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The e300, the e500, and Changes to the Architecture Definition

1 The e300, the e500, and Changes to the Architecture 
Definition

This section describes the changes to the architectural specifications especially as they relate to the e300 
and e500 processor families.

NOTE
The term ‘PowerPC™ architecture’ has come to refer strictly to the original 
architecture definition for desktop processors that is implemented on the 
e300, e600, and others and sometimes is referred to as the classic or AIM 
(Apple, IBM, Motorola) version of the architecture. 

The term ‘Power ISA™’ refers to the current architecture specification that 
is implemented on e500 cores. 

Both the PowerPC architecture and the Power ISA are part of the more 
general Power Architecture™ model, as described below.

Many of the differences between the e300 and e500 processor families exist because they were designed 
to somewhat different versions of the PowerPC architecture, as follows:

• The e300 family (which are based on the original 603 design) was designed to the original PowerPC 
architecture definition. The functionality of the e300 family cores is described in the following 
Freescale documents:

— The e300 Power Architecture™ Core Family Reference Manual, which describes functionality 
specific to the e300.

— The Programming Environments Manual for 32-Bit Implementations of the PowerPC™ 
architecture (referred to as the PEM), which describes the functionality common to all 
PowerPC devices.

• The e500v1 and e500v2 processors are designed to what was originally the PowerPC Book E 
architecture and Freescale’s embedded implementation standards (EIS). Together, they replaced 
many of the original architecture’s desktop-centered features (most notably, operating system-level 
features such as the MMU and interrupt models, as well as true little-endian as part of a storage 
model in which byte ordering is configured on a per-page basis) with features more suited to the 
embedded environment for which Book E was intended. The functionality of the e500 family cores 
is described in the following Freescale documents:

— The e500 Power Architecture™ Core Family Reference Manual, which describes functionality 
specific to the e500 cores. 

— The EREF: a Programmer’s Reference Manual for Freescale Embedded Devices, which 
describes the functionality common to all Freescale Power ISA embedded devices.

Note that in this document, references to the e500 refer to all e500 devices. Any device-specific 
differences are noted. 
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NOTE
For any of the cores referenced in this document, resources that may be 
defined at the processor level may not be fully implemented, or 
implemented at all, in the system-on-a-chip (SoC) device that integrates the 
core. Also, in some cases, and in particular with register fields, functionality 
may be defined at a general level by the architecture and core reference 
manuals, and more specifically by the SoC. Because of such differences, it 
is important to consult the core register summary chapter in the reference 
manual for the integrated device.

Both families include many extensions to the architecture versions to which they were designed. In 
particular, the e300 family offered a software-based alternative to the more hardware-intensive MMU 
definition of the operating environment architecture (OEA, or Book III) of the original architecture. 
Book E and the EIS offered an architected alternative to such features as well as many architectural 
extensions, such as the performance monitor, cache management features, and the signal processing 
engine (SPE). The SPE, implemented on e500v1 and e500v2, defines an extensive set of 64-bit, 
two-element vector instructions and includes a set of floating-point instructions as an alternative to the one 
defined by the PowerPC architecture. To facilitate such special-purpose extensions, Book E introduced the 
concept of auxiliary processing units (APUs) and allocated resources such as instruction opcode space and 
SPRs that encouraged the development of such functionality. 

Since the restructuring of the architecture (now referred to collectively as the Power Architecture model), 
most of those APUs are now a formal part of the portion of the architecture designated for embedded 
devices and published in the Power ISA specification, released in 2006. Figure 1 shows the relationship 
between the different environments. Note that the e300 family is part of the Power Architecture model; the 
e500 family is part of the embedded environment of the Power ISA. 

It is especially important to note that, although the structure of the architecture has changed considerably, 
most of the functionality changes have been relegated to operating system–level features (such as the 
MMU and interrupt models described above). As Figure 1 illustrates, the application-level programming 
model, that is the base set of instructions and registers, remains consistent across the e300, e500, and all 
other Power Architecture devices.

Power Architecture Model

Power ISA Version 

Desktop Environment
(PowerPC architecture)

Server Environment
(formerly PowerPC
architecture, 2.02)

Embedded Environment
(formerly Book E/EIS)

User ISA Book I (UISA) Book I (UISA) restructured and extended Book VLE 
(extends 
Books 
I–III)

VEA Book II (VEA) Book II (VEA) restructured and extended

OEA Book III (OEA)
(Desktop environment) 

Book III-S: 
(Server environment)

Book III-E:
(Embedded environment)

Example
implementations

e300, e600 G5, IBM 970 e500v1, e500v2 e200

Indicates application-level features that have remained unchanged across all environments

Figure 1. Power Architecture Relationships
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The Power ISA extends the modularity of the layered architecture (Books I through III) by breaking the 
functionality of the architecture into components called ‘categories,’ the broadest of which define basic 
functionality common across computing environments, as follows:

• The base category defines all of those elements common to all Power Architecture processors. 
Although it includes functionality defined in all three books, the Base category preserves almost 
all of the user application-level resources defined in the original PowerPC Book I, the user 
instruction set architecture (UISA). Other features from the original UISA, such as the 
floating-point and move assist instructions, are treated as separate categories that are not required 
for every implementation.

• The embedded and server categories define mutually exclusive resources appropriate for those 
environments. The e500 family devices implement embedded category resources.

Other categories address more specific features, such as the signal processing engine. Some of these 
special features were optional in the PowerPC architecture. Others were previously defined as auxiliary 
processing units (APUs) and were not part of the architecture. Many of those former APUs, began life as 
part of Freescale’s embedded implementation standards (EIS), a layer of architecture for features common 
to Freescale processors, but outside of the formal architecture specification. The EIS continues to define 
such features.

2 Differences between e300 and e500 Cores: Overview
This section provides an overview of differences between the e300 and e500 families and summarizes 
functionality specific to each; more detailed information about the instruction, register, interrupt, and 
MMU models is provided in the subsequent sections.

2.1 The Floating-Point Model and Signal Processing Engine (SPE)
The e300 implements the floating-point instruction model defined by the PowerPC architecture, and 
included as a distinct category the Power ISA (not including e300c2). This floating-point model includes 
a separate register file of 32, 64-bit floating-point registers (FPRs) and a full suite of floating-point 
computational and load/store instructions that support both single- and double-precision operations. The 
floating-point status and control register (FPSCR) and condition register (CR) resources enable and track 
exception conditions.

The e500v1 and e500v2 implement the signal processing engine (SPE), a comprehensive set of 64-bit, 
two-element, SIMD instructions that share the UISA-defined GPRs extended by the SPE to 64 bits, as 
shown in Figure 2.

0 31 32 63

(upper) GPR0 (lower) 

General-purpose registers (The base category 
defines only the lower half (bits 32–63).

GPR1

GPR2

• • •
GPR31

The SPE defines the upper 32 bits of the GPRs to support 64-bit operands 

e300 cores implement standard 32-bit GPRs with bits numbered 0–31

Figure 2. Extended GPRs
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The SPE definition includes three dependent embedded floating-point categories:

• Embedded scalar, single-precision (e500v1/e500v2)

• Embedded scalar, double-precision (e500v2)

• Embedded vector, single-precision (e500v1/e500v2)

For systems that do not require high-end graphics and other floating-point intensive applications, 
providing a floating-point instruction set that shares the integer-based GPRs rather than requiring the 
implementation of FPRs simplifies the design of the processor. 

2.2 e500-Only Features
The e500 implements the following features, not provided on the e300 and defined by the Power ISA:

• Multiple-level interrupt model. In addition to the standard set of save restore registers (SRR0 and 
SRR1) and the Return from Interrupt instruction (rfi), the Power ISA defines the following 
separate resources to shorten interrupt latency and provide greater control over interrupt behavior:

— Critical interrupts—Uses separate save and restore resources, CSSR0 and CSRR1 the Return 
from Critical Interrupt instruction (rfci). These resources allowed critical-type interrupts to be 
taken without having to save state of any concurrent non-critical interrupts. Some e300 family 
devices support critical interrupts using the fixed offset of 0xA00 rather than the IVOR/IVPR 
SPRs to determine the interrupt vector. 

The following interrupts use the critical interrupt resources: critical input and watchdog timer 
interrupts. On the e500, machine check interrupts may be configured to use critical interrupt 
resources. 

— Machine check interrupt—Implements save and restore registers (MCSRR0/MCSRR1) used to 
save the return address and machine state when machine check interrupts are taken. The rfmci 
instruction is used to restore state. 

• Programmable interrupt vectors. The Power ISA defines the following SPRs for setting up the 
interrupt vector table:

— Interrupt vector prefix register (IVPR). Provides the high-order bits for placing the interrupt 
table in memory.

— Interrupt vector offset registers (IVORs). Provides the low-order, interrupt-specific bits for 
placing each interrupt handler into the interrupt table.

• Byte ordering configured on a per-page basis (the E bit in the TLBs) instead of the moded byte 
ordering determined by the setting of MSR[LE,ILE]. These bits are not implemented on the e500. 

The Power ISA defines true little-endian byte ordering, replacing the version of little-endian byte 
ordering defined in the PowerPC architecture. The e300 also supports a true little-endian 
byte-ordering mode, configured through the MSR[LE,ILE] fields

• Cache-line locking. Allows instructions and data to be locked into their respective caches on a 
cache line basis. Locking is performed by a set of touch and lock set instructions. 

The e300 cache locking functionality allows separate locking of the data and instruction cache by 
setting HID0[DLOCK,ILOCK]. The e300 provides locking on a cache-way basis using 
HID2[IWLCK, DWLCK].
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• Freescale MMU. The embedded MMU model defines page-based, software-managed address 
translation and memory protection using translation lookaside buffers (TLBs). It consists primarily 
of the storage architecture defined by Book E and the Freescale EIS. 

The MMU model defines the following used to configure and update the TLBs:

— Machine state register (MSR) fields. MSR[DS] and MSR[IS] are defined as part of the address 
translation to designate address spaces for data and instruction storage. These bits replace 
MSR[DR] and MSR[IR], which the PowerPC architecture defined to enable memory 
translation. Note that translation is always enabled on Power ISA devices. 

Unlike the PowerPC model implemented on the e300, there is no support for real mode; that is, 
translation is always enabled.

— MMU assist registers:

– e500v1: MAS0–MAS4 and MAS6

– e500v2: MAS0–MAS4 and MAS6–MAS7 

— Process identification registers PIDn. 

— The TLB configuration registers, TLB0CFG–TLB3CFG

— The MMU control and status register, MMUCSR0

— The MMU configuration register MMUCFG

• Expanded hardware and software debug functions. These include instruction and data breakpoints 
and program single stepping. The debug facilities include debug control registers 
(DBCR0–DBCR2) and address compare registers (IACs and DACs) for enabling and recording 
various kinds of debug events and registers that support the debug interrupt-type (DSRR0 and 
DSRR1). 

• Alternate time base. An additional time base analogous to the standard time base defined by both 
the Power ISA and the PowerPC architecture (Book II). The alternate time base is implemented on 
the e500v2. 

• Additional software-use SPRs. In the Power ISA, the base category defines SPRG0–SPRG3; the 
embedded category defines SPRG4–SPRG7. The PowerPC architecture defines SPRG0–SPRG3; 
e300 implements SPRG4–SPRG7, as described in Section 5.10, “Software-Use SPR Comparison.” 

3 Power Architecture Details
This section provides an overview of the programming, interrupt, cache, and MMU models as they are 
defined by the PowerPC architecture and Power ISA architecture, noting any differences either in how the 
resources are defined in the different versions of the architecture or in how those definitions are structured.

The original UISA, Book I, as it was defined in the PowerPC architecture, was consistent with the Book E 
user-level programming model and now comprises most of the base category. This ensures binary 
compatibility across the 15-year legacy of applications and across the many families of desktop, 
embedded, and server processors. 
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3.1 An Overview of Categories Implemented by the e500
This section provides an overview of the categories defined by the Power ISA and implemented on the 
e500. 

All devices implement the facilities defined by the base category. This largest category encompasses all 
components common across the computing environments; for example, these include the integer 
computational and load/store instructions and the GPRs. These include devices such as the e300 cores 
based on the PowerPC architecture. Although the base category largely consists of the features defined in 
Book I (the user ISA), like many categories, it extends beyond Book I to include those Book II (VEA) and 
Book III (OEA) features common to all Power Architecture devices, such as the machine state register 
(MSR), the time base, the interrupt model’s save and restore registers, and the instructions required for 
accessing them.

The Power ISA floating-point category consists of the resources originally defined by the PowerPC 
architecture to support single- and double-precision floating-point instructions. The e300c2, e500v1, and 
e500v2 do not implement this floating-point model. The functionality of these resources has not changed. 
Defining them as a separate category underscores the advantages of a modular architecture, providing 
greater leeway in balancing power, thermal, size, and price constraints for very specific environments. 

The Integer Select instruction (isel), formerly a Freescale EIS instruction, is now part of the base category. 
This instruction can be used to more efficiently handle sequences with multiple conditional branches, and 
is not implemented on the e300.

The next largest categories are those that support the two computing environments to which the Power ISA 
is written, the embedded and server environments. The following section gives a high level description of 
the embedded category; the remaining categories are defined in the sections that follow. 

3.1.1 The Embedded Category
As described above, the embedded category largely consists of features formerly defined by the PowerPC 
Book E architecture and the Freescale EIS. This section describes the components as defined by the Power 
ISA. Note that the high level embedded category incorporates some resources defined in Book E, 
including the following:

• Write MSR External Enable instructions (wrtee[i]), which is implemented on the e500 to update 
only MSR[EE].

• The software-use SPRs (SPRG4–SPRG9), which are implemented on the e300 as 
implementation-specific features.

3.1.2 Signal Processing Engine (SPE)
The SPE, implemented on the e500v1 and e500v2, is a 64-bit, two-element, single-instruction 
multiple-data (SIMD) ISA, originally designed to accelerate signal processing applications normally 
suited for digital signal processing (DSP) operations. The two-element vectors fit within the GPRs, which 
the SPE extends to 64 bits. SPE also defines an accumulator register (ACC) to allow for back-to-back 
operations without loop unrolling. The SPE is primarily an extension of Book I but identifies some 
resources for interrupt handling in Book III-E.
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In addition to add- and subtract-accumulate operations, the SPE supports a number of multiply-accumulate 
operations, including negative-accumulate forms as summarized in Table 1. The SPE supports signed, 
unsigned, and fractional forms. For these instructions, the fractional form does not apply to unsigned 
forms, because integer and fractional forms are identical for unsigned operands. 

Mnemonics for SPE instructions generally begin with the letters ‘ev’ (embedded vector).

3.1.2.1 SPE Embedded Vector and Scalar Floating-Point Categories

The embedded floating-point categories are dependent categories of the SPE. These include the following:

• Single-precision scalar 

• Single-precision vector

• Double-precision scalar

The embedded floating-point categories, compatible with IEEE Std. 754™, provide floating-point 
operations to power- and space-sensitive embedded applications. As is true for all Signal Processing 
Engine categories, rather than implementing the FPRs defined by the PowerPC architecture, these 
categories share the GPRs used for integer operations, extending them to 64 bits to accommodate vector 
single-precision and scalar double-precision categories. These extended GPRs are described in 
Section 5.1, “Register File Comparison.” 

4 Instruction Model
This section describes the instructions and instruction classes as they are defined as part of the Power ISA  
definition. Features defined only for the PowerPC architecture are indicated as such. 

The following instructions are implemented on both the e300 and e500 cores with minimal differences: 

• Integer instructions—These include arithmetic, logical, and integer load/store instructions. See 
Section 4.2.1, “Integer Instructions.” The Power ISA defines and the e500 implements the Integer 
Select instruction (isel), which is neither provided by the earlier PowerPC architecture nor is 
implemented on the e300. 

Table 1. SPE Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element

evm

ho 
he 
hog
heg
wh 
wl 
whg
wlg
w 

half odd (16x16->32)

half even (16x16->32)

half odd guarded (16x16->32)

half even guarded (16x16->32)

word high (32x32->32)

word low (32x32->32)

word high guarded (32x32->32)

word low guarded (32x32->32)

word (32x32->64)

usi
umi
ssi
ssf 1

smi
smf1

1  Low word versions of signed saturate and signed modulo fractional instructions are not supported. 

unsigned saturate integer

unsigned modulo integer

signed saturate integer

signed saturate fractional

signed modulo integer

signed modulo fractional

a
aa
an
aaw
anw

write to ACC

write to ACC & added ACC

write to ACC & negate ACC

write to ACC & ACC in words

write to ACC & negate ACC in words



Migrating from e300- to e500-Based Integrated Devices, Rev. 0

Freescale Semiconductor 9
 

Instruction Model

• Branch and flow control instructions—These include branching instructions, CR logical 
instructions, trap instructions, and other instructions that affect instruction flow. See Section 4.2.3, 
“Branch and Flow Control Instructions.” 

The following groups of instructions are implemented on both e300 and e500 family devices, but with 
some differences:

• Floating-point instructions—The e300 family (excluding the e300c2) implements the base 
category floating-point instructions defined by the PowerPC architecture; the e500 family 
implements floating-point vector and scalar single-precision instructions defined as part of the 
SPE; the e500v2 implements the embedded double-precision instructions. See Section 4.2.2, 
“Floating-Point Instructions (e300),” and Section 2.1, “The Floating-Point Model and Signal 
Processing Engine (SPE).”

• Processor control instructions—These instructions, described in Section 4.3, “Processor Control 
Instructions,” include the instructions that explicitly access registers such as SPRs, MSR, CR, and 
others. To reduce interrupt latency, the e500 implements the Write MSR External Enable 
instructions (wrtee[i]), which can be used instead of mtmsr to update only MSR[EE], which 
enables or disables external interrupt exception conditions. The wrtee instruction has fewer 
serialization requirements, and therefore shorter latency, than mtmsr. 

• Memory synchronization instructions—These instructions, described in Section 4.3.1, “Memory 
Synchronization Instructions,” ensure that accesses to memory and memory resources occur in 
correct order with respect to memory operations generated by other instructions or by other 
memory devices. 

— Book E recast the PowerPC architecture–defined sync as msync. However, the Power ISA 
version defines msync as a simplified mnemonic for the sync instruction, configured to 
function as the Book E–defined msync for embedded category devices.

— The eieio instruction, Enforce In-Order Execution of I/O, which is defined by the PowerPC 
architecture and implemented on the e300 shares the same opcode with the mbar (Memory 
Barrier) instruction defined by the Power ISA embedded category. 

Because eieio and mbar share the same opcode, software designed for both environments must 
assume that only the eieio functionality applies, because the functions provided by eieio are a 
subset of those provided by mbar. Refer to the EREF and PEM for details. 

• Memory control instructions—These instructions provide control of caches and TLBs. See 
Section 4.3.2, “Memory Control Instructions.” 

The standard UISA floating-point instructions use FPRs for single- and double-precision floating-point 
operands. The SPE embedded floating point instructions, implemented on the e500v1 and e500v2, use 
GPRs widened to 64 bits to support vector single-precision and scalar double-precision operands. 

4.1 Simplified Mnemonics
The simplified mnemonics for instructions common to both versions of the architecture are consistent in 
all implementations. Note that the Power ISA defines simplified mnemonics for some new instructions. 

Also the msync instruction in the e500 is a simplified mnemonic for sync instruction. See Table 8. 
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Additional simplified mnemonics are provided to support access to both newly architected and 
implementation-specific SPRs. 

4.2 Instruction Set Overview
The tables in this section provide a general overview of the e500 instruction set, indicating those 
instructions that either are not supported by the e300 or whose implementations have changed. 

4.2.1 Integer Instructions
This section describes the integer instructions, all of which are defined in Book I. All are part of the base 
category except for the load/store string and multiple instructions. 

These integer instructions are grouped as follows:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions

• Integer select instruction (new in the Power ISA and implemented on the e500)

Integer instructions use GPRs for source operands and place results into GPRs and the XER and CR fields. 
Integer instructions are shown in Table 2.

Integer load and store instructions, shown in Table 3, are issued and translated in program order; however, 
the accesses can occur out of order. Synchronizing instructions (see Table 8) are defined in Book II and 
are provided to enforce strict ordering. 

Table 2. Integer Computational Instructions

Instructions Function Options

Integer arithmetic (addx, divx, mulx, negx, 
subx)

Add, divide, multiply, negate, subtract Unchanged

Integer compare (cmpx) Compare Unchanged

Integer logical (andx, cnt, eqv, extx, nand, 
norx, orx, xorx)

AND, count, equivalent, extend, 
NAND, NOR, OR, XOR

Unchanged

Integer rotate and shift (rlwx, slwx, srwx, 
srawx)

Rotate left word, shift Unchanged

Integer select (isel) Integer select Defined by the Power ISA, implemented 
by the e500 but not the e300.
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4.2.2 Floating-Point Instructions (e300)
The floating-point model is written to IEEE 754, which defines conventions for single- and 
double-precision arithmetic. The standard requires that single-precision arithmetic be provided for 
single-precision operands. (Note that the floating-point instructions are not implemented on the e300c2.)

The signal processing engine (SPE), implemented on the e500v1 and e500v2, defines an alternative 
floating-point instruction set that uses GPRs rather than FPRs. See Section 3.1.2.1, “SPE Embedded 
Vector and Scalar Floating-Point Categories.” 

Table 4 provides an overview of the floating-point computational instructions. 

Table 3. Integer Load/Store Instructions

Instruction Function Comments

Integer load 
(lbx, lhx, lwx)

Load byte, word, half word, 
algebraic (half word), byte 
reverse, and zero, with update, 
indexed. 

Note:  The SPE defines instructions for loading and storing double-word 
operands required for SPE vector instructions and embedded 
floating-point single-precision vector and double-precision scalar 
instructions. 

Integer load 
multiple/string 
word: lmw, lswi

Load multiple word Base category. Implemented on both e300 and e500 cores. 

Load string word Move assist category. Implemented on the e300; not implemented on the 
e500. 

Integer store 
(stbx, sthx, 
stwx

Store Note:  Byte, word, half word, byte-reverse, with update, indexed. The SPE 
defines instructions for loading and storing double-word operands 
required for SPE vector instructions and embedded floating-point 
single-precision vector and double-precision scalar instructions. 

Integer store 
multiple/string 
word: stmw, 
stswi

Store multiple word Base category. Implemented on both e300 and e500 cores. 

Store string word Move assist category. Implemented on the e300; not implemented on the 
e500. 

Table 4. Floating-Point Computational Instructions

Instructions Instruction Name Comments

Floating-point elementary arithmetic (faddx, 
fdivx, fmulx, fsubx, fsqrtx, fresx, fabs, fmr, 
fnabs, fneg)

Add, divide, multiply, reciprocal, square root, subtract, 
absolute value, move register, negative absolute value, 
negate

Not on
e500v1/e500v2

Floating-point multiply-add (fmaddx) Multiply-add, multiply-subtract, negative multiply-add, 
negative multiply-subtract

Floating-point rounding and conversion 
(fctix, frx)

Convert to/from integer, round to single-precision

Floating-point compare and select (fcmx) Compare, select

FPSCR (mtfx, mffx) Move to/from FPSCR
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Table 5 shows that the floating-point load and store instructions are required to transfer operands between 
memory and the FPRs.

4.2.3 Branch and Flow Control Instructions 
Branch instruction functions include the following:

• Branch instructions redirect instruction execution conditionally based on the value of bits in the 
CR. For branch conditional instructions, the BO operand specifies the conditions under which the 
branch is taken.

• CR logical instructions perform logical operations on CR contents that help determine branching 
conditions.

• Trap instructions test for a specified set of conditions. If any of the tested conditions are met, a 
system trap type interrupt is taken.

• Executing a System Call (sc) instruction lets a user program call on the system to perform a service 
by invoking a system call interrupt. System Call instructions can be user- or supervisor-level.

For branch conditional instructions, the BO operand specifies the conditions under which the branch is 
taken. The BI operand specifies which of the 32 CR bits to test.

All processors support simplified mnemonics that allow conditions specified by BO and BI to be 
incorporated into the mnemonic. For example, the Branch Conditional instruction, bc BO,BI, target 
address, can be coded to decrement the count register (CTR) and branch as long as the CTR is not zero 
(closure of a loop controlled by a count loaded into CTR). To specify this condition, the BO field must be 
coded as 16. Alternatively, a simplified mnemonic is available, bdnz, that indicates “branch while the 
decremented value is non-zero.” Using the simplified mnemonic eliminates the BO and BI operands, 
simplifying ‘bc 16,0,target’ to the more easily remembered ‘bdnz target’, which generates identical 
machine code. 

The supervisor-level rfi instruction is used for returning from a standard interrupt handler. 

The differences between the processor families are as follows:

• The rfci instruction, implemented on some e300 devices, is part of the embedded category and is 
used for critical interrupts on e500 cores.

• The e500 implements the Power ISA–defined rfmci for machine check interrupts. See Section 6, 
“Interrupt Model.” 

Table 5. Floating-Point Load and Store Instructions

Instructions Instruction Name Comments

Floating-point load (lfx) Load floating-point Not on e500v1/e500v2

Floating-point store (stfx) Store floating-point
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Branch and flow control instructions are shown in Table 6.

4.3 Processor Control Instructions
Processor control instructions are used to read and write registers other than GPRs and FPRs that can be 
accessed specifically. These include CR, XER, MSR, and SPRs. The time base register and some SPRs are 
accessible at both the user and supervisor levels; separate SPR numbers are used for each.

Differences between implementations are as follows:

• The e500 implements the Power ISA–defined Write MSR External Enable instructions (wrtee[i]), 
which updates only MSR[EE] with fewer serialization requirements, and therefore shorter latency, 
than mtmsr. 

Table 7 summarizes processor control instructions.

4.3.1 Memory Synchronization Instructions
Memory synchronization instructions control the order in which memory operations execute with respect 
to asynchronous events and the order in which operations are seen by other mechanisms that access 
memory. Differences between processors are highlighted in Table 8.

Table 6. Branch and Flow Control Instructions

Instruction Name Comments

Branch (bx, bcx) Branch Unchanged

CR logical
(crx, mcrx)

Condition register Unchanged

Trap (tx, twx) Trap Unchanged

System call (sc) System call Unchanged

Return (rfx) Return from Interrupt, critical, and machine check interrupts.The 
rfci instruction is defined by the Power ISA but is 
implemented on the e300. 

Table 7. Processor Control Instructions

Instructions Name Comments

Move (mtx, mfx) Move to SPR, CR fields, 
CR from XER, time 
base, MSR, PMR

Note:  All devices support simplified mnemonics formed by adding the 
abbreviated name of any SPR to the prefix ‘mf ’, for example mfmas0, mfivor3, 
and mfcssr1.

Move from SPR, CR 
fields, CR from XER, 
time base, MSR, PMR.

Table 8. Memory Synchronization Instructions

Instructions  Name Comments

lwarx Load word and reserve index Unchanged

stwcx. Store word conditional index Unchanged
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4.3.2 Memory Control Instructions
Memory control instructions include instructions for cache management and TLB management. Major 
differences are as follows:

• The segment register instructions defined by the PowerPC architecture to support the segmented 
MMU model and implemented on the e300 are not part of the embedded environment and are not 
implemented on the e500.

• TLB management instructions—Resources defined to support software address translation. 

The e300 defines the Load Data TLB Entry (tlbld) and Load Instruction TLB Entry (tlbli) 
instructions to directly access TLBs. The Power ISA defines tlbwe and tlbre, which the e500 uses 
to directly configure TLBs with translation and memory protection information by loading and 
storing values defined in the memory assist (MAS) registers. Additional instructions are provided 
for searching and invalidating entries and for synchronizing TLB accesses. 

Specific differences in these instruction sets are listed in Table 9. 

Synchronize
(sync, eieio, 
isync, 
msync, 
mbar)

Memory Synchronize Book E recast PowerPC architecture–defined sync as msync. Power ISA 
defines msync as a simplified mnemonic, configured to function as the 
Book E–defined msync.

Enforce In-Order Execution 
of I/O (e300)/Memory Barrier 
(e500)

PowerPC architecture–defined (e300)

Embedded category mbar instruction implemented on the e500. The PowerPC 
architecture defines this opcode as eieio.

Instruction Synchronize isync synchronizes the instruction stream

Table 9. Memory Control Instructions

Instructions Name  Comments 

User-level 
cache (dcbx, 
icbx)

Data cache block touch, 
touch for store, allocate, 
clear, zero, store, flush.

The Power ISA defines additional cache lock instructions, icblc and dcblc, 
implemented on the e500. 

Instruction cache block 
invalidate, touch

The embedded category defines additional cache touch instructions implemented 
on the e500: icbtls, dcbtls, and dcbtstls.

TLB
management
(tlbx)

TLB invalidate, synchronize Unchanged

TLB read entry e500. Reads TLB parameters from the TLBs to the MAS registers. 

TLB search indexed e500. Searches valid TLB arrays for an entry corresponding to the virtual address 
and reads appropriate values into the MAS registers. 

TLB write entry e500. Writes TLB parameters from the MAS registers to the TLBs.

Load data/instruction TLB The e300 defines the Load Data/Instruction TLB Entry instructions (tlbld and tlbli) 
to directly update TLBs.

Table 8. Memory Synchronization Instructions (continued)

Instructions  Name Comments
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4.3.3 Instruction Set Differences
Table 10 lists the instructions implemented in the e300 and e500 processors, where applicable, noting the 
architecture that defines the instruction. 

Table 10. List of Instructions

Mnemonic PowerPC Power ISA e300 e500

addc[o][.] √ √ √ √
adde[o][.] √ √ √ √

addi √ √ √ √
addic[.] √ √ √ √
addis √ √ √ √

addme[o][.] √ √ √ √
addze[o][.] √ √ √ √

add[o].] √ √ √ √
andc[.] √ √ √ √
andi. √ √ √ √
andis. √ √ √ √
and[.] √ √ √ √

b √ √ √ √
ba √ √ √ √

bbelr — — — √
bblels — — — √

bc √ √ √ √
bca √ √ √ √

bcctr √ √ √ √
bcctrl √ √ √ √

bcl √ √ √ √
bcla √ √ √ √
bclr √ √ √ √
bclrl √ √ √ √

bl √ √ √ √
bla √ √ √ √

brinc — √ — v1/v2

cmp √ √ √ √
cmpi √ √ √ √
cmpl √ √ √ √
cmpli √ √ √ √

cntlzw[.] √ √ √ √
crand √ √ √ √
crandc √ √ √ √
creqv √ √ √ √

crnand √ √ √ √
crnor √ √ √ √
cror √ √ √ √
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crorc √ √ √ √
crxor √ √ √ √
dcba √ √ √ √
dcbf √ √ √ √
dcbi √ √ √ √
dcblc — √ — √
dcbst √ √ √ √
dcbt √ √ √ √

dcbtls — √ — √
dcbtst √ √ √ √

dcbtstls — √ — √
dcbz √ √ √ √

divwu[o][.] √ √ √ √
divw[o][.] √ √ √ √

eciwx √ — — —

ecowx √ — — —

efdabs — √ — v2

efdadd — √ — v2

efdcfs — √ — v2

efdcfsf — √ — v2

efdcfsi — √ — v2

efdcfuf — √ — v2

efdcfui — √ — v2

efdcmpeq — √ — v2

efdcmpgt — √ — v2

efdcmplt — √ — v2

efdctsf — √ — v2

efdctsi — √ — v2

efdctsiz — √ — v2

efdctuf — √ — v2

efdctui — √ — v2

efdctuiz — √ — v2

efddiv — √ — v2

efdmul — √ — v2

efdnabs — √ — v2

efdneg — √ — v2

efdsub — √ — v2

efdtsteq — √ — v2

efdtstgt — √ — v2

efdtstlt — √ — v2

efsabs — √ — v1/v2

efsadd — √ — v1/v2

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500
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efscfsf — √ — v1/v2

efscfsi — √ — v1/v2

efscfuf — √ — v1/v2

efscfui — √ — v1/v2

efscmpeq — √ — v1/v2

efscmpgt — √ — v1/v2

efscmplt — √ — v1/v2

efsctsf — √ — v1/v2

efsctsi — √ — v1/v2

efsctsiz — √ — v1/v2

efsctuf — √ — v1/v2

efsctui — √ — v1/v2

efsctuiz — √ — v1/v2

efsdiv — √ — v1/v2

efsmul — √ — v1/v2

efsnabs — √ — v1/v2

efsneg — √ — v1/v2

efssub — √ — v1/v2

efststeq — √ — v1/v2

efststgt — √ — v1/v2

efststlt — √ — v1/v2

eieio √ Replaced with mbar √ mbar

eqv[.] √ √ √ √
evabs — √ — v1/v2

evaddiw — √ — v1/v2

evaddsmiaaw — √ — v1/v2

evaddssiaaw — √ — v1/v2

evaddumiaaw — √ — v1/v2

evaddusiaaw — √ — v1/v2

evaddw — √ — v1/v2

evand — √ — v1/v2

evandc — √ — v1/v2

evcmpeq — √ — v1/v2

evcmpgts — √ — v1/v2

evcmpgtu — √ — v1/v2

evcmplts — √ — v1/v2

evcmpltu — √ — v1/v2

evcntlsw — √ — v1/v2

evcntlzw — √ — v1/v2

evdivws — √ — v1/v2

evdivwu — √ — v1/v2

eveqv — √ — v1/v2

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500



Migrating from e300- to e500-Based Integrated Devices, Rev. 0

18 Freescale Semiconductor
 

Instruction Model

evextsb — √ — v1/v2

evextsh — √ — v1/v2

evfsabs — √ — v1/v2

evfsadd — √ — v1/v2

evfscfsf — √ — v1/v2

evfscfsi — √ — v1/v2

evfscfuf — √ — v1/v2

evfscfui — √ — v1/v2

evfscmpeq — √ — v1/v2

evfscmpgt — √ — v1/v2

evfscmplt — √ — v1/v2

evfsctsf — √ — v1/v2

evfsctsi — √ — v1/v2

evfsctsiz — √ — v1/v2

evfsctuf — √ — v1/v2

evfsctui — √ — v1/v2

evfsctuiz — √ — v1/v2

evfsdiv — √ — v1/v2

evfsmul — √ — v1/v2

evfsnabs — √ — v1/v2

evfsneg — √ — v1/v2

evfssub — √ — v1/v2

evfststeq — √ — v1/v2

evfststgt — √ — v1/v2

evfststlt — √ — v1/v2

evldd — √ — v1/v2

evlddx — √ — v1/v2

evldh — √ — v1/v2

evldhx — √ — v1/v2

evldw — √ — v1/v2

evldwx — √ — v1/v2

evlhhesplat — √ — v1/v2

evlhhesplatx — √ — v1/v2

evlhhossplat — √ — v1/v2

evlhhossplatx — √ — v1/v2

evlhhousplat — √ — v1/v2

evlhhousplatx — √ — v1/v2

evlwhe — √ — v1/v2

evlwhex — √ — v1/v2

evlwhos — √ — v1/v2

evlwhosx — √ — v1/v2

evlwhou — √ — v1/v2

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500
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evlwhoux — √ — v1/v2

evlwhsplat — √ — v1/v2

evlwhsplatx — √ — v1/v2

evlwwsplat — √ — v1/v2

evlwwsplatx — √ — v1/v2

evmergehi — √ — v1/v2

evmergehilo — √ — v1/v2

evmergelo — √ — v1/v2

evmergelohi — √ — v1/v2

evmhegsmfaa — √ — v1/v2

evmhegsmfan — √ — v1/v2

evmhegsmiaa — √ — v1/v2

evmhegsmian — √ — v1/v2

evmhegumiaa — √ — v1/v2

evmhegumian — √ — v1/v2

evmhesmf — √ — v1/v2

evmhesmfa — √ — v1/v2

evmhesmfaaw — √ — v1/v2

evmhesmfanw — √ — v1/v2

evmhesmi — √ — v1/v2

evmhesmia — √ — v1/v2

evmhesmiaaw — √ — v1/v2

evmhesmianw — √ — v1/v2

evmhessf — √ — v1/v2

evmhessfa — √ — v1/v2

evmhessfaaw — √ — v1/v2

evmhessfanw — √ — v1/v2

evmhessiaaw — √ — v1/v2

evmhessianw — √ — v1/v2

evmheumi — √ — v1/v2

evmheumia — √ — v1/v2

evmheumiaaw — √ — v1/v2

evmheumianw — √ — v1/v2

evmheusiaaw — √ — v1/v2

evmheusianw — √ — v1/v2

evmhogsmfaa — √ — v1/v2

evmhogsmfan — √ — v1/v2

evmhogsmiaa — √ — v1/v2

evmhogsmian — √ — v1/v2

evmhogumiaa — √ — v1/v2

evmhogumian — √ — v1/v2

evmhosmf — √ — v1/v2

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500
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evmhosmfa — √ — v1/v2

evmhosmfaaw — √ — v1/v2

evmhosmfanw — √ — v1/v2

evmhosmi — √ — v1/v2

evmhosmia — √ — v1/v2

evmhosmiaaw — √ — v1/v2

evmhosmianw — √ — v1/v2

evmhossf — √ — v1/v2

evmhossfa — √ — v1/v2

evmhossfaaw — √ — v1/v2

evmhossfanw — √ — v1/v2

evmhossiaaw — √ — v1/v2

evmhossianw — √ — v1/v2

evmhoumi — √ — v1/v2

evmhoumia — √ — v1/v2

evmhoumiaaw — √ — v1/v2

evmhoumianw — √ — v1/v2

evmhousiaaw — √ — v1/v2

evmhousianw — √ — v1/v2

evmra — √ — v1/v2

evmwhsmf — √ — v1/v2

evmwhsmfa — √ — v1/v2

evmwhsmi — √ — v1/v2

evmwhsmia — √ — v1/v2

evmwhssf — √ — v1/v2

evmwhssfa — √ — v1/v2

evmwhumi — √ — v1/v2

evmwhumia — √ — v1/v2

evmwlsmiaaw — √ — v1/v2

evmwlsmianw — √ — v1/v2

evmwlssiaaw — √ — v1/v2

evmwlssianw — √ — v1/v2

evmwlumi — √ — v1/v2

evmwlumia — √ — v1/v2

evmwlumiaaw — √ — v1/v2

evmwlumianw — √ — v1/v2

evmwlusiaaw — √ — v1/v2

evmwlusianw — √ — v1/v2

evmwsmf — √ — v1/v2

evmwsmfa — √ — v1/v2

evmwsmfaa — √ — v1/v2

evmwsmfan — √ — v1/v2

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500
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evmwsmi — √ — v1/v2

evmwsmia — √ — v1/v2

evmwsmiaa — √ — v1/v2

evmwsmian — √ — v1/v2

evmwssf — √ — v1/v2

evmwssfa — √ — v1/v2

evmwssfaa — √ — v1/v2

evmwssfan — √ — v1/v2

evmwumi — √ — v1/v2

evmwumia — √ — v1/v2

evmwumiaa — √ — v1/v2

evmwumian — √ — v1/v2

evnand — √ — v1/v2

evneg — √ — v1/v2

evnor — √ — v1/v2

evor — √ — v1/v2

evorc — √ — v1/v2

evrlw — √ — v1/v2

evrlwi — √ — v1/v2

evrndw — √ — v1/v2

evsel — √ — v1/v2

evslw — √ — v1/v2

evslwi — √ — v1/v2

evsplatfi — √ — v1/v2

evsplati — √ — v1/v2

evsrwis — √ — v1/v2

evsrwiu — √ — v1/v2

evsrws — √ — v1/v2

evsrwu — √ — v1/v2

evstdd — √ — v1/v2

evstddx — √ — v1/v2

evstdh — √ — v1/v2

evstdhx — √ — v1/v2

evstdw — √ — v1/v2

evstdwx — √ — v1/v2

evstwhe — √ — v1/v2

evstwhex — √ — v1/v2

evstwho — √ — v1/v2

evstwhox — √ — v1/v2

evstwwex — √ — v1/v2

evstwwex — √ — v1/v2

evstwwo — √ — v1/v2

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500



Migrating from e300- to e500-Based Integrated Devices, Rev. 0

22 Freescale Semiconductor
 

Instruction Model

evstwwox — √ — v1/v2

evsubfsmiaaw — √ — v1/v2

evsubfssiaaw — √ — v1/v2

evsubfumiaaw — √ — v1/v2

evsubfusiaaw — √ — v1/v2

evsubfw — √ — v1/v2

evsubifw — √ — v1/v2

evxor — √ — v1/v2

extsb[.] √ √ √ √
extsh[.] √ √ √ √
fabs[.] √ √ √ 1 —

fadds[.] √ √ √ 1 —

fadd[.] √ √ √ 1 —

fcfid[.] √ √ √ 1 —

fcmpo √ √ √ 1 —

fcmpu √ √ √ 1 —

fctidz[.] √ √ √ 1 —

fctid[.] √ √ √ 1 —

fctiwz[.] √ √ √ 1 —

fctiw[.] √ √ √ 1 —

fdivs[.] √ √ √ 1 —

fdiv[.] √ √ √ 1 —

fmadds[.] √ √ √ 1 —

fmadd[.] √ √ √ 1 —

fmr[.] √ √ √ 1 —

fmsubs[.] √ √ √ 1 —

fmsub[.] √ √ √ 1 —

fmuls[.] √ √ √ 1 —

fmul[.] √ √ √ 1 —

fnabs[.] √ √ √ 1 —

fneg[.] √ √ √ 1 —

fnmadds[.] √ √ √ 1 —

fnmadd[.] √ √ √ 1 —

fnmsubs[.] √ √ √ 1 —

fnmsub[.] √ √ √ 1 —

fres[.] √ √ √ 1 —

frsp[.] √ √ √ 1 —

frsqrte[.] √ √ √ 1 —

fsel[.] √ √ √ 1 —

fsqrts[.] √ √ √ 1 —

fsqrt[.] √ √ √ 1 —

fsubs[.] √ √ √ 1 —

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500
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fsub[.] √ √ √ 1 —

icbi √ √ √ √
icblc — √ — √
icbt — √ √ √

icbtls — √ — √
isel — √ — √

isync √ √ √ √
lbz √ √ √ √

lbzu √ √ √ √
lbzux √ √ √ √
lbzx √ √ √ √
lfd √ √ √ —

lfdepx — √ — —

lfdu √ √ √ 1 —

lfdux √ √ √ 1 —

lfdx √ √ √ 1 —

lfs √ √ √ 1 —

lfsu √ √ √ 1 —

lfsux √ √ √ 1 —

lfsx √ √ √ 1 —

lha √ √ √ √
lhau √ √ √ √
lhaux √ √ √ √
lhax √ √ √ √
lhbrx √ √ √ √
lhz √ √ √ √

lhzu √ √ √ √
lhzux √ √ √ √
lhzx √ √ √ √
lmw √ √ √ √
lswi √ √ √ —

lswx √ √ √ —

lwarx √ √ √ √
lwbrx √ √ √ √
lwz √ √ √ √

lwzu √ √ √ √
lwzux √ √ √ √
lwzx √ √ √ √
mbar — √ — √
mcrf √ √ √ √
mcrfs √ √ √ —

mcrxr √ √ √ √

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500
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mfcr √ √ √ √
mffs[.] √ √ √
mfmsr √ √ √ √
mfpmr — √ √ √
mfspr √ √ √ √
mfsr √

mfsrin √
mftb √

msync see sync √ — √
mtcrf √ √ √ √

mtfsb0[.] √ √ √ 1 —

mtfsb1[.] √ √ √ 1 —

mtfsfi[.] √ √ √ 1 —

mtfsf[.] √ √ √ 1 —

mtmsr √ √ √ √
mtocrf — √ —

mtpmr — √ √ √
mtspr √ √ √ √
mtsr √ — √ —

mtsrin √ — √ —

mulhwu[.] √ √ √ √
mulhw[.] √ √ √ √

mulli √ √ √ √
mullw[o][.] √ √ √ √

nand[.] √ √ √ √
neg[o][.] √ √ √ √

nor[.] √ √ √ √
orc[.] √ √ √ √
ori √ √ √ √
oris √ √ √ √
or[.] √ √ √ √
rfci — √ √ √
rfi √ √ √ √

rfmci — √ — e500

rlwimi[.] √ √ √ √
rlwinm[.] √ √ √ √
rlwnm[.] √ √ √ √

sc √ √ √ √
slw[.] √ √ √ √

srawi[.] √ √ √ √
sraw[.] √ √ √ √
srw[.] √ √ √ √

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500



Migrating from e300- to e500-Based Integrated Devices, Rev. 0

Freescale Semiconductor 25
 

Instruction Model

stb √ √ √ √
stbu √ √ √ √

stbux √ √ √ √
stbx √ √ √ √
stfd √ √ √

stfdu √ √ √ 1 —

stfdux √ √ √ 1 —

stfdx √ √ √ 1 —

stfiwx √ √ √ 1 —

stfs √ √ √ 1 —

stfsu √ √ √ 1 —

stfsux √ √ √ 1 —

stfsx √ √ √ 1 —

sth √ √ √ √
sthbrx √ √ √ √
sthu √ √ √ √
sthux √ √ √ √
sthx √ √ √ √
stmw √ √ √ √
stswi √ √ √ —

stswx √ √ √ —

stw √ √ √ √
stwbrx √ √ √ √
stwcx. √ √ √ √
stwu √ √ √ √
stwux √ √ √ √
stwx √ √ √ √

subfc[o][.] √ √ √ √
subfe[o][.] √ √ √ √

subfic √ √ √ √
subfme[o][.] √ √ √ √
subfze[o][.] √ √ √ √
subf[o][.] √ √ √ √

sync √ msync √ See Section 4.3.1,  on page 13 

tlbia √ — √ —

tlbie √ — √ —

tlbivax — √ — √
tlbld — — √ —

tlbli — — √ —

tlbre — √ — √
tlbsx √ √ √

tlbsync √ √ √ √

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500



Migrating from e300- to e500-Based Integrated Devices, Rev. 0

26 Freescale Semiconductor
 

Register Model

5 Register Model
Most registers defined in the PowerPC architecture are unchanged in the e500 implementation of the 
Power Architecture model. A few have been replaced by other registers, and in some cases new fields are 
added, primarily to support functionality defined by categories that have been added to the architecture. 
Differences include the following:

• Bit numbering. 32-bit registers in the PowerPC architecture (e300) are numbered 0–31; the same 
registers in Power ISA (e500) are numbered 32–63. Any 32-bit registers that are defined as 64-bit 
registers in the Power ISA are treated as the lower word of the 64-bit versions. These include the 
GPRs, save/restore registers, and all registers that can hold addresses (such as the count and link 
registers). 

• Register files. These sets of registers hold operands for computational, load, and store instructions. 
The architecture defines the following register files:

— General-purpose registers (GPRs). All cores implement GPRs. 

The SPE uses the 32-bit GPRs extended to 64-bits. GPRs are often used to generate the 
effective address for instructions that access memory (because GPRs are used to hold 
addresses, 64-bit implementations require 64-bit GPRs). The e300 cores implement 32-bit 
GPRs. On the e300, these bits are numbered 0–31.

See Section 5.1, “Register File Comparison.” 

— Floating-point registers (FPRs). All cores that support the Power Architecture model base 
category floating-point instructions implement the FPRs, but the e500v1 and e500v2 do not. 

• Instruction-accessible registers—Registers such as the condition register (CR), the floating-point 
status and control register (FPSCR), and some SPRs are accessed as side effects of executing 
certain instructions. All processors implement CRs, but processors that do not support FPRs also 
do not support the FPSCRs or floating-point functionality defined in the CR. 

• Special-purpose registers (SPRs)—On-chip registers that are part of the processor core. Although 
the basic set of SPRs is implemented across all cores, some SPRs may not be implemented on all 
cores, or may have different meanings relative to the core or to the device into which the core is 
integrated. Always check the register summary chapter in the SoC reference manual for the most 
specific information.

tlbwe — √ — √
tw √ √ √ √
twi √ √ √ √

wrtee — √ — √
wrteei — √ — √
xori[.] √ √ √ √
xor[.] √ √ √ √

1  (Not including e300c2)

Table 10. List of Instructions (continued)

Mnemonic PowerPC Power ISA e300 e500
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Cores also include both the architecture-defined and implementation-specific SPRs required for 
the functionality provided. These differences are summarized at the register level in the 
comparison tables in the subsequent sections. Specific details are provided in the reference 
manuals for the cores and the integrated devices. 

NOTE
Performance monitor registers, or PMRs, offer an extensive set of on-chip 
registers similar to SPRs. These are defined by the Power ISA and 
implemented on the e500 and are implementation-specific resources on 
e300 cores. 

To optimize instruction execution, implementations typically employ duplicate space for certain heavily 
used registers, such as rename and shadow registers. Such microarchitectural resources vary from device 
to device and are not addressed here. 

5.1 Register File Comparison
Figure 3 compares register files. Note that, as the GPRs in Figure 3 illustrate, bit numbering for 32-bit 
registers differs between the PowerPC architecture and the Power Architecture model. 

Architecture-defined register files shown in Figure 3 are defined as follows:

• General-purpose registers (GPRs)—GPRs serve as the data source or destination for all integer and 
non–floating-point load/store instructions and provide data for generating addresses. The GPR file 
consists of 32 GPRs designated as GPR0–GPR31. 

The e300 implements 32-bit GPRs with bits numbered 0–31.

The SPE, implemented on e500v1 and e500v2 cores, extends the GPRs to accommodate 64-bit 
operands; scalar double-precision embedded floating-point instructions treat the 64 bits as a single 
operand; SPE vector instructions break the registers into two 32-bit elements, which for some 
instructions are broken into half-word elements. 

e300 e500

0 31 0 31 32 63

GPR0 

General-purpose
registers

(upper) GPR0 (lower)

General-purpose registers (The base 
category defines only the lower half (bits 
32–63)).

e500v1/
e500v2

GPR1 GPR1

GPR2 GPR2

• • • • • •
GPR31 GPR31

The SPE defines the upper 32 bits for use with 
64-bit operands 

 0 63

Floating-point
registers
(not including 
the e300c2)

FPR0

FPR1

FPR2

• • •
FPR31

Figure 3. Register File Comparison
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• Floating-point registers (FPRs)—The floating-point model defines an FPR file that consists of 
thirty-two 64-bit FPRs, FPR0–FPR31. The FPRs use double-precision operand format for both 
single- and double-precision data. See Section 4.2.2, “Floating-Point Instructions (e300).” 

5.2 Instruction-Accessible Registers
Figure 4 shows a comparison of registers that may be updated as the by-product of instruction execution. 
For example, an overflow may update the condition register (CR), the floating-point status and control 
register (FPSCR), or the SPE/embedded floating-point status and control register (SPEFSCR). For some 
of these registers, such as the FPSCR and CR, explicit move to/move from instructions are defined to 
explicitly access these registers.

The differences in these register sets depend on whether SPE and floating-point instructions are supported.

The following e500 registers support SPE and embedded floating-point instructions:

• SPE floating-point status and control register (SPEFSCR). Used for status and control of SPE and 
embedded floating-point instructions. It controls the handling of floating-point exceptions and 
records status information resulting from the floating-point operations.

• Accumulator register (ACC). Holds the results of the multiply accumulate (MAC) forms of SPE 
integer instructions. The ACC allows back-to-back execution of dependent MAC instructions, 
something that is found in the inner loops of DSP code such as finite impulse response (FIR) filters. 
The accumulator is partially visible to the programmer in that its results do not have to be explicitly 
read to use them. Instead, they are always copied into a 64-bit destination GPR specified as part of 
the instruction. Based upon the type of instruction, this register can hold either a single 64-bit value 
or a vector of two 32-bit elements. 

e300 e500

0 31 0 31 32 63

CR Condition register CR Condition register 

Base category
spr 1 XER Integer exception register spr 1 XER Integer exception register

spr 8 LR Link register spr 8 LR Link register
; ;

spr 9 CTR Count register spr 9 CTR Count register

FPSCR Floating-point status/control (not e300c2)

spr 512 SPEFSCR SPE FP status and control 
SPE: e500

ACC Accumulator

Figure 4. Instruction-Accessible Registers Comparison 
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5.3 Timer Register Comparison
Figure 5 shows a comparison of timer-related registers. 

Both families implement the following registers:

• Time base (TBU and TBL). Provides timing functions for the system. 

• Decrementer register (DEC). Typically used as a general-purpose software timer. It is updated at 
the same rate as the TB and provides a way to signal a decrementer, fixed-interval timer, or 
watchdog timer interrupt after a specified period.

The e500 implements Power ISA–defined registers that incorporate timing mechanisms for the 
fixed-interval and watchdog timer interrupts:

• Decrementer auto-reload register (DECAR). Can be used to automatically reload a programmed 
value into DEC. If DECAR is not used, a value has to be explicitly programmed into the DEC, as 
in the PowerPC architecture.

• Timer control register (TCR). Provides control information for the decrementer. It controls features 
such as auto-reload enable and decrementer interrupt enable. 

• Timer status register (TSR). Contains status on timer events and the most recent watchdog 
timer-initiated processor reset. It controls features such as watchdog timer, fixed-interval interrupt 
enable, and watchdog timer interrupt status.

• The alternate time base registers duplicate much of the functionality of the time base, but do not 
support the DECAR. The alternate time base is typically clocked at a higher frequency than the 
standard time base to offer a finer granularity. 

e300 e500

0 31 32 63

spr 268 TBL User-level time base 
lower/upper
(read-only)

spr 268 TBL User-level time base 
lower/upper (read-only)

Base category

spr 269 TBU spr 269 TBU 

 spr 284 TBL Supervisor-level time 
base lower/upper 

 spr 284 TBL Supervisor-level time 
base lower/upper  spr 285 TBU  spr 285 TBU

 spr 22 DEC Decrementer  spr 22 DEC Decrementer

 spr 54 DECAR Decrementer auto-reload

Embedded category spr 340 TCR Timer control

 spr 336 TSR Timer status

 spr 526 ATBL Alternate time base 
lower/upper Alternate time-base 

 spr 527 ATBU

Figure 5. Time/Decrementer Registers Comparison
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5.4 MMU Control and Status Register Comparison
Because the original PowerPC architecture MMU specification was cumbersome for embedded 
applications, both the e300 and e500 defined alternate features, especially to support software-managed 
page tables. Both the e300 and e500 MMUs differ from the model defined in the PowerPC Book III. On 
the e300, these extensions are implementation specific, whereas the e500 memory model is defined by 
Book III-e. See Section 7, “Memory Management Unit (MMU) Model.” 

Figure 6 compares the MMU registers.

e300 e500

a MMU Control and Status (Read/Write)
0 31 32 63

spr 528 IBAT0U

Instruction block-address 
translation registers

spr 48 PID0
Process ID
registers 0–2

Embedded category

spr 529 IBAT0L spr 633 PID1
e500v1/e500v2 

• • • spr 634 PID2

spr 534 IBAT3U MMU control and 
status register 0spr 1012 MMUCSR0

spr 535 IBAT3L

 spr 624 MAS0

MMU assist registers 
0–4 and 6

spr 536 DBAT0U

Data block-address
translation 
registers

spr 625 MAS1
spr 537 DBAT0L

spr 626 MAS2
• • •

Embedded categoryspr 627 MAS3
spr 542 DBAT3U

spr 628 MAS4
spr 543 DBAT3L

spr 630 MAS6

SR0 

Segment registers

spr 944 MAS7 e500v2

SR1 
MMU Control and Status (Read Only)

SR2 

• • • spr 1015 MMUCFG MMU configuration

SR31 
spr 688 TLB0CFG

TLB configuration 0/1
 spr 25 SDR1 SDR1 spr 689 TLB1CFG

spr 560 IBAT4U

Instruction block-address 
translation registers

spr 561 IBAT4L

• • •

spr 566 IBAT7U

spr 567 IBAT7L

spr 568 DBAT4U

Data block-address
translation registers

spr 569 DBAT4L

• • •

spr 574 DBAT7U

spr 575 DBAT7L

e300–specific

Figure 6. MMU Register Comparison

spr 978 DMISS
Data and instruction miss

spr 979 IMISS

spr 976 HASH1 Primary and secondary 
hash spr 980 HASH2

spr 977 DCMP Data/instruction TLB 
comparespr 981 ICMP

spr 882 RPA Required physical address
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The e300 cores implement the following MMU registers defined by the PowerPC architecture, but not 
supported by the Power ISA embedded cores: 

• Block address translation registers (BATs).

• SDR1

The e300 implements the following implementation-specific registers, which are not implemented on the 
e500:

• Instruction and data TLB miss address registers (IMISS and DMISS). When a TLB miss interrupt 
occurs, the IMISS or DMISS register contains the 32-bit effective address of the instruction or data 
access, respectively, that caused the miss. 

• Primary and secondary hash address registers (HASH1 and HASH2). Contain the primary and 
secondary PTEG addresses that correspond to the address causing a TLB miss. These addresses are 
derived automatically by the core by performing the primary and secondary hashing function on 
the contents of IMISS or DMISS, for an ITLB or DTLB miss interrupt, respectively.

• Instruction and data PTE compare registers (ICMP and DCMP). Contain the word to be compared 
with the first word of a PTE in the table search software routine to determine if a PTE contains the 
address translation for the instruction or data access. The ICMP and DCMP contents are 
automatically derived by the core when a TLB miss interrupt occurs.

• Required physical address register (RPA). The system software loads a TLB entry by loading the 
second word of the matching PTE entry into the RPA register and then executing the tlbli or tlbld 
instruction (for loading the ITLB or DTLB, respectively). 

The e500 implements the following Power ISA–defined SPRs to support address translation:

• Process ID registers (PID0–PID2). Provides an identifier value associated with each effective 
address (instruction or data) generated by the processor. The Power ISA supports as many as 16 
PIDs.

• MMU control and status register 0 (MMUCSR0). Used for general MMU control, for example, to 
invalidate TLBs.

• MMU assist (MAS) registers. Used with the tlbwe and tlbre instructions to configure and manage 
MMU read/write and replacement, descriptor configuration, effective page number and page 
attributes, real page number and access, and hardware replacement assist configuration. 

• MMU configuration register (MMUCFG). Provides configuration information for the particular 
MMU supplied with a version of the core. It is a read-only register that provides information on 
PID register size and the number of TLBs.

• TLB configuration registers (TLB0CFG–TLB1CFG). These read-only registers provide 
information about each TLB that is visible to the programming model. They provide configuration 
information for TLBs and describe aspects such as the associativity, minimum and maximum page 
sizes of the TLBs, and the number of entries in the TLBs.
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5.5 Cache Register Comparison 
The Freescale EIS defines the e500 L1 cache configuration and status registers, shown in Figure 7. Neither 
version of the architecture defines cache registers. 

The e500 registers in Figure 7 are described as follows:

• L1 cache configuration registers (L1CFG0–L1CFG1). Read-only registers that provide 
configuration information for the particular L1 data and instruction caches supplied with a version 
of the core. They include a description of the cache block size, the number of ways, the cache size, 
and the cache replacement policy, among other features.

• L1 cache control and status registers (L1CSR0–L1CSR1). L1CSRs are used for general control and 
status of the L1 data and instruction caches and are read/write accessible by supervisor-level 
programs. They allow the programmer to enable features such as cache parity and the cache itself. 
They provide status on information such as cache locking and cache locking overflow.

The e300 implements the following L1 cache control bits in HID0:

• Instruction/data cache enable (ICE/DCE). Clearing the bit disables the cache; it can be neither 
accessed nor updated. Potential cache accesses from the bus (snoop and cache operations) are 
ignored and bL1 cache tag state bits are ignored and all instruction fetches are propagated to the 
coherent system bus (CSB) as single-beat or burst transactions, depending on the value of 
HID2[IFEB]. oth caches are disabled at reset.

• Data/instruction cache lock (DLOCK/ILOCK). If this bit is set, all ways of the respective cache are 
locked. A locked cache supplies data normally on a hit, but is treated as a cache-inhibited 
transaction on a miss. The e500 implements the cache locking instructions listed in Section 4.3.2, 
“Memory Control Instructions.”

• Instruction/data cache flash invalidate (ICFI/DCFI). Setting this bit generates an invalidate 
operation that marks the state of each instruction cache block as invalid. Setting ICFI clears all the 
valid bits of the blocks and the PLRU bits to point to way L0 of each set.

The e300 HID2 register includes the following:

• Cache way locking fields (IWLCK, DWLCK)

• Instruction cache way protection (ICWP). Used to protect locked ways in the instruction cache 
from being invalidated.

See the core and SoC reference manuals for details about fields within these registers. 

e300 e500

e300 cores do not implement cache management registers, but 
provide cache locking and enablement in the HID registers, as 

described below.

L1 Cache (Read/Write)
32  63

spr 1010 L1CSR0
L1 cache control/status 0/1

spr 1011 L1CSR1

L1 Cache (Read Only)

spr 515 L1CFG0
L1 cache control/status 0/1

spr 516 L1CFG1

Figure 7. Cache Registers Comparison
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5.6 Interrupt Register Comparison
The Power ISA embedded category optimizes the architected resources to improve responsiveness to 
interrupts, especially for asynchronous interrupts signaled to the core from peripheral logic within the SoC. 
As Figure 8 shows, these differences include the following:

• In the PowerPC architecture which is implemented on the e300, an interrupt vector consists of a 
fixed offset prepended with a value as determined by MSR[IP], which is not part of the Power ISA. 
On e500 cores, these offsets are programmed through the interrupt vector prefix register (IVPR), 
which places the interrupt table in memory, and the interrupt vector offset registers (IVORs), which 
contain the offset for individual interrupts. 

IVORs hold the index from the base address provided by the IVPR for its respective interrupt type. 
IVORs provide storage for specific interrupts. The Power ISA definition allows implementations 
to define IVORs to support category- and implementation-specific interrupts. For example, the 
SPE defines IVOR32–IVOR35. Such IVORs are listed at the bottom of Table 11.

• To manage the increased traffic from peripheral devices, the Power ISA provides analogous 
resources for critical input interrupt with its own set of save and restore registers. This functionality 
also exists as implementation-specific functionality in some cores. The Power ISA defines similar 
resources for machine check interrupts implemented on e500 cores.

• Support for data related interrupts has changed, as follows:

— The e500 implements the exception syndrome register (ESR) instead of the DSI syndrome 
register (DSISR). The DSISR is used for data storage and alignment interrupts. The ESR is 
used to track exceptions for a variety of interrupts.

— The e500 implements the data exception address register (DEAR). DEAR is loaded with the 
effective address of a data access (caused by a load, store, or cache management instruction) 
that results in an alignment, data TLB miss, or DSI exception. The e300 implements the data 
address register (DAR) for this purpose. 
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Figure 8 compares the interrupt register models.

The e500 implements the following registers, defined by the Power ISA:

• The machine check interrupt model defines the following registers:

— Machine check save/restore registers (MCSRR0 and MCSRR1). Analogous to SRR0 and 
SRR1. 

— Machine check syndrome register (MCSR). When the core complex takes a machine check 
interrupt, it updates MCSR to differentiate between machine check conditions. The MCSR 
indicates whether a machine check condition is recoverable.

— Machine check address register (MCAR). When the e500 takes a machine check interrupt, it 
updates MCAR to indicate the address of the data associated with the machine check.

5.7 Configuration/Processor Control Register Comparison 
The architecture defines registers that provide control, configuration, and status information of the 
machine state and process IDs. Figure 9 compares configuration registers. Note that this document does 
not address in detail all differences in the implementation of each register, particularly regarding MSR 
fields.

e300 e500

0 31 32 63

spr 26 SRR0 Save/restore
registers 0/1

spr 26 SRR0
Save/restore registers 0/1 Base category

spr 27 SRR1 spr 27 SRR1

spr 58 CSRR0
Critical SRR 0/1 

Embedded.category

spr 59 CSRR1

spr 570 MCSRR0
Machine check SRR 0/1

spr 571 MCSRR1

spr 572 MCSR Machine check syndrome 

spr 62 ESR Exception syndrome 

spr 61 DEAR Data exception address

spr 63 IVPR Interrupt vector prefix

spr 400 IVOR0 

Interrupt vector offset 
registers 0–15

spr 401 IVOR1

• • •

spr 415 IVOR15

spr 528 IVOR32

Interrupt vector offset 
registers 32–35

SPE (e500v1/e500v2)spr 529 IVOR33

spr 530 IVOR34

spr 531 IVOR35 Performance monitor 

spr 573 MCAR Machine check address 
upper/lower Freescale EIS

spr 569 MCARU

Figure 8. Interrupt Register Comparison

spr 58 CSRR0 Critical SRR 0/1 (on 
some e300 devices) spr 59 CSRR1

spr 19 DAR Data address register

spr 18 DSISR DSISR
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• Machine state register (MSR). Defines the state of the processor (that is, enabling and disabling of 
interrupts and debugging exceptions, enabling and disabling some features, and specifying whether 
the processor is in supervisor or user mode).

The PowerPC architecture MSR (e300) defines bits that enable data address translation (IR and 
DR) and modal big/little endian byte ordering (LE and ILE). On the e500 byte ordering is a page 
attribute configured through the MAS registers. 

The MSR includes bits for enabling and disabling asynchronous interrupts: EE for external 
interrupts, CE for critical interrupts, and ME for machine check interrupts. The core user 
documentation describes the behavior of these bits when the respective interrupt is taken and how 
they should be treated by the interrupt handler. Note also that the Power ISA implements the Write 
MSR External Enable instructions (wrtee[i]), which can be used to update only MSR[EE].

MSR[LE] and MSR[ILE] on the e300are used to set configure the big- and true little-endian byte 
ordering; these are not implemented on the e500 and other Power ISA devices, which handle 
endianness on a per-page basis through the MAS registers.

The MSR[IP] value places the interrupt table in either high or low memory. This is not 
implemented on the e500, which uses IVPR and the IVORs to define the interrupt table and place 
it in memory.

• Processor ID register (PIR). Contains a value that can be used to distinguish the processor from 
other processors in the system. Note that the PowerPC architecture and Power ISA PIR SPR 
numbers differ. 

• Processor version register (PVR). Contains a value identifying the version and revision level of the 
processor. The PVR distinguishes between processors whose attributes may affect software. 

• The system version register (SVR) identifies the integrated device that implements the core. 

5.8 Performance Monitor Register Comparison
The e300c3, e300c4, and e500 cores’ performance monitor utility uses the set of registers shown in 
Figure 10. The e300 and e500 processors implement this functionality in performance monitor registers 
(PMRs), which are part of the Power ISA. PMRs are similar to the SPRs and are accessed by mtpmr and 
mfpmr instructions. 

The counter registers, global controls, and local controls have alias names and use different PMR numbers. 
Accesses to PMC0–PMC15, PMGC0, PMLCa0–PMLCa15, and PMLCb0–PMLCb15 use the 

e300 e500

0 31 32 63

MSR Machine state MSR Machine state 

Base categoryspr 287 PVR Processor version spr 287 PVR Processor version

spr 286 1 SVR System version (e300-specific) spr 1023 1 SVR System version 

spr 286 1 PIR Processor ID Freescale EIS

1 Note that the SVR is SPR 1023 on the e500 and SPR 286 on the e300. The PIR is SPR 286 on the e500. 

Figure 9. Configuration Registers Comparison
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supervisor-level PMR number; accesses to UPMC0–UPMC15, UPMGC0, UPMLCa0–UPMLCa15, and 
UPMLCb0–UPMLCb15 use the user-level PMR number. User-level access is read only. 

It is important to note that the events counted can differ greatly among processors; consult the user 
documentation. Also note that most integrated devices implement a similar performance monitor that 
tracks events mostly involving peripheral device activities. These events may trigger an asynchronous 
interrupt, typically configured as an external interrupt. 

5.9 Debug Register Comparison
Debug registers are accessible to software running on the processor. These registers are intended for use 
by special debug tools and debug software, and not by general application or operating system code. 
Figure 11 compares debug registers.

The Power ISA does not implement data address breakpoint registers (DABRs) nor instruction address 
breakpoint registers (IABRs), but instead architects debugging support with the following registers:

• Debug control registers (DBCR0–DBCR1). Enable debug events, reset the processor, control timer 
operation during debug events, and set the debug mode of the processor. 

e300c3, e300c4, and e500 

User PMRs (Read-Only)

32 63

pmr 384 [U]PMGC0 Global control register

pmr 0–3 [U]PMC0–3 Counter registers 0–3

pmr 128–131 [U]PMLCa0–3 Local control registers a0–a3

pmr 256–259 [U]PMLCb0–3 Local control registers b0–b3

Supervisor PMRs 

pmr 400 PMGC0 Global control register 

pmr 16–19 PMC0–3 Counter registers 0–3

pmr 144–147 PMLCa0–3 Local control a0–a3

pmr 272–275 PMLCb0–3 Local control b0–b3

Figure 10. Performance Monitor Registers Comparison

e300 e500

0 31 32 63

 spr 308 DBCR0

Debug control registers 0–2spr 309 DBCR1 

spr 310 DBCR2 

 spr 304 DBSR Debug status register

spr 312 IAC1 Instruction address compare
registers 1 and 2spr 313 IAC2

spr 316 DAC1 Data address compare 
registers 1 and 2spr 317 DAC2

Figure 11. Debug Registers Comparison

 spr 1013 DABR Data address breakpoint 

 spr 317 DABR2 Data address breakpoint 2

 spr 1010 IABR Instruction address breakpoint

 spr 1018 IABR2 Instruction address breakpoint 2

 spr 309 IBCR
Instruction/data breakpoint control

 spr 310 DBCR
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• Debug status register (DBSR). Provides status information for debug events and for the most recent 
processor reset. The DBSR is set through hardware but is read and cleared through software.

• Instruction and data address compare registers (IACs and DACs). A debug event may be enabled 
to occur on an attempt to execute an instruction or access a data location from an address specified 
in an IAC or DAC, inside or outside a range specified by the IAC or DAC, or to blocks of addresses 
specified by the combination of the IACs and DACs. 

• Note that additional enhanced embedded debug interrupt resources are described in Section 5.6, 
“Interrupt Register Comparison.” 

5.10 Software-Use SPR Comparison
Software-use SPRs (SPRGs), shown in Figure 12, have no defined functionality, although many are added 
to the register set in conjunction with other functionality, for example the Freescale MMU architecture.

SPRGs consist of the following supervisor-level read/write registers:

• SPRG0–SPRG3—defined in both versions of the architecture.

• SPRG4–SPRG7—implementation-specific registers implemented on e300 cores, and also defined 
by the Power ISA.

On the e300, SPRGs are all supervisor-only, read/write registers. e500 SPRGs are defined by the Power 
ISA as follows:

• SPRG0–SPRG2—accessible only in supervisor mode.

• SPRG3—write-only in supervisor mode. It is readable in supervisor mode, but whether it can be 
read in user mode is implementation-dependent. Note that, as Figure 12 shows, the SPR numbers 
differ for user and supervisor accesses. 

• SPRG4–SPRG7—write-only in supervisor mode but readable in supervisor or user mode. Note 
that, as Figure 12 shows, the SPR numbers differ for user and supervisor accesses. 

• USPRG0—can be accessed in supervisor or user mode. Note that USPRG0 is a separate physical 
register from SPRG0.

e300 e500

Supervisor SPRGs User SPRGs

Architecture-Defined General SPRs (Read-Only)

0 31 32  63

spr 272 SPRG0

SPR general registers 0–3

spr 259 SPRG3

SPR general registers 3–7
spr 273 SPRG1 spr 260 SPRG4 

spr 274 SPRG2 • • •

spr 275 SPRG3 spr 263 SPRG7

e300-Specific User SPRGs (Read/Write)

spr 276 SPRG4

SPR general registers 4–7

spr 256 USPRG0 User SPR general 0
spr 277 SPRG5 

Supervisor SPRGs (Read/Write)spr 279 SPRG6

spr 279 SPRG7 spr 272–279 SPRG0–7 General SPRs 0–7

Figure 12. General SPRs (SPRGs)
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5.11 Miscellaneous Implementation-Specific Register Comparison
To handle special functions, implementations typically have SPRs not defined by the architecture, some 
of which may appear on multiple implementations with similar functionality. In particular, 
implementations define hardware implementation-dependent registers (HIDs) that typically control 
hardware-related functionality as shown in Figure 13.

6 Interrupt Model
Both architecture versions of the interrupt model are similar with respect to the interrupts that are defined 
and the kind of exceptions that can cause them. This is especially true for those interrupts that are closely 
related to program execution. The Power ISA extends the interrupt model somewhat both to provide 
greater responsiveness and lower interrupt latency critical to an embedded environment and to 
accommodate changes in the MMU model. With regard to the latter, the e300 cores also extend the 
interrupt model to support software address translation, although the resources are not identical to those 
defined by the Power ISA, as shown in Table 11.

NOTE
Note that e300 documentation uses the terms ‘exception’ and ‘interrupt’ 
differently than the Power ISA and Freescale’s e500 documentation. This 
document uses the terms as follows:

• An exception is the event that, if enabled, causes the processor to take 
an interrupt. Exceptions are generated by signals from internal and 
external peripherals, instructions, the internal timer facility, debug 
events, or error conditions. 

• An interrupt is the action in which the processor saves its context 
(typically the machine state register (MSR) and next instruction 
address) and begins execution at a predetermined interrupt handler 
address with a modified MSR.

Most of the general characteristics of the interrupt model are common across all architecture versions; the 
interrupt mechanism allows the processor to change to supervisor state as a result of external signals, 
errors, or unusual conditions arising in the execution of instructions. When interrupts occur, information 
about the state of the processor is saved to certain registers and the processor begins execution at an 
address (interrupt vector) predetermined for each interrupt. 

e300 e500

0 31 32 63

 spr 1008 HID0 Hardware implementation 
dependent registers

 spr 1008 HID0
Hardware implementation dependent register 0’1

 spr 1009 HID1  spr 1009 HID1 

 spr 1009 BUCSR Branch unit control and status 

 spr 513 BBEAR Branch buffer entry address (e500v1/e500v2)

 spr 514 BBTAR Branch buffer target address (e500v1/e500v2)

Figure 13. Implementation-Specific Registers Comparison
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The conditions that cause exceptions can vary from processor to processor and some may be mode 
dependent. Consult the user documentation. 

General differences between the PowerPC architecture and the Power ISA are as follows:

• The Power ISA embedded environment does not define, and e500 processors do not implement, a 
system reset interrupt. On Power ISA embedded cores, a system reset is typically initiated in one 
of the following ways:

— Assertion of a signal that resets the internal state of the core complex

— By writing a 1 to DBCR0[34], if MSR[DE] = 1 

• Interrupts in the PowerPC architecture 1.10 definition—The PowerPC interrupt model uses fixed 
addresses as vector offsets to map to physical memory locations with the base address determined 
by the MSR[IP]. If IP is zero, vector offsets are added to the physical address 0x000n_nnnn. If IP 
is set, vector offsets are added to the physical address 0xFFFn_nnnn. Table 11 shows the vector 
offsets associated with each interrupt type. Finally, the PowerPC architecture includes the system 
reset, trace, and floating-point assist interrupts which are not part of the Power ISA.

• MSR[IR,DR] are cleared when the e300 takes an interrupt, putting it in real mode. Because Power 
ISA devices do not implement real mode, the e500 core is always translating effective addresses.

• Interrupts in the Power ISA embedded category. Defines interrupt vector offset registers (IVORs), 
interrupt vector prefix registers (IVPRs), and critical interrupts. An IVOR is assigned to each 
interrupt type. The IVPR provides the base address location to which the offset in the IVORs is 
added. Table 11 shows the IVORs associated with each interrupt type.

The save and restore resources are part of the are largely identical to those defined by the OEA. Save 
and restore registers (shown in Figure 8) save the return address and machine state when they are 
taken. A return from interrupt instruction (rfi, rfci, or rfmci) restores state at the end of the interrupt 
routine. 

The Power ISA resources are defined as follows:

— Critical interrupts—To reduce interrupt response time to crucial interrupts, Book E defined a 
second interrupt type, the critical interrupt, with separate save and restore resources, CSSR0 
and CSRR1 the Return from Critical Interrupt instruction (rfci). These resources allowed 
critical-type interrupts to be taken without having to save state of any concurrent non-critical 
interrupts.This interrupt is available on some e300 family devices, but using the fixed offset of 
0xA00 rather than the IVOR/IVPR SPRs to determine the interrupt vector. 

The Power ISA version defines the critical input, watchdog timer, and debug interrupts as 
critical interrupts (although debug interrupts may be implemented as separate interrupt types).

Note that some e300 family cores implement the critical input interrupt, which is analogous to 
the standard external interrupt, and on both the e300 and e500 cores is triggered by the assertion 
of the cint signal and typically managed by a programmable interrupt controller implemented 
as part of the SoC. 

— Machine check interrupt—Analogous to critical interrupt with separate save and restore 
registers (MCSRR0/MCSRR1) and rfmci instruction. 

Table 11 lists other differences.

• Other categories, such as the SPE and performance monitor, define non-critical interrupts to handle 
category-specific program interrupts. 
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Table 11 shows a comparison of the interrupt models. 

Table 11. Interrupts and Conditions—Overview

Interrupt Type

Vector Offset
(‘—’ Indicates not 

implemented) Cause/Description

e300 e500

System reset 0x100 — Not implemented on e500

Critical input 0xA00 (on 
some 

devices)

IVOR0 Assertion of cint typically managed by a programmable interrupt controller 
integrated into the SoC and enabled through MSR[CE]. Similar to external 
interrupt.

Machine check 0x200 IVOR1 Causes are implementation-dependent but typically related to conditions such 
as bus parity errors or attempts to access an invalid physical address. Typically, 
these interrupts are triggered by an input signal to the processor. Disabled when 
MSR[ME] = 0; if a machine check interrupt condition exists, the processor goes 
into checkstop. 

e500 provides separate resources MCSRR0, MCSRR1, and rfmci. An address 
related to the machine check may be stored in MCAR. MCSR reports the cause 
of the machine check.

Data storage interrupt 0x300 IVOR2 A data memory access cannot be performed. On the e500, the ESR reports the 
cause and DEAR holds the EA of the data access.

e300: DSISR reports the cause; DAR is set based on DSISR settings.

Instruction storage 
interrupt

0x400 IVOR3 Instruction fetch cannot be performed. Causes include the following:

 • The EA cannot be translated. For example, when there is a page fault for this 
portion of the translation, an ISI must be taken to retrieve the page (and 
possibly the translation), typically from a storage device.

 • An attempt is made to fetch an instruction from a no-execute memory region 
or from guarded memory when MSR[IR] = 1.

 • The fetch access violates memory protection.
e500: ISI assists implementations that:

 • cannot dynamically switch byte ordering between consecutive accesses
 • do not support the byte order for a class of accesses
 • do not support misaligned accesses using a specific byte order. ESR reports 

the cause.

External interrupt 0x500 IVOR4 Generated only when an external interrupt is pending (typically signaled by a 
signal specified by the implementation) and the interrupt is enabled 
(MSR[EE]=1). 

Alignment 0x600 IVOR5 The processor cannot perform a memory access because of one of the 
following:

 • The operand of a load or store is not aligned.
 • a dcbz referenced storage that is write-through required or cannot be 

established in the data cache. 
e500: ESR reports the interrupt cause; DEAR holds the EA of the data access. 

e300: DSISR reports the cause; DAR is set based on DSISR. Implementations 
may vary with respect to taking interrupts for certain exception conditions. 
Consult the user documentation.
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Program 0x700 IVOR6 One of the following conditions occurs during instruction execution:

 • Floating-point enabled exception—Generated when MSR[FE0,FE1] ≠ 00 and 
FPSCR[FEX] is set. Not implemented on the e500v1 or e500v2. Caused 
when a floating-point instruction causes an enabled exception or by the 
execution of a Move to FPSCR instruction that sets both an exception 
condition bit and its corresponding FPSCR enable bit. DSISR reports the 
cause of the program interrupt; DAR is set based on DSISR settings.

 • Illegal or unimplemented instruction—Generated when execution of an 
instruction is attempted with an illegal opcode or illegal combination of 
opcode and extended opcode fields, or when execution of an optional 
instruction not provided in the specific implementation is attempted (these do 
not include optional instructions treated as no-ops). 

 • Privileged instruction—User-level code attempts execution of a supervisor 
instruction. 

 • Trap—Any of the conditions specified in a trap instruction is met.
e500: an unimplemented operation exception may occur if an unimplemented, 
defined instruction is encountered. Otherwise, an illegal instruction interrupt 
occurs. ESR reports the cause.

Floating-point 
unavailable

0x800 IVOR7 e300: Caused by an attempt to execute a floating-point instruction (including 
floating-point load, store, and move instructions) when the floating-point 
available bit is cleared, MSR[FP] = 0. 

Decrementer 0x900 IVOR10 As defined by the PowerPC architecture: occurs when the msb of the DEC 
changes from 0 to 1 and MSR[EE] = 1.

e500: implements the additional Power ISA–defined resources: TSR records 
status on timer events. An auto-reload value in the DECAR is written to DEC 
when it decrements from 0x0000_0001 to 0x0000_0000.

System call 0xC00 IVOR8 Occurs when a System Call (sc) instruction is executed. 

Trace 0xD00 — e300: Either MSR[SE] = 1 and almost any instruction successfully completed, or 
MSR[BE] = 1 and a branch instruction is completed. 

e500: not implemented

Instruction translation 
miss

0x1000 — e300: The EA for an instruction fetch cannot be translated by the ITLB.
e500: Not implemented. See instruction TLB error (IVOR14)

Data load translation 
miss

0x1100 — e300: The EA for a data load operation cannot be translated by the DTLB.
e500: Not implemented. See data TLB error (IVOR13)

Data store translation
miss

0x1200 — e300: The effective address for a data store operation cannot be translated by 
the DTLB, or when a DTLB hit occurs and the change bit in the PTE must be set 
due to a data store operation.
e500: Not implemented. See data TLB error (IVOR13)

Instruction address 
breakpoint

0x1300 — The address (bits 0–29) in the IABR matches the next instruction to complete in 
the completion unit, and IABR[30] is set. Note that the e300 core also 
implements IABR2, which functions identically to IABR.

System management 
interrupt

0x1400 — MSR[EE] = 1 and the smi input is asserted. 
e500: Not implemented. 

Table 11. Interrupts and Conditions—Overview (continued)

Interrupt Type

Vector Offset
(‘—’ Indicates not 

implemented) Cause/Description

e300 e500
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7 Memory Management Unit (MMU) Model
The MMU, together with the interrupt-processing mechanism, makes it possible for an operating system 
to implement a paged virtual-memory environment and to define and enforce characteristics of that 
memory space, such as cache coherency and memory protection. Virtual memory management permits 
execution of programs larger than the size of physical memory; the term ‘demand-paged’ implies that 
individual pages are loaded into physical memory from backing storage only as they are accessed by an 
executing program. 

The flow diagram in Figure 14 gives a high-level comparison of the address translation mechanisms. 

Performance monitor 0x0F00 IVOR35 An interrupt-enabled event defined by the performance monitor occurred. 

Fixed interval timer — IVOR11 A fixed-interval timer exception exists (TSR[FIS] = 1), and the interrupt is 
enabled (TCR[FIE] = 1 and MSR[EE] = 1). 

Watchdog timer — IVOR12 Critical interrupt. Occurs when a watchdog timer exception exists (TSR[WIS] = 
1), and the interrupt is enabled (TCR[WIE] = 1 and MSR[CE] = 1).

Data TLB error — IVOR13 A virtual address associated with an instruction fetch does not match any valid 
TLB entry. 

Instruction TLB error — IVOR14 A virtual address associated with a fetch does not match any valid TLB entry.

Debug — IVOR15 Critical interrupt. A debug event causes a corresponding DBSR bit to be set and 
debug interrupts are enabled (DBCR0[IDM] = 1 and MSR[DE] = 1).

Vector (SPE/AltiVec) 
unavailable

— IVOR32 MSR[SPE] is cleared and an SPE or embedded floating-point instruction is 
executed.

Embedded 
floating-point data

— IVOR33 Embedded floating-point invalid operation, underflow or overflow exception

Embedded 
floating-point round

— IVOR34 Embedded floating-point inexact or rounding error

Table 11. Interrupts and Conditions—Overview (continued)

Interrupt Type

Vector Offset
(‘—’ Indicates not 

implemented) Cause/Description

e300 e500
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Figure 14. Address Translation Types

Figure 12 outlines general differences between the PowerPC architecture 1.10 and the Power Architecture 
model embedded category MMU models. 

Generally, the address translation mechanism is defined in terms of mapping an effective-to-physical 
address for memory accesses. The effective address is converted to an interim virtual address and a page 
table is used to translate the virtual address to a physical address. 

In addition to instruction accesses and data accesses generated by load and store instructions, addresses 
specified by cache instructions also require address translation.

Translation lookaside buffers (TLBs) are commonly implemented to keep recently used page address 
translations on-chip.

The MMU models shares many general characteristics, particularly those related to memory protection 
and cache coherency and the general concepts of pages and TLBs. Differences are described in 
Section 7.1, “MMU Features in the PowerPC Architecture Definition.” 

0 31

Effective Address

0 51

Virtual Address

Segment descriptor 
located

0  31

Physical Address

0 31

Physical Address

0 31

Physical Address

Look up in 
page table

Page address 
translation

Block address
translation

e300
Translations

Match with 
BAT registers

Address space | PID | byte address

Real addressing mode 
Effective address = physical address

Address translation disabled
(MSR[IR] = 0, or MSR[DR] = 0)

e500 
Translations

The e500v2 supports 36-bit 
physical addresses using 
the same general translation 
mechanism.
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7.1 MMU Features in the PowerPC Architecture Definition
The e300 supports three types of address translation: page-address translation, block address translation 
and real mode (where the hardware translation mechanism is turned off and the effective address is used 
as the physical address). Power ISA devices, including the e500, do not support real mode. 

Page address translation is defined in terms of segment descriptors implemented as a set of 16 segment 
registers (SRs). The segment information translates the effective address to an interim virtual address, and 
the page-table information translates the virtual address to a physical address. Effective address spaces are 
divided into 256-Mbyte segments. Segments that correspond to memory-mapped areas are divided into 
4-Kbyte pages. As shown in Section 5.4, “MMU Control and Status Register Comparison,” Power ISA 
devices do not support SRs. 

The definition of the segment and page-table data structures provides significant flexibility for a range of 
computing environments. Therefore, the methods for storing segment or page-table information on-chip 
vary from implementation to implementation. The PowerPC architecture describes a hardware model for 
providing page address configuration, protection, and translation, but the flexibility of the architecture also 
allows implementation-specific, software-managed MMUs, such as that implemented on e300 devices. 
The Power ISA defines an architecture for software MMU management, which is likewise flexible and 
may vary somewhat among implementations, described in Section 7.2, “MMU Features in the Embedded 
Category Definition.” 

The MMU then uses segment descriptors to generate the physical address, the protection information, and 
other access-control information each time an address within the page is accessed. Address descriptors for 
pages reside in tables (as PTEs) in physical memory; for faster accesses, the MMU often caches on-chip 
copies of recently used PTEs in an on-chip TLB. 

The PowerPC architecture block address translation (BAT) mechanism allows the operating system to 
configure attributes for blocks of memory through a set of paired SPRs, described in Section 5.4, “MMU 
Control and Status Register Comparison.” The BATs also contain protection and memory coherency 
information. As Figure 6 shows, separate BATs are defined for instruction memory (IBATs) and the data 
memory (DBATs). Also as Figure 6 shows, BATs and block address translation are not defined by the 
Power ISA and not implemented on the e500.

7.2 MMU Features in the Embedded Category Definition
Note that the Power ISA does not support the Power Architecture translation enable bits, MSR[IR,DR]; 
thus there is no default real mode in which the effective address (EA) is the same as the physical address. 
Translation is always enabled.

The embedded MMU model supports demand-paged virtual memory as well as a variety of management 
methods that depend on precise control of effective-to-real address translation and configurable memory 
protection. Address translation misses and protection faults cause precise exceptions. Sufficient 
information is available for system software to correct the fault and restart the faulting instruction.

Each program on a 32-bit implementation can access 232 bytes of effective address space, subject to 
limitations imposed by the operating system. In a typical system, each program’s EA space is a subset of 
a larger virtual address (VA) space managed by the operating system. Note that the e500v1 supports 32-bit 
effective addresses; the e500v2 supports 36-bit effective addresses.
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Each effective (logical) address is translated to a real (physical) address before being used to access 
physical memory or an I/O device. The operating system manages the physically addressed resources of 
the system by setting up the tables used by the address translation mechanism.

The effective address space is divided into pages. The page represents the granularity of effective address 
translation, permission control, and memory/cache attributes. Multiple page sizes may be simultaneously 
supported. They can be as small as 1 Kbyte. The maximum size depends on the implementation. For an 
effective-to-real address translation to exist for a page, a valid entry containing the effective address must 
be in a translation lookaside buffer (TLB). Addresses for which no TLB entry exists cause TLB miss 
exceptions (instruction or data TLB error interrupts).

The MMU model defines a set of MMU assist (MAS) registers that can be programmed via the mtspr 
instructions to update the TLBs directly with translation and configuration information. The configuration 
data in the MAS registers is written to the TLBs on the execution of a TLB Write Entry (tlbwe) instruction. 
Likewise, TLB contents can be saved back to the MAS registers by executing a TLB Read Entry (tlbre) 
instruction. The TLB Search Indexed instruction (tlbsx) searches valid TLB arrays for an entry 
corresponding to the virtual address and reads appropriate values into the MAS registers. 

The operating system can restrict access to virtual pages on a per-page basis by selectively granting 
permissions for user state read, write, and execute; and supervisor state read, write, and execute. These 
permissions can be set up for a particular system (for example, program code might be execute-only, data 
structures may be mapped as read/write/no-execute) and can also be changed by the operating system 
based on application requests and operating system policies.

Table 12. PowerPC Architecture and Power ISA Embedded MMU Models

e300 e500: Power ISA Embedded Environment

Support for block address translation, page address 
translation, and real mode. 

Enhanced page address translation, no block address translation or real 
mode

Fixed 4-Kbyte pages Supports both fixed- and variable-sized page address translation 
mechanisms

Segmented memory model Segments not defined

Hardware page address translation definition with 
little architected support for software management. 
The e300 does not implement this features as it is 
defined by the architecture, but instead implements 
software-managed translation. 

Hardware table hashing is not defined. Additional features are defined 
that support management of page translation and protection in TLBs in 
software. Two instructions, TLB Read Entry (tlbre) and TLB Write Entry 
(tlbwe), are defined that provide direct software access to page 
translation and configuration. 

Byte ordering. Modal, big-endian and little-endian 
support provided through MSR[LE] and MSR[ILE]. 
The e300 supports true little endian byte ordering. 

Support for big- and true little-endian byte ordering provided on a 
per-page basis, programmed through the TLBs

DSI and ISI interrupts taken when an address 
cannot be translated or a protection violation occurs

In addition to the DSI and ISI interrupts, data and instruction TLB error 
interrupts are taken if there is a TLB miss. 
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The e500 processor executes the TLB Read Entry and TLB Write Entry instructions (tlbre and tlbwe) by 
reading or writing the contents of a set of MMU assist (MAS) SPRs into the TLBs. The MAS registers 
provide the translation, protection, byte-ordering, and cache characteristics for the relevant pages.

8 Revision History 
Table 13 provides a revision history for this application note. 

Table 13. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 10/31/2007 Initial release.
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