
Freescale Semiconductor
Application Note

Document Number: AN3404
Rev. 1, 03/2007

Contents

Introduction . 1
1.1 MC9S08LC60/36 Flash-Memory

Characteristics. 2
1.2 MC9S08LC60/36 Memory Map. 2
Flash Programming . 3

2.1 Program and Erase Times. 3
2.2 Program and Erase Flash Algorithms 5
2.3 Flash Block Protection. 9
EEPROM Emulated Demo . 9

3.1 Display . 10
3.2 SCI Interface . 10
3.3 Data Storage . 11
3.4 Data Verification . 12
4 Conclusion. 13

How to Do EEPROM Emulation
Using Double Flash Array on
MC9S08LC60
by: Ronald Gonzalez and Tatiana Orofino

RTAC Americas
1 Introduction
This application note explores how to do EEPROM
emulation using two arrays. This is demonstrated
through an example that retrieves data from SCI, stores
the data into emulated EEPROM, and shows EEPROM
status and data on the display.

Flash memory is intended primarily for program storage.
In-circuit programming allows the operating program to
be loaded into the flash memory after the application
product’s final assembly.

Data storage is becoming common in flash arrays
because of new technologies that support longer data
retention and higher rates of write cycles.

The MC9S08LC60/36 is the first Freescale 8-bit
microcontroller to contain two flash arrays. Program and
erase operations can be conducted on one array while
executing code from the other. This feature allows easy
EEPROM emulation while the microcontroller runs.
This can improve the layout and eliminate external
components, which reduces costs.

1

2

3

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Introduction
1.1 MC9S08LC60/36 Flash-Memory Characteristics
• Flash size:

— MC9S08LC60 — 63,232 bytes (30,464 bytes in flash B, 32,768 bytes in flash A)
— MC9S08LC36 — 36,864 bytes (12,288 bytes in flash B, 24,576 bytes in flash A)

• Single power supply program and erase
• Command interface for fast program and erase operation
• Up to 100,000 program/erase cycles at typical voltage and temperature
• Flexible block protection
• Security feature for flash and RAM
• Auto power-down for low-frequency read accesses minimizes run IDD

• Flash read/program/erase over full operating voltage or temperature

1.2 MC9S08LC60/36 Memory Map

Figure 1. MC9S08LC60/36 Memory Map

Direct Page Registers Direct Page Registers

RAM 4096 bytes

flash B 1952 bytes

High-Page Registers High-Page Registers

flash B 28,512 bytes

flash A 32,769 bytes flash A 24,578 bytes

Unimplemented

flash B 12,288 bytes

Unimplemented

RAM 2560 bytes

0 x 0000 0 x 0000

0 x FFFF 0 x FFFF

0x7FFF
0x8000 0x9FFF

0xA000

0x486F
0x4870

0x186F
0x1870

0x186F
0x1870

0x17FF
0x1800

0x17FF
0x1800

0x006FF
0x0060

0x006FF
0x0060

0x0A5F
0x0A60

0x106F
0x1060

MC9S08LC60 MC9S08LC36
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor2

Flash Programming
2 Flash Programming
This flash-memory module includes integrated program/erase-voltage generators and separate
command-processor state machines that can perform automated byte programming, page (512 bytes flash)
or mass erase, and blank-check commands. Commands are written to the command interface. Status flags
report errors and indicate when commands are complete.

The block-protection feature prevents the protected region of flash from accidental program or erase
changes.

A security mechanism can be engaged to prevent unauthorized access to the flash and RAM memory
contents. An optional user-controlled, back-door key mechanism can be used to allow controlled access to
secure memory contents for development purposes.

2.1 Program and Erase Times
One advantage of emulated EEPROM is that program and erase times are very fast compared with other
technologies.

Table 1 shows program and erase times. The shown times include overhead for the command-state
machine and enabling and disabling of program and erase voltages.

1 Excluding start/end overhead

2.1.1 Flash Clock

Before any program or erase command can be accepted, the flash clock divider register (FCDIV) must be
written to set the internal clock for the flash module to a frequency (fFCLK) between 150 kHz and 200 kHz.

NOTE
Observe that the flash clock is referenced as the bus clock.

2.1.1.1 Flash Clock Divider Register (FCDIV)

This register can be written only once, so normally this write is done during reset initialization. FCDIV
cannot be written if the access error flag, FACCERR in FSTAT, is set. You must ensure that FACCERR is
not set before writing to the FCDIV register. One period of the resulting clock (1/fFCLK) is used by the
command processor to time program and erases pulses. To complete a program or erase command, the

Table 1. Program and Erase Times

Parameter Cycles of FCLK Time if FCLK = 200KHz

Byte program 9 45 µs

Byte program (burst) 4 20 µs1

Page erase 4000 20 ms

Mass erase 20.000 100 ms
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor 3

Flash Programming
command processor uses an integer number of these timing pulses. Bit 7 of this register is a read-only
status flag. Bits 6 through 0 may be read at any time but can be written one time only. Before any erase or
programming operations are possible, write to this register to set the clock frequency for the nonvolatile
memory system within acceptable limits.

Table 2. FCDIV Field Description

Field Description

7
DIVLD

Divisor Loaded Status Flag — When set, this read-only status flag indicates that the FCDIV register has
been written since reset. Reset clears this bit, and the first write to this register causes this bit to become
set regardless of the data written.
0 FCDIV not written since reset; erase and program operations disabled for flash.
1 FCDIV written since reset; erase and program operations enabled for flash.

6
PRDIV8

Prescale (Divide) flash Clock by 8
0 Clock input to the flash clock divider is the bus rate clock.
1 Clock input to the flash clock divider is the bus rate clock divided by 8.

5
DIV[5:0]

Divisor for flash Clock Divider — The flash-clock divider divides the bus-rate clock (or the bus-rate clock
divided by 8 if PRDIV8 = 1) by the value in the 6-bit DIV5:DIV0 field plus one. The resulting frequency of
the internal flash clock must fall within 200 kHz to 150 kHz for proper flash operations.
Program/erase timing pulses are one cycle of this internal flash clock, which corresponds to a range of 5 µs
to 6.7 µs. The automated programming logic uses an integer number of these pulses to complete an erase
or program operation.

Table 3. Flash Clock Divider Settings

fBus PRDIV8 (Binary)
DIV5:DIV0
(Decimal)

fFCLK

Program/Erase
Timing Pulse

(5μs Minimum,
6.7 μs Maximum)

20 MHz 1 12 192.3 kHz 5.2 μs

10 MHz 0 49 200kHz 5 μs

8 MHz 0 39 200 kHz 5 μs

4 MHz 0 19 200 kHz 5 μs

2 MHz 0 9 200kHz 5 μs

1 MHz 0 4 200 kHz 5 μs

200 kHz 0 0 200 kHz 5 μs

150 kHz 0 0 150 kHz 6.7 μs
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor4

Flash Programming
2.2 Program and Erase Flash Algorithms
All the program and erase algorithms, such as turn on/off charge pumps, control times, etc. are done by a
hardware state machine that takes care about all processes without interfering in the microcontroller
functionality. You must determine where the data is stored and launch the program sequence. The details
of using these algorithms are explained in the following section.

2.2.1 Program and Erase Command Execution

Initialize the FCDIV register and clear error flags beofore command execution. Command-execution steps
(see Figure 2 for flowchart):

1. Write a data value to an address in the flash array.
— The address and data information from this write is latched into the flash interface. This write

must be the first step in any command sequence. For erase- and blank-check commands, the
the data value is not important. For page-erase commands, the address may be any address in
the 512-byte page of flash to be erased. For mass-erase and blank-check commands, the address
can be any address in the flash memory. Whole pages of 512 bytes are the smallest block of
flash that may be erased. In some boundary conditions with RAM or high page registers, the
accessible block size is less than 512 bytes.

2. Write the command code for the desired command to FCMD.
— The five valid commands are blank check ($05), byte program ($20), burst program ($25), page

erase ($40), and mass erase ($41).
— The command code is latched into the command buffer.

3. Write a 1 to the FCBEF bit in FSTAT to clear FCBEF and launch the command (including its
address and data information).
— A strictly monitored procedure must be obeyed for the command to be accepted. This

minimizes the possibility of any unintended changes to the flash memory contents. The
command-complete flag (FCCF) indicates when a command is complete.
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor 5

Flash Programming
Figure 2. Program and Erase Command Execution Flowchart

2.2.2 Burst Program Execution

The burst program command is used to program sequential bytes of data in less time than would be
required using the standard program command. For the MC9S08LC60/36, you can burst across flash-array
boundaries as long as the addresses are consecutive. This is possible because the high voltage to the flash
array does not need to be disabled between program operations. Ordinarily, when a program or erase
command is issued, an internal charge pump associated with the flash memory must be enabled to supply
high voltage to the array. Upon completion of the command, the charge pump is turned off. When a burst

Start

FACCERR?

Write to flash
To Buffer Address and Data

Write Command to FCMD

Is an ACMP
interrupt pending?

FCCF?

Done

Clear Error

Write to FCDIV1

1Required only once after reset

2 Wait at least four bus cycles before checking
FCBEF or FCCF.

Write 1 to FCBEF to
launch command and
clear FCBEF2

0
Error Exit

FPVIOL or FACCERR?

No?

Yes

1

Flash Program and
Erase Flow

0

How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor6

Flash Programming
program command is issued, the charge pump is enabled and remains enabled after completion of the burst
program operation if two conditions are met:

• The next burst program command has been queued before the current program operation
completes.

• The next sequential address selects a byte on the same physical row as the current byte being
programmed. A row of flash memory consists of 64 bytes. A byte within a row is selected by
addresses A5 through A0. A new row begins when addresses A5 through A0 are all zero.

Programming the first byte of a sequential bytes series in burst mode takes as long as having a byte
programmed in standard mode. Subsequent bytes are programmed in the burst program time, provided the
above conditions are met. When the next sequential address is begins a new row, the program time for that
byte becomes the standard time instead of the burst time because the high voltage applied to the array must
be disabled and then enabled again. If a new burst command is not queued before the current command
completes, the charge pump is disabled and high voltage is removed from the array.
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor 7

Flash Programming
Figure 3. Burst Program Execution Flowchart

Start

FACCERR?

Write to flash
To Buffer Address and Data

Write Command ($25) to FCMD

Is an ACMP
interrupt pending?

FCCF?

Clear Error

Write to FCDIV1

1Required only once after reset

2 Wait at least four bus cycles before checking
FCBEF or FCCF.

Write 1 to FCBEF to
launch command and
clear FCBEF2

0

Error Exit
FPVIOL or FACCERR?

No

Yes

1

Flash Burst Program Flow

0

FCBEF? 0

New Burst Command?

No

Done

Yes
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor8

EEPROM Emulated Demo
2.3 Flash Block Protection
This feature is very important when EEPROM emulation is used because it prevents an accidental flash
program or erase outside of EEPROM reserved area. In our example, we protect all flash A (0x8000 –
0xFFFF) array reserved to program.

Block protection is controlled through the flash-protection register (FPROT). When enabled, block
protection begins at any 512 byte boundary below the last address of flash, 0xFFFF.

After exit from reset, FPROT is loaded with the contents of the NVPROT location in the nonvolatile
register block of the flash memory. FPROT cannot be changed directly from application software so a
runaway program cannot alter the block-protection settings. Because NVPROT is within the last 512 bytes
of flash, if any amount of memory is protected, the application software cannot alter (intentionally or
unintentionally) NVPROT. FPROT can be written through background debug commands, which allow a
way to erase and reprogram a protected flash memory.

The block-protection mechanism is illustrated in Figure 4. The FPS bits are used as the upper bits of the
last address of unprotected memory. This address is formed by concatenating FPS7:FPS1 with logic 1 bits
as shown. For example, to protect the last 8192 bytes of memory (addresses 0xE000 through 0xFFFF), the
FPS bits must be set to 1101 111. This results in the value 0xDFFF as the last address of unprotected
memory. In addition to programming the FPS bits to the appropriate value, FPDIS (bit 0 of NVPROT)
must be programmed to logic 0 to enable block protection. Therefore, the value $DE must be programmed
into NVPROT to protect addresses 0xE000 through 0xFFFF.

Figure 4. Block-Protection Mechanism

3 EEPROM Emulated Demo
After understanding how the program- and erase-flash commands work, we apply these concepts to
EEPROM emulation. The DEMO9S08LC60 board and SCI and LCD display demo software from Softec
were used in this example. This EEPROM emulation software presents a two-option menu for password
storing and verification. You can set a new password and verify the current password saved in the emulated
EEPROM by pressing buttons PTC7 and PTC5 from the DEMO9S08LC60 board.

The display is used in this demo as a user interface for all software processing. First, the program slides
the options through the display and waits for any input:
void menu(){
 // Prints a welcome string
 SlideString("PTC7 - New psswd",250);
Delay(3000);

 SlideString("PTC5 - Verify psswd",250);
 Delay(3000);

SlideString("Make your choice", 250);
}

How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor 9

EEPROM Emulated Demo
When you press PTC7 or PTC5, an interrupt routine launches and checks which button was pressed. Either
functionality expects to receive as input an eight alphanumeric password. Hit ENTER. This format is
mandatory; otherwise, software does not recognize the typed data.

Figure 5. DEMO9S08LC60 Board

3.1 Display
The display driver and all the source code used are the provided with the DEMO9S08LC60 because it
supports the display used on the hardware.

This application note basically uses 9 alphanumeric characters available in the display. These
alphanumeric characters show the data read from SCI and the system message, “MEMORY FULL”.

3.2 SCI Interface
This microcontroller has an SCI interface implemented in hardware, that is easily configured through eight
8-bit registers that control baud rate, select SCI options, report SCI status, and for transmit/receive data.

The software configures the SCI interface as follows:
• BAUD rate — 9600
• Data bits — eight
• Parity — None
• Stop bits — one

Display Menu

PTC7

PTC5

UART
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor10

EEPROM Emulated Demo
Softec has implemented software for interfacing SCI. All data is received through this interface using the
SCIGetBuffer() functions, which waits for an SCI input and stores it in a buffer.

NOTE
When connecting the MCU to an external peripheral, it is important to set
the right voltages according with the interface used.

3.3 Data Storage
The 0x1870 - 0x286F address range is used for data storage, divided into eight blocks of 512 bytes (this is
the minimum erasable block). Each block is separated into small blocks of eight bytes because it is the
quantity of characters received from SCI.

The mechanism used is the following:

Supposing the EEPROM reserved area is clear at the first time the microcontroller is turned on, the first
eight bytes received are stored in the first eight addresses from EEPROM (0x1870 – 0x1877).

For storing the next eight bytes received from SCI, the software finds the next open address in the
EEPROM (containing 0xFF) and assumes this position as the first address of the next where these 8 bytes
are stored.

When the EEPROM is full, the address 0x286F is reached. The routine then erases this block and starts
writing at 0x1870 again.

To clear the memory at any time, press switch SW305. The eight pages are cleared.

For data storage, a simple code void NVM_Write_Byte (unsigned char *dest, char data) from
EEPROM.c is executed, following the suggested program execution flowchart from Figure 3.
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor 11

EEPROM Emulated Demo
Following is the code for verifying and validation the address to be written into:

 NVMStartAddress = &EEPAdrs; // pointer to start address

 do
 {
 *NVMStartAddress++;
 data = *NVMStartAddress;
 }
 while(data != 0xFF); //looks for empty space in EEPROM

 //Checks if reached end of EEProm
 if (NVMStartAddress == &EEPAdrsEnd+1) {

 DisableInterrupts;

 // Erases EEPROM sector : Memory Full
 NVM_Erase_Page(&(*NVMStartAddress)); //EEPROM.c erasing routine

 EnableInterrupts;

 // reset pointer to EEPROM sector
 NVMStartAddress = &EEPAdrs;

 }

 if (FSTAT_FCBEF == 1) //Check if the command buffer is empty
 {
 DisableInterrupts;

 //EEPROM.c writing routine
 NVM_Write_Byte (&(*NVMStartAddress), *p);

 *NVMStartAddress++;
 EnableInterrupts;

 }

3.4 Data Verification
When the PTC5 button is pressed, the main routine waits for the password input as eight alphanumeric
characters input followed by ENTER. After that, the reading routine starts and restores the last saved
password. If the password matches the input, the LCD display shows a success message.

 NVMStartAddress = &EEPAdrs;

 do
 {
 *NVMStartAddress++;
 data = *NVMStartAddress;
 }
 while(data != 0xFF); //looks for empty space in EEPROM
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor12

Conclusion

 NVMReadAddress = NVMStartAddress - 8; //sets address for last valid passwd typed

 if (NVMReadAddress <= &EEPAdrs) {
 NVMReadAddress = &EEPAdrs + 1;
 }

 t = &messageTX;

 for(i = 0; i != NVMRowSize; i++)
 {
 NVM_Read_Byte(&(*NVMReadAddress), t); // stores in messageTX the read data
 t++;
 NVMReadAddress++;
 if (messageTX[i]== 0xFF) {
 messageTX[i] = 0;
 }
 }

4 Conclusion
MC9S08LC60/36 has many features (LCD controller, IIC, SCI, A/D, analog comparator, etc.). One feature
explored was the flash memory with two arrays. When implementing EEPROM emulations, you can
program and erase the flash memory without stopping the application thanks to a state machine and two
arrays of flash already implemented in the MCU hardware.

The MC9S08LC60/36 features make this MCU a perfect device for display applications and storage
necessities.
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor 13

THIS PAGE IS INTENTIONALLY BLANK
How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor14

How to Do EEPROM Emulation Using Double Flash Array on MC9S08LC60, Rev. 1

Freescale Semiconductor 15

Document Number: AN3404
Rev. 1
03/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	1.1 MC9S08LC60/36 Flash-Memory Characteristics
	1.2 MC9S08LC60/36 Memory Map

	2 Flash Programming
	2.1 Program and Erase Times
	2.1.1 Flash Clock
	2.1.1.1 Flash Clock Divider Register (FCDIV)

	2.2 Program and Erase Flash Algorithms
	2.2.1 Program and Erase Command Execution
	2.2.2 Burst Program Execution

	2.3 Flash Block Protection

	3 EEPROM Emulated Demo
	3.1 Display
	3.2 SCI Interface
	3.3 Data Storage
	3.4 Data Verification

	4 Conclusion

