wr
PRt

Freescale Semiconductor Document Number: AN3389
Application Note

Creating an External Flash Algorithm

by lidar Saifutdinov and Sebastien Duchamp

1 Introduction Contents
1 Introduction 1
This document explains how to use a Flash Tool Kit to 2 Preliminary Background 1
support additional flash devices on the ColdFire® 3 Flash Tool Kit Overview 2
. ™ .
CodeWarrior = Flash Programmer by creating new 4 Flash Programmer APl 4
programming algorithms. This document: 5 Creating a New Flash Programming
. Algorithm it 8
* Help s you confirm whether a new flash algorithm 6 Flash Programming Examples 21
15 necessary 7 Chip Makers’ Flash Programming
e Provides instructions Recommendations 36
* Provides an example project
2 Preliminary Background
Before you program or erase any flash device, you must
ensure the CPU can access it. For example, you might
need a different debug setup that requires modifications
to the debugger configuration file. Consider the
following before you begin:
* Read the flash device ID to verify correct
connection and programmability. Application
Note 2980 Troubleshooting the Flash
Programmer provides instructions.
© Freescale Semiconductor, Inc., 2006-2008. All rights reserved. &
>
o, ™
> freescale

semiconductor

g |

Flash Tool Kit Overview

* Note that many manufacturers use the same flash-device algorithms, so it is likely that flashes can
be programmed using algorithms included with CodeWarrior software. In addition, many
manufacturers produce devices compatible with Intel or AMD.

* Check whether a new flash device can be programmed with the same algorithms that Intel or AMD
use, as described in Section 7.

» Refer to the Application Note 3390 Adding Device(s) to the Flash Programmer to determine if a
flash device is programmable with an algorithm already included with the CodeWarrior software.

* Follow the steps in Section 5 if the flash device cannot be programmed with an existing algorithm.

3 Flash Tool Kit Overview

The Flash Took Kit described in this document helps you develop flash programming algorithms for the
CodeWarrior Flash Programmer, as shown in Figure 1. This section and Section 4 provide important
information needed before you begin creating a flash programming algorithm.

Figure 1. Flash Tool Kit

Flash_ToolKit.mcp
| % Fash Algo Development j i B ¢ @ %
Files l Lirk. Elru:ler] Targets]
L File: Code | Data |46 4 =
flazh_infao. b=t nta n'a = o~
¥ =23 SDK Common Files - No Modification . B0 0o+ « =
8 Hash_algorithm. lcf héa hia * =l
M flash_commands.h 0 0« =l
"Common" Part — @ generich a 0 =
ol et 12 0D+ + =
i 43 0« + =
0 0« « =
= Uzer Files - Implement Algo here 43 0« « =
-l algo_impl.c 45 0 » =
"User” Part —H =+<3User Tests - Implement Algo test 288 1028 « « =
Ml Hfash_device h n 0« =l
-l flazh_test.c 288 1028 + o+ =
10 files 396 1028 |

Creating an External Flash Algorithm Application Note

2 Freescale Semiconductor

3.1

Flash Tool Kit Overview

Flash Tool Kit General Structure

The flash programmer Flash Tool Kit (FTK) application is divided into four different sets of files:

1.

FTK Common Files (No Modification Needed) contain initialization and other files. This
component is common for any flash device and you should not change it while developing the new
flash programming algorithm. It consists of the following files:

— flash_algorithm. lcf file — linker command file. This linker command file is set up
according to the rules for flash programming applet allocation in physical memory.

— flash_commands.h — header file with API to CodeWarrior Flash Programmer
commands definition

— generic.h-header file with the generic data structures and definitions used by the flash
programming algorithms

— exit.c —exit point for the flash programming applet

— _ _flash_start.c —flash programmer start-up initialization file

— flash_main.c — main function and API to the CodeWarrior Flash Programmer

2. User Files (Implement Algo) contain flash device specific files. This component is modified for

any flash devices depending on the flash programming algorithm to be used. It consists of the
following files:

— algo_impl.c — functions to implement for the flash device flash algorithm, such as ID,
erase_sector, erase_chip, write

User Files (Implement Algo Tests) contain flash device specific files. This component is
considered to be modified for any flash devices depending on the flash programming algorithm to
be used. It comprises the following files:

— flash_test.c —sample code with the flash unit test functionality implementation

— flash device.h — custom flash device definition file

4. flash_info. txt file. This file contains CodeWarrior Flash Programmer commands

description.

To create the new algorithm for flash programming, make all changes to algo_impl . c (flash device
algorithm implementation) and flash_device.h/flash_test.c files (flash device tests).

3.2

Flash Tool Kit Build Targets

Several build targets are predefined in the Flash Tool Kit (FTK):

Flash Algo Development — flash algorithm development and test application. The ELF executable
file, created in Flash Algo Development, should be used to develop, debug, and test the new
CodeWarrior Flash Programmer algorithm.

Flash Algo Release — create flash algorithm applet. CodeWarrior Flash Programmer uses the ELF
executable file, created in Flash Algo Release. This build target shares the flash device algorithm
with the Flash Algo Development build target; it differs, however, because it cannot be debugged
or tested (Figure 2.)

Creating an External Flash Algorithm Application Note

Freescale Semiconductor

- {]
Flash Programmer API

Figure 2. Flash Tool Kit Targets

|lﬂl Aash Moo Development jﬁ B % @ 5

Fies | Link Order Targets |

[H T argets ETY
L Flazh Algo Development
& Flazh Algo Releaze

2 targets

4 Flash Programmer API

The CodeWarrior Flash Programmer communicates with the flash programming algorithm applet through
four different commands:

e getlD
* erase sector
* erase chip
* program
The CodeWarrior Flash Programmer uses an exchange zone in target memory to communicate with the

flash applet. The Flash Programmer Target Configuration specifies the Target Memory Buffer; the
exchange zone is at the start of this buffer, as shown in Figure 3.

Creating an External Flash Algorithm Application Note

4 Freescale Semiconductor

Flash Programmer API

Figure 3. Target Configuration Buffer Memory Area Start Address

i@ Flash Programmer

Flazh Programrmer Target Configuration
‘T arget Configuration
Flash Configuration .
Eraze / Blank Check Default Project:
Program / Werify
Checkzun Drefault Target;

[¥ Use Custom Settings

| [

Target Proceszor; |Generic j Connection; |PEMICRO_USE j

[¥ Use Target Initislization

|C: WProgran Files\Freescale\Codet arior far ColdFire 7. 0\CaldFire_Supporthlnitia Browse,.

Target Bk temong Bulfer Optiong

Earget Memom Buffer Address: 0w |20000000] v Enable Logging

Target Memony Buffer Size: 0x |00O0G000 [~ Werify T arget Memony wiites

Show Log | Load Settings... | Save Settings... | Cloze

In this application note, scratchMemStart is the starting address of this zone.

Depending on the actions the Flash Programmer requires of the applet, these exchange zone settings may
differ.

Parameter_block _t Structure

On the flash applet side, the commands from the CodeWarrior Flash Programmer go through
the Parameter_block_t structure, mapped in memory, starting from the scratchMemStart
address.

All commands from CodeWarrior Flash Programmer are already encoded in flash_main.c file.
This file can be used for the new flash programming algorithm without changes. After loading
the flash applet to the target board, CodeWarrior Flash Programmer writes the
startMemScratch address in the D7 register (Listing 1).

Listing 1. Parameter_block_t Pointer Initialization

void main (void)

{
unsigned long num_errors;
parameter_block_ t *_params;
long res=0;

#ifdef FLASH_ALGO_TEST

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 5

3
4

'
A

Flash Programmer API

int testnumber = 0;

_params = (parameter_block_t *) (unsigned int)&data_1;
#else
asm
{
move.l D7, res
}
_params = (parameter_block_t *)res;

For the detailed description of the Parameter_block_t structure refer to Listing 2.

Listing 2. Parameter_block_t Structure Details

typedef struct pb {

unsigned long function; /* What function to perform ? *x/
pointer_t base_addr; /* where are we going to operate */
unsigned long num_items; /* number of items */

unsigned long result_status;

pointer_t items;

} parameter_block_t;

Listing 2 definitions:
* function — command from CodeWarrior Flash Programmer to be executed
* base_addr — start address of the flash memory

* num_items — number of the data to be transferred from CodeWarrior Flash Programmer to the flash

programming applet

* result_status — status of the command; through this field, the flash programming applet notifies
CodeWarrior Flash Programmer about the status of the command being executed

* items — start address of the data to be transferred from CodeWarrior Flash Programmer to the flash

programming applet

The CodeWarrior Flash Programmer uses the getting chip ID command right after the flash
algorithm is loaded to the memory buffer to check if the applet runs. For the ID command,

CodeWarrior Flash Programmer:

* loads the flash programming applet to the target board.

* sets the command ID, as shown in the function field of Listing 2.

* runs flash programming applet.

» waits while flash applet stops execution.

* checks the status of the command being executed, as shown in the result_status field of

Listing 2.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor

Flash Programmer API

fEraseChip
The full chip erase command is called by CodeWarrior Flash Programmer when a full chip
erase is performed. For the fEraseChip command, CodeWarrior Flash Programmer:
* loads the flash programming applet to the target board.
* sets the command fEraseChip, as shown in the function field of Listing 2.
* runs the flash programming applet.
 waits while the flash applet stops execution.

* checks the status of the command being executed, as shown in the result_status field of
Listing 2.

NOTE Some flash devices do not support the full chip erase command. Check the
flash device’s specifications, available from the manufacturer.

fEraseSector

The sector erase command is called by the CodeWarrior Flash Programmer when a set of
sectors in flash memory must be erased. For the fEraseSector command, CodeWarrior Flash
Programmer:

* loads the flash programming applet to the target board.
* sets the command fEraseSector. as shown in the function field of Listing 2.
* specifies number of blocks to be erased, as shown in the num_items field of Listing 2.

* specifies start-up address of each block to be erased, as shown in the items field of
Listing 2.

* runs the flash programming applet.
» waits while the flash applet stops execution.
* checks the status of the command being executed, as shown in the result_status field of
Listing 2.
fWrite
The fWrite program buffer command is called by the flash programmer to program a set of
values at a specific address. For the fEraseSector command, CodeWarrior Flash Programmer:
* loads the flash programming applet to the target board.
* sets the command fWrite, as shown in the function field of Listing 2.

* specifies number of bytes to be programmed, as shown in the num_items field of
Listing 2.

* specifies start-up address of data to be programmed, as shown in the items field of
Listing 2.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 7

Creating a New Flash Programming Algorithm

5

* runs flash programming applet.
» waits while flash applet stops execution.

* checks the status of the command being executed, as shown in the result_status field of
Listing 2.

Creating a New Flash Programming Algorithm

In this section, step-by-step instructions show you how to use the Flash Tool Kit to create a new
CodeWarrior Flash Programmer flash programming algorithm for a flash device not integrally supported
by the CodeWarrior software.

1.
2.
3.

Store an original version of the Flash Tool Kit files from the CodeWarrior delivery.
Copy FlashToolKitTemplate and Common_Files folders to a different working location.

Check the folder:
Freescale\CodeWarrior for ColdFire V7.x\ColdFire Tools\FlashToolKit

Open Flash Tool Kit project

a) Locate the Flash Tool Kit project named Flash_ToolKit .mcp in the
FlashToolKitTemplate folder.

b) Open Flash_ToolKit .mcp project with the CodeWarrior for ColdFire Development
Studio as shown in Figure 4.

¢) Upon being opened, Flash Tool Kit will appear as shown in Figure 1.
d) Ensure the Flash Algo Development build target is selected.

Correct derivative family — ensure correct Target Processor is used in the Debugger Settings
Target Settings Panel.

Configuration and memory files — ensure the correct mem and cfg file are used for the connected
hardware in the Debugger Settings Target Settings Panel.

a) For supported Freescale Evaluation Boards, you can use the debugger config files (*.cfg), and

the debugger mem files (*.mem) available with the CodeWarrior Development Studio. Check
the folder:

Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Support\Initialization_Files

b) For example, the configuration settings for the MCF5282EVB board are shown in Figure 5.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor

h o
g |

Creating a New Flash Programming Algorithm

Figure 4. Flash Tool Kit Project Opening

Look in: |L'f} FlashToolKit Template ﬂ £ Ed-

(C)bin
[7)Common_Files
|=)Flash_Toolkit_Data
algo_impl.c

[Z] flash_info. txt

rs Flash_ToolKit.mcp

Object name: |F|ash_Too|lﬁt.mcp

Objectsof | Al Files (*) | Cancel

Figure 5. Hardware Configuration Settings

i@ Flash Algo Development Settings [Flash_ToolKit.mcp]
|E Target Settings Panels J |E CF Debugger Settings

i C/AC++ Preprocessor

Target Processor: 5282 - Target 05:|BareBoard -
CAC++ Warhings

i ColdFire Assembler [Usze Target Initislization File

= Code Generation
i ColdFire Processor
Global Optimizations

HCDmpiIer}CoIdFire_S uppartnitialization_Filesym5282evb.cfg Browse...

[w Usze kemory Configuration File

=+ Linker
- ELF Disassembler HCDmpiIer}EoIdFire_S upparthl nitialization_Files\m5282evh mem Browse...
ColdFire Linker
= Editar Program Download Options
i Custom Kewwords e . v Werify temary \Wiites
Iniitial L aunich Successive Aung
= Diebugger
- Debugger Settings Executable [w Executable v
- PRemate Debugging Comztatt Data [Comztant Data v
CF Debuagger Sett.. Initialized Data v Initislized Data v
CF Interrupt Urinitialized Data W | Uninitialized Data [

i Debugger PIC Setti.. |
i Source Folder Map.. +

Factary Settings Revert Impart Panel... | Export Panel... |

QK | Cancel | Apply |

NOTE Where custom hardware design exists, the debugger configuration file and
the memory mapping file must be written. In this case, the memory
initialization for the flash device should be checked before trying to create
the new flash programming algorithm. Refer to the information under
Section 2.

7. Specify an alternate loading address.

a) The flash algorithm, a PIC\PID application, can run from anywhere in memory. An alternate
loading address is where the flash applet code will be loaded and executed on the target board.
This address can be either in internal or external RAM memory, as shown in Figure 6.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 9

h o
g |

|
Creating a New Flash Programming Algorithm

Figure 6. Alternate Loading Address Settings

i@ Flash Algo Development Settings [Flash_ToolKit.mep]

H Target Settings Panels J H Crebugger PIC Settings
i C/C++ Preprocessor 2 v Alternate Load Add
o LT+ Wamings
b ColdFire Sssembler |D>:2EIEIDDEEIEI
=~ Code Generation
> ColdFire Frocesszor
“ [Global Optimizations
= Linker
> ELF Dizagsembler
t ColdFire Linker
=~ Editor
b Custom Keywords
=~ Debugger
> Drebugger Settingz
- Remote Debugging
- CF Diebugger Setti...
- CF Interupt
- Debugger PIC Seti.. |
“ Source Folder Map...

Factomy Settings Rewert Import Parel... | Export Panel... |

QK | Cancel | Apply |

b) The Alternate Load Address should match the address where the code is linked. By default, the
flash programming algorithm will be compiled to start at address 0x500; refer to the TEXT start
address value in the flash_algorithm. 1cg linker command file as shown in Figure 7.

c) If the custom board’s address space where you want to debug the applet is other than 0x0, the
alternate address must be changed. For example: if RAM is allocated starting from address
0x2000000, the alternate loading address will be 0x20000000+0x500 = 0x20000500.

Figure 7. Code Start Address Definition in flash_algorithm.Icf File

Sarple Linkesr Command File for CodeWarrior for ColdFire

HNOTE: The debugger uses the Illegal Instruction Vector to stop.

B small subroutine is written at the location VBR+0x408-VBER+0x40B
to handle the exception. The Illegal Instruction Vector in

the the wvector table at VBR+0x10 is then pointed to it. WwWhen the
debugger encounters an illegal instruction, it jumps to this

subroutine, which ends with an RTE, then exits.

Do not overwrite this area of memory othesrwise the dsbugger may not
exit properly.

MEMORY {

TEXT (RX] : CRIGIN = [0x00000500l LENGTH = 0 # using Extsrnal DRAM
DATA (RW) : ORIGIN = AFTER(TEAT), LENGTH = O

NOTE The value of scratchMemstart address is set from the user interface.

Creating an External Flash Algorithm Application Note

10 Freescale Semiconductor

h

Creating a New Flash Programming Algorithm

Figure 8. Code in the Flash_Device.h File

i @ flash_device.h |_- |||:||D_<|
b-{-n- + o' - Path: |C:\Program Files\Freescale\CodeWarrior for ColdFire V7 0NC... \flash_device h 3
/* Flash Programming SDE g
* Copyright © 2007 Fresscale Samiconductor. &ll rights reserved. -
*) e
#include "generic.h"
/* Base Address of the flash */
#dafine BASE FLASH ADDRESS OxFFEOOOOOUL /% For AMD */
/* Offset of the sector to erase for the test */
#dafine SECTOR_ALDRESS OFFSET 0x4000UL /* For AMD */
/% Mumber of bytes to program for the test
This paramster could not be mors then Flash =ize
!
#define NUMBER_ITEMS 1024
/* Set this to on= if chip erase is supported */
#define HAS CHIF ERASE O
int setup {int *testnumber, pararmster block t *_params); -
void -t int testnumber) ;
vold test_init|parameter_block bt *_params) ;
-
Lin 1 Cal1 | [A

8. Modify algo_impl.c file

a) The flash algorithm functionality file algo_impl . c shall be modified and filled with the
correct programming commands, as recommended by the flash device manufacturer.

9. Modify ID function in algo_impl.c file
a) By default, the ID function in algo_impl . c file looks as shown in Listing 3.

Listing 3. ID Function Template in algo_impl.c File

retval_t ID(parameter_block_t *p_pb)
{
retval_t result = 0;
volatile unsigned long* item_addr = (p_pb->items).l;
/* Add code: the correct access size depending on the bus must be used for the base_addr */
volatile unsigned short *base_addr = (p_pb->base_addr) .w;

/* Add code: first of all reset the device.

The fID is not called in the new flash programmer plugin therefore
the flash chip must always be bring into the read state.

*/

/* Add code: read the device ID */

/* we currently assume that we have the right value */

/* anyway, the IDE have to care about the flash ID and compare with the xml file */
return result;

b) The following definitions pertain to Listing 3:

— parameter_block_t *p_pb — pointer to the parameter_block_t structure to be passed to the
ID function

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 11

Creating a New Flash Programming Algorithm

— retval_t — result of the function execution

¢) The correct command sequence should be created for the ID function based on the
recommendations of the flash device manufacturer, as described in Section 6.1.1.

10. Modify erase_sector Function
a) By default, the erase_sector function in algo_impl . c file appears as shown in
Listing 4.

Listing 4. Function Template erase_sector in algo_impl.c

retval_t erase_sector (parameter_block_ t *p_pb, unsigned long sect_index)
{
int timed_out, got_it;
retval_t result = 0;
/* Add code: the correct access size depending on the bus must be used for the base_addr */

volatile unsigned short *base_addr = ((unsigned short **) (p_pb->items) .w) [sect_index];

/* Add code: first of all reset the device.

The fID is not called in the new flash programmer plugin therefore
the flash chip must always be bring into the read state.

x/

/* Add code: erase one sector */

/* Add code: wait for status */

/* Add code: handle error (and timeout if needed) */
/* Add code: put back the flash in read state */

return result;

b) Listing 4 definitions:
— parameter_block_t *p_pb — pointer to the parameter_block_t structure to be passed to the
erase_sector function
— unsigned long sect_index — index of the sector to be erased
— retval_t — result of the function execution

¢) Based on recommendations from the flash device manufacturer, the correct command sequence
must be created for flash-sector erasing, as described in Section 6.1.2.

11. Modify erase_chip Function
a) By default, the erase_chip functionin algo_impl . c file looks as presented in Listing 5.

Listing 5. Function Template erase_chip in algo_impl.c File

retval_t erase_chip (parameter_block_ t *p_pb)
{

int errors = 0;

retval_t result = 0;

unsigned short stat;

int got_it;

/* Add code: the correct access size depending on the bus must be used for the base_addr */
volatile unsigned short *base_addr = (p_pb->base_addr) .w;

/* Add code: first of all reset the device.
The fID is not called in the new flash programmer plugin therefore

Creating an External Flash Algorithm Application Note

12 Freescale Semiconductor

Creating a New Flash Programming Algorithm

the flash chip must always be bring into the read state.
*/

/* Add code: erase one sector */

/* Add code: wait for status */

/* Add code: handle error (and timeout if needed) */
/* Add code: put back the flash in read state */

return result;

b) Listing 5 definitions:

1) parameter_block_t *p_pb — pointer to the parameter_block_t structure to be passed to the
erase_chip function

1) retval_t — result of the function execution

iii) Create the correct command sequence for full-flash chip erasing based upon
recommendations from the flash device manufacturer, as shown in Section 6.1.3.

12. Modify write function

a) By default, the write function in algo_imp1.c file looks as it appears in Listing 6.

Listing 6. Function Template write in algo_impl.c File

retval_t write(parameter_block_t *p_pb)
{

int timed_out, got_it;

unsigned long i;

unsigned short stat;

retval_t errors = 0;
/* Add code: the correct access size depending on the bus must be used for the base_addr */
volatile unsigned short *base_addr = (p_pb->base_addr) .w;

/* Add code: first of all reset the device.

The fID is not called in the new flash programmer plugin therefore
the flash chip must always be bring into the read state.

*x/

/* Add code: program the bytes pointed in the buffer : p_pb->items,

they are p_pb->num_items bytes

handle error (and timeout if needed) for each of the program sequence
*/
/* Add code: put back the flash in read state */

return errors;

b) Listing 6 definitions:

1) parameter_block_t *p_pb — pointer to the parameter_block_t structure to be passed to the
write function

ii) retval_t — result of the function execution

¢) Create the correct command sequence for flash device programming according to
recommendations of the flash device manufacturer, as described in Section 6.1.4.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 13

Creating a New Flash Programming Algorithm

13. Flash programming applet unit testing

a) For flash programming algorithm testing, define custom flash device parameters in the
flash_device.h file. The following parameters should have correct definitions.

— BASE_FLASH_ADDRESS — ColdFire CPU view of the flash device’s address
— SECTOR_ADDRESS_OFFSET — memory sector size

— NUMBER_ITEMS —test parameter, which defines how much data is programmed during the
flash program testing.

b) Refer to Listing 7.

NOTE Refer to the flash device manufacturer for the flash device memory
organization. Refer to hardware description for the flash device
addressing.

Listing 7. Function Template write in algo_impl.c File

/* Base Address of the flash */
#define BASE_FLASH_ ADDRESS OxFFE00000UL

/* Offset of the sector to erase for the test */
#define SECTOR_ADDRESS_OFFSET 0x4000UL

/* Number of bytes to program for the test

This parameter could not be more then Flash size
*/

#define NUMBER_ITEMS 1024

/* Set this to one if chip erase is supported */
#define HAS_CHIP_ERASE 1

14. Compile flash algo development target

a) During new algorithm creation and testing, use the Flash Algo Development build target of the
Flash Development Kit. Compile the Flash Algo Development target with needed
modifications to flash_algo. c for flash programming procedures. Compilation will result
in creation of a new flashalgodev.elf file.

15. Flash algorithm unit test

a) To simplify flash programming algorithm creation and testing, flash test functionality is
included with the Flash Tool Kit in the Flash Algo Development build target. Check the file
flash_test.c forit. Unit test functions contain basic functionality required for the flash
programming; the following tests are performed:

i) check flash device’s ID
ii) erase flash memory sector

iii) program flash memory sector with the predefined data (in sample code the incrementing
counter is used)

b) Loadthe file flashalgodev.elf and run it on the target board. Check the tests results. As
an example of the test working refer to Section 6.2.

Creating an External Flash Algorithm Application Note

14 Freescale Semiconductor

g |

Creating a New Flash Programming Algorithm

16. Compile flash algo release target

a) When the flash programming algorithm for the new flash device works correctly (as confirmed
in unit testing), compile the Flash Algo Release target. The output of the Flash Algo Release
file — flashalgorelease.elf — must be copied to the following folder:

Freescale\CodeWarrior for ColdFire V7.x
\bin\Plugins\Support\Flash_ Programmer\ColdFire

17. New flash device addition to the flash programmer

a) The application note AN 3390 Adding Device(s) to the Flash Programmer provides a detailed
description about adding a new flash device. Refer to this application note and do the steps it
describes. As an example refer to Section 6.3.

18. Set flash device configuration in flash programmer.

a) Do the following to set the flash device configuration correctly in CodeWarrior Flash
Programmer:

i) The CodeWarrior IDE must be closed (if opened) and opened again for you to use new data
from the updated FPDeviceConfig.xml file.

i1) Open the CodeWarrior Flash Programmer window. From CodeWarrior menu:
Tools>Flash Programmer, as shown in Figure 9.

Figure 9. Opening the CodeWarrior Flash Programmer

;4 Freescale CodeWarrior r._|rg|g|
File Edit View Search Project Debug RGN Processor Expert Device Initializaton Window Help

2 & = B

Hardware Diagnostics

ii1) Load Target Configuration settings. As an example, the modified file
NewFlashDevice.xml is loaded, as shown in Figure 11.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 15

h

Creating a New Flash Programming Algorithm

Figure 10. Target Hardware Connection Settings

i @ Flash Programmer

Target Configuration

]
Flash Configuration .
Erase / Blark Check Default Project:
Pragram / Verify
Checksum Diefault Target:

[+ Use Customn Settings

[

-~
Generic -

v Use Target Initialization

Target Processor:

Connection:

FEMICRO_USE |

ABATRON_SERIAL
ABATRON_TCP-IP

CCS-5IM
FREESCALE_ETHERMET-TAP

Target Rakd Memory Buffer

1 [02000000
0w |0000R000

Target Memory Buffer Address:

Target Memary Buffer Size:

C:\Program Files\Freescale\Codetwamior for ColdFig 7.06ColdFire | FpEE s Cal E USE.TAP

PEMICRO_CvCM&x SERIAL
FEMICRO_CYCM&x_TCFIP
PEMICRO_CvChMax_LISE
FEMICRO_LIGHTMING
PEMICRO_PARALLEL

O ptig|

[v Erable Logging

I Verifp Target Memam 'Writes

Show Log |

Load Settings... | Save Settings... |

Cloze

iv) Set the correct connection to the target, as shown in Figure 10.

Creating an External Flash Algorithm Application Note

16

Freescale Semiconductor

(O
P

Creating a New Flash Programming Algorithm

Figure 11. Loading Target Configuration Settings

Load Settings File

Look in: | [ColdFire | £5 B

My Computer

-

My Network
Places

N FPDefaultConfig.xml
‘!FPDeviceConﬁg.ml
_NM5206EC3_EXTFLASH. xml
N M5208EVE_EXTFLASH, %m
N M5208EVEE _EXTFLASH, xml
N M5235EVE_EXTFLASH, xm
_NM5243C3_EXTFLASH. xml
N M5253EVBE_EXTFLASH, xaml
_NM5271EVE_EXTFLASH, xml
N|M527203 EXTFLASH. i
N M5275EVE_EXTFLASH, xml
% M5282EVB_EXTFLASH.xml
_NM5307C3_EXTFLASH. xml
_NM5329EVE_EXTFLASH, %m
N M5329EVEE _EXTFLASH xml

™ M5373EVE_EXTFLASH, xml

N M5407C3_EXTFLASH. xml

™ M5475EVE_EXTFLASH, xml

N M5475EVE_EXTFLASH_CODE_16Mb.xml
N M5475EVE_EXTFLASH_CODE_32Mb. sl
N M5475EVEE_EXTFLASH, xmi

N M5475EVBE_EXTFLASH_CODE_16Mb. sl
N M5435EVE_EXTFLASH. el

N M5485EVE_EXTFLASH_CODE_16Mb. sl
N M5435EVE_EXTFLASH_CODE_32Mb.xml
™ M5435EVEE_EXTFLASH. xml

N M5435EVBE_EXTFLASH_CODE_16Mb.xml
™ M52277EVE_EXTFLASH. xml

N M54455EVE_EXTFLASH, xmi

N MCF5211_INTFLASH. sl

< | 2
File name: |M5282EVE_EXTFL;°¢SHmI ﬂ Open
Files of type: |F|ash Programmer Settings files (*ml) j Cancel

v) The flash device configuration checks the loaded configuration data for correspondence. As
an example for the AMD16x1 device, refer to Figure 12.

Figure 12. CodeWarrior Flash Programmer Flash Device Configuration

i@ Flash Programmer

figuration
Erase / Blank Check
Program / Verify
Checksum

Flazh Device Configuration
Flash Memary B aze Address: 0w |fle00000
Device: Organization: Sector Address Map:
AM29LVI04ER ~ FFEOOODO FFEOZFFF ~
AM29LVO04ET B FFEC04000 FFEOSFFF =3
Ab 29000047 FFEOE000 FFEO7FFF
AM29LV003ER FFEC:2000 FFEOFFFF
AM29LV008ET FFE10000 FFE1FFFF
AMZ2ILY 7D FFE20000 FFEZFFFF
AM290033C FFE 30000 FFE3FFFF
A 290V D40B-Halw k. FFE40000 FFE4FFFF
AM29LVD40ET FFES0000 FFESFFFF
Ab 290V 0ESD FFEE0000 FFEGFFFF
AM29LVOEED-HAMW K. FFE70000 FFEFFFFF
AM29LV0NEB FFES0000 FFESFFFF L
AM2ILVI04ER FFE30000 FFESFFFF
AM29LV104ET FFEADOOO FFEAFFFF
AM29LV116ER FFEEOOOO FFEBFFFF
AM29LVA1EET FFECO000 FFECFFFF
Ab 29001 28ML FFEDO000 FFEDFFFF
AM29LVIEOER FFEEOODOO FFEEFFFF
A 29LV1E0ET FFEFOO00 FFEFFFFF
L CODE FFFOO000 FRFFOFFFF

b FFF10000 FFF1FFFF e

Show Log Load Settings... Save Settings... Cloze

Creating an External Flash Algorithm Application Note

Freescale Semiconductor

17

h

Creating a New Flash Programming Algorithm

19. Erase and blank check the flash device

a) Check that the flash device can be erased by clicking the Exrase button in the Erase/Blank
Check window. Check that the Blank Check test passed: click the Blank Check button in the
Erase/Blank Check window, as shown in Figure 13.

Figure 13. CodeWarrior Flash Programmer Erase/Blank Check Flash Device

Flash Programmer

Flazh Programmer

T arget Configuration
Flazh Configuration

E
Pragrarn / Venfy
Checksum

Erase / Blank Check Flash

W Al Sectars

FFECOO00
FFEC4000
FFEOQEO00
FFECE000
FFE10000
FFE 20000
FFE 20000
FFE40000
FFES0000
FFEE0000
FFE70000
FFE20000
FFES0000
FFEA0000
FFEEOO00

FFEQIFFF
FFEQSFFF
FFEQ7FFF
FFECFFFF
FFE1FFFF
FFEZFFFF
FFEZFFFF
FFE4FFFF
FFESFFFF
FFEGFFFF
FFETFFFF
FFEGFFFF
FFESFFFF
FFEAFFFF
FFEBFFFF

[v Erase/Blank Check Sectors Individually

FFECO000 FFECFFFF
FFEDOOO0 FFEDFFFF
FFEEODDD FFEEFFFF
FFEFOOO0 FFEFFFFF
FFFO0000 FFFOFFFF
FFF10000 FFFIFFFF

Status: |Erase Command Succeeded

Eraze

Details

‘ Blark Check

Show Log

| Load Settings... | Sawve Settings...

Flash Programmer

Flazh Programmer

T arget Configuration
Flazh Configuration

E
Pragrarn / Venfy
Checksum

Erase / Blank Check Flash

W Al Sectars

FFECOO00
FFEC4000
FFEOQEO00
FFECE000
FFE10000
FFE 20000
FFE 20000
FFE40000
FFES0000
FFEE0000
FFE70000
FFE20000
FFES0000
FFEA0000
FFEEOO00

FFEQIFFF
FFEQSFFF
FFEQ7FFF
FFECFFFF
FFE1FFFF
FFEZFFFF
FFEZFFFF
FFE4FFFF
FFESFFFF
FFEGFFFF
FFETFFFF
FFEGFFFF
FFESFFFF
FFEAFFFF
FFEBFFFF

[v Erase/Blank Check Sectors Individually

FFECO000 FFECFFFF
FFEDOOO0 FFEDFFFF
FFEEODDD FFEEFFFF
FFEFOOO0 FFEFFFFF
FFFO0000 FFFOFFFF
FFF10000 FFFIFFFF

Status: |Blank Check Completed Successfully

Details

Eraze ‘ Blark Check ‘

Show Log |

Cloze

Load Settings... | Sawve Settings...

Creating an External Flash Algorithm Application Note

18

Freescale Semiconductor

Creating a New Flash Programming Algorithm

b) Inthe log file, check that the correct flash programming algorithm is used for NewFlashDevice
programming. Click the ShowLog button in Erase/Blank Check window. Refer to the
example log in Figure 14.

Figure 14. Flash Programming Log Window

X

Flash Programmer Log

—— Target Configuration Settings

== Connection: FPEMICRO_USE

—— Target Frocessor: E£z&z

= Target INit File:
D:nautobuildywCodewarriorrl_zi1zo0swColdFire_SupporthInitialization_Files™,
mEzszewh.cfg

Conmnecting...... <onnected

ExeCUTEe: Erase
Timestamp: Mon Feb 15 14:15:45 2003

—— Flash pDewice: AMz FLV1LE00E
= Flash oOrganization: AM= LG

—— Flash Mem Start Addr: O0<FFEOOGOOO

=—— Flash mem End addr: O=<FFFFFFFF

Informing other connection cClients that the target is being
‘clabbered’ .
Loading Flash Dewice Oriwver at: Ox<xFOOO00000

Flash Driwer Buffer is art: OxFOOO01300
Flash Driwver Buffer Size dis: OxO00FEZFF
Done

Initialization <ommand Succeeded

Erasing Sector OxFFEOQOODOD to O<XFFEOZFFF ...
Erasing Sector OxFFED4000 to Ox<FFEOSFFF ...
Erasing Sector O<FFEODS000 to O<XFFEOFFFF ...
Erasing Sector OxFFEODS000 to O<XFFEOFFFF ...
Erasing Sector OxFFE10000 to Ox<FFELFFFF ...
Erasing Sector OxFFEZ20000 to OXFFEZFFFF ...
Erasing Sector OxFFEIOO00 to OxFFE3IFFFF ...
Erasing Sector Ox<FFE40000 to O<XFFE4FFFF ...
Erasing Sector OxFFESOO000 to O<XFFESFFFF ...
Erasing Sector OxFFESOO000 to O<FFESFFFF ...
Erasing Sector OxFFEFOO000 to OXFFEFFFFF ...
Erasing Sector OxFFESOO000 to OxFFESFFFF ...
Erasing Sector OxFFESOO000 to O<FFESFFFF ...
Erasing Sector OxFFEAOODD to O<XFFEAFFFF ...
Erasing Sector OxFFEBOOOO to O<FFEBFFFF ... ~

20. Programming test:
a) Different-sized binary S-record files are available in the Flash Toolkit delivery to check
whether the flash device can be programmed. The path to the S-record files is:
Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Tools\FlashToolKit\SrecTestFiles

1) They are: 64k_at_0.S, 128k_at_0.S, 256k _at_0.S, 1M_at_0.S,
2M_at_0.S and 4M_at_0.S. Depending on the file name, test files are differently
sized. For example file 256k_at_0.S is 256 Kilobyte-sized and is linked to the O start-
up address.

b) Choose the Program/Verify sub-menu in CodeWarrior Flash Programmer. For programming
the AMD 16x1, the 1M_at_0. S file is used, as shown in Figure 15.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 19

Creating a New Flash Programming Algorithm

Figure 15. Dummy file for Flash Program Testing Selection

i@ Flash Programmer

| Flazh Programmer | | Frogram / Werify Flazh

Load Settings File L7,
Lookin: | () TestSrecFies | @k E- Brawse... |

@ Detailz |
My Network File name: |1 M_at 0.5 Ll &I

Places
Files of type: [0 Fies 4] Cancel | |

Show Log | Load Settings... Save Settings... I Cloze |

c) Specify Restrict Address Range and Apply Address Offset for the flash device being used
(Figure 16.)

Figure 16. Restrict Address Range and Apply Address Offset Settings

i@ Flash Programmer

Flazh Programmer Program / Werify Flash

Target Configuration
Flazh Configuration
Erase / Ch

¥ Use Selected File

I C:%Program Files\Freescale.Codew arrior for ColdFire %7.0\ColdFire_Tools'FlashTo Erowse. . |

File Type: IAuto Detect ;I

Checksum

¥ Restrict Address Range ¥ &pply Address Offset

Start: [0 IffeDDDDU
o Offset: Ox IffEDDUUU
End: 0w Iffffffff

Flash Base Address: Oxffe00000
Status: Program Command Succeeded Details |
Frogram | Werify |

Show Log Load Settings... I Save Settings... | Cloze I

Creating an External Flash Algorithm Application Note

20 Freescale Semiconductor

Flash Programming Examples

d) Figure 16. definitions:
i) Restrict Address Range — address range of the flash device
ii) Apply Address Offset — start address, where the test data is programmed in the flash; it
should be the flash device start address.
e) Check that the flash is programmed and the Program Command Succeeded message is shown
after clicking the Program button, as shown in Figure 16.

NOTE In case of the flash device cannot be programmed, check: 1) successful
erasure of flash device; 2) hardware connection correctly setup.

21. Verify programmed data:
a) If the flash device is successfully programmed, perform the Verify command (Figure 16.)
Check that the status is: Verify Command Succeeded.

b) If all tests pass correctly, you have completed creation of a the new flash programming
algorithm. The new flash device can be programmed with CodeWarrior Flash Programmer

without limitation.

6 Flash Programming Examples

6.1 Flash Programming Algorithm for AMD 16x1 Flash Devices

The AMD_16x1_Example.mcp project (Figure 17.) illustrates how the Flash Development Kit is used
to program AMD 16x1 flash algorithms.

Figure 17. ColdFire CodeWarrior Main View of AMD_16x1_Example.mcp Project

AMD_16x1_Example_mcp \

| ¥ Flash Mgo Development j i Q’ @ 5‘ 23
Files l Link. Elrder] Talgets]
File Code | Data ¥4 | =
B flazh_info.tat néa néa * =
=423 50K Camman Files - Mo Maodification Meed. .. 360 20« + =
fl __Hash_start.c 43 0« =« =
fl ewitc 12 D+ =
@l Hash_algorithn. cf nia néa * |
@l Hash_commands.h 0 0« |
~fl Hash_main.c 300 20 . + =
B geneic.h 0 0« |
=143 User Files - AMD Algo example 496 0« » =
R algo_impl.c 495 0« =« =
=13 User Tests - Implement Algo test 320 1028 « o+ =
-l Hash_device.h 0 0« |
B flash_test.c 320 1028 « =
10 files 1176 1048

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 21

Flash Programming Examples
6.1.1 Implementation: ID Function Implementation for AMD 16x1 Flash
Devices

The sequence for getting the Manufacturer ID and Device ID, based on the AMD flash specification, is
shown in Figure 18.

Figure 18. ID Command Sequence for the AMD Flash

o Bug Cycleg
E
Command Saqusnce Ty Firat Sacond Thilrd
[Note 1) ~ | agdr | Data | &ddr | Data | 2ddr | Data
Manufacturer IO 4 [335 | AA | 2AA | 55 |(BAJSSS| S0
Daviice IO E| 555 | AA | 2AA | 55 |(BAJSSE| S0

Listing 8. ID Function Sample Code for AMD Flashes

retval_t ID(parameter_block_t *p_pb)

{
volatile unsigned short *baseaddress = (p_pb->base_addr) .w;
retval_t result = 0;

/* reset */
* (baseaddress) = (unsigned short)0xFOFO0;

/* setup for get id */
* (baseaddress + 0x555)
* (baseaddress + 0x2AA)
* (baseaddress + 0x555)

(unsigned short) 0xAA;
(unsigned short) 0x55;
(unsigned short) 0x90;

#ifdef FLASH ALGO_TEST
/* get id */

mf_id = * (baseaddress) ;
part_id = *(baseaddress + 1);
#endif

/* read mode again */
* (baseaddress) = (unsigned char) 0xFO0;

return result;

When using the Algo Development build target, the device ID and manufacturer’s ID are read from the
flash device and stored in the part_id and mf_id variables (Listing 8). Check these during the flash

algorithm testing.

6.1.2 Implementation: Function erase_sector for AMD 16x1 Flash Devices

The sequence for the Sector Erase command implementation, based on the AMD flash specification, is
shown in Figure 19.

Creating an External Flash Algorithm Application Note

22 Freescale Semiconductor

Figure 19.

Refer to the actual encoding of the erase_sector function for AMD flashes in Listing 9.

Flash Programming Examples

Sector Erase Command Sequence for AMD Flash
; Bus Cycles (Notes 3-5)
Command Ssquance] Firat gecond Third Faurth Fifin 5lutn
{Hots 1) “ [agar | Oata [adar [Data | adar [pata | adar Data |Addr| Data | &ddr| Data
Zector Erase B[355 | AA [2RA | 33 333 Gl 583 BA MMl 58 | BA | M

Listing 9. Function erase_sector Sample Code for AMD Flashes

retval_t erase_sector (parameter_block_ t *p_pb, unsigned long sect_index)

{

volatile unsigned short *sectoraddress =

volatile unsigned short read;
retval_t result = 0;

((unsigned short **) (p_pb->items)

/* first of all reset the device. The fID is no longer called in the new
flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
the flash chip must always be bring into the read state.

*/

/* reset sector */

* (sectoraddress) = (unsigned short)0xFOFO0;

/* erase sector */

* (sectoraddress + 0x555) = (unsigned short) 0xAA;

* (sectoraddress + 0x2AA) = (unsigned short) 0x55;

* (sectoraddress + 0x555) = (unsigned short)0x80;

* (sectoraddress + 0x555) = (unsigned short) 0xAA;

* (sectoraddress + 0x2AA) = (unsigned short) 0x55;

* (sectoraddress) = (unsigned short)0x30;

read = *(sectoraddress) ;

/*

Wait for the status value to be read from *addr or
how_long ticks to pass. If how_long ticks pass,

a non-0 value will be returned.

On the AMD chips, DQ7 is inverted until the embedded
algorithm is completed when it flips to the correct
value. The parameter 'hi' will indicate whether that

value is set or cleared.

*/
while ((read & 0x0080) != 0x0080)
{
read = *(sectoraddress) ;
}

/* read mode again */
* (sectoraddress) = (unsigned char)0xFO0;

return result;

.w) [sect_index];

Creating an External Flash Algorithm Application Note

Freescale Semiconductor

23

Flash Programming Examples

6.1.3

Implementation: Function erase_chip for AMD 16x1 Flash Devices

The sequence for the Chip Erase command, based on the AMD flash specification, is shown in Figure 20.
and Listing 10.

Figure 20. Chip Erase Command Sequence for AMD Flash

Command saq usance
iNate 1)

Bus Cycles {Notss 2-5]

a1
'-i Firat Second Third Fourth Fifth
o

Slxth

Agdr | Data | ador | Dats | addr |Data | Addr Data |Addr) Data | addr| Data

Chip Eraze

E| 330 | AA [2AA | 35 | 535 | 80 [=E5 AA A4 58

3

HE| 10

Listing 10. Function erase_chip Encoding for AMD Flashes

retval_t erase_chip (parameter_block_ t *p_pb)

{

/* erase chip */

int errors

0;

retval_t result = 0;
unsigned short stat;

unsigned short mask =
unsigned short masked_src

int got_it;

(unsigned short)DQ7;
= (unsigned short)DQ7;

volatile unsigned short *base_addr = (p_pb->base_addr) .w;

/* first of all reset the device. The fID is no longer called in the new
flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
the flash chip must always be bring into the read state.

*/
*base_addr

* (base_addr
* (base_addr
* (base_addr

* (base_addr
* (base_addr
* (base_addr

+
+

0x555)
0x2AA)
0x555)

0x555)
0x2AA)
0x555)

(unsigned short)0xFOFO;

= (unsigned short) 0xAA;
= (unsigned short) 0x55;
= (unsigned short) 0x80;

= (unsigned short) 0xAA;
= (unsigned short) 0x55;
= (unsigned short)0x10;

/* Wait for status operation */
mask &= 0x0080;

masked_src &= 0x0080;

/* Only dqg7 flips */

while (1)

{
if ((*base_addr & mask) == masked_src)
{
break;

}
}

/* return to read arry mode */

*base_addr

return result;

(unsigned char)READ;

Creating an External Flash Algorithm Application Note

24

Freescale Semiconductor

6.1.4

Flash Programming Examples

Implementation: Function write for AMD 16x1 Flash Devices

In terms of AMD flash devices specification, the write function realizes the Program command. The
sequence for the Program command, according to the AMD specification, is shown in Figure 21.

Figure 21. Program Command Sequence for AMD Flash

. Bus Cycles
¢ et Second Third
“ ugdr | Data | Ador | Data | Addr | Data

Command Saquance

Frogram 4 [355 | AA | 2AA) 35 355 | AD

Refer to the actual encoding of the write function for AMD flashes as shown in the file
amd_16x1_sample.c in Listing 11.

Listing 11. Sample write Function Code for AMD Flashes

retval_t write(parameter_block_t *p_pb)

{

int timed_out, got_it;
unsigned long i;
unsigned short stat;

retval_t errors = 0;
unsigned short mask = (unsigned short)DQ7;
unsigned short masked_src = (unsigned short)DQ7;
volatile unsigned short *base_addr = (p_pb->base_addr) .w;
unsigned short *buffer = (p_pb->items) .w;

unsigned long buffer_len = p_pb->num_items;
unsigned long how _many = buffer_len / sizeof (unsigned short) ;

if (buffer_len % sizeof (unsigned short)) {
/* we need to fill the remaining bytes with 'ff' -- this assumes
byte accesses to DRAM will work */
char *p = (char *) ((unsigned long)buffer + buffer_len);
*p++ = \xEf';

how_many++ ;

/* first of all reset the device. The fID is no longer called in the new
flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
the flash chip must always be bring into the read state.

x/
*base_addr = (unsigned short)RESET;
for (i = 0; (i < how_many) && !errors; i++){
unsigned short *c = (unsigned short*) ((unsigned long)base_addr & ~0x1fff);
*((c) + 0x555) = Oxaa;
*((c) + 0x2aa) = 0x55;
*((c) + 0x555) = 0xal;

*base_addr = *buffer;

/* Wait for status operation */

mask &= 0x0080; /* Only dg7 flips */
masked_src = (unsigned short) ((unsigned char)DQ7 & *buffer);
masked_src &= 0x0080;

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 25

Flash Programming Examples

while (1)

{
if ((*base_addr & mask) == masked_src)
{
break;

}

base_addr++;
buffer++;

}

/* go back to the last access */
--base_addr;

/* read mode again */
*base_addr = (unsigned char) 0xFO0;

return errors;

6.2 AMD 16x1 Flash Programming Algorithm Unit Testing

This section illustrates an example flash test application working with AMD 16x1. The flash programming
applet is tested on a Freescale M5282EVB with an Am29PL160CB flash device.

6.2.1 Flash Testing Setup

Use the Algo Development target — shown in Figure 22. — to run the flash programming test application.

Figure 22. Targets in AMD_16x1_Example.mcp Project
==

AMD_16x1_Example.mcp \

|IB Fash Algo Development jﬁ i Q’ @ 5‘

Files | Link Drder |

N Targets 4P
Flazh Algo Development
& Flazh Algo Release

2 targets

Upon loading, the application stops at the _flash_start () function as shown in Figure 23.

Creating an External Flash Algorithm Application Note

26 Freescale Semiconductor

g |

Figure 23. Unit Test Application Start-up Point

6.2.2

flashalgodev.elf (

LS * (b B

read 0x0) [L=])

B Stack @] [§= Vanables Live Walue Location]
O FFFFFEF [GWFFFFFFFF] Mo sl asistotas
-

Source: C:\Program FileshFresscale\Codeiw arrior for ColdFire W7.0NColdFire_Taols\FlashT oolKitvMD 16x1 ExsmpleCommon_Files'_ flash_start.c

asm wvoid _flash start(void)
<% thisz the entry point of the algorithm %~

»% Calculate SP value, according to the stack _addr
synbol defined in the lof file.
D7 iz =zet by the flash programmer to the start address
of the scratch memory area address
The stack address i=s embedded in the flash algorithm.
the flash algortithm address is using PICAPID code,
=0 the SP must be initialized at
scratch mencry address + stack_addr

*
#ifdef FLASH ALGO TEST
HOVE . L

- #SCRACH_MEM_ADDRESS, D7
#endif

- HOVE. L D7. D1

- lea stack_addr, Al

- ADD.TL A1, D1

- HOVE. L D1. &7

<% zetup AL (dummy stackframns) *-
- movea. 1 #0, a6
- link a6, #0

% zetup AL (default initialization),
according to what is define in the lcf file
scratch memory address + _SDA_BASE ocffset

®

- lea _SDA_BASE. ab
- ATD.T D7, AL

<% jump to main
scratch memcry address + mein of fset

. Line 37 Col1 Source 3 |

y

Test One: Read Manufacturer and Device ID

Flash Programming Examples

After the Run command is executed the application stops at the first test check point, as shown in Figure

24.

Figure 24. Read Manufacturer and Device ID

= flashalpodev.elf (Thread 0x0) g@g

5. ® 1t |

FStack &) | [§= Variables: Live Walue Location &l
main J + bassaddisss e 0xFO ODE O J
» D #- p_pb 0+FO100830 OxFOT00ET 4
result 1024 OxFO100E 08
mi_id [OxF 0 00346
part_id 0 0xFO1 00844

extern volatile unsigned short ni_id:
extern volatile unsigned short part id;
#endif

#definse DOY O0x00200080
#define DOS 0x00200020
=

Intelligent identificstion Eunction
Hote that we always return long values

=

retval_t ID(paramster_block_t *p_pb)

{

. wolatile unsigned short *baseaddress = (p_pb—rbase_addr).w;
- r=tval t result = 0

Sx reset *
- *{baseaddress) = (unsigned short)0=FOFO;

<% metup for get id =~
- *{baseaddress + 0x555) (unsigned short)0mdd:
- x{baseaddress + 0x2ad) (unsignsd short)0=55:
- *{baseaddress + 0x555) = (unsigned short)0m30;

#ifdef FLASH_ALGO_TEST
* get id s
- mE_id = x{bassaddress):
- part_id = *{bassaddress + 1):
#endif

% read mode zgain ®
- *({baseaddress) = (unsigned chax)0xF0;

- return result:

-
BE] Source: C:“Program Files\FreescalehCode arrior for ColdFire 7.0 ColdFire_T oolsWFlashT oolKitAMD 1 621 E xamplehalgo_impl.c ﬂ

& . Line 25 Col 11

Source 3R] L

Creating an External Flash Algorithm Application Note

Freescale Semiconductor

27

A
4

4
A

Flash Programming Examples

The results of Test One display the manufacturer ID code 0x01 (for AMD) and the device ID code
0x2245 (for the Am29PL160CB flash device). This confirms basic read/write functionality of the flash
devices.

6.2.3 Test Two: Erase a Sector

With another Run command execution the application stops at the Test Two check point, as shown in
Figure 25. In Test Two the sector number one of the flash memory is erased. From the sample flash device
definition for AMD 16x1 we have: BASE_FLASH_ADDRESS equal to 0OXxFFE00000 and the
SECTOR_ADDRESS_OFFSET equal to 0x4000. Thus for sector 1, flash memory is erased starting at
address OxFFE04000 in memory. To check that the Erase a Sector command works correctly the
memory window was opened with the memory region starting at address 0OXxFFE04000. Upon erasure,
flash memory sector contains OxFFFFFFFF data in its memory.

Figure 25. Erase Sector Functionality Check Point

: @ flashalgodev. elf Memory 1 E@E

Display: |sectoraddress Wiew: |F|aw data j

H Address H He=: FFEO3800:FFED4500 H Asci
FFEO4000 FFFFFFFF FFFFFFFF FFFFFFFF | - - - - -

FFEO4010 | [FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | feees aevn cene o
FFEO4020 | |[FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | feeee aevn cene o
FFEO4030 | |[FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | feeee aevn cone o
FFEO4040 | [FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | feees aevn oo o 1
FFEQ4050 | |[FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | feees aevn cene o
FFEQ4060 | [FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | feees aevn cone o

R

FFEO4070 | [FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [|eees vove v vun -
FFEO40&0 | [FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [|eees vove v vun w
Woord Size |32 -

8 flashalgodev.elf (Thread 0x0) =13
B 0 % Ohd E

R Stack | [{eVarables Live | Value Laocation [}
main J id I O<FMO0EDE - |
B check_test testnumber 2 OxFO100ET4
mi_id I OxFO100846
part_id I OxFO100844
| |
=

B Source: C:\Program Files\Freescale\Code\W arrior for ColdFire 7. 0%ColdFire Tools\FlashTo.. Mlash testc Bl

e

<% Tezt 1: Bead Manufacturer and Device ID *-
caze 1:
= aszm | halt:}:
<% check the values of mf_id and part_id here above
= id = mf_id;
o id = part_id:
- breal:
% Test 2. Erase a sector #7
case 2
- a=m | halt;}: -
<% checlk the sector vou want to eras=e has been erase

- breal; =
£ Line 121 Col26 | Source M 4 | | ’ yJ

Creating an External Flash Algorithm Application Note

28 Freescale Semiconductor

g |

Flash Programming Examples

The results of Test Two show that flash memory, starting at address 0xFFE04000, is erased. This
confirms that the sector erase function works correctly.

6.2.4 Test Three: Program Flash Memory

Another execution of the Run command stops the test application at the Test Three check point, as shown
in Figure 26. Test Three fills sector one in flash memory with an incremental counter. The number of the
bytes written to flash memory is determined by the NUMBER_ ITEMS parameter in flash_device.h
file. To verify that the flash programming algorithm works correctly and the write function of the flash
performs correctly, check the memory region of flash sector one. In this case, check the memory starting
at address OXFFE04000.

Figure 26. Program Functionality Check Point
i m flashalgodev.elf Memory 1 @@Ej

Display: [0xFFED4000 >
Faddiess § Hewx FFEOSE00:FFED4B00
04050507 08020208 OCODOEOF i
FFEOQ40L10 10111212 14151617 12191A1E 1C1D1ELF -
FFEOQ4D02 0 20212222 24252627 28292028 2C202E2F [- 3 TR O I S
FFEQ4020 202132222 24252627 282532428 2C2D2EZF 0lz2 4567 831 <==7
FFEQ4040 40414242 44454647 43434548 4Z4D4E4F [2ABC DEFG HIJK LMNO
FFEQ40QE 0 EO0E1E5252 S4EEEEEF EEE35AER SCEDEESF FORS TUWW >v=[m]
FFEQ40Q&0 EO0E1E262 E4EEGEET EE696AEE 6CEDEEGF Tabc defg hijk Tmno
FFEQ40Q70 FOFL7272 7A47EFEF7 FE7F37AFE 7C7DFEFF pars tuww ==L [Fee- -
FFEQ40Q&0 20818282 84858687 888583A80 SCEDEEEF [f- e s memm meee mmes e
wiord Size: |32 -
{ @ flashalgodev.elf (Thread| 0x0) 9=1]33]
% ® 3t th | E
[EStack B | [fe ¥arables: Live | Value Lacation &)
mair id i 0wF O O0E 02
B check_test testnumber 3 0<FO100E1 4
mif_id i OwF O 0846
part_id i OxFO1 00844

~
Source:_C-\Pragram Files FresscaletCodew arior for ColdFie W7 05CaldFire_ToolshFlash _ flash_test o ﬂ
=

~% Test 3: Write HUMBER_ITEMS to the sector *-
case
- asm { halt:}:
<% check programming was succesfull *-
- brealk:
<% Test 4: Erase the ssctor *7
cass 4
- a=m { halt:}:
=% check the =sctor wou want to srass has besen sras

- breal:
#if HAS CHIF ERASE == 1
~% Te=t 5. Eraze the chip =
case 5.
- as=m { halt;}:
<% check srase was succesfuall = _J
- breal:

#endif

£ Line 128 Col1 Source L3R >

The results of Test Three show that flash memory, starting at address 0xFFE04000, is changed and
contains an increment by one datum. This confirms that the write function works correctly.

6.2.5 Test Four: Erase a Sector

Erase Sector One of flash memory again to check that the above results are not produced in error (Figure
27.)

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 29

(O
P

Flash Programming Examples

Figure 27. Erasing Sector One of Flash Memory After Programming

: m flashalgodewv.elf Memory 1 E][E|E|

Display: [0<FFE 04000 wiews: [Faw data |
B Addiess B Hew: FFEOZE00.FFED4500]
FFED<4000 FFFFFFFF FFFFFFFF FFFFFFFF | | - - - - - - - = - - - - S
FFEO4010 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | e e mae veee v em s z‘
FFEO4020 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | | e e smee eee v m s
FFED4020 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [e e vmee vmae oee e
FFED4040 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [e e vmee vmae oee e —_
FFED4050 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFFE | e ee cmee veee v m s
FFEQ40&0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | | e e smee eee v m s
FFEQ4070 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF | | e e smee eee v m s -
FFED40S0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [e e vmee vmae oee e ?‘

wiord Size: (22 -

: m flashalgodev.elf (Thread 0x0)

L% ® I EHE

[E5tack =] H= “ariables: Live W alue Location [=1]

main id 5] 0xFO0100EDS

B check_test testnumber 4 0xFOT00E14

f_id 1} O 6100846
a

part_id 0=FO100344

[BEl Sowrce: C:“Program FilessFresscaleCadew armior for ColdFire %7 0%ColdFite_Tools<FlashT . “fash_testc E1

<% Te=t 3: Write HUMBER ITEMS to the ssctor s
case 2
asm { halt:F:

e

~% check programming was succesfuall s
- brealk:
<% Test 4: Erase the sector =7
cass 4
asm { halt:}:
~# check the sector ywou want to erase has been eras:
e breal:

#if H&S CHIFP ERASE == 1
<% Test 5: Erase the chip =
case 5
- asm { halt:}:
<% check srass was succesfull - J
- brealk:
#endif

£+ Line 133 Col 1 Source L) >

Check the memory starting at address 0xFFE04000 to verify that the flash memory region erased

correctly. In this example, since the modified memory region contains OXxFFFFFFFF, sector data was
erased successfully.

6.2.6 Flash Testing End Point
After finishing, the flash test application goes to the f1ash_exit () end point, as shown in Figure 28.

Figure 28. Flash Testing End Point

: @ flashalgodev.elf (Thread 0x0)

5 ® 3O E
IE Stack ﬂ R ‘ariables: Live Valus Location ﬂ

main Ao drna sumsindetar
W flash_exit

-
RIEG Source: C:\Program Files'Freescaleh\Codeiwarrior for ColdFire W7 0\ColdFire_T ools\FlashT oolKit'. . \exit.c ﬂ

<% Flash Programming SDE

#* Copyright © 2007 Fresscale Semiconductor. 411 rights reserw:
€.

a=m woid flash_e=it(woid):
a=zm woid flash exit{woid)

~% =z=tup the stack pointer -
» nop
halt
_loop: bra _loop
illegal
rt=

2. Line 10 Col1 Source L3I | C

Creating an External Flash Algorithm Application Note

30 Freescale Semiconductor

Flash Programming Examples

When this test is complete, you can use the flash programming algorithm with the CodeWarrior Flash
Programmer.

6.3 Adding Flash Device Configuration to FPDeviceConfig.xml

To add a new device to the CodeWarrior Flash programmer add the new structured table of the flash device
information to the master configuration file (FPDeviceConfig.xml). This master file is found in the
following folder:

Freescale\CodeWarrior for ColdFire V7.x
\bin\Plugins\Support\Flash_ Programmer\ColdFire\ (Windows)

NewFlashDevice is the new flash device that works with the f1lashalgorelease.elf executable, as
shown in Listing 12.

Listing 12. Configuration Settings for NewFlashDevice in FPDeviceConfig.xml File

</device>

<comment>

HHEFHF S HHHHF A AR HHHHAA AR H S HHHAAAA RS S HHHHFAA A HHHFHAAA A S HHHHHAS

This configuration is for the NewFlashDevice

HHEHFF S HHHHH A A HHHHHAAA A S B HHHAAAA RS S HHHHFAA A SHHHFHAAAA S S HHHHHHS

</comment>

<device>
<name>NewFlashDevice</name>
<manufacturerid>0l</manufacturerid>
<chiperase>TRUE</chiperase>
<sectorcount>1ll</sectorcount>
<sectorname>0</sectorname>
<sectorname>1</sectorname>
<sectorname>2</sectorname>
<sectorname>3</sectorname>
<sectorname>4</sectorname>
<sectorname>5</sectorname>
<sectorname>6</sectorname>
<sectorname>7</sectorname>
<sectorname>8</sectorname>
<sectorname>9</sectorname>
<sectorname>10</sectorname>
<sectorstart>000000</sectorstart>
<sectorend>003fff</sectorend>
<sectorstart>004000</sectorstart>
<sectorend>005fff</sectorend>
<sectorstart>006000</sectorstart>
<sectorend>007fff</sectorend>
<sectorstart>008000</sectorstart>
<sectorend>03ffff</sectorend>
<sectorstart>040000</sectorstart>
<sectorend>07ffff</sectorend>
<sectorstart>080000</sectorstart>
<sectorend>0bffff</sectorend>
<sectorstart>0c0000</sectorstart>
<sectorend>0fffff</sectorend>
<sectorstart>100000 </sectorstart>
<sectorend>13ffff</sectorend>
<sectorstart>140000</sectorstart>
<sectorend>17ffff</sectorend>
<sectorstart>180000</sectorstart>
<sectorend>1bffff</sectorend>

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 31

Flash Programming Examples

<sectorstart>1c0000</sectorstart>
<sectorend>1fffff</sectorend>
<organizationcount>1l</organizationcount>
<organization>1Mxl6xl</organization>
<id>2245</id>
<algorithm>flashalgorelease.elf</algorithm>

</device>

<comment>

Listing 12 definitions:
* NewFlashDevice - the name of the new flash device for which the new flash programming
algorithm is created
* flashalgorelease.elf - name of the flash programming algorithm that will be used to
program flash device

The NewFlashDevice configuration appears in the Flash Programmer window, as shown in Figure 12.

6.4 Updating the Flash Settings xml File for Flash Programmer

Update the custom board configuration file to have correct configuration settings that work with the new
flash device.

For example, the sample flash programming applet for AMD 16x1 is compiled to work with the
MCF5282EVB EVB board. A new file named NewFlashDevices.xml is generated based on
M5282EVB.xml and is modified to work with the NewFlashDevice, as described in the
FPDeviceConfig.xml file. Refer to Section 6.3. If another board is used, find the [BOARD] . xm1 file
for that board; this file can be used as a template to create one to work with the new flash device. Check
the folder:

Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Support\bin\Plugins\Support\Flash_Programmer\ColdFire
To create NewFlashDevices.xml file for MCF5282EVB EVB board:

1. Openthe M5282EVB.xml file with the CodeWarrior’s Flash Programmer as shown in Figure 29.
If other hardware is used open the [BOARD] . xm1 configuration file, where BOARD is the name
of the core used.

a) For target configuration [BOARD] .xml files check the folder:

Freescale\CodeWarrior for ColdFire V7.x
\bin\Plugins\Support\Flash_ Programmer\ColdFire

Creating an External Flash Algorithm Application Note

32 Freescale Semiconductor

PR 4

Figure 29. Opening the M5282EVB.xml File

Flash Programming Examples

i@ Flash Programmer

Program / Weri
Checkzum

| Flash Programmer |
T arget Canfiguration

Erase / Blank. Load Settings File

Target Configuration

Look in: |E;~ ColdFire

R e il

_ 2 M FrDefaultConfig.xml
JFPDEViceConﬁg.xml

My Recent
Documents

@ 8 M5208EVEE_EXTFLASH.xml

N M5235EVE_EXTFLASH. xml
™ M5249C3_EXTFLASH, xml
= N M5253EVBE_EXTFLASH. xml
’) ™ M5271EVE_EXTFLASH. xm
- N M5272C3_EXTFLASH. xml
™ M5275EVE_EXTFLASH, xml

Desktop

My Documents

I, M5287EVE_EXTFLASH.xml
g._' ™ M5307C3_EXTFLASH, xml

N M5329EVE_EXTFLASH. xml

™ M5206EC3_EXTFLASH, xml
8 M5208EVE_EXTFLASH. xml

N M5373EVE_EXTFLASH. xml

N M5407C3_EXTFLASH. xml

™ M5475EVE_EXTFLASH, xml

N M5475EVE_EXTFLASH_CODE_16Mb. xmi
N M5475EVB_EXTFLASH_CODE_32Mb.
N M5475EVBE_EXTFLASH. xmi

N M5475EVBE_EXTFLASH_CODE_16Mb.
N M5435EVE_EXTFLASH. i

™ M5435EVE_EXTFLASH_CODE_16Mb.xml
N M5485EVE_EXTFLASH_CODE_32Mb. xmi
™ M5435EVEE_EXTFLASH. xml

N M54 5EVBE_EXTFLASH_CODE_16Mb. xmi
N M52277EVE_EXTFLASH. xml

N M54455EVE_EXTFLASH. xmi

My Computer

™ M5329EVBE_EXTFLASH,xml N MCF5211_INTFLASH. xml
oy < iii | L2
My Network File name: |M5282EVE_EXTFLASH smi | open ||
= Files of type: I Flash Programmer Settings files {*ml) __:I Cancel |
Show Log] Load Settings... I Save Settings...] Ci.nse I

2. Check the target configuration settings as shown in Figure 30. The following parameters should be
set correctly for the hardware used:

a) Target Processor — set the target processor name correctly for the hardware used.

b) Use Target Initialization — set the correct path to the target processor configuration file. In the
provided example for the 5282EVB board, the M5282EVB . cfg file is used. For the processor
configuration files please check the folder:

Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Support\Initialization_Files
c) Target Memory Buffer Address — target RAM memory start-up address.

d) Target Memory Buffer Size — target RAM memory size.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 33

b -

Flash

Programming Examples

Figure 30. Checking Target Configuration Settings in [BOARD].xml File

Flash Programmer

Flash Pragrarmrmer Target Configuration
T arget Configuration
Flash Configuration

Eraze / Blank Check Diefault Project:
Program / Werify
Checkzun Drefault Target;
¥
(Target Froceszorn |5282 j] Connection; |PEMIEHD_USB j

[¥ Use Target Initislization

P an— 1
|CndeWarrior for CaldFire VT-".D\EoldFire_Support\lnitializatinn_FiIeslm5282evb.cfgI Browse...

Target Bk temong Bulfer Optiong

Target Memony Buffer Address: 0« |f0000000 ¥ Enabls Logging

Target Memony Buffer Size: Ox |OOOEE [v ety Target Memony wiites

Show Log | Load Settings... | Save Settings... | Cloze

3. If configuration is correct for the targeted hardware save the target board configuration as
NewFlashDevices.xml, as shown in Figure 31.

Creating an External Flash Algorithm Application Note

34

Freescale Semiconductor

Flash Programming Examples

Figure 31. Saving Target Hardware Configuration Settings for NewFlashDevices.xml File

Flash Programmer

| Flazh Programmer
T arget Canfiguration

Target Configuration

SRy Save Settings file
Eraze / Blank Chec _ i
Frogram / Werify Savein: I (=5 ColdFire j = =¥ Ef-
Checkzum
= N MCF52230_INTFLASH. xmi
@ S MCF52231_INTFLASH. xmi
My Recent N MCF52233_INTFLASH. xml
Documents | "Sfmcr52234 INTFLASH.xaml
@ S MCF52235_INTFLASH. xml
MewFlashDevices, xml
Desktop
My Documents
My Computer
& i =3
My Metwork File name: INewFIashDeuicesml j Save
Flaces
Save as type: I Flash Programmer Settings files (*xml) ;I Cancel

Show Log Load Settings... " Save Settings... I I Cloze |

4. Modify the NewFlashDevices.xml file as shown in Figure 32.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 35

h

Flash Programming Examples

Figure 32. NewFlashDevices.xml File Changes

i B NewFlashDevices.xml

b - {} - M- [d'- Path: D:\Profiles\b14174\Desktop\NewFlash Devices xmi ¥
g

«<?xml warsion="1.0" sncoding="iso-8852-1" standalone="no" ?=
[S

<fpeonfig xmlns:xsi="http://www.w3.org/2001/ZMLEchema-instance" xsi:ncNamespaceSchema |
<targetconfwindows
<ugecustomssettings>truss fusecustomssttings >
<targetprocessor>5282</targetprocessors>
<connection>
<usetargetinit>true< /usetargetinits=
<targetinitfiles{CodeWarrior} \WoldFire SupportiInitialization Files'm5282evb.cfg=
<targetrmembuf f addr=0xFO0000000< / targetmenbuf f addr=
<targetrarbuffsize=0x000FFFFF< /targetmarbuffsizax
<enablel cgging>true< /enablelogging=
“yarifywrites>truss fverifywritas=>
</targetconfwindow=

<flashconfwindows>
<marbazeaddr>0xFFE00000< /merbassaddr>
<device /devices
<organization>1Mxldxl< /organization>
<flashstart>0xFFEO0000</flashstart>
<flashend>0xFFFFFFFF= /f lashend>
</flashconfwindows

<prograrverifywindows
zusssalactadfilestrus< fusesslactadfiles
<projbuildtargetfile>itutput File of Default Project-Target used when 'Use Sslect
«<fileiotypaxhuto Detect</fil=sictypax
<restrictaddrrange=false</restrictaddrrange>
<rastrictaddrrangsstart>0xFFEQ0000< /restrictaddrrangestart>
<restrictaddrrangeend>0xFFFFFFFF< /restrictaddrrangsend=
<applyaddroffestsfalses /applyaddroffsat>
<addroffset>0xFFEO0000< /addrof feet>

< /programverifywindows

<arassblankcheckwindow=
<aras=allsectors=true</eraseallsectors=
<gactor/=
<processsectorsindividual ly>trued /processsectorsindividual ly=
< /arassblankcheckvindows>

<checksumwindows
<cormputechecksurover>FileinTarg< /corputechecksunovars>
<addrstart=0xFFE0Q000< /addretart >

Line 35 Col4d | [4] v [

5. Check that the following parameters are set correctly for the NewFlashDevice in the
NewFlashDevices.xml file:

a) <targetprocessor> — set target processor name correctly for the hardware used.

b) <targetinitfile> - setthe correct path to the target processor configuration file. In
provided example for 5282EVB board, M5282EVB. cfg file being used. For the processor
configuration files please check the folder:

Freescale\CodeWarrior for ColdFire V7.x
\ColdFire_Support\Initialization_Files

¢) <organization> — check the hardware organization for the new flash devices. In the
provided example for AMD 16x1, one 1 Mbyte 16x1 AMD flash device is present on the tested
5282EVB board.

Creating an External Flash Algorithm Application Note

36

Freescale Semiconductor

Chip Makers’ Flash Programming Recommendations

d) <flashstart> - check the hardware organization for the start-up address of the flash
device being used. Check the same data for the <restrictaddrrangestart> and
<addrstart> parameters.

e) <addrsize> — set correct size of the new flash device.

f) <flashend> - set the end address of the flash device. This parameter can be calculated as a
<flashstart> + <addrsize>. Check the same data for the
<restrictaddrrangeend> and <addrstart> parameters.

g) After you change FPDeviceConfig.xml and the custom configuration file
(NewFlashDevices.xml in this example), the CodeWarrior Flash Programmer is ready
to work with the new flash device.

7 Chip Makers’ Flash Programming Recommendations

In general, flash programming algorithms from different flash manufacturers are similar. Most
manufacturers use the same algorithms for programming flash devices. For example, the same algorithms
may be used for programming AMIC 16x1 flash devices and AMD 16x1 flashes. Most of the flash
manufacturers have sample flash programming algorithms on the web.

7.1 Alliance Flash Devices

AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Manufacturer’s site: http://www.alsc.com.

7.2 AMIC Flash Devices

Depending on the particular flash device, the same flash programming algorithms available for AMD
(Spansion) or Atmel should be usable. Check flash device specifications available from the manufacturer.
Manufacturer’s site: http://www.amictechnology.com.

7.3 AMD (Spansion) Flash Devices

Flash programming algorithms are already supported in CodeWarrior Flash Programmer. AMD does not
produce its own flash devices any more (Fujitsu and AMD founded Spansion for flash manufacturing).
Manufacturer’s site: http://www.spansion.com.

7.4 Atmel Flash Devices

Due to the lack of testing hardware, flash programming algorithms for Atmel are not supported in the
CodeWarrior ColdFire Flash Programmer. The flash programming algorithm for Atmel flash devices,
however, is similar to the algorithm used for AMD flash programming.

Refer to the Atmel flash device specification for the correct programming commands and device ID
variables. An application note, Programming Atmel’s AT29 Flash Family, is available from the
manufacturer’s web site. The application note contains code examples for Atmel flash device
programming. Manufacturer’s site: http://www.atmel.com.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 37

Chip Makers’ Flash Programming Recommendations

7.5 Catalyst Flash Devices

Intel’s flash programming algorithms should work. Check flash device specifications available from the
manufacturer. Most of the flash devices from Catalist are fully identical to the flash devices from Intel. For
example: the CAT28F 001 from Catalist is the equivalent of Intel’s IN28F001. Manufacturer’s site: http:/
[www.catsemi.com/index.html.

7.6 EON Flash Devices

AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Most of the flash devices from EON have direct references to AMD flash
devices. Manufacturer’s site: http:/www.eonsdi.com.

7.7 Fujitsu Flash Devices

AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Fujitsu no longer produces its own flash devices. Manufacturer’s site:
http://www.spansion.com.

7.8 Hyundai Flash Devices

AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Hyundai founded a new semiconductor company named Hynix. Most of
the flash devices from Hynix make direct reference to AMD flash devices. Manufacturer’s site: http://
www.hynix.com.

7.9 Intel Flash Devices

Flash programming algorithms for Intel flash devices are already supported in CodeWarrior Flash
Programmer. Manufacturer’s site: http://www.intel.com.

7.10 Micron Flash Devices

Intel’s flash programming algorithms should work. Check flash device specifications available from the
manufacturer. Most of the flash devices from Micron make direct reference to Intel flashes. Manufacturer’s
site: http://www.micron.com.

7.11 MXIC Flash Devices

AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Most of the flash devices from MXIC make direct reference to AMD
flash devices. The document MX_FlashSampleCode.pdf is available from the MXIC web site. The
document contains sample flash programming code suitable for both MXIC and AMD flash devices.
Manufacturer’s site: http://www.mxic.com.tw.

Creating an External Flash Algorithm Application Note

38 Freescale Semiconductor

Chip Makers’ Flash Programming Recommendations

7.12 Samsung Flash Devices

The CodeWarrior flash programmer does not support flash programming algorithms for Samsung.
Samsung uses its own algorithm — incompatible with other vendors — for flash programming. A sample
programming algorithm for Samsung flash devices, presented as a CodeWarrior for ARM project, is
available from the manufacturer’s web site. Manufacturer’s site: www.samsung.com/products/
semiconductor/OneNAND.

7.13 Sharp Flash Devices

Intel’s flash programming algorithms should be usable. Check flash device specifications available from
the manufacturer. Manufacturer’s site: http://www.sharpsma.com.

7.14 Spansion Flash Devices

Flash programming algorithms for Spansion flash devices are already supported in CodeWarrior Flash
Programmer. Manufacturer’s site: http://www.spansion.com.

7.15 SST Flash Devices

Depending on the particular flash device, the same flash programming algorithms available for AMD
(Spansion), Atmel, or Intel should be usable. Check flash device specifications available from the
manufacturer. Manufacturer’s site: http://www.sst.com/about.

7.16 ST Flash Devices

AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Sample flash programming application code is available for downloading
from the ST web site. Manufacturer’s site: http://www.st.com.

7.17 Toshiba Flash Devices

Intel’s flash programming algorithms should work. Check flash device specifications available from the
manufacturer. Manufacturer’s site: http://www.semicon.toshiba.co.jp/eng.

7.18 White Flash Devices

AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer. Manufacturer’s site: http://www.wedc.com.

7.19 Winbond Flash Devices

AMD’s (Spansion’s) flash programming algorithms should be usable. Check flash device specifications
available from the manufacturer.Manufacturer’s site: http://www.winbondusa.com/mambo/content/view/
289/553.

Creating an External Flash Algorithm Application Note

Freescale Semiconductor 39

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Document Number: AN3389

08 February 2008

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical’ parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior™
is a trademark or registered trademark of Freescale Semiconductor, Inc. StarCore® is a registered
trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006-2008. All rights reserved.

@,

>* freescale*

semiconductor

