer Module

	5 Graphical User Interface
	5.1 GUI Setup
	5.2 Capacitance Bars
	5.3 Threshold Detection

	6 Conclusions
	6.1 Proximity Software Reusability
	6.2 Freescale Proximity Solutions

