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the MCF5223x
Extended Display for V2 Coldfire
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1 Introduction
A liquid crystal display (LCD) is a useful module for a 
user interface feature of an embedded system. It provides 
a parallel interface and a serial interface of the SPI and 
IIC that connects to the processor.

The MCF5223x supports both SPI and IIC interfaces for 
communications.

This document introduces how to implement a serial 
interface (QSPI/IIC) LCD module for the MCF5223x. It 
also introduces the hardware connection and software 
driver development.
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MCF5223x Family
2 MCF5223x Family
The MCF5223x family is a highly integrated implementation of the ColdFire family. It includes the 
MCF52231, MCF52233, MCF52234, and MCF52235. This family is designed for industrial and 
commercial control with an Ethernet feature requirement. This 32-bit device is based on the second version 
of the ColdFire 2 (V2) reduced instruction set computing (RISC) core. It includes the following on-chip 
modules:

• ColdFire V2 core with enhanced multiply-accumulate unit (EMAC)
• Cryptographic acceleration unit (CAU)
• 32 Kbytes of internal SRAM
• Up to 256 Kbytes of on-chip flash memory
• Fast Ethernet controller (FEC) with an on-chip transceiver (ePHY)
• Three universal asynchronous receivers/transmitters (UARTs)
• Controller area network 2.0B (FlexCAN) module
• Inter-integrated circuit (IIC) bus controller
• 12-bit analog-to-digital converter (ADC)
• Queued serial peripheral interface (QSPI) module
• Four-channel, 32-bit direct memory access (DMA) controller
• Four-channel, 32-bit input capture/output compare timers with optional DMA support
• Two 16-bit periodic interrupt timers (PITs)
• Programmable software watchdog timer
• Two interrupt controllers, each capable of handling up to 63 interrupt sources (126 total)

In this document a QSPI and IIC interface were adapted for the serial interface LCD. 

3 LCD Module
The LCD module is one of the popular man-machine interfaces for an embedded system. Most LCD 
modules have a built-in LCD controller that supplies an easy-to-use serial bus, such as the QSPI and IIC 
interfaces. The LCD module allows a clear output of characters in a grid format. It also contains a library 
ROM for ASCII to grid an array conversion. It supports one, two, or four rows with each row containing 
sixteen, twenty, or forty characters. In this application note, a YM12864R P-1 16×4 LCD module for a 
QSPI interface application and a GLK12232-25-SM LCD module for a IIC interface application are 
chosen as examples.

3.1 QSPI LCD
Figure 1 shows a module using the Sitronix ST7920 as an LCD controller and driver. The Sitronix ST7920 
supports ASCII characters and Chinese characters. Although it provides parallel and serial interface. 
Although the serial interface in this application note is used.
Implementing an LCD Module to the MCF5223x, Rev. 0
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LCD Module
Figure 1. YM12864R P-1 16x4 LCD Module

The main features of this LCD are listed below:
• Working voltage: 2.7 V to 5.5 V
• 8-bit/4-bit parallel or serial MPU interface
• 64x16-bit character cell
• 2 Mbytes CGROM library to support 8192 Chinese characters (16x16 grid array)
• 16 Kbytes HCGROM library to support 126 ASCII characters (16x8 grid array)
• Auto powerup reset function and external reset function
• Low power design, normal mode (typical 450 μA in Vdd=5 V), standby mode (maxinum 30 μA in 

Vdd=5 V), and sleep mode (maxinum 3 μA in Vdd=5 V)
• Multi-display function

— Display clear
— Cursor return home
— Display on/off
— Cursor on/off
— Display character blink
— Cursor shift
— Vertical line scroll
— By_line reverse display
— Sleep mode
Implementing an LCD Module to the MCF5223x, Rev. 0
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LCD Module
This LCD serial interface has three function pins:
• Chip select (CS)
• SCLK (clock input)
• SID (serial data). 

These pins are common in most serial LCD modules.

This application applies to general serial LCD modules and focuses on the timing of the serial interface, 
which is almost the same for all LCD modules.

When the interface is configured in a serial mode the CS, SCLK, and SID work as serial function pins. The 
SCLK can be absorbed by the LCD controller only if activated when the CS is in high active logic. When 
the CS is low logic, the internal serial counter resets and the transferring data inside the controller is 
cleared.

NOTE
There is no receive buffer inside the LCD controller. Therefore, the MPU 
transfers the following data after the instruction has been executed.

The timing diagram of a frame that contains 24-bit data is shown in Figure 2.

The first five bits of one form a synchronizing bit string. The synchronizing bit string is followed by an 
RW flag, an RS flag and a 0. The RW bit indicates a transfer in direction. 0 identifies the direction from 
the MPU to the LCD controller. And 1 identifies the direction from the LCD controller to the MPU. The 
RS bit indicates register selection, 0 identifies register access, and 1 identifies data buffer access. These 
eight bits compose the frame head byte.

When the controller recognizes the flag it resets the internal counter and starts to receive the following 
data. The data to be transferred is divided into two parts. The second byte of the frame is composed of the 
high four bits and the four zeros that follow. The low four bits and four zeros that follow form the third 
byte of the frame.

Figure 2. Timing Diagram of Serial Mode Data Transfer
Implementing an LCD Module to the MCF5223x, Rev. 0
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LCD Module
3.2 IIC LCD

Figure 3. GLK12232-25-SM LCD Module

As shown in Figure 3, the GLK12232-25-SM is selected as the LCD module in this example. It has the 
following features:

• 122 × 32 pixel graphics display
• Text display using built-in or user supplied fonts
• Adjustable contrast with software control
• Adjustable backlighting with software control
• RS-232 or IIC communications
• Extended voltage module available (-V)

The IIC communications of this LCD module runs up to 100 kbps. The IIC data line works on 5 V CMOS 
levels. The IIC interface of the LCD module is completely compatible with the Phillips IIC specification.

The IIC is a two-wire bidirectional serial bus that provides a simple and efficient method that exchanges 
data. It reduces the interconnection between devices. Two wires that are serial data (SDA) and serial clock 
(SCL) connect to the bus and carry information between the devices. Each device recognized by a unique 
7-bit address operates as a transmitter or receiver. For example, the LCD module is a receiver. In the IIC 
bus, all devices can be considered as masters or slaves when performing data transfer. The master initiates 
a data transfer on the bus and generates clock signals to permit that transfer. At that time, any other devices 
addressed are considered as slave. In this application, the MCF5223x is the master and the LCD module 
is the slave.

Figure 4. IIC Timing of the LCD Module
Implementing an LCD Module to the MCF5223x, Rev. 0

Freescale Semiconductor 5



ColdFire QSPI Module
Figure 4 shows the timing of the LCD module IIC interface. The SDA signal triggers the transfer by a high 
to low edge and then transfers a 7-bit slave device address and R/W bit. The R/W flag indicates the 
direction of this transfer. In this application, the direction is always from master to slave. The R/W flag is 
always 0. After, that the LCD sends the ACK flag by pulling down the SDA at the next bit after 
acknowledging the address. The master then continues transferring the following byte.

4 ColdFire QSPI Module
In this chapter, the QSPI module was used to serve the LCD module connection. The queued serial 
peripheral interface (QSPI) module provides a serial peripheral interface with queued transfer capability. 
This allows users to queue up to 16 transfers at once. This eliminates CPU intervention between transfers. 

4.1 Main Features of the QSPI
The main features of the QSPI are listed below:

• Programmable queue to support up to 16 transfers without user intervention
• Supports transfer size of 8 to 16 with 1-bit increments
• Four peripheral chip-select lines for control of up to 15 devices (All four chip selects may not be 

available on all devices.)
• Baud rates from 117.6 kbps to 15 Mbps at 60 MHz internal bus frequency
• Programmable delays before and after transfers
• Programmable QSPI clock phase and polarity
• Supports wraparound mode for continuous transfers
• Only supports master mode

4.2 Registers of the QSPI Module
The QSPI module includes the registers as shown in Table 1.

Table 1. QSPI Module Registers

IPSBAR Offset Register Width (Bits) Access Reset Value

0x00_0340 QSPI Mode Register (QMR)1

1 QMR is used to configure the frame size, transfer baud rate, and clock phase.

16 R/W 0x0104

0x00_0344 QSPI Delay Register (QDLYR)2

2 QDLYR is used to configure the delay time before and after transfer. 

16 R/W 0x0404

0x00_0348 QSPI Wrap Register (QWR)3

3 QWR is used to control the queue point and wrap around mode. 

16 R/W 0x0000

0x00_034C QSPI Interrupt Register (QIR)4

4 QIR is used to enable the interrupt and indicate interrupt status. 

16 R/W 0x0000

0x00_0350 QSPI Address Register (QAR)5 16 R/W 0x0000

0x00_0354 QSPI Data Register (QDR)5 16 R/W 0x0000
Implementing an LCD Module to the MCF5223x, Rev. 0
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ColdFire QSPI Module
Refer to the MCF5223x Reference Manual for details of the QSPI registers.

4.3 QSPI Architecture and Function
Figure 5 shows the architecture of the QSPI module.

Figure 5. Architecture of the QSPI Module

The QSPI module defines three queue pointers to control the queue transfer:
• NEWQP points to the start of the queue to be transferred.
• ENDQP points to the end of the queue to be transferred.
• CPTQP points to the last element in the queue executed.

The QSPI uses a dedicated 80-byte static RAM block accessible to the module and the CPU to perform 
operations. The RAM is divided into three segments:

• 16 command control bytes (command RAM), takes the address of 0x20–0x2F.
• 32 transmitting data bytes (transfer RAM), takes the address of 0x00–0x0F.
• 32 receiving data bytes (transfer RAM), takes the address of 0x10–0x1F.

The 80-byte static block can be accessed indirectly by the CPU and accessed directly by the QSPI. The 
CPU can only access the three RAMs by the QSPI address register (QAR) and the QSPI data register 
(QDR). The RAM for transmitting, the RAM for receiving, and the command RAM are at the address of 
0x20–0x2F.

5 QAR and QDR are used to access the Static RAM. 
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ColdFire IIC Module
The CPU initiates QSPI operation by writing the command RAM queue and any outbound data to the 
transmitting RAM queue. After the required number of commands and data frames are written. The CPU 
initializes the NEWQP and ENDQP with desired values, and then enables the QSPI by setting the SPE 
enabling bit in the QSPI delay register (QDLYR).

When the QSPI is enabled, the NEWQP is copied into an internal pointer that increments to the next entry 
each time a command is executed. As the internal pointer reaches the value in the ENDQR and the 
instruction pointed by ENDQR is executed, the QSPI sets the finish flag (SPF) and signals an interrupt 
request to the CPU if enabled. The LCD data frame contains 24 bits split it into three bytes and writes the 
three bytes to the queue as one transfer. Refer to Chapter 8, “LCD Driver Development for NicheTask,” 
for detailed information.

In this application, wraparound mode was not used.

5 ColdFire IIC Module
The MCF5223x IIC module can operate at high baud rates, up to a maximum of the internal bus clock 
divided by 20 with reduced bus loading.

5.1 Main Feature of the IIC Module
The main feature of the IIC module are listed below:

• Compatible to the IIC bus standard version 2.1
• Support for 3.3 V tolerant devices
• Multi-master operation
• Software programmable for one of 50 different serial clock frequencies
• Software selectable acknowledge bit
• Interrupt-driven
• Byte data transfer
• Loss of arbitration interrupt with automatic mode switching from master to slave
• Address identification interrupt
• Start and stop signal generation/detection
• Repeated start signal generation
• Acknowledge bit generation/detection
• Bus busy detection
Implementing an LCD Module to the MCF5223x, Rev. 0
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Hardware Connection
5.2 IIC Module Registers and Functions Implementation

In this application, after the system is reset the software configures the MCF5223x device as a bus master 
and expects the IIC bus to be idle. Because of a software request, the master initiates an address to select 
the LCD module. The normal data transfer protocol begins with a START bit, then followed by a 7-bit 
address, a read/write bit, and an acknowledge bit from the addressed slave. After, the CPU keeps on 
sending data by writing to the IIDR.

To end the transfer protocol, the master issues a STOP bit. The bus then goes idle.

6 Hardware Connection
Figure 6 shows the hardware connection between ColdFire and the LCD module.

Figure 6. QSPI LCD Interface Connection with ColdFire

Table 2. IIC Module Registers

IPSBAR
Offset Register Access Reset Value

0x00_0300 IIC Address Register (IIADR)1

1 The IIADR holds the address responded by IIC when in slave mode. It is of no use in 
this application.

R/W 0x00

0x00_0304 IIC Frequency Divider Register (IIFDR)2

2 IIFDR provides a programmable prescaler to configure the IIC clock for bit-rate 
selection.

R/W 0x00

0x00_0308 IIC Control Register (IICR)3

3 IICR is used to enable IIC module and IIC interrupt. It also contains bits that govern 
operation as a slave or a master.

R/W 0x00

0x00_030C IIC Status Register (IISR)4

4 IISR contains bits that indicate transaction direction and status.

R/W 0x81

0x00_0310 IIC Data I/O Register (IIDR)5

5 IIDR is used to receive and transmit data on IIC bus. In master transmitting mode, 
when data is written to this register, a data transfer is initiated. The most significant bit 
is sent first.

R/W 0x00

MCF5223x QSPI LCD
Module

SPI_CS

SCLK

SDOUT

RESET
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NicheTask Open Source RTOS Introduction
The MPU chip select, SCLK, SDOUT and RESET (active low) signal is connected to the LCD controller. 
The controller also has the VDD, GND, mode select, and contrast adjust pin for configuration. 

Figure 7 shows the IIC LCD interface hardware connections.

Figure 7. IIC LCD Interface

SCL and SDA are two signals in IIC connections. Both signals must be pulled up to VDD by 2~10 kΩ 
resistor, because the SCL and SDA are open-drain or open-collector to perform the wired-AND function.

7 NicheTask Open Source RTOS Introduction

InterNiche technologies provides the NicheTask open source operating system for the MCF5223x. The 
NicheTask is royalty free. Users can get the source code from the Freescale website www.freescale.com. 
The LCD driver used in this application note is based on this operating system. Users can easily port the 
driver because the NicheTask has similar features to most operating systems.

NicheTask main features are listed as follows:
• Non-preemptive – requires that a task gives control to the next task.
• Each task has its own stack.
• Contains network stack.
• A task goes to sleep based on time or an event.
• If a task is not sleeping, it is ready to run.
• Developers can add their own task via the tk_new() function, but must sleep to give control to the 

next task in the task list
• There are no priorities. When task 1 gives up control, the RTOS tries to run task 2 and so on.
• Task 1 uses the system task, and must be the network task

MCF5223x I2C LCD
Module

SCL

SDA

VDD
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LCD Driver Development for NicheTask
7.1 Main Task Function
The main task functions are listed below:

• task * tk_init() - initializes the RTOS
• task * tk_new() - adds a new task to the task list
• void tk_block() - switches to the next runnable task
• void tk_exit() - ends and deletes current task
• void tk_kill() - marks a task for termination
• void tk_wake() - marks a task to run
• void tk_sleep() - sleeps for a number of CPU ticks
• void tk_ev_block() - blocks until event occurs
• void tk_ev_wake() - wakes tasks that are waiting for an event

Refer to application note AN3470 – ColdFire TCP/UDP/IP Stack and RTOS for details of these functions 
at www.freescale.com.

8 LCD Driver Development for NicheTask

8.1 Display Data Flow Chart

Figure 8. Data Flow of Display

Figure 8 shows the display data flow chart. There is a display buffer (LcdBuffer) in the system located in 
system RAM and can be accessed by any task. When any task or application function writes its display 
content to the LcdBuffer and updates refresh flags (detail in 8.3.2.1), the LCD serve task loads the 
LcdBuffer data to the LCD module through the QSP/IIC driver. The following sections introduce the 
implementation of the LCD serve task and QSP/IIC driver.

LCD_srv_task

QSP/I2C driver

LCD module

Other task 
or

 application
LcdBuffer
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LCD Driver Development for NicheTask
8.2 Create an Application Task
The following steps show how to create an application task:

1. Declare task information structure (struct inet_taskinfo app_task) to define the task name, entry, 
stack size, and so on.

2. Declare the entry function of the task and add the application code in the entry body. The function 
must be a none return loop.

3. Use TK_NEWTASK to create a task after the netmain task. Netmain must be the first task of the 
RTOS

In NicheTask RTOS, the application creates a task to:
• Serve the LCD module 
• Respond to the LCD display content update
• Provide a display buffer for other tasks or application functions that update the LCD display 

content.

8.3 LCD Serve Task

8.3.1 Create the LCD Serve Task
Follow the steps below to create the task:

1. Define the task structure:
struct inet_taskinfo LCD_srv_task = {

&to_LCDsrv,/*the pointer to the static task object */
"LCD  server",/*task name */
tk_LCDsrv,/*the entry function of the task */
0, /*0 is the priority, it is of no use in this example */
0x800 /*the stack size of the task */

};
2. Add the TK_NEWTASK function to the initial process of create_apptasks( ):

…
   e = TK_NEWTASK(&LCD_srv_task); //create the task 
   if (e != 0) //check if success
   {

      dprintf("LCD create error\n");
      panic("create_apptasks");
      return -1;  /* compiler warnings */

   }
…

If this process creates the LCD_srv_task successfully, the task is added to the RTOS task list.
Implementing an LCD Module to the MCF5223x, Rev. 0
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LCD Driver Development for NicheTask
8.3.2 Add LCD Serve Function
The main entry function of the LCD_srv_task is an endless loop that serves the LCD module access 
routine. The task provides a display buffer for other tasks or application functions to change the content of 
LCD display. Depending on the defined macro of the IIC_INTERFACE, the LCD serve functions call the 
IIC module driver or the QSPI module driver, if the IIC_INTERFACE is defined. The serve functions call 
the IIC module driver and executes the IIC LCD module routine. If the IIC_INTERFACE is not defined, 
the serve functions call the QSPI module driver and execute the QSPI LCD module routine.

8.3.2.1 Global Variable and Array
There are some useful global variables and arrays:

• Unsigned char LcdBuffer[ROW][COL]
This is the display buffer resided in the SRAM with the size of ROW*COL in bytes. The user can 
decide LcdBuffer size based on the LCD type.

• Unsigned char LCD_update=0
This flag is to mark whether the LCD has been updated. If the LCD_update is 1, the LCD_srv_task 
loads the LcdBuffer content to the LCD module. If the LCD_update is 0, the LCD_srv_task sleeps 
and gives the CPU control of the next task.

• Unsigned char LcdRowWriteEnable[ROW]
This array indicates whether each corresponding row is allowed to refresh. If one row WriteEnable 
is 1, the LCD_srv_task loads the LcdBuffer content of the corresponding row into the LCD 
module.

The LcdRowWriteEnable and LCD_update are two different flags to save the CPU resource when no data 
needs to be refreshed. The LCD_update is for the whole frame. The LcdRowWriteEnable is for the 
corresponding row of the frame.

8.3.2.2 LCD_srv_task Main Entry
Here is the main entry of the task:

TK_ENTRY(tk_LCDsrv)
{

LCD_init();
for(;;)
{

LCD_check();
TK_SLEEP(4);//4RTOS click = 20ms
if (net_system_exit)
break;

}
TK_RETURN_OK();

}

Implementing an LCD Module to the MCF5223x, Rev. 0
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LCD Driver Development for NicheTask
The LCD_init() implements the LCD module initial function. Details are mentioned in the next section. 
The LCD_check() checks the LCD_update flag and decides whether to update or return. After return, the 
task sleeps with TK_SLEEP(). This is because the LCD display is low priority in an embedded system. It 
does not take much CPU time or the schedule time in a loop task list. Here the LCD sleeps during 4 RTOS 
clicks which equal 20 ms. This depends on the TPS defined in the RTOS system configuration (ipport.h). 
20 ms is enough for the display service because the refresh frequency is 50 kHz. The user must decide the 
refresh frequency, depending on the real project request.

8.3.2.3 LCD_init() Function
void LCD_init()
{

#ifdef IIC_INTERFACE
init_IIC(1); //initilize IIC module
#else
init_spi(8,0); //initilize spi interface as 8bit , no interrupt
LcdSendCommand(0x30);//8bit control interface 
LcdSendCommand(0x02);//set AC to 0, and move cursor to 0
LcdSendCommand(0x04);//set direction of the cursor moving
LcdSendCommand(0x0c);//set the display on and no cursor display
LcdSendCommand(0x01);//clear display
LcdSendCommand(0x80);//set DDRAM address to AC
#endif
flush_buf(); //init LCD frame buffer

}

When the IIC_INTERFACE is defined, it initializes the IIC module with the init_IIC() function. If the 
IIC_INTERFACE is not defined it initializes the spi module with the init_spi() function, Afterwards, the 
function initializes the display buffer LcdBuffer and updates the flag. Then, the function sends commands 
to initialize the LCD module. Depending on the real LCD module requirement the user must rewrite the 
LCD initialization routine.

8.3.2.4 LCD_check( ) Function
void LCD_check()
{

if(LCD_update == 1) //need to update LCD
{

LCD_DisplayBuf();
LCD_update = 0;

}
}

This function is to check the update flag of the display buffer.
Implementing an LCD Module to the MCF5223x, Rev. 0
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LCD Driver Development for NicheTask
8.3.2.5 LCD_DisplayBuf( ) Function
void LCD_DisplayBuf()
{

unsigned char i, j;
for (i = 0; i < ROW; i ++) 
{ 

if (LcdRowWriteEnable[i])  //allow this line to refresh
{
#ifdef IIC_INTERFACE
IIC_display_line(IIC_LCD_ADDRESS, LcdBuffer[i], i);
#else
LcdSendCommand(0x80+ ((i&0x1)<<4) + ((i>>1)<<3));//move the cursor
for (j = 0; j < COL; j ++) 
{//16 character every line
LcdSendData(LcdBuffer[i][j]);//refresh new data into the controller
}
#endif
LcdRowWriteEnable[i] = 0;//forbid this ROW to refresh after this action

}
}

}

This is the update content function for the LCD module. It checks the write enable flag of every line and 
sends the content of the LcdBuffer to the LCD module by character. For the IIC interface routine, function 
IIC_display_line( ) is described in 8.3.2.7. 

NOTE
The command and write content routine may be different depending on the 
LCD controllers. The user must check the update action and command of 
the LCD controller.

8.3.2.6 LcdSendCommand( ) and LcdSendData( )
These two functions are only for the QSPI module LCD:
void LcdSendCommand(char cCommand)
{

write_to_qspi_ram(QSPI_TX_RAM,0xf8);
write_to_qspi_ram(QSPI_TX_RAM+1,cCommand & 0xf0);
write_to_qspi_ram(QSPI_TX_RAM+2,cCommand << 4);
write_to_qspi_ram(QSPI_COMMAND_RAM,SPI_COM_CONT|0x0F00);
write_to_qspi_ram(QSPI_COMMAND_RAM+1,SPI_COM_CONT|0x0F00);
write_to_qspi_ram(QSPI_COMMAND_RAM+2,SPI_COM_CONT|0x0F00);
start_spi_xfer(3,0); //transfer 3 element of the queue, no csiv
delay(27); //the LCD module need time to execute the command

}

The LcdSendData( ) function is the same as the LcdSendCommand, except for the first byte of the transfer 
frame. For this application, the LCD module LcdSendData’s first byte is 0xFA not 0xF8.

These functions are the low-level interface between the LCD serving routine and the QSPI driver. For the 
LCD module timing, one complete frame contains 24-bit data (refer to Figure 2). In this application, the 
SPI module configures the queue width as 8-bit and uses three elements of the queue for one frame. As in 
the LcdSendCommand( ), the program writes the content to be transferred to three data Ram elements and 
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command Ram elements. The function uses start_spi_trans( ) to trigger the QSPI transfer and waits for the 
completion of the transfer. After the transfer, the function gives the LCD controller time to execute the 
transfer command or update data. The time depends on the specification of the LCD controller. As an 
alternative, the user can make the task sleep to a specific time. This makes the system more efficient.

8.3.2.7 IIC_display_line( ) and IIC_display_C_COLROW
This function is only for the IIC LCD module.
void IIC_display_line(UINT8 address,UINT8* disp_buf,UINT8 line)
{

UINT8 i,buf[6];
buf[0]=0;
buf[1]=line+1; //because the GLK12232-25-SM LCD module starting ROW is 1
IIC_send_command(SET_INSPO_COLROW, address, 2, buf);
i = strlen((char*)disp_buf);
IIC_send_data(address,i,disp_buf);
return;

}

The IIC_display_line( ) function is used to display a line string in a designated line of the LCD, and calls 
the IIC driver to implement the function.
void IIC_display_C_COLROW(UINT8 address, char c, UINT8 COL, UINT8 ROW)
{

UINT8 i,buf[6];
buf[0]=COL;
buf[1]=ROW; 
IIC_send_command(SET_INSPO_COLROW, address, 2, buf);
IIC_send_data(address,1,&c);

}

The IIC_display_C_COLROW( ) function is similar to the IIC_display_line( ) and is used to display a 
character at a designated position.
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8.3.2.8 Application Display Example
Here is an example of the display application:
void display_test() //display test function
{

unsigned char i,j;
unsigned char lab1[ROW][COL]={
"Hello world!", 
"Freescale Coldfi",
"re K2E LCD demo",
{'B','y',' ','S','h','e','n','L','i',0x01}
};
LCD_update = 1;
for(i=0;i<ROW;i++)
{

LcdRowWriteEnable[i]=1; //enable refresh this line
for(j=0;j<COL;j++)
{

if(lab1[i][j]==0) break;
LcdBuffer[i][j]= lab1[i][j]; //just for test

}
}

}

8.4 QSPI Driver
The main interface between the LCD task and the QSPI driver is the LcdSendCommand and LcdSendData. 
The QSPI driver provides the following functions for the interface:

8.4.1 init_spi( )
void init_spi(unsigned char bitcnt, unsigned int Interrupt)
{

MCF_QSPI_QDLYR = 0; // No delay, disable transfer
// QSPI interrupt 
MCF_QSPI_QIR   = Interrupt;
if(Interrupt != 0)
{
//QSPI interrupt is ICR18, so the vector table index is 18+64=0x52

MCF_INTC0_ICR18 = MCF_INTC_ICR_IL(4);
MCF_INTC0_IMRH  &= ~MCF_INTC_IMRL_MASK18;
MCF_QSPI_QIR |= 0xf;

}
// QMR[BAUD] = fsys/ (2 × [desired QSPI_CLK baud rate])
// Using 15 yields a baud rate of 2MHz
MCF_QSPI_QMR = (0|

MCF_QSPI_QMR_MSTR|
MCF_QSPI_QMR_CPHA|
MCF_QSPI_QMR_BITS(bitcnt)|
MCF_QSPI_QMR_BAUD(15)
);

    MCF_GPIO_DDRQS = 0;
    MCF_GPIO_PQSPAR =  MCF_GPIO_PQSPAR_PQSPAR3(0x1) |

MCF_GPIO_PQSPAR_PQSPAR2(0x1) |
MCF_GPIO_PQSPAR_PQSPAR1(0x1) |
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MCF_GPIO_PQSPAR_PQSPAR0(0x1);
}

This function initializes the QSPI module of the MCF5223x. The input variable of the bitcnt is the bit 
width of the queue and parameter of the interrupt. This is for the MCF_QSPI_QIR register configuration. 
In this application, the LCD requires the SPI to be configured at 2 MHz speed. The function then 
configures the dedicated QSPI pin as the primary function.

8.4.2 write_to_qspi_ram( ) and read_from_qspi_ram( )
void write_to_qspi_ram( uint8 address, uint16 data )
{

MCF_QSPI_QAR = address;
MCF_QSPI_QDR = data;

}
uint16 read_from_qspi_ram( uint8 address )
{

MCF_QSPI_QAR = address;
return( MCF_QSPI_QDR );

}

The QSPI module ram can be indirectly accessed through the QAR and QDR register. These functions are 
used to write and read from the QSPI module RAM, including transfer RAM, receive RAM, and command 
RAM.

8.4.3 start_spi_xfer ( )
void start_spi_trans(uint8 bytes, uint8 csiv)
{

MCF_QSPI_QIR = MCF_QSPI_QIR_SPIF; //clear the complete flag
if( csiv == 1 )

MCF_QSPI_QWR = MCF_QSPI_QWR_ENDQP(bytes-1)|MCF_QSPI_QWR_CSIV; 
else

MCF_QSPI_QWR = MCF_QSPI_QWR_ENDQP(bytes-1); 
MCF_QSPI_QDLYR = MCF_QSPI_QDLYR_SPE;// Start Xfer
while( !(MCF_QSPI_QIR & MCF_QSPI_QIR_SPIF ))
{

// Spin here waiting for completion
};

}

This function configures the QWR register, starts the transfer of the QSPI, and polls the SPIF flag for the 
end status.

8.5 IIC Driver
The main IIC driver function are IIC_send_data( ) and IIC_send_command( ). They provide the transfer 
function for data and command.
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8.5.1 init_IIC( )
void init_IIC(UINT8 addr)
{

UINT8 temp;
MCF_GPIO_DDRAS = 0;
/* Enable the IIC signals */
MCF_GPIO_PASPAR |= ( MCF_GPIO_PASPAR_SDA_SDA

| MCF_GPIO_PASPAR_SCL_SCL);
IIC_set_bps(100000ul);// 100k
/* start the module */
MCF_IIC_IICR = MCF_IIC_IICR_IEN | 0;
/* set slave address */
MCF_IIC_IIAR = addr;
/* if bit busy is set, the function sends a stop condition to slave module */
if( MCF_IIC_IISR & MCF_IIC_IISR_IBB)
{

MCF_IIC_IICR = 0; /* clear control register */
MCF_IIC_IICR = MCF_IIC_IICR_IEN |/* enable module */

MCF_IIC_IICR_MSTA;/* send a START flag */
temp = MCF_IIC_IIDR; /* dummy read */
MCF_IIC_IISR = 0; /* clear status register */
MCF_IIC_IICR = 0; /* clear control register */
MCF_IIC_IICR = MCF_IIC_IICR_IEN | 0;/* enable the module again */

}
IIC_send_command(CLEAR_DISPLAY,IIC_LCD_ADDRESS, 0, NULL); //clear IIC LCD
return;

}

This function initializes the IIC module of the MCF5223x. It sets the SDA and SCL pin for the IIC 
function. It also sets the baud rate for the transfer. Then, it enables the IIC module and checks the busy 
flag. If the flag is busy it makes a dummy transfer to free the module. Finally, the software clears the LCD 
module by sending the clear command. 

8.5.2 IIC_set_bps( )
UINT8 IIC_set_bps(unsigned int bps)
{

UINT8 x;
UINT8 best_ndx=(UINT8)-1u;
unsigned short e=(unsigned short)-1u;
unsigned int d=(IIC_CLK*1000ul)/bps;
for(x=0; x<sizeof(IIC_prescaler_val)/sizeof(IIC_prescaler_val[0]); x++)
{

unsigned short e1;
if (d>IIC_prescaler_val[x])
{

continue;
}
e1=(unsigned short)(IIC_prescaler_val[x]-d);
if (e1<e)
{

e=e1;
best_ndx=x;

}
}
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if (best_ndx == (UINT8)-1u)
{

return(1);
}
MCF_IIC_IIFDR = best_ndx;
return(0);

}

The IIC_set_bps( ) sets the IIFDR register to acquire transfer speed for the IIC module. It goes through the 
programmable prescaler and calculates to find the baud rate equal to or less than the required one.

8.5.3 IIC_send_command( ) and IIC_send_data( )
void IIC_send_command(UINT8 command,UINT8 address, UINT8 number, UINT8* buf)
{

UINT8 i;
while(MCF_IIC_IISR & MCF_IIC_IISR_IBB);     /* wait till IIC is busy. */
MCF_IIC_IICR |= MCF_IIC_IICR_MTX;/* setting in Tx mode */
/* generates start condition */
MCF_IIC_IICR |= MCF_IIC_IICR_MSTA;
MCF_IIC_IIDR = (UINT8)address; /* set device ID to write */
while( !(MCF_IIC_IISR & MCF_IIC_IISR_IIF ))
; /* wait until one byte transfer completion */
MCF_IIC_IISR &= ~MCF_IIC_IISR_IIF; /* clear the completion transfer flag */

MCF_IIC_IIDR = (UINT8)254; /* command  */
iic_delay();/* wait until one byte transfer completion */
while( !(MCF_IIC_IISR & MCF_IIC_IISR_IIF ));
MCF_IIC_IISR &= ~MCF_IIC_IISR_IIF; /* clear the completion transfer flag */
MCF_IIC_IIDR = (UINT8)command; /* command */
iic_delay();/* wait until one byte transfer completion */
while( !(MCF_IIC_IISR & MCF_IIC_IISR_IIF ));
MCF_IIC_IISR &= ~MCF_IIC_IISR_IIF; /* clear the completion transfer flag */
for(i=0;i<number;i++)
{

if(buf == NULL)break;
MCF_IIC_IIDR = buf[i];
iic_delay();
while( !(MCF_IIC_IISR & MCF_IIC_IISR_IIF ))
;
MCF_IIC_IISR &= ~MCF_IIC_IISR_IIF;/* clear the completion transfer flag */

}
/* generates stop condition */
MCF_IIC_IICR &= ~MCF_IIC_IICR_MSTA;
iic_delay();
return;

}

The IIC_send_command( ) is used to send the control command to the IIC LCD module. The input 
parameters are: the command, the IIC LCD address, the buffer that contains command parameters and the 
buffer length. This function follows the routine of the LCD module, therefore it is module specified. It 
generates the START flag to start the IIC frame, then transfers the IIC address, command, and parameters. 
Finally, it generates a STOP flag.
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Conclusion
The routine of the IIC_send_data( ) is almost the same as that of the IIC_send_command( ). The difference 
is, it sends the buffer content instead of the command.

9 Conclusion
For embedded control application, the LCD display can help enhance the UI usage. The ColdFire V2 
product MCF5223x without a flex bus can conveniently adopt the LCD module through a serial interface. 
The driver introduced in this application note runs on the Interniche RTOS. It does not take much for the 
user to migrate to any other software platform or OS with the same task routine.
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