
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2007. All rights reserved.

This application note explains how to configure and run
Ethernet-based applications on the MSC8144 DSP to
maximize performance and minimize overhead. The
example code in the .zip file that accompanies this document
is based on the SmartDSP operating system (OS) running on
the MSC8144 application development system
(MSC8144ADS). After reading this application note, you
should understand:

• How Ethernet works on the MSC8144 system
• How to use and configure SmartDSP OS for the

MSC8144 to attain the highest throughput for
Ethernet-dependent applications

• What performance numbers to expect for different
Ethernet configurations

Using the MSC8144ADS and the example applications from
SmartDSP OS, which are provided with CodeWarrior™
v3.0, you can easily replicate the behavior and performance
of MSC8144 Ethernet as described here. Although this
application note is directed to the MSC8144 DSP, it also
applies to the MSC8144E and MSC8144EC.

Document Number: AN3439
Rev. 0, 09/2007

Contents
1 Ethernet Basics .2
2 Ethernet Architecture for the MSC81443
2.1 QUICC Engine .3
2.2 Ethernet Controllers .5

3 Ethernet Controller (UEC) Frame Filtering 6
3.1 MPC82xx Filtering Mode .6
3.2 Extended Parsing Mode .6

4 Ethernet Performance Testing on the MSC8144ADS .8
4.1 SmartBits .8
4.2 MSC8144ADS Board .10
4.3 SmartDSP OS Software and Demos11

5 Performance Testing .11
5.1 Testing with UDP Echo .11
5.2 Testing L2 Ethernet Echo .34

6 Maximizing the QUICC Engine Throughput41
6.1 MPC82xx Filtering .41
6.2 Extended Parsing Mode .44
6.3 Four Cores in Extended Parsing Mode44
6.4 Performance Measurement Summary45

7 Revision History .47

MSC8144 Ethernet Performance
Maximizing QUICC Engine™ Throughput

by Andrew Temple
NCSG DSP Applications
Freescale Semiconductor, Inc.
Austin, TX

MSC8144 Ethernet Performance, Rev. 0

2 Freescale Semiconductor

Ethernet Basics

1 Ethernet Basics
A consideration of Ethernet packetization and the Internet protocol stack is relevant to the task of
optimizing the way Ethernet interacts with the MSC8144 DSP within a system. Data is sent through the
Ethernet in packets that abstract to different layers of the Internet protocol suite. These packets have
different sizes and structures so that the receiver can abstract the information if the receiver is configured
to handle the protocols and layers in the packet. Figure 1 depicts the layers of the Internet protocol suite.

Figure 1. Internet Protocol Suite

Some layers of the protocol stack have multiple protocols to select. For example, the Transport layer has
both TCP and UDP. Protocols can vary greatly in the complexity of the algorithm, system load required,
and packet size. You should consider these differences when designing an application for a system that is
performance sensitive.

The layers of the protocol stack are put together in an actual data packet by taking the assembled packet
from the layer above and then adding transmit, encode, encryption, or error checking information to the
front. This process repeats at each layer until it reaches the physical layer where the data is actually
transmitted. There are a few exceptions to this flow. For example, ARP is not included in packets
stemming from layers above it, and ICMP is actually a mini-layer above IP. However, the overall process
moves down through the protocol layers. So naturally, if packet size is an issue, the goal of the
programmer/designer should be to start as close to the physical layer as possible in building packets.

For example, in Figure 2, the IP protocol requires the fields from Version down to Destination IP Address,
and then the data follows. If the full packet is a TCP packet, the data contains a set of required
communication fields in addition to the actual payload data.

Application

Presentation

Session

Transport

Network

Link

Physical Ethernet

ARP, RARP

Routing Protocols, IP, ICMP

TCP, UDP

Telnet,

SNMP,
SMTP,

NFS

XDR

RPC

Layers Protocols

RTP

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 3

Ethernet Architecture for the MSC8144

2 Ethernet Architecture for the MSC8144
The MSC8144 device is a quad-core Freescale StarCore® DSP device, the next generation after the
MSC8122. The MSC8144 is intended for a wide range of Ethernet-dependent applications, including VoIP,
media gateway, and wireless base station. Currently, many applications pertaining to real-time voice and
streaming video use RTCP/RTP service to transmit digitized voice and video. RTP sits on top of UDP in
the Internet protocol suite and provides feedback to the sender about the quality of the data distribution
over the network. What RTP does not do is cause the sender to regenerate packets or slow down the actual
system. When real-time data or voice is transmitted and a voice or video packet is not received, it usually
cannot be re-used at a later time. Therefore, the packet is discarded and the TCP protocol is usually not
necessary, which lessens the load on the system. Instead, UDP can be used, which simply transmits packets
to a destination IP address without the overhead of TCP caused by disassembling and reassembling data,
requiring acknowledgement, and flow control.

Therefore, in the discussion of testing the MSC8144 Ethernet, and considering the overhead of the Internet
protocol suite, this application note simply focuses on the layers used by RTP: UDP, IP, and raw Ethernet
performance. It does not consider the complicated protocols based on TCP.

In analyzing the MSC8144 Ethernet performance and bottlenecks, an overall understanding of the
MSC8144 architecture as it pertains to the Ethernet is essential. Thus, the remainder of this section takes
a look at the MSC8144 architecture (see Figure 3) and then focuses on the QUICC Engine block and the
Ethernet controllers.

2.1 QUICC Engine
The MSC8144 uses the QUICC Engine subsystem for Ethernet, ATM, and SPI communication. The block
diagram in Figure 3 shows the QUICC Engine block as part of the MSC8144.

32 Bits

Version Header Length Type of Service Total Length
(of IP packet+
above layers)

Identification Flags Fragment Offset

Time To Live Protocol (from
above Layer)

Header Checksum

Source IP Address

Destination IP Address

Options + Padding

Data (data from layers above IP would be located here)

Figure 2. IP Packet Structure

MSC8144 Ethernet Performance, Rev. 0

4 Freescale Semiconductor

Ethernet Architecture for the MSC8144

Figure 3. MSC8144 Block Diagram

As shown in Figure 4, the QUICC Engine block is a standalone block that contains two independent RISC
processors, multi-port RAM, a serial DMA, and three full duplex unified communications controllers
(UCCs):

• The RISC processors run at the CLASS clock speed (up to 400 MHz) and can execute code from
the QUICC Engine internal ROM or from multi-port RAM to manage operations such as Ethernet
header filtering and parsing.

• The serial DMA has access to the multi-port RAM in the QUICC Engine block and to the memories
and addressable peripherals on the CLASS.

• UCC1 and UCC3 are dedicated to Ethernet and act as the two Ethernet controllers (called UEC0
and UEC1) for the MSC8144.

Using the RISCs, DMA, and UCCs, the QUICC Engine block can handle the lower levels of Ethernet
filtering as well as data movement to and from shared memory on the MSC8144. Also, it manages Ethernet
communication to the StarCore DSPs through interrupts.

JTAG

RMU SRIO

Note: The arrow direction indicates master or slave.

128-bit at

DDR Interface 16/32-bit at 400 MHz data rate

8 T
D

M
s

D
M

A

I/O-Interrupt
Concentrator

UART

Clocks

Timers

Reset

Semaphores

Other

DDR
10 Mbytes

M3
Memory

512 Kbytes
M2

Memory

CLASS

128 Kbyte
L2

ICache

P
C

I

PCI 32-bit

Serial RapidIO
Subsystem

Modules

QUICC Engine™

Ethernet

Dual RISC

ATM

16-bit/8-bit

10/100/1000 Mbps
10/100/1000 Mbps

Subsystem

400 MHz

Processors

Eight TDMs
33/66 MHz

1x/4x

256-Channels each

Four DSP
Subsystems

Ethernet
Boot ROM

I2C

Virtual
Interrupts

Controller

UTOPIA

SPI

SPI

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 5

Ethernet Architecture for the MSC8144

Figure 4. MSC8144 QUICC Engine Block

2.2 Ethernet Controllers
The two UCCs (UCC1 and UCC3) used on the MSC8144 as UCC Ethernet controllers (UECs) support the
following physical interfaces for communication:

• MII: 10 and 100 Mbps (supported by only one of the controllers)
• RMII: 10 and 100 Mbps
• SMII: 10 and 100 Mbps
• RGMII: 10, 100, and 1000 Mbps
• SGMII: 1000 Mbps

This discussion focuses on RGMII running at 1 Gbps and the maximum throughput of the MSC8144
Ethernet interface. The Ethernet frame is a standard untagged Ethernet frame consisting of a preamble,
start frame delimiter, destination and source address, type, and data as shown in Figure 5.

To understand how to tune your code for better Ethernet performance, you must know how the QUICC
Engine block and UEC can be used to handle Ethernet frames. Performance measurements in the UEC

7 bytes 1 byte 6 bytes 6 bytes 2 bytes 46-1500 bytes 4 bytes

Preamble Start Frame
Delimiter

Dest. Address Source Address Type/Length Data Frame Check
Sequence

Figure 5. Untagged Ethernet Frame

ATM Ethernet

UTOPIA L2

Peripheral Bus

SDMAs

Multi-Initiator
RAM 48 KB

RMII/SMII/MII
RGMII/SGMII

Controller Controller

25/50 MHz
10/100/1000

Ethernet
Controller

RMII
RGMII/SGMII
10/100/1000

CLASS

32-Bit

Processor

ROM

RISC
32-Bit

Processor

ROM

RISC

IRAM

MSC8144 Ethernet Performance, Rev. 0

6 Freescale Semiconductor

Ethernet Controller (UEC) Frame Filtering

requires that the DSP be notified of errors so that it can offer the user multiple means of detecting dropped
frames and causes. The UEC interrupts the DSP (in RGMII mode) for the following messages and errors:

• Lost carrier sense
• Underrun
• Number of collisions exceeded the maximum allowed
• Number of retries per frame
• Deferred frame indication
• Late collision
• Excessive deferred frame indication
• CRC error indication
• Nonoctet alignment error
• Frame too short/long
• Overrun
• Busy (out of buffers)

3 Ethernet Controller (UEC) Frame Filtering
The QUICC Engine RISC processors provide frame filtering functionality. There are two main types of
Ethernet frame filtering: MPC82xx filtering mode and extended parsing mode. The UECs also have a set
of extended features (extended features mode) for further frame filtering.

3.1 MPC82xx Filtering Mode
MPC82xx filtering mode physically filters incoming frames by MAC destination address. Two 32-bit
MAC address registers, called the MAC station address registers, represent a single MAC address assigned
to the UEC. If the destination MAC address of an incoming frame does not match the contents of the MAC
station address registers and extended features are enabled, the UEC compares the frame’s destination
MAC address for a match with one of four more values in the memory-mapped PADDR registers.

In addition, the UEC can be programmed to accept broadcast frames in broadcast mode or to accept all
frames in promiscuous mode. All frames are accepted into a single queue, so only one core accesses these
frames.

If the UEC is not set up for promiscuous or broadcast mode and a frame address fails a comparison with
the contents of the MAC station address and PADDR registers, the frame is discarded.

3.2 Extended Parsing Mode
In extended parsing mode, incoming frames are filtered according to Ethernet layer 2–4 (L2, L3, and L4)
contents. These layers are broken down as follows:

• L2: Raw Ethernet layer information: MAC source and destination addresses and the L3 protocol
type

• L3: IP layer information: IP source and destination addresses and the L4 protocol type
• L4: TCP/UDP layer information: source and destination ports,

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 7

Ethernet Controller (UEC) Frame Filtering

Filtered frames can be placed into multiple queues so that multiple cores can access them. The QUICC
Engine block and the UEC parse (filter) an incoming packet using the following structures:

• Receive buffers descriptors (RxBDs)
• Receive buffer descriptor queues or rings (RxBD Rings)
• Parse command descriptors (PCDs)
• Hash table that contains lookup keys and termination access descriptors (TADs).

For a graphical representation of BD rings, BDs, PCDs, and the hash table, refer to Figure 6.

3.2.1 Buffer Descriptors and Rings
Buffer descriptors (BDs) are pointers to memory blocks where the UEC stores received frames and reads
frames to transmit. A further layer of abstraction is the BD ring. Eight BD rings in the UEC act as pointers
to the BDs and are used as “bins” for filtering. When there is a valid match while an incoming frame is
filtered, the frame can only be stored in a BD to which one of these eight BD rings is pointing.

3.2.2 Parse Command Descriptors (PCDs)
For extended parsing mode, the UECs extended parsing mode global parameters register is programmed
to point to the first PCD base address. PCDs are used to extract header information from incoming packets
and compare this information to a hash table that contains the header filters and corresponding BD rings
where matched frames are to be sent.

Figure 6. Simplified View of QUICC Engine Filtering Components

QUICC Engine Block

EXPGlobalParam

GenerateLookupKey (Extract Header Info)
PCDs

Hash Lookup PCD (Point to Hash Table)

........More PCDs........
................

Hash Lookup Table

Lookup Keys

TAD [VPriority]

(Comparators)

(Correspond to BD Ring)

BD Ring (1 of 8)

RxBDs

RxBDs

MSC8144 Ethernet Performance, Rev. 0

8 Freescale Semiconductor

Ethernet Performance Testing on the MSC8144ADS

4 Ethernet Performance Testing on the MSC8144ADS
To generate the data represented in this application note, the following equipment was used:

• Spirent Communications SmartBits SMB600 Chassis
• Spirent Communications SmartMetrics Ethernet Tester Module
• MSC8144 prototype ADS with CodeWarrior USBTap
• Standard PC Laptop running Windows XP

4.1 SmartBits
The Spirent SmartBits Chassis and TeraMetrics tester provides dual media Ethernet testing at 10, 100, and
1000 Mbps rates over two Ethernet ports. The SmartBits system is a combination of a chassis that can hold
from one to a number of modules and the specific modules for testing different technology. The SMB600
SmartBits chassis holds up to two modules and can be controlled through the SmartBits SmartWindow
application that connects to the SmartBits over a local network.

The SmartBits SmartMetrics Ethernet Tester can test performance in terms of line speed usage, frame rate,
and bit rate on each Ethernet port for any combination of layers 2 to 7 of the Ethernet protocol suite. For
our testing, we use only layers 2 to 4. Similar Ethernet testing equipment is available on the market and in
many engineering labs. We chose SmartBits because of its ease of use and accuracy. Other systems that
can send and receive packets at user-defined speeds and protocols should be adequate to replicate the work
reported in this application note.

The SmartMetrics module port 1 and 2 Ethernet jacks should be connected to the MSC8144ADS Ethernet
ports D and C, respectively. To configure the SmartBits chassis to control it through the LAN, refer to the
SmartBits reference manual and SmartWindow software documentation.

The configuration for specific tests is discussed later. The general configuration used for testing for
SmartBits is as follows:

1. In SmartWindow, connect to the SMB-600.
2. Right click on LAN-3300A, which is the chassis port where the SmartMetrics module is located,

and select Reserve This Module.
The ports change and show color indicators that represent the status of the port connection
(Figure 7).

3. Click on port 01 and select SmartMetric Mode.
This is the mode used throughout the testing.

4. Click on port 01 again and select Transmit Setup to open the Streams Setup window.
Streams Setup is where you configure the SmartBits tests. Here you can create streams for different
layers of Ethernet to send to the ADS at different speeds based on line speed or other criteria. Our
tests used line speed based on frame rate in continuous mode (Figure 8). When a specific stream is
chosen and you click OK, the software returns to SmartWindow (Figure 7).

5. To view frame and packets sent/received, click on port 01 and choose Display Counters.
When the streams and counters are set up, you can run your Ethernet application on the device
connected to SmartBits and start sending packets from SmartBits to test performance.

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 9

Ethernet Performance Testing on the MSC8144ADS

Figure 7. SmartBits SmartWindow Application (Module Reserved)

Figure 8. Streams Setup

MSC8144 Ethernet Performance, Rev. 0

10 Freescale Semiconductor

Ethernet Performance Testing on the MSC8144ADS

4.2 MSC8144ADS Board
The MSC8144 ADS prototype board used in testing Ethernet performance is equipped with the following
items related to Ethernet testing:

• MSC8144 device
• MPC8650 PowerQUICC™ device
• Marvell quad-port Ethernet PHY
• 4-port Ethernet jack
• EEPROM for configuration
• JTAG debugging connection

4.2.1 MSC8144 ADS and Device Configuration
To test the MSC8144 QUICC Engine block fully, we use both UEC ports. To enable the ports, we
configure the MSC8144 Reset Configuration Word’s (RCW) GPIO Pin Mux Mode to a value of 6. The
EEPROM on the MSC8144ADS must be flashed with an updated RCW to set the proper GPIO pin
multiplexing mode. Then the ADS board DIP switches must be set to load the configuration from the
EEPROM and to disable the PowerQUICC device. The settings of the ADS board DIP switches should
match the settings shown in Table .

For details on how to configure the MSC8144 DSP for Ethernet, consult the application note entitled
MSC8144 Device Reset Configuration Guide For the MSC8144ADS Board (AN3424). This application
note is available on the MSC8144 product page of the Freescale web site listed on the back cover of this
document.

4.2.2 Device Configuration and Testing
We conducted our tests using only the Ethernet ports of the MSC8144 device. If we had used the serial
RapidIO® port on the MSC8144, performance would have decreased because the serial RapidIO hardware
module uses the MSC8144 QUICC Engine DMA that is also in use by the UECs in the QUICC Engine
block.

Table 1. DIP Switch Settings: Configure from 2C ROM

1 2 3 4 5 6 7 8

SW1 x x x x x x x x

SW2 1 1 1 0 1 1 1 1

SW3 x x x x 0 1 1 1

SW4 0 1 0 x x x x x

Note: Logical 1 = OFF on the MSC8144ADS

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 11

Performance Testing

4.3 SmartDSP OS Software and Demos
This application note presents both a general Ethernet programming model and an example reference to
the SmartDSP OS so that you can replicate the work presented here. Freescale tailors the SmartDSP OS
to certain devices, including the MSC8144. Therefore, SmartDSP OS for MSC8144 is provided with the
current release version of CodeWarrior (CodeWarrior v3.0). It is a full operating system that includes
MSC8144 and MSC8144ADS device and peripheral drivers, interrupt handling and callback routines,
timers, task management, multicore communication, profiling, and memory management.

SmartDSP OS is optimized for high performance with a low memory footprint and is the starting-point for
the Ethernet testing discussed here. We show a few ways to alter SmartDSP OS to maximize Ethernet
performance on the tester and find the theoretical maximum limits of the MSC8144.

The SmartDSP OS install comes with demos for the MSC8144ADS platform to help you get started testing
and porting applications to this device. Included in the demos are a Layer 2 (raw Ethernet) loopback demo
and a Layer 4 (UDP) echo demo. You can decide where to install the SmartDSP OS. By default, it is
installed to the <CodeWarrior Install>\StarCore_Support\SmartDSP directory. The demos are located in
\demos under the SmartDSP directory.

5 Performance Testing
This section describes a series of tests, presenting the configurations and the reasoning and rationale for
each. Packet size varies from the minimum possible (64 bytes) to 1518 bytes (this is configured in the
SmartBits software). The sizes used are: 64, 128, 256, 512, 764, 1020, and 1518 bytes. For smaller packets,
both the MSC8144 DSP and the QUICC Engine block must do more work in handling more interrupts and
more packets, which fill up the BDs more quickly. As the frame size increases, the load on the processor
and the QUICC Engine block decreases.

Testing begins from the top layer down:
• Start with UDP testing. Explain the programming model and performance and then give examples

based on the UDP Echo demo.
• Test different configurations within UDP L4 and within the software environment.
• Move down the protocol suite to raw L2 Ethernet testing.

Performance is expected to increase with each configuration.

5.1 Testing with UDP Echo
We start with UDP echo not only for its simplicity but because we can get an idea of the performance to
expect when doing simple read and write accesses to buffers containing Ethernet frames. This knowledge
can serve us well when we move all the way down to understanding the raw QUICC Engine throughput
in later tests.

The basic register format of the programming model used for the tests is provided as part of the first test.
As we proceed, we highlight changes in the register format. The programming model shows the
performance-related hardware (register) settings in the MSC8144; it is not an exhaustive guide to
programming the MSC8144 for Ethernet. Refer to the reference manual for full programming details.

MSC8144 Ethernet Performance, Rev. 0

12 Freescale Semiconductor

Performance Testing

In the SmartDSP OS demos directory for the MSC8144 (msc814x is the folder name), the folder titled
net_demo contains the software for the UDP echo demo on which our examples are based. Because the
QUICC Engine UEC is set up to filter in extended parsing mode. Therefore, the SmartDSP OS drivers are
set by default to initialize the UEC PCDs to file using Layer 2 MAC addressing. The the upper layers of
filtering are performed by interrupt handling software. Because extended mode allows more header
parsing, we expect the QUICC Engine to become a bottleneck after some point of optimization. Our goal
is to find that point of optimization.

The UDP demo project contains two targets: debug and release. The release target is the optimized version
of the demo, and it is used for our tests.

5.1.1 Test 1: One Core at 800 MHz and 1 UEC
The MSC8144 is tested with one core running at 800 MHz and one UEC to get a baseline reading and
understand the effects of core frequency on Ethernet performance. The MSC8144 UEC receives the
packets sent to the MSC8144 from the SmartBits tester. The UEC filters the packet based on MAC address
using extended parsing mode. Then, according to the filtering table, it places the packet into the
appropriate buffer and interrupts the DSP. The role of the MSC8144 DSP is to read the packet, handle the
L4 layer protocol, and then pass the packet to the TX BDs for the UEC to send back to the SmartBits tester.

5.1.1.1 Programming Model

To run the MSC8144 at 800 MHz, the reset configuration word (RCW) registers are configured through
I2C ROM to the values listed in Table 2. For a full description of how to program the RCW registers,
consult the application note entitled MSC8144 Device Reset Configuration Guide For the MSC8144ADS
Board (AN3424).

In this document, we will analyze the software configuration for Ethernet in terms of functional units and
use tables containing register information for the final state of the relevant registers. However, will not
describe the actual programming order or setup of these registers. The QUICC Engine configuration
addresses the following tasks (see Table 3):

• How to manage the UCCs.
• Threads and RISC allocation per UCC. The recommended number of threads for a UEC using

Gigabit Ethernet is four for receive and four for transmit.
• Interaction between the QUICC Engine block and UCCs.

Using the multi-user RAM available to the QUICC Engine block, space must be initialized for the receive
global parameter RAM, transmit global parameter RAM, extended filtering parameters, thread data,

Table 2. General MSC8144 and UEC Interface Registers

Register Address Value

RCWLR EEPROM 0x001F1800 Controls the MSC8144 general clock and PLL settings.

RCWHR EEPROM 0x046C1818 Configured to enable Ethernet I/O

GCR4 0xFFF78030 0x00048000 Configure UEC1 (UCC3) to RGMII and configure pin delay

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 13

Performance Testing

interrupt coalescing, BD queues, and related data structures. To allocate this space, we use malloc in
software and provide base addresses for later use.

The UEC FIFO is programmed to the recommended settings listed in Table 4. These settings do not change
(considered static) throughout all of the testing described in this document.

Table 5 lists the interrupt-related parameters.

Table 6 lists the values for the MAC-level configuration.

Table 3. QUICC Engine Configuration

Register Address Value Description

CMXUCR1 0xFEE00410 0x87 QUICC Engine register for clock routing.

GUMR (UCC3) 0xFEE02200 0x0C Configure UEC1 (UCC3) for Ethernet.

GUEMR (UCC3) 0xFEE02290 0x03 Configure UEC1 (UCC3) to fast protocols for Gigabit Ethernet.

Table 4. UCC FIFO Registers

Register Address Value

URFB 0xFEE02220 RX FIFO base
address

UCC receive FIFO base address register should be set to the location of
the global parameter receive FIFO.

URFS 0xFEE02224 2048 UCC receive FIFO size. In this case, the size is 2048.

URFET 0xFEE02228 1024 UCC receive FIFO emergency treshhold.

URFSET 0xFEE0222A 1536 UCC receive FIFO special emergency threshold.

UTFB 0xFEE0222C TX FIFO base
address

UCC transmit FIFO base address register should be set to the location
of the global parameter receive FIFO.

UTFS 0xFEE02230 2048 UCC transmit FIFO size. In this case, the size is 2048.

UTFET 0xFEE02234 1024 UCC transmit FIFO emergency treshhold.

UTFTT 0xFEE02238 512 UCC transmit FIFO transmit threshold.

Table 5. Interrupt Registers

Register Address Value

UCCm 0xFEE02214 0xFF000001 UCC mask register enables the mask for interrupts for RX busy, flow
control, TX error, back pressure pause, graceful stop, hardware statistics
overflow, and magic packet detection. It also enables RX interrupts for the
RX queue (channel) 0.

IEN 0xFEE000A0 0x20000000 QUICC Engine block enables UEC1 (UCC3) interrupts.

Table 6. UEC MII Configuration and Hardware Statistics Registers

Register Address Value

UPSMR (UCC3) 0xFEE02300 0x021C2000 Sets up the UEC to allow reception of frames shorter than the minimum
frame length (64 bytes); enables RGMII and hardware statistics.

MACCFG1 (UCC3) 0xFEE02300 0x00000000 MAC configuration register 1

MSC8144 Ethernet Performance, Rev. 0

14 Freescale Semiconductor

Performance Testing

Global parameter RAM in the QUICC Engine block is available for certain UCC required fields. We must
allocate and initialize the RAM sections. Next, we provide their base addresses to the QUICC Engine/UEC
in the QUICC Engine scheduler fields (see Table 7).

Table 8 lists the TX global parameter RAM initialization values.

MACCFG2 (UCC3) 0xFEE02304 0x00007225 MAC configuration register 2. Enables RGMII. Also, update preamble
length, CRC pad, and full duplex mode.

IPGIFG (UCC3) 0xFEE02308 0x40605060 Set up the interframe gap for non back-to-back frame minimum
enforcement.

HALFDUP (UCC3) 0xFEE0230C 0x00A1F037 Initialize the half duplex register for collision and excess defer.

UEMPR (UCC3) 0xFEE02350 0xF0000000 MAC pause time.

UESCR (UCC3) 0xFEE02358 0x00004804 Clear statistics counters.

MACSADDR1
(UCC3)

0xFEE02340 0xFFFFFFFF Initialize MAC station address registers to accept broadcast frames.

MACSADDR2
(UCC3)

0xFEE02344 0xFFFF0000 Initialize MAC station address registers to accept broadcast frames.

MIIGSKEN (UCC3) 0xFEE02A08 0x00000001 Enable UEC to TX and RX frames.

Table 7. UEC Global Parameter RAM Fields

Register Offset Value

REMODER 0x00 0x80001900 Enable extended parsing mode, extended filtering, and two receive
queues. Enable RX statistics.

Type or Length 0x20 0x600 Initialize maximum frame length.

MaxFrameLength 0x4C 0x600 Initialize maximum frame length.

MINFLR 0x4E 64 Initialize minimum frame length.

MRBLR 0x46 0x600 Initialize maximum frame length.

MaxD1 0x50 1520 Initialize maximum DMA length.

MaxD2 0x52 1520 Initialize maximum DMA length.

BMR (RSTATE) 0x36 0x10 UEC bus byte ordering (BMR) set to big-endian byte ordering.

L2QT 0x58 0x01234567 L2 QoS Table is set to enable support for eight queues.

L3QT 0x5C 0x00000000 Not used.

Table 8. UEC TX Global Parameter RAM Fields

Register Offset Value

TEMODER 0x00 0x0000E101 Initialize to default values, manage two queues and enable statistics
(RMON).

TX Scheduler 0x3C base address Base address to TX scheduler (inserted into following rows).

Table 6. UEC MII Configuration and Hardware Statistics Registers (continued)

Register Address Value

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 15

Performance Testing

The Ethernet parameters initialization consists of a 56-byte structure with an address assigned by the
software programmer. Software must use the QUICC Engine command register (CECR) to enable the
QUICC Engine command data register (CECDR) to receive the address to be used for this structure.

The CECDR must be initialized with the Init Ethernet Parameters only after the TX and RX global
parameters are initialized. In Table 9, notice that rgfTgfRxGlobal is in bold because this parameter is
directly related to the performance of the QUICC Engine block. The recommended number of threads for
a UEC using Gigabit Ethernet is four for receive and four for transmit.

 • CPUCount0 – 0x0 0 Reset scheduler CPU counts.

 • CPUCount1 – 0x2 0

 • CPUCount2 – 0x8 0

 • CPUCount3 – 0xA 0

 • CPUCount4 – 0x10 0

 • CPUCount5 – 0x12 0

 • CPUCount6 – 0x18 0

 • CPUCount7 – 0x1A 0

 • MBLInterval – 0x4C 128 Max Burst Length Interval for a 1Gbps burst set to 128

 • NORTSRByteTime – 0x50 5 Normalized value of byte type in TSR Units

 • FracSiz – 0x52 1 Denominator of the TSRByteTime (radix 2 log)
TSRByteTime = NorTSRByteTime / 2^FracSiz

 • StrictPriorityQ – 0x54 0xFF All 8 Queues belong to Strict Priority Queue

 • TxASAP – 0x55 0xFF Packets are transmitted ASAP from all queues

 • ExtraBW – 0x56 0xFF All 8 transmit queues will not consume bandwidth from the budget
allowed by the Traffic Shaper

 • WeightFactor 0-7 – 0x58 0x00000000
0x00000000

All 64 bits corresponding to the weight factors for the 8 queues are
set to 0 indicating zero wait period following data transmit

TxRmonBasePointer 0x40 address

TSTATE (BMRT) 0x44 0x10000000 Sets transmit to Big Endian Byte Ordering

Table 9. QUICC Engine Scheduler Fields

Register Offset Value

ResInit1 0x00 0x6 Internal variable. Initialize to this value.

ResInit2 0x01 0x30 Internal variable. Initialize to this value.

ResInit3 0x02 0xFF Internal variable. Initialize to this value.

ResInit4 0x03 0x0 Internal variable. Initialize to this value.

ResInit5 0x04 0x400 Internal variable. Initialize to this value.

Table 8. UEC TX Global Parameter RAM Fields (continued)

Register Offset Value

MSC8144 Ethernet Performance, Rev. 0

16 Freescale Semiconductor

Performance Testing

5.1.1.2 Non-SmartDSP OS Programming Model

In addition to configuring the registers as shown in Section 5.1.1.1, “Programming Model,” we must
configure the following data structures and registers for our test:

• Initialize the PCD chain for L2 filtering by MAC address (table can include broadcast address and
specific individual addresses.

• Initialize the receive buffer descriptors:
— Initialize eight (8) RxBDs to the size of the maximum packet to be used (0x600). Set the

external base pointer to memory area for BDs (RxBD parameter table at 0xFEE1B6F0 in this
instantiation), and initialize the BD status for the BDs to empty.

— Set the WRAP bit for the last RxBD.
• Initialize transmit buffers

— Initialize 32 TxBDs in memory to size 0x600 for transmit usage. Set the status for the BDs to
interrupt enabled on completion and the status for the last BD to WRAP.

• Enable UEC1 (UCC3):
— Write the offset value to the initialization parameters to the CECDR (at 0xFEE00108). In this

case, the value is 0xA5D8.

ResInit6 0x06 0x00 Internal variable. Initialize to this value.

rgfTgfRxGlobal 0x08 0xBE03 Enable 4 Threads for TX and RX, and enables both RISCs to be
used dynamically.

RxGlobalSnum 0x0C 0xE9000003 Snum for Global Task chosen for UEC Receiver

RxSnum1 0x10 0xE800A483 Snum that must always be initialized. Includes Thread1 Parameter
Page offset address

RxSnum2 0x14 0xD900A303 Snum and Thread Parameter Page offset address

RxSnum3 0x18 0xD800A103 Snum and Thread Parameter Page offset address

RxSnum4 0x1C 0xC9009F83 Snum and Thread Parameter Page offset address

TxGlobalSnum 0x38 0xBD03(addre
ss

Points to TX Global Parameter RAM base (offset). BD03 is the value
used by SDOS.

TxSnum1 0x3C 0x2C008C02 Snum and Thread Parameter Page offset address

TxSnum2 0x40 0x25008A82 Snum and Thread Parameter Page offset address

TxSnum3 0x44 0x24008902 Snum and Thread Parameter Page offset address

TxSnum4 0x48 0x1D008702 Snum and Thread Parameter Page offset address

TxSnum5 0x4C 0x1C008582 Snum and Thread Parameter Page offset address

TxSnum6 0x50 0x15008402 Snum and Thread Parameter Page offset address

TxSnum7 0x54 0x14008282 Snum and Thread Parameter Page offset address

TxSnum8 0x58 0x0D008082 Snum and Thread Parameter Page offset address

Table 9. QUICC Engine Scheduler Fields (continued)

Register Offset Value

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 17

Performance Testing

— Write 0x02410300 to the QUICC Engine CECR register at 0xFEE00100. This is the actual
command to the QUICC Engine block that enables UCC3.

— Update the GUMR register value to 0x0000003C to enable RX and TX in the UCCs.
— Update the MACCFG1 value to 5 to enable TX and RX in the MAC configuration registers.

• In the tests program, the number of TX and RX BD rings is equal to the number of cores × number
of channels.

5.1.1.3 SmartDSP OS Example

The net demo provided with the SmartDSP OS is set up so that the UEC has a MAC address and IP
addresses for each active channel per core. By default, SmartDSP OS uses two channels per core. The
easiest way to start this demo is to run just one core in the default setup. For a baseline, we run the demo
this way, as follows:

1. Open the UDP demo project file (net_demo_core0.mcp).
2. Change the number of cores expected from 4 to 1 (this is set in os_config.h with

OS_NUM_OF_CORES).
3. Remove the other executables from the project’s target debugger settings.
4. Compile and run the project.

While the MSC8144 is running, we test performance using the outline for SmartBits setup provided earlier
in this note. We program one UDP stream that sends packets to the proper destination address for the core
MAC address and corresponding IP address. Then we begin sending packets at increasing rates and frame
size until frames begin to drop—that is, frames are not echoed back and received by the SmartBits tester.
We can see drops using the Display Counters function. See Figure 9 for reference.

Figure 9. Signalling and Data Flow for UDP Echo Model

5.1.1.4 Performance

With this project as is and the MSC8144 clocks set to 800 MHz for the cores and 333 MHz for M3 memory
(where the buffers are located), we see the results depicted in Figure 10. Packets sent to the MSC8144 UEC
at the minimum frame size (60 bytes + the 4-byte frame checksum (FCS)) are echoed up to 17.5 percent
of gigabit line speed. The packet size must be increased to 512 bytes before 100 percent line speed is
reached.

M3

Core 0 Subsystem
QUICC Engine Block

MSC8144

UEC0

UEC1

SmartBits

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

MSC8144 Ethernet Performance, Rev. 0

18 Freescale Semiconductor

Performance Testing

Figure 10. UDP Echo@ 800 MHz DSP: Usage Versus Frame Size

To verify that the DSP is not the bottleneck, we can make the following adjustments:
• Increase DSP core and memory frequency
• Use a shortcut in the UDP send algorithm
• Test with four cores
• Test with two UECs
• Test with buffers located in faster (and slower) memory
• Test with the QUICC Engine block using MPC82xx filtering mode

5.1.2 Test 2: Increase DSP Core and Memory Frequency
The most obvious way to improve core processing performance on the MSC8144 is to increase the
frequency. It is expected that increased frequency can also lead to increased Ethernet throughput.

5.1.2.1 Programming Model

Following the method outlined in the application note entitled MSC8144 Device Reset Configuration
Guide For the MSC8144ADS Board (AN3424), update the MSC8144 from 800 MHz DSP core frequency
and 333 MHz M3 memory frequency to 1 GHz core and 400 MHz M3 memory, and retest Ethernet
throughput at the different packet sizes (see Table 10).

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

6 0 1 2 4 2 5 2 5 0 8 7 6 4 1 0 2 0 1 5 1 4

M
bp

s

8 0 0 M h z

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 19

Performance Testing

5.1.2.2 Performance

Performance improves slightly, with the minimum packet size (64 bytes including the 4-byte frame
checksum) reaching 22 percent of the gigabit Ethernet usage (167 Mbps). The UEC can reach full line
speed when the packet size before the packet size reaches 512 bytes, but it is still unable to reach linespeed
by 256-byte packet size.

Figure 11. UDP Echo @ 1GHz DSP: Usage Versus Frame Size

5.1.3 Test 3: Improve the UDP Send Function for UDP Echo Testing
In the third test, we seek to increase performance of the SmartDSP OS demo used as an example in this
application. You can use a similar strategy performance testing, depending on how the L4 echo application
is implemented. In the UDP echo demo, you can see in the main application file, net_demo.c, that frames
are echoed back from the callback routine (udpReceiveCallBack) using the udpSendTo function.

This function checks the port and destination address it needs to send the packet to each time (effectively
performing a connect back to the sender each time a packet is echoed). For performance testing here, the

Table 10. General MSC8144 and UEC Interface Registers

Register Address Value

RCWLR EEPROM 0x001F1C0A Setting this register controls the MSC8144 general clock and PLL
settings to 1 GHz DSP core and 400 MHz M3 memory.

RCWHR EEPROM 0x046C1818 Configured to enable Ethernet I/O.

GCR4 0xFFF78030 0x00048000 Configure UEC1 (UCC3) to RGMII and configure pin delay.

0

200

400

600

800

1000

1200

60 124 252 508 764 1020 1514

M
bp

s

1GHz
800Mhz

MSC8144 Ethernet Performance, Rev. 0

20 Freescale Semiconductor

Performance Testing

SmartBits is programmed to send from just one source address and port. This enables switching from using
the udpSendTo() function to doing one single connect and then using the udpSend() function, which is
already available in SmartDSP OS, for all subsequent echoes. The code to do this is shown Example 1.

Example 1. udpReceiveCallBack Function: Altered for a Single UDP Connection

unsigned int connectonce =0;
static os_status udpReceiveCallBack(void* channel_num, os_frame_t* frame)
{

struct sockaddr_in dest;
os_statusstatus;
uint32_tchannel = (uint32_t)channel_num;

udpGetSourceAddr(frame, &dest);
if (dest.sin_port >= UDP_PORT)

{

if (connectonce == 0)

{

status = udpConnect(test_sockets[channel], &dest);

connectonce++;

}

dest.sin_port = dest.sin_port + 1000;
status = udpSend(test_sockets[channel], frame);
if(status != OS_SUCCESS)

osFrameFree(sb_frames_pool, frame);

return OS_SUCCESS;

}

return OS_FAIL;// Send ICMP Message

}

We can do udpConnect to multiple destinations based on channel number, as is discussed later.

With udpSent(), performance improves once again, to the point that 64-byte packets can be echoed at 26
percent usage of the gigabit line (197 Mbps), and full line speed is reached just after a 256-byte packet
length.

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 21

Performance Testing

Figure 12. UDP Echo using UDP Send @ 1 GHz DSP Core: Usage Versus Frame Size

5.1.4 Test 4: UDP Echo in a Four-Core System
After testing the baseline UDP echo and taking out the repetitive UDP connect functionality, the next step
is moving to a four-core Ethernet test.

5.1.4.1 Programming Model

We must ensure that the master core handles hardware configuration and functionality instead of repeating
setup for all four cores. This configuration includes the PHY, QUICC Engine block, UEC FIFO, global
parameter RAM, scheduler, and UEC initialization parameter configuration and enable. To use all cores in
the system, the PCDs and LookUp table must be updated. The lookUpTable must contain entries for MAC
addresses for each individual core. Receive and transmit BD rings must also be initialized for each core.
In the SmartDSP OS architecture, each channel within each core gets its own Tx and Rx BD ring, which
is associated to a MAC address (see Figure 13).

5.1.4.2 SmartDSP OS Example

Using all four cores, the default UDP demo initializes two channels per core, and each channel has its own
MAC and IP address. Each core’s channels have unique numbers. See Figure 13.

0

200

400

600

800

1000

1200

60 124 252 508 764 1020 1514

M
bp

s 1G H z
800M hz
U D P S end

MSC8144 Ethernet Performance, Rev. 0

22 Freescale Semiconductor

Performance Testing

Figure 13. Application Layer Channel Usage for Single UEC Model

Altering the SmartDSP OS project is a simple two-step process:
1. Change OS_NUM_OF_CORES to 4 in os_config.h.
2. Add net_core1.mcp to net_core3.mcp back to the project’s target settings → debugger → other

executables panel.

We recompile and debug the project, ensuring that all cores are running the “release” version of the demo.
To test this with SmartBits, we add three more streams. There is one stream for each core with its
corresponding MAC and IP address in addition to a UDP port greater than 10000. There are six more
streams for testing both channels available. At this point, we can run the test, pinging all cores
simultaneously. Figure 14 shows the general system model.

Figure 14. UDP Echo 4 Core with Single UEC Model

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

UEC0UEC

of Channels

Visibility

Application
View of Channels

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

...

Core 0

Core 1

Core 2

Core 3

M3

Core 0 Subsystem

QUICC

MSC8144

UEC1

SmartBits

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

M3

Core 1 Subsystem

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

M3

Core 2 Subsystem

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

M3

Core 3 Subsystem

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

UEC0

Engine
Block

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 23

Performance Testing

5.1.4.3 Performance

At four cores, we can see a large improvement, with 64-byte usage improving to just over 45 percent (345
Mbps) for a single channel (43 percent for two channels per core) and line speed reached at packet size
between 128 bytes and 256 bytes for both.

Figure 15. UDP Echo - 4 Core (4 Channel) system @1GHz: Usage Versus Frame Size

5.1.5 Test 5: UDP Echo using Four Cores and Both QUICC Engine UECs
At the point where the QUICC Engine block is bottlenecked by a single UEC, we can move on to two
UECs. Because the two UECs still share resources within the QUICC Engine block, we expect the
performance per UEC to decrease but the overall throughput to increase. In this system, the DSP runs eight
channels of echo application. Each core contains two channels, one for each UEC. How you design a
system to do this in your own software is at your discretion.

5.1.5.1 Programming Model

We must program the UEC0 registers (in addition to the information provided for UEC1 previously). For
an example, see Section 5.1.5.2, “SmartDSP OS Example.” As with the previous test, only the master core
should initialize the PHY, QUICC Engine block, UEC FIFO, global parameter RAM, scheduler, and UEC
initialization parameter configuration and UEC enable. The values provided here are in addition to those
given in the initial programming model. Also, UEC0 (UCC1) must be configured and initialized in the
same way as UEC1. See Table 11.

0

200

400

600

800

1000

1200

60 124 252 508 764 1020 1514

M
bp

s 1G H z
800M hz
U D P Send
U D P 4 C ore

MSC8144 Ethernet Performance, Rev. 0

24 Freescale Semiconductor

Performance Testing

The PHY master for MDIO and MDC remains UEC1. The UEC0 PHY interface must be configured as
well to connect to the ADS Vitesse Gigabit Ethernet switch at Gigabit Ethernet speed. Because this
interface is configured to Gigabit Ethernet and not altered, programming the Vitesse is not discussed in
this application note. Table 12 through Table 14 list the necessary register values. UEC0 also has its own
global Rx and Tx parameter RAM, initialized with the same values as UEC1. These values are provided
to the UEC through the scheduler structure as they are for UEC1.

Table 11. General MSC8144 and UEC Interface Registers

Register Address Value

GCR4 0xFFF78030 0x00048120 Configure UEC1 and UEC0 to RGMII and configure pin delay.

Table 12. QUICC Engine Configuration

Register Address Value Description

CMXUCR1 0xFEE00410 0x00650087 QUICC Engine register for clock routing of UCC1 and UCC3.

GUMR (UCC1) 0xFEE02000 0x0C Configure UEC1 (UCC3) for Ethernet.

GUEMR (UCC1) 0xFEE02090 0x13 Configure UEC1 (UCC3) to fast protocols for Gigabit Ethernet.

Table 13. UCC FIFO Registers

Register Address Value

URFB 0xFEE02020 RX FIFO base
address

UCC receive FIFO base address register should be set to the location of
the global parameter receive FIFO.

URFS 0xFEE02024 2048 UCC receive FIFO size. In this case, the size is 2048.

URFET 0xFEE02028 1024 UCC receive FIFO emergency treshhold.

URFSET 0xFEE0202A 1536 UCC receive FIFO special emergency threshold.

UTFB 0xFEE0202C TX FIFO base
address

UCC transmit FIFO base address register should be set to the location of
the global parameter receive FIFO.

UTFS 0xFEE02030 2048 UCC transmit FIFO size. In this case, the size is 2048.

UTFET 0xFEE02034 1024 UCC transmit FIFO emergency treshhold.

UTFTT 0xFEE02038 512 UCC transmit FIFO transmit threshold.

Table 14. Interrupt Registers

Register Address Value Description

UER 0xFEE02010 0xFFFFFFFF Clear UEC1 (UCC3) events.

UCCM 0xFEE02014 0xFF000000

0xFF000001

UCC mask register enables mask for interrupts for Rx busy, flow control, Tx
error, back pressure pause, graceful stop, hardware statistics overflow, and
magic packet detection. Enable Rx interrupts for Rx queue (channel) 0.

IEN 0xFEE000A0 0xA0000000 QUICC Engine block enables UEC1 (UCC3) and UEC0 (UCC1) interrupts.

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 25

Performance Testing

5.1.5.2 SmartDSP OS Example

To modify the UDP echo demo in SmartDSP OS to manage multiple UEC devices, we must alter the demo
architecture and initialization. The altered demo folder containing the required alterations is located in the
zip file provided with this application note (AN3439SW.zip).

To make the alterations, we must understand the appInit function, which proceeds as follows:
1. Allocate memory for buffers used by the Ethernet BDs.
2. Initialize the MAC and IP addresses.
3. Initialize the UEC(s) for each channel with:

— Channel number.
— Receive filter parameters including the MAC address and cache coherency settings.
— Callback function pointer (here, ethernetInput is passed for the receive side, which is a pointer

to a SmartDSP OS function that handles received frames based on the frame header).
— Cache coherency settings.

4. Enable the UEC(s).
5. For each channel, create an internet interface associating the channel number, MAC address, and

IP address.

Table 15. UEC MII Configuration and Hardware Statistics Registers

Register Address Value Description

UPSMR (UCC1) 0xFEE02000 Following
order:

0x00002000

0x00102000
0x001C2000

0x021C2000

1. Set up UEC to allow reception of frames shorter than the minimum
frame length (64 bytes)

2. Enable RGMII.

3. Enable hardware statistics.

MACCFG1 (UCC1) 0xFEE02000 0x00000000 MAC configuration register 1.

MACCFG2 (UCC1) 0xFEE02004 0x00000020

0x00000220
0x00007225

MAC configuration register 2. Enable RGMII, update preamble length,
CRC pad, and full duplex mode.

IPGIFG (UCC1) 0xFEE02108 0x40605060 Set up the interframe gap for non back-to-back frame minimum
enforcement.

HALFDUP (UCC1) 0xFEE0210C 0x00A1F037 Initialize the half duplex register for collision and excess defer.

UEMPR (UCC1) 0xFEE02150 0xF0000000 MAC pause time.

UESCR (UCC1) 0xFEE02158 0x00004804 Clear statistics counters

MACSADDR1
(UCC1)

0xFEE02140 0xFFFFFFFF Initialize MAC station address registers to accept broadcast frames.

MACSADDR2
(UCC1)

0xFEE02144 0xFFFF0000 Initialize MAC station address registers to accept broadcast frames.

MIIGSKEN (UCC1) 0xFEE02808 0x00000001 Enable UEC to Tx and Rx frames.

MSC8144 Ethernet Performance, Rev. 0

26 Freescale Semiconductor

Performance Testing

The demo currently sets up a specific number of channels per UEC, assuming one UEC per core.
Therefore, the code must be changed to manage channels per UECs per core. We assigned the even
channels to UEC0 and the odd channels to UEC1 at the application level. However, at the driver
(hardware) level of SmartDSP OS, both UECs would receive the same settings. For example, UEC1 can
be set up to filter a UDP channel to core 0 so that the UEC sees this as channel 0. However, the application
layer handles this as channel 1 (and the application uses its version of channel numbers as one way to
differentiate between UECs). Figure 16 illustrates this idea.

Figure 16. Application Layer Channel Usage for Dual UEC Model

The following code segment shows how the UECs should be initialized in the altered appInit() function.
Note that some variables need to be defined, such as uec_handle, which can be defined similarly to
uec_handle1 from the original project, but as an array: “uec_handle[number_of_uecs]“

/* open the UEC device, with default parameters */
dev_open_params.common_pool = NULL;
dev_open_params.lld_params = NULL;
for(device_num = 0; device_num < TEST_NUM_UECS; device_num++){

connectonce[device_num] = 0;
if(device_num == 0){
uec_handle[0] = osBioDeviceOpen(UEC0_DEVICE_NAME, &dev_open_params);

 OS_ASSERT_COND(uec_handle[0] != NULL);

else if (device_num == 1){
uec_handle[1] = osBioDeviceOpen(UEC1_DEVICE_NAME, &dev_open_params);
OS_ASSERT_COND(uec_handle[1] != NULL); }

else OS_ASSERT;
/* open channels */
/* We put first channel to UEC0, second to UEC1 etc. */
for (channel_num = device_num; channel_num < TEST_NUM_OF_CHANNELS; channel_num

+= TEST_NUM_UECS)
{ /* open the receive channel */

 rxChanParams.bd_ring_len = 8;
 rxChanParams.addr_high32 = mac_addr[channel_num/TEST_NUM_UECS][0];
 rxChanParams.addr_low16 = mac_addr[channel_num/TEST_NUM_UECS][1] >> 16;

rxChanParams.coherency_en = DCACHE_ENABLE;

 rxChanParams.interrupt_en = TRUE;
rx_channel[channel_num].device_num = device_num;

Channel 0

Channel 1

Channel 2

Channel 3

Channel 0

Channel 1

Channel 2

Channel 3

UEC0

UEC1

UEC Low-

of Channels

View

Application

Layer View

Of Channels

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

...

Level Driver

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 27

Performance Testing

rx_channel[channel_num].channel_num = channel_num;
 ch_open_params.channel_num = channel_num/TEST_NUM_UECS +

core_channel_offset;
 ch_open_params.frames_pool = sb_frames_pool;
 ch_open_params.callback = etherInput;
 ch_open_params.cb_parameter = (void *)&(ifn[channel_num]);
 ch_open_params.buffers_pool = buffers_pool;

ch_open_params.lld_params = &rxChanParams;
status = osBioChannelOpen(uec_handle[device_num],

&(rx_channel[channel_num].channel), BIO_READ | BIO_ACTIVE, &ch_open_params);
 OS_ASSERT_COND(status == OS_SUCCESS);

The transmit channels for the UECs are initialized in a similar way. The internet interface initialization
must also be altered slightly to manage two UECs in a similar way. The following code segment shows
how the array indexing is managed to accomplish this.

/* open UDP sockets */
/* Do not need to know device name - it is already embedded in channel */
for (channel_num = 0; channel_num < TEST_NUM_OF_CHANNELS; channel_num++)
{
/* Create the Ethernet Interface and set the IP addresses */
status = ifCreate((struct ifnet*)&(ifn[channel_num]), buffers_pool, sb_frames_pool,
 &(tx_channel[channel_num].channel), &(rx_channel[channel_num].channel),
 (uint8_t*)mac_addr[channel_num/TEST_NUM_UECS], IFT_ETHER);
OS_ASSERT_COND(status == OS_SUCCESS);
sin[channel_num].sin_addr.s_addr = DEFAULT_GATEWAY_IP_ADDRESS;
inSetDefGateway((struct ifnet*)&(ifn[channel_num]), (struct
sockaddr*)&(sin[channel_num]));
sin[channel_num].sin_addr.s_addr = ip_addr[channel_num/TEST_NUM_UECS];
inSetAddr((struct ifnet*)&(ifn[channel_num]), (struct sockaddr*)&(sin[channel_num]));
status = udpSocket(&test_sockets[channel_num]);
OS_ASSERT_COND(status == OS_SUCCESS);
inSetUdpCallBack((struct ifnet*)&(ifn[channel_num]), udpReceiveCallBack,
(void*)channel_num);
sin[channel_num].sin_addr.s_addr = ip_addr[channel_num/TEST_NUM_UECS];
sin[channel_num].sin_port = UDP_PORT;

status = udpBind(test_sockets[channel_num], &(sin[channel_num]));
OS_ASSERT_COND(status == OS_SUCCESS);

}
/* setup ARP protocol (ALL on channel 0 of core 0) */
if (osGetCoreID() == osGetMasterCore())
{
initArpProxy();
}
return OS_SUCCESS;

Using this method, each UEC can be initialized to have the same MAC address, IP address, and so on so
that the SmartBits port 02 can be set up as a copy of port 01. To ensure that the proper MAC and IP
addresses are set for each core, initChannelMacPIpAddress() must also be altered so the array numbering
matches the UEC usage. See the following code segment:

static void initChannelMacIpAddress()
{
uint8_t channel_num;

/* setup this core offset */
core_channel_offset = NUM_OF_CHANNELS_PER_UEC * osGetCoreID();

MSC8144 Ethernet Performance, Rev. 0

28 Freescale Semiconductor

Performance Testing

/* setup mac/ip address for each channel there being 2 channels for each core*/
for (channel_num = 0; channel_num < TEST_NUM_OF_CHANNELS; channel_num++)

{

/* setup channel mac address */
mac_addr[channel_num][0] = BASE_MAC_ADDR_HIGH32;

mac_addr[channel_num][1] = (BASE_MAC_ADDR_LOW16 + channel_num +
core_channel_offset) << 16;

/* setup channel IP address */
ip_addr[channel_num] = BASE_IP_ADDRESS + channel_num + core_channel_offset;

}

Additionally, because the way the UECs view the channels has changed but the number of total channels
has not, the SmartDSP OS driver must be made aware of this before running appInit(). Otherwise, it fails
checks to verify that the number of channels for each UEC matches up with the application level. To
manage this situation, we must change msc814x_config.c basic initialization parameters about each UEC
(including MII/RMII/RGMII, number of queues, data size, and so on). For dual UECs, the number of BD
rings must be changed as follows:

OS_NUM_OF_CORES*NUM_OF_CHANNELS_PER_UEC,/* Number of Tx BD rings */
OS_NUM_OF_CORES*NUM_OF_CHANNELS_PER_UEC,/* Number of Rx BD rings */

Where NUM_OF_CHANNELS_PER_UEC is set in app_config.h as follows:
#define NUM_OF_CHANNELS_PER_UEC (TEST_NUM_OF_CHANNELS/TEST_NUM_UECS)

Note that this channel’s per UEC pre-processor definition is used in the initChannelMacIpAddress function
to set the core channel offset variable. This variable is changed according to the number of channels of
each UEC. Refer to Figure 14. To keep using the udpSend() function in the callback routine, the callback
routine can be changed to connect once based on just port number. By doing this and then setting a specific
UDP port number for all the streams of each SmartBits port to use, udpConnect can still be managed and
the overhead of the continuous connects done in the udpSendTo() function can be avoided. See the
following code segment for an example.

static os_status udpReceiveCallBack(void* channel_num, os_frame_t* frame)

{

struct sockaddr_in dest;
os_statusstatus;
uint32_tchannel = (uint32_t)channel_num;

udpGetSourceAddr(frame, &dest);

if (dest.sin_port == 10001)
{

if (connectonce[0] == 0)

{
status =

udpConnect(test_sockets[channel], &dest);

connectonce[0]++;

}

dest.sin_port = dest.sin_port + 1000;
status = udpSend(test_sockets[channel], frame);
if(status != OS_SUCCESS)

osFrameFree(sb_frames_pool, frame);

return OS_SUCCESS;

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 29

Performance Testing

}

else if (dest.sin_port == 10002)

{

if (connectonce[1] == 0)

{

status =
udpConnect(test_sockets[channel], &dest);

connectonce[1]++;

}

dest.sin_port = dest.sin_port + 1000;
status = udpSend(test_sockets[channel], frame);
if(status != OS_SUCCESS)

osFrameFree(sb_frames_pool, frame);

return OS_SUCCESS;

}

return OS_FAIL;// Send ICMP Message

}

5.1.5.3 SmartBits Setup

In the SmartWindow, click and copy port one (and select to copy all). Paste this to port 2. To associate each
UEC with a SmartBits port, the UDP streams in each SmartBits port must be assigned a UDP port. For
Reference: This is already provided in the zip that comes with the application note - see the smartbits files
for UDP Echo for 2 UECs. As in the udpReceiveCallBack function, we assign all streams in SmartBits Port
01 to 10002 and all streams in SmartBits Port 02 to 10001. Now we can run the test using all four cores
and two UECs of the MSC8144. Figure 17 illustrates the testing model.

MSC8144 Ethernet Performance, Rev. 0

30 Freescale Semiconductor

Performance Testing

Figure 17. UDP Echo 4 Core and 2 UEC Model

5.1.5.4 Performance

As expected, the performance per UEC decreased because previously unshared QUICC Engine resources
are now shared by 2 UECs. However, overall performance did improve. Now 64-byte packets are echoed
at just over 30 percent of gigabit line speed (231 Mbps) per UEC for a combined total of 462 Mbps QUICC
Engine Ethernet throughput. Full Ethernet usage is reached before the 512-byte packet size is reached,
allowing the QUICC Engine block to achieve full 2 Gbps Ethernet throughput.

Core 0 Subsystem

QUICC

MSC8144

UEC1

SmartBits

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

M3

Core 1 Subsystem

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

M3

Core 2 Subsystem

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

M3

Core 3 Subsystem

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

UEC0

M3

Engine
Block

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 31

Performance Testing

Figure 18. UDP Echo: 4 Cores and 2 UECs, Dual GbE Usage Versus Frame Size

5.1.6 Test 6: Buffers in M2 and DDR Memory
By default, the SmartDSP OS examples use M3 memory to store the transmit and receive buffer pool used
by the RxBDs and TxBDs. As Figure 3 shows, there are three main memories readily available to the
MSC8144 on the ADS board: M2, M3, and DDR:

• M2 memory is connected through four 128-bit ports at the class speed (400 MHz)
• M3 memory is connected to the 400 MHz class through a single 128-bit 400 MHz (max) port.
• The DDR memory controller connected to the CLASS is limited in bandwidth by its connection

external to the device. The class interface speed to the DDR controller is 400 MHz. At this rate, the
external MCK signal to the 32-bit DDR devices on the ADS is 200 MHz (providing an effective
bandwidth of 400 MHz at 32 bits).

5.1.6.1 Programming Model

The general programming model for this test is very similar to the tasks to be done in SmartDSP OS—to
the point that you should simply refer to the SmartDSP OS example for this section of the application note.
Note that the reduced size of M2 memory can make it impossible to test packet sizes fully all the way up
to 0x600 bytes. This is a restriction in SmartDSP OS.

0

500

1000

1500

2000

2500

60 124 252 508 764 1020 1514

M
bp

s

1G H z
800M hz
U D P Send
U D P 4 C ore
4core 2uec

MSC8144 Ethernet Performance, Rev. 0

32 Freescale Semiconductor

Performance Testing

5.1.6.2 SmartDSP OS Example

To test with buffers in different locations, make the following basic modifications to the code:
1. Create a pragma at the variable definition that specifies to CodeWarrior the group in which to store

the variable.
2. Add the segment name used in the pragma to the linker command file.

This name is used to file the segment with the rest of the segments associated with that memory.
3. For smaller memories such as M2, reduce the total size of the buffer pool so that the segment can

still fit.

Now we must update the project for buffer stores in M2 memory. In the definition for the data buffers, we
change the pragma to reflect M2 memory. We change data_buffers.c from:

#pragma data_seg_name ".local_data_m3"

to
#pragma data_seg_name ".local_data_m2”

Now we change the linker command file local_map_link.lcf in the net_multicore/linker_files/
directory. The .concatenate instruction tells the linker to combine (concatenate) a number of segments into
just one. For local_map_link, many segments are placed into the segment local_data, so the next step is to
add the .local_data_m2 segment as well:

; Local Memory
; Put all the local memory segments to "local_data"

.concatenate local_data,".local_data_m2",".oskernel_local_data",".data", "ramsp_0",
".rom",".exception_index",".bss", ".oskernel_bss", ".ramsp_0",".init_table", ".rom_init"
,".bsstab",".rom_init_tables",".staticinit",".att_mmu"

Finally, we reduce the buffer pool size in two ways. In app_config.h, reduce TEST_DATA_SIZE from
0x600 to 0x100 to limit the packet size in the test to a maximum of 256 bytes. Also, we reduce the
TEST_NUM_OF_BUFS to TEST_NUM_OF_CHANNELS * (8 + 8).

5.1.6.3 Performance

When we compile and rerun the tests, we find that we get the same performance when the buffers are stored
in M2 memory as when they are stored in M3 memory. Repeating the test for DDR (but skipping the
.concatenate step) yields the same results as well. We explain these results as follows:

• Because the only application running on the MSC8144 is for the Ethernet echo, the possibility for
contention during accesses to the single port of M3 or DDR memory is much lower.

• Also, caches are in use, which greatly reduces the number of times the core goes to actual memory
to complete any task other than sending frames to and from the UEC.

5.1.7 Test 7: QUICC Engine Block Operating in MPC82xx Filtering Mode
Switching to MPC82xx compatible filtering mode from extended parsing mode, as explained in Section 3,
“Ethernet Controller (UEC) Frame Filtering,” only filters, accepts, or discards frames based on a single
MAC address (unless extended features are enabled). The UEC sends accepted frames exclusively to

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 33

Performance Testing

queue 0. The model shown in Figure 19 is similar to the single-core, single-UEC model. The main
difference is that the amount of frame header checked by the QUICC Engine block is less and all the work
of frame processing is left to the core.

Figure 19. UDP with MPC82xx Filtering Model

5.1.7.1 Programming Model

To enter MPC82xx filtering mode, we must configure the REMODER register and specify in the MAC
station address registers the MAC address to filter. Table 16 shows the REMODER value to enable
MPC82xx filtering.

Table 17 lists the address filtering values.

5.1.7.2 SmartDSP OS Example

SmartDSP OS automatically switches to MPC82xx filtering mode when the number of Tx BD rings and
Rx BD rings in msc814x_config.c is reduced to 1 and 1. In the default demo, the number of rings is set by

Table 16. UEC Global Parameter RAM Fields

Register Offset Value

REMODER 0x00 0x80001100 Enable MPC82xx Filtering mode, extended features, and 2 receive
queues. Enable RX statistics

Table 17. UEC MII Configuration Registers for MPC82xx Filtering

Register Address Value

MACSADDR1
(UCC1)

0xFEE02140 Desired MAC
Address Low
0x????????

Initialize MAC Station Address registers for UEC0 to filter a specific
address.

MACSADDR2
(UCC1)

0xFEE02144 Desired MAC
Address High
0x????0000

Initialize MAC Station Address registers for UEC0 to filter a specific
address.

MACSADDR1
(UCC3)

0xFEE02340 Desired MAC
Address Low

0x????????

Initialize MAC Station Address registers for UEC1 to filter a specific
address.

MACSADDR2
(UCC3)

0xFEE02344 Desired MAC
Address High
0x????0000

Initialize MAC Station Address registers for UEC1 to filter a specific
address.

M3

Core 0 Subsystem

QUICC Engine Block

MSC8144

UEC0

UEC1

SmartBits

EPIC
Rx Frame Signalling

Rx Frame

Tx Frame

MSC8144 Ethernet Performance, Rev. 0

34 Freescale Semiconductor

Performance Testing

the number of cores multiplied by the number of channels. However, when enabling four-core, dual-UEC
testing, we altered this default so that the number of Tx BD rings passed to the low-level SmartDSP OS
drivers reflects the number per UEC. Therefore, the only modification needed to test MPC82xx filtering
mode is to change the number of cores in os_config.h to 1.

5.1.7.3 Performance

Testing MPC82xx filtering for UDP using the udpSend function for echoing frames over two UECs shows
that the UECs can handle 64-byte frames at up to 11 percent gigabit usage before frame dropping (at 90
Mbps). For two UECs, full line rate is reached at 768-byte frames.

If we compare this rate with that of the UDP demo using the UDP send, we find an expected drop in
performance (reaching only 10.5 percent per UEC usage for 64-byte packets). MPC82xx filtering
highlights any bottlenecks in the application software. In this case, the main bottleneck is on the side of
the DSP subsystem and interface to memory.

Figure 20. UDP Echo, 1 Core 2 UEC MPC82xx Filtering: Dual GbE Usage Versus Frame Size

5.2 Testing L2 Ethernet Echo
At the register level, testing L2 Ethernet echo is the same as for testing the L4 UDP echo application. The
differences lie in the high-level software management and filtering of received frames. In this case, the
load is reduced to a focus on the hardware overhead. For the SmartDSP OS UEC demo in the
demos/starcore/msc814x/uec_multicore/ folder, some testing is the same as for UDP echo. However,

0

500

1000

1500

2000

2500

60 124 252 508 764 1020 1514

M
bp

s

1GHz
800Mhz
UDP Send
UDP 4 Core
4core 2uec
82xx 2uec

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 35

Performance Testing

because UEC involves only filtering for MAC addressing, some experiments from the UDP testing are not
used. Testing begins with the UEC demo, which sets up one UEC to loopback frames and filter received
frames based on MAC layer filtering in extended parsing mode.

5.2.1 Test 8: UEC L2 Echo with Single Core, Single UEC
The test described here gives a baseline for UEC echo testing and also something to compare to the UDP
single-core, single-UEC echo application.

5.2.1.1 Programming Model

The register model remains the same as for the single-core, single-UEC L4 UDP echo test described at the
start of this application note. You can handle higher levels of abstraction in your operating system/
application at your discretion. The SmartDSP OS example is one option to follow.

5.2.1.2 SmartDSP OS Example

To switch the UEC demo to echo frames (1 core), proceed as follows:
1. At the project level:

a) Select the External Loopback target.
b) Target settings → Debugging → Other executables (uncheck these).

2. In os_config.h:
a) Change OS_NUM_OF_CORES to 1.
b) Change MSC814X_UEC0 to ON (to be used later for dual UEC testing).

3. In uec_demo.c: main(), change the loopback variable to match this one:
bsp_marvell_external_loopback = FALSE;

4. In uec_demo.c: appInit(), for a single core and single UEC, nothing needs to be changed.
5. In uec_demo.c: appBackground():

a) Delete everything after the first while loop.
b) Add an infinite loop at the end of appBackground().

6. In uec_demo.c: appBackground():
• Delete everything after data is assigned.
• Add the following line at the end of the function to transmit the received frame:

while (osBioChannelTx(&(tx_channel[channel_num].channel), frame) != OS_SUCCESS) ;

5.2.1.3 SmartBits Testing

For UEC loopback, create a standard L2 stream with the destination MAC address matching the UEC
projects MAC receive addresses.

MSC8144 Ethernet Performance, Rev. 0

36 Freescale Semiconductor

Performance Testing

5.2.1.4 Performance

Testing with the core running at 800 MHz and M3 memory at 333 MHz provides echoes at a maximum of
21 percent gigabit usage (163 Mbps) before frames are dropped and reaching 100 percent usage before the
packet size increases to 512 bytes.

Figure 21. L2 Ethernet Echo: 1 UEC, 1 Core @800 MHz: Usage Versus Frame Size

5.2.1.5 Frequency Increase

Increasing the core and M3 frequency as for the UDP increases throughput to 37 percent usage for 64-byte
packets and reaches full line speed at a 256-byte frame size.

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

6 0 1 2 4 2 5 2 5 0 8 7 6 4 1 0 2 0 1 5 1 4

M
bp

s

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 37

Performance Testing

Figure 22. L2 Ethernet Echo: 1 UEC, 1 Core @ 1GHz: Usage Versus Frame Size

5.2.2 Test 9: UEC L2 Echo with Four Cores
Following the same test logic as used in the L4 UDP echo applications for purposes of comparison, the
next step is to test a four-core L2 MAC-layer echo application. The register settings for the hardware in
this application also mirror those of the L4 UDP echo counterpart.

5.2.2.1 SmartDSP OS Example

To use to four cores, make the following changes:
• OS_NUM_OF_CORES to 4 in oc_config.c.
• Re-include other executables in the target → debugger → other executables panel.

Compile and debug the project, verifying that each core’s project is set to the External Loopback target.

5.2.2.2 Performance

The four-core, single-UEC system yields slightly better results than the UDP echo with slightly less than
2 percent usage improvement to 47 percent for 64-byte frames. As with the UDP demo, full gigabit
Ethernet usage is reached before frame size increases to 256 bytes.

0

200

400

600

800

1000

1200

60 124 252 508 764 1020 1514

M
bp

s

800M Hz
1000M Hz

MSC8144 Ethernet Performance, Rev. 0

38 Freescale Semiconductor

Performance Testing

Figure 23. L2 Ethernet Echo: 1 UEC, 4 Core @ 1GHz: Usage Versus Frame Size

5.2.3 Test 10: UEC L2 Ethernet Loopback with Two UECs
The process of converting the L2 echo four-core project to function with two UECs is very similar to that
for the UDP echo application. The differences lie in the SmartDSP OS application. The demo folder
containing the required alterations to SmartDSP OS is provided in the zip file that accompanies this
application note. The register programming model remains the same, as does the general idea to create a
four-core system with two L2 loopback channels per core for a total of eight channels in the system.

5.2.3.1 SmartDSP OS Example

The concept of channels and cores stays the same as before (refer to Figure 14 and Section 5.1.5, “Test 5:
UDP Echo using Four Cores and Both QUICC Engine UECs”). Because the L2 echo project is not
identical to the UDP echo project, proceed as follows:

1. In os_config.c, enable both UECs.
2. In app_config.h, create a num_channes_per_uec and a num_of_devices constant.
3. In uec_demo.c, the core_channel_offset is now done in appInit, so remember to change channels

to channels/UEC.
The callback function uses channel numbers, no there is no need for modifications because we
handled channel numbers using the concept depicted in Figure 14.

0

200

400

600

800

1000

1200

60 124 252 508 764 1020 1514

M
bp

s 800MHz
1000MHz
4x 1G Cores

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 39

Performance Testing

5.2.3.2 Performance

The UEC L2 echo performance test with two UECs measures exactly the same as achieved with the UDP
2 UEC echo performance for the 64-byte packet size at 30.32 percent usage. Furthermore, the results as a
whole for both tests stay fairly close.

NOTE

This similarity in test results highlights the fact that in extended parsing
mode, the code reaches a point where the QUICC Engine block starts to
become a bottleneck for feeding packets to the four DSP cores of the
MSC8144.

Figure 24 displays the results attained across packet sizes for L2 with two UECs.

Figure 24. L2 Ethernet Echo: 2 UEC, 4 Core @ 1GHz: Dual GbE Usage Versus Frame Size

5.2.4 Test 11: L2 UEC Echo with MPC82xx Filtering
Using the least RISC processor intensive filtering available in the QUICC Engine block, MPC82xx
filtering theoretically causes a bottleneck at the program and accesses to memory. Because of this and
because the SmartDSP OS (or the user’s application) manages fewer layers on the Ethernet stack in L2,
we expect a noticeable performance increase when compared to UDP MPC82xx filtering.

5.2.4.1 Programming Model

The register programming model for hardware emulates that of the L4 echo model provided for MPC82xx
filtering, but it uses only one UEC for this test.

0

500

1000

1500

2000

2500

60 124 252 508 764 1020 1514

M
bp

s 800MHz
1000MHz
4x 1G Cores
4 Core 2 UEC

MSC8144 Ethernet Performance, Rev. 0

40 Freescale Semiconductor

Performance Testing

5.2.4.2 SmartDSP OS Example

The test starts with one UEC. As before, to use MPC82xx filtering in the SmartDSP OS, proceed as
follows:

1. In app_config.h, change the TEST_NUM_CHANNELS to 1 and the number of devices to 1.
2. In os_config.h, change OS_NUM_OF_CORES to 1.
3. Remove the other executables from the target → debugger → other executables tab.

For this single UEC echo, the performance for 64-byte packets reaches 39 percent usage at 296 Mbps. Line
speed is reached at 256 bytes.

Figure 25. L2 Ethernet Echo, 82xx Filtering, 1 UEC, 1 Core @ 1GHz: Usage Versus Frame Size

5.2.5 Test 12: L2 UEC Echo with MPC82xx Filtering and Two UECs
For more efficient UEC Ethernet filtering to a single core, we use two UECs in MPC82xx filtering mode.
However, because we are still using high-level software to echo received frames in this test, we want to
see if changing the software to manage two UECs actually improves performance.

The hardware register programming model is the same as in the last test, but this time we use both UECs.
Register contents and addresses are provided in the L4 MPC82xx Echo programming model in
Section 5.1.1.1, “Programming Model.”

We change to two UECs by changing the number of devices (UECs) to two in app_config.h. When
compared with the performance numbers for UDP MPC82xx filtering with two UECs, the performance
nearly doubles when moving to L2. For each UEC, throughput is at 20 percent for 64-byte packets,
reaching 100 percent at 512 bytes.

0

500

1000

1500

2000

2500

60 124 252 508 764 1020 1514

M
bp

s

800MHz
1000MHz
4x 1G Cores
4 Core 2 UEC
82xx Filtering

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 41

Maximizing the QUICC Engine Throughput

Figure 26. L2 Ethernet Echo, 82xx Filtering, 2 UECs, 1 Core @ 1 GHz: Dual GbE Usage Versus Frame Size

6 Maximizing the QUICC Engine Throughput
To know how far optimization can be pushed to get maximum Ethernet throughput, we must find the
theoretical limits of the MSC8144 QUICC Engine block. In extended parsing mode, this test should prove
the QUICC Engine block to be the bottleneck and show that the SmartDSP OS with two UECs is truly the
maximum limit of extended parsing mode. To test the theoretical limits of the QUICC Engine block, we
can take the DSP core out of the bottleneck equation by not giving the DSP any Ethernet frame data
movement or frame reading/writing tasks. The DSP simply passes pointers to the QUICC Engine block
and frees frames from it. Although this test is based on the SmartDSP OS, this is not the way the SmartDSP
OS is designed to operate, and therefore such an alteration is not supported or advised. We make the change
merely to prove the limits of the QUICC Engine block for your information in this application note.

6.1 MPC82xx Filtering
Our goal is to find the maximum throughput of QUICC Engine filtering for one queue. The hardware
programming register model for this test is the same as that for the previous two tests using MPC82xx
filtering for an L2 application. To remove the DSP load from the SmartDSP OS L2 echo code, we must
make several changes to the UEC demo, including skipping some layers of the OS. This is not the
recommended way to use the SmartDSP OS, but it does enable us to test the theoretical limits of the
QUICC Engine block. In the uec_demo.c file, which is already set up for MPC82xx filtering for two UECs,
we make the following changes:

1. Enable polling by uncommenting:
#define RX_POLLING

0

500

1000

1500

2000

2500

60 124 252 508 764 1020 1514

M
bp

s

800MHz
1000MHz
4x 1G Cores
4 Core 2 UEC
82xx Filtering
82xx 2 UEC

MSC8144 Ethernet Performance, Rev. 0

42 Freescale Semiconductor

Maximizing the QUICC Engine Throughput

2. Create a global variable for use as the standard send-to-QUICC Engine frame:
frame_data[0x100] = { insert the contents for a standard frame you will repeatedly
send to the QUICC Engine block here }

#pragma align frame_data ARCH_CACHE_LINE_SIZE

3. Use the prepare_bds function to initialize the TxBDs to point to the buffer (frame) just created:
void prepare_bds(void *ch_handle)

{

msc814x_uec_tx_channel_t *tx_ch = (msc814x_uec_tx_channel_t *)ch_handle;
uint8_t *bd;
void* frame_data_phys;
uint32_t bd_status;

bd = tx_ch->tx_base;
osMmuDataVirtToPhys(frame_data, &frame_data_phys);
while(1)

{

UEC_BD_BUFFER_SET(bd, (uint8_t *)frame_data_phys);
bd_status = UEC_BD_STATUS_AND_LENGTH(bd);
if(bd_status & T_W) break;
bd += UEC_BD_SIZE;

}
}

This program uses a transmit function to bypass the SmartDSP OS BIO layer and simply pass a
pointer to the TxBDs. The my_uecChannelTx function is based on the uecChannelTx() in the
SmartDSP OS MSC8144 driver library. The receive callback function has been updated to skip the
BIO layer and directly call the my_uecChannelTx function similarly to the transmit function. This
function POLLs the receive channel for new frames.

4. For appInit(), make the following changes:
a) Change the callback functions to = NULL (using polling).
b) After the Tx channels are set, use prepare_bds.
c) Turn off cache coherency because the concern is not whether the DSP receives the correct

data, but simply to maximize the throughput of the QUICC Engine block.
appBackground() constantly calls the receive polling function and then the transmit function.
Therefore, the received frame is not echoed but sends the default global frame for every received
frame <TBD>.

These changes enable us to find the theoretical limit of the QUICC Engine block in MPC82xx filtering
mode. For one UEC, the QUICC Engine block reaches 100 percent utility, as indicated by the SmartBits
tester, at 64-byte frames. The effective bit rate is near 800 Mbps instead of 1Gbps because the interframe
gap is cumulatively larger for the smaller frame size.

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 43

Maximizing the QUICC Engine Throughput

Figure 27. L2 Ethernet I/O: QUICC Engine Max 82xx: 1 UEC, 1 Core @ 1GHz: Usage Versus Frame Size

For two UECs, the QUICC Engine block reaches its limits for 64-byte frames before it reaches 100 percent
utility (at 66 percent and a 490 Mbps frame rate per UEC). In this system, the QUICC Engine reaches 100
percent usage at a frame length of 124 bytes. This is the true limit of the QUICC Engine system on the
MSC8144 when filtering to a single core.

Figure 28. L2 Ethernet I/O: QUICC Engine Max 82xx: 2 UEC, 1 Core @ 1GHz: Usage Versus Frame

0

200

400

600

800

1000

1200

60 124 252 508 764 1020 1514

M
bp

s

82xx 1 UEC Limits

0

500

1000

1500

2000

2500

60 124 252 508 764 1020 1514

M
bp

s

82xx 1 UEC
82xx 2 UEC

MSC8144 Ethernet Performance, Rev. 0

44 Freescale Semiconductor

Maximizing the QUICC Engine Throughput

6.2 Extended Parsing Mode
Now we devise a test to compare the usefulness of MPC82xx filtering mode versus extended parsing mode
for a single filter per UEC. We do not need to alter the preceding test case. Extended parsing mode can be
directly enabled in the SmartDSP OS Ethernet initialization routine, uecInitialize(), within the MSC814x
driver library by forcing the following condition in the msc814x_uec_init.c file:

uec->extended_filtering = TRUE;

6.2.1 One Core in Extended Parsing Mode
In extended parsing mode, repeating the preceding two tests for one and two UECs yields the results shown
in Figure 29. Notice that the load of extended parsing mode loads the QUICC Engine block, reducing
maximum throughput at 64-byte packets to 67 percent usage (516 Mbps) for one UEC and to 36 percent
usage per UEC for a dual UEC system. The result is a total of 554 Mbps for both UECs in a dual-UEC
system.

Figure 29. L2 Ethernet I/O: QUICC Engine Max EXP: 1 Core @ 1GHz: Usage Versus Frame Size

6.3 Four Cores in Extended Parsing Mode
Enabling four cores allows us to verify that the final tests for UDP and L2 filtering in extended parsing
mode are in fact only bottlenecked by the QUICC Engine block due to realizing maximum utilization. By
maintaining the general SmartDSP OS programming model, updating the project for a four-core model
requires the same changes as in Section 5.1.4, “Test 4: UDP Echo in a Four-Core System, which is the
same as the changes described in Section 5.2.2, “Test 9: UEC L2 Echo with Four Cores.”

0

500

1000

1500

2000

2500

60 124 252 508 764 1020 1514

M
bp

s

EXP 1Core 1UEC
EXP 1Core 2UEC

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 45

Maximizing the QUICC Engine Throughput

The results show that the optimized test in extended parsing mode on four cores using two UECs provides
the same performance as for 64-byte packets at 468 Mbps, and it also achieves line performance for 508
byte packets. See Figure 30.

Figure 30. Maximum Performance for Four Cores in Extended Parsing Mode

6.4 Performance Measurement Summary
To visualize the results of the tests reported in this application note, we considered how the MSC8144 DSP
can manage 64-byte packets in different scenarios. We also considered the length the system can manage
at a full gigabit bandwidth. The test results verified that for MPC82xx filtering, the single-core DSP
becomes an I/O bottleneck through a single UEC because the QUICC Engine block can handle
single-UEC traffic up to full usage. However, for dual UECs, a theoretical maximum is reached at ~65%
of 2 Gbps Ethernet.

In extended parsing mode, the results of theoretical tests show that we can in fact reach the full theoretical
limits of the QUICC Engine block by using the SmartDSP OS demo and enabling two UECs for a
four-core system. Figure 31 and Figure 32 summarize the tests by showing usage for different testing
scenarios featuring the 64-byte frame size.

When we optimize a one-core system for performance, the bottleneck for Ethernet is the core as it works
to make frames ready for the QUICC Engine block to use. Therefore, the cumulative Ethernet throughput
of two UECs in MPC82xx filtering mode, which offloads filtering functionality from the QUICC Engine
block and leaves it to software, is much less than the Ethernet throughput of just a single UEC in extended
parsing mode.

0

500

1000

1500

2000

2500

60 124 252 508 764 1020 1514

M
bp

s

EXP 4Core 2UEC

MSC8144 Ethernet Performance, Rev. 0

46 Freescale Semiconductor

Maximizing the QUICC Engine Throughput

Finally, the modified SmartDSP OS UDP echo demo for four cores and two UECs matches the maximum
theoretical Ethernet performance of the QUICC Engine block, which we tested by removing data
movement and latency from the core side of the equation.

Figure 31. UDP Echo Performance Across Tests for 64 byte frames

Figure 32 further confirms the effect of extended parsing mode versus MPC82xx filtering mode by
showing the L2 Ethernet filtering results.

0

50

100

150

200

250

300

350

400

450

500

Echo 800 Echo 1G udpSend
1G

82xx
2UECs

udpSend
4DSPx1G

udpSend
2UEC,

4DSPx1G

EXP 4Core
2UEC QE

Lim it

G
bE

th
er

ne
t U

til
iz

at
io

n
fo

r 6
4b

yt
e

Pa
ck

et
s

(M
bp

s)

MSC8144 Ethernet Performance, Rev. 0

Freescale Semiconductor 47

Revision History

Figure 32. L2 Performance per UEC: Across Tests for 64-Byte Frames

In Figure 32, the theoretical limits are shown by the bars that represent tests with pointers. Two things are
clear from this graph. The first is the bottleneck caused by core accesses to memory in a single-core
system, regardless of whether the system is operating in MPC82xx filtering or extended parsing mode.
Taking the core-to-memory accesses out of the equation by simply manipulating pointers of the BDs to the
QUICC Engine block, we can reach the maximum QUICC Engine throughput for MPC82xx mode.

For a single queue per UEC system (one core), MPC82xx filtering achieves the greatest Ethernet
throughput. The four bars at the right of Figure 32 show how different the theoretical maximum throughput
for the QUICC Engine block really is when filtering these two ways. Even though the bars on the left,
which represent the L2 tests based on the SmartDSP OS demos, do not reach the maximum QUICC Engine
throughput, the tests reveal that MPC82xx filtering mode still boosts throughput more than extended
parsing mode filtering in this case.

7 Revision History
Table 18 provides a revision history for this application note.

Table 18. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 09/2007 Initial release.

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

L 2 E c h o
1 D S P

8 0 0

L 2 E c h o
1 D S P

1 G

L 2 E c h o
4 D S P

1 G

L 2 E c h o
4 D S P
2 U E C

L 2 8 2 xx
1 U E C

L 2 8 2 xx
2 U E C

L 2 8 2 xx
p o in te rs

L 2 8 2 xx
2 U E C

p o in te rs

L 2 E X P
p o in te rs

L 2 E X P
2 U E C

p o in te rs

L2
 G

bE
 U

til
iz

at
io

n
@

 6
4

B
yt

e
Pa

ck
et

 S
iz

e
(M

bp
s)

Document Number: AN3439
Rev. 0
09/2007

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale™, the Freescale logo, and PowerQUICC are trademarks and StarCore is a
registered trademark of Freescale Semiconductor, Inc. CodeWarrior is a trademark or
registered trademark of Freescale Semiconductor, Inc. in the United States and/or
other countries. All other product or service names are the property of their respective
owners.

© Freescale Semiconductor, Inc., 2007. All rights reserved.

THIS PAGE INTENTIONALLY LEFT BLANK

	1 Ethernet Basics
	2 Ethernet Architecture for the MSC8144
	2.1 QUICC Engine
	2.2 Ethernet Controllers

	3 Ethernet Controller (UEC) Frame Filtering
	3.1 MPC82xx Filtering Mode
	3.2 Extended Parsing Mode
	3.2.1 Buffer Descriptors and Rings
	3.2.2 Parse Command Descriptors (PCDs)

	4 Ethernet Performance Testing on the MSC8144ADS
	4.1 SmartBits
	4.2 MSC8144ADS Board
	4.2.1 MSC8144 ADS and Device Configuration
	4.2.2 Device Configuration and Testing

	4.3 SmartDSP OS Software and Demos

	5 Performance Testing
	5.1 Testing with UDP Echo
	5.1.1 Test 1: One Core at 800 MHz and 1 UEC
	5.1.1.1 Programming Model
	5.1.1.2 Non-SmartDSP OS Programming Model
	5.1.1.3 SmartDSP OS Example
	5.1.1.4 Performance

	5.1.2 Test 2: Increase DSP Core and Memory Frequency
	5.1.2.1 Programming Model
	5.1.2.2 Performance

	5.1.3 Test 3: Improve the UDP Send Function for UDP Echo Testing
	5.1.4 Test 4: UDP Echo in a Four-Core System
	5.1.4.1 Programming Model
	5.1.4.2 SmartDSP OS Example
	5.1.4.3 Performance

	5.1.5 Test 5: UDP Echo using Four Cores and Both QUICC Engine UECs
	5.1.5.1 Programming Model
	5.1.5.2 SmartDSP OS Example
	5.1.5.3 SmartBits Setup
	5.1.5.4 Performance

	5.1.6 Test 6: Buffers in M2 and DDR Memory
	5.1.6.1 Programming Model
	5.1.6.2 SmartDSP OS Example
	5.1.6.3 Performance

	5.1.7 Test 7: QUICC Engine Block Operating in MPC82xx Filtering Mode
	5.1.7.1 Programming Model
	5.1.7.2 SmartDSP OS Example
	5.1.7.3 Performance

	5.2 Testing L2 Ethernet Echo
	5.2.1 Test 8: UEC L2 Echo with Single Core, Single UEC
	5.2.1.1 Programming Model
	5.2.1.2 SmartDSP OS Example
	5.2.1.3 SmartBits Testing
	5.2.1.4 Performance
	5.2.1.5 Frequency Increase

	5.2.2 Test 9: UEC L2 Echo with Four Cores
	5.2.2.1 SmartDSP OS Example
	5.2.2.2 Performance

	5.2.3 Test 10: UEC L2 Ethernet Loopback with Two UECs
	5.2.3.1 SmartDSP OS Example
	5.2.3.2 Performance

	5.2.4 Test 11: L2 UEC Echo with MPC82xx Filtering
	5.2.4.1 Programming Model
	5.2.4.2 SmartDSP OS Example

	5.2.5 Test 12: L2 UEC Echo with MPC82xx Filtering and Two UECs

	6 Maximizing the QUICC Engine Throughput
	6.1 MPC82xx Filtering
	6.2 Extended Parsing Mode
	6.2.1 One Core in Extended Parsing Mode

	6.3 Four Cores in Extended Parsing Mode
	6.4 Performance Measurement Summary

	7 Revision History

