
Freescale Semiconductor
Application Note

AN3288/D
Rev. 0, 7/2006

Table of Contents
1 Introduction..1
2 Function Overview...2
3 Table Format..2
3.1 General Requirements3
3.2 Table Data for C Function3
3.3 Table Data for Optimized assembly Function3
4 Lookup Algorithms...4
4.1 C-Based Algorithm ..4
4.2 SPE Optimized Algorithm4
4.2.1 Flow Diagram...5
4.2.2 Code Analysis..6
5 Results...12
6 Summary ...12
A.1 var_table_lookup_asm()13
A.2 var_table_lookup_c()15
A.3 Tables ..16

Enhanced Table Lookup
Performance
Using the MPC5500 Signal Processing Engine (SPE)
by Bill Terry - MCU Division - Applications Engineering

John West - MCU Division - Systems Engineering
1 Introduction
Lookup tables are often used to store data in a
multi-dimensional array format. These tables provide a
means to capture the dynamic behavior of a system and
allow it to be expressed as a predetermined set of data
points (called breakpoints1). The breakpoints are used to
store the input-output mapping of the system. That is, for
each input value, there are one or more associated output
values, depending on the number of dimensions in the
array.

In many automotive applications, table lookups
comprise a large percentage of the overall execution time
of the application, typically 10-20%. The tables used for
these functions are two dimensional and have relatively
few breakpoints. Traditional search methods such as
binary search or hash functions do not work well on
small tables. Usually a simple iterative search and
compare loop is used to find a corresponding breakpoint
for a given input value.

1. These breakpoints should not be confused with the term
breakpoint as used in a software debugger.
© Freescale Semiconductor, Inc., 2004. All rights reserved.

This document contains information on a new product. Specifications and information herein
are subject to change without notice.

Function Overview
This application note describes the operation and performance results for an optimized table lookup
function and compares execution time with a more typical search function. The optimized function is
written in assembly using the PowerPC 32-bit Book E instruction set with the Signal Processing Engine
(SPE) and its related instructions.

Example code is included for both the typical and optimized lookup functions and the optimized function
example may be built into an application with minimal modification.

2 Function Overview
The lookup table is a set of values or breakpoints consisting of an input or x value and a corresponding
output or y value. The relationship of each discrete input to output value pair usually represents a
continuous function where y is some function of x, or f(x) = y.

To generate a return value y, the table lookup function takes the input and attempts to find a matching x
value:

• If the input value is less than the first x value or greater than the last x value, the function uses the
appropriate end point y value as the output.

• If a matching x value is found, the corresponding y value is returned.
• If neither of the first two conditions are met, the function finds the two nearest x values above and

below the input value, and determines the slope of the function between those two points (i.e. is
YLOW greater than or less than YHIGH?) Then, Equation 1 is used to perform a linear interpolation
and approximate a y value.

Eqn. 1

The functions are called with a pointer to the appropriate table, and an input x value and return a 16-bit
value.

3 Table Format
The table may have a variable number of entries, but the total number of entries must be a multiple of four.
A table entry is defined as one x y pair.

As discussed in Section 1, there are two example lookup functions, a typical iterative search function
written in C, and an optimized function written in assembly using SPE instructions. The following sections
define the required formats and contents of the table data for each of the function types.

Y YLOW
input XLOW–() YHIGH YLOW±()⋅()

XHIGH XLOW–()
--+=

Y – Interpolated return value.
input – input x value.
XLOW – The nearest x value in the table that is less than the input value.
YLOW – The y value associated with XLOW.
XHIGH – The nearest x value in the table that is greater than the input value.
YHIGH – The y value associated with XHIGH.
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor2

Table Format
NOTE
While the table structure and format differs for the C and assembly versions
of the lookup table, the size of the tables and the data values are identical to
insure valid performance comparisons.

3.1 General Requirements
The following are requirements for the lookup data tables used in this application note:

• All x and y table entries should be unsigned, fixed point numbers.
• The lookup table should have each x entry in order of increasing magnitude. That is, x1 must be

less than x2, x2 must be less than x3, etc.
• Every x value must have a corresponding y value.
• Each table must be a global data structure.

3.2 Table Data for C Function
The table data for the C lookup function is shown in Figure 1. The first byte (lowest memory address of
the table) contains the number of table entries. Following that byte, there is a one byte pad to align the first
table entry pair on the appropriate memory boundary. Following that are the x y pairs of the table.

3.3 Table Data for Optimized assembly Function
In order to take advantage of the SPE instruction set used in the assembly functions, the table data must be
organized in memory to accommodate the use of 64-bit operands found in many SPE instructions. The
memory layout for the SPE assembly function lookup table is shown in Figure 2.

In the SPE optimized version of the data table the following rules apply:
• Each table entry must be two bytes in length.
• Each data vector can hold any number of entries; however, in order to avoid an alignment

exception error, the total number of table entries must be a multiple of 4.

Offset 16-bits

0x00 0xC 0x0

0x02 x1

0x04 y1

0x06 x2

0x08 y2

... ...

0x2E x12

0x30 y12

Figure 1. C Function Table Memory Layout

Number of x/y pairs
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 3

Lookup Algorithms
• Dummy values can be stored in the table if the data has a number of breakpoints that is not a
multiple of four.

• The x values must be stored in ascending order.
• The y values must be interleaved as shown in Figure 2.
• The second and fourth 16-bit values of the table must contain the offset to the first y value from

the base address of the table.

4 Lookup Algorithms
This section provides a comparison of the actual algorithms used in the lookup routines.

4.1 C-Based Algorithm
The non-optimized C code lookup functions do not use SPE instructions to perform table lookups, but
rather a traditional iterative search algorithm. This type of algorithm is essentially a simple increment and
compare loop, where the farther into a table the match is located, the longer the execution time that is
required. This is a well known search algorithm and the details are not discussed in this application note.
A code listing for the C code can be found in Section A.2.

4.2 SPE Optimized Algorithm
The SPE optimized lookup algorithm is coded in assembly, and due in part to the unique way that the SPE
instructions are implemented, is not easily understood by a simple inspection of the code listing. The
inherent advantage of the SPE optimized function is that it utilizes 64-bit registers to perform tests or
compares on two values simultaneously. The following section and diagram details the steps of the SPE

Offset 32-bits

0x00 0x0 0x20

0x04 0x0 0x20

0x08 x1 x2

0x0C x3 x4

0x10 x5 x6

0x14 x7 x8

0x18 x9 x10

0x1C x11 x12

0x20 Y1 Y3

0x24 Y2 Y4

0x28 y5 y7

0x2C y6 y8

0x30 y9 y11

0x34 y10 y12

Figure 2. Assembly Function Table Memory Layout

Offset to first
y value.
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor4

Lookup Algorithms
enhanced algorithm. Each related code segment is followed by an explanation of the purpose of the
operation(s). The code listing includes line numbers to simplify referencing. Referencing the table data
layout (see Section 3.3) will aid in understanding the following algorithm. A complete listing of the SPE
based code can be found in Section A.1.

4.2.1 Flow Diagram

Setup pointers Function Called to x and y data.

input >=
last x?

Get the last y
value in table

Load next 4 x values
into 64-bit registers
for vector compare

input <
lowest 2 of the 4

x values?

Load corresponding
y values into 64-bit

registers

input
< lowest table x

value?

Get the first y
value in table

Return y

Increment x and y
pointers

input >
highest of the 4

x values?

input >
lowest 2 of the 4

x values?

input is between
1 and 2 of the 4
x values, calc y

input
> 3 and 4 of 4

x values?

yes input is < lowest 2
of the 4 x vals, but

> lowest table x val,

yes

no

yes

no

yes

no

Load first 4 x values
into 64-bit registers
for vector compare

no

no

so x is between
x4 and x5, or x8 and

x9, depending on
which set of 4 x vals

is currently being
examined. Calc y

yes yes

input is between
2 and 3 of the 4
x values, calc y

input
< 3 and 4 of 4

x values?

no

input is between
3 and 4 of the 4
x values, calc y

yes

no

Return y
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 5

Lookup Algorithms
4.2.2 Code Analysis
This section provides a line by line analysis of the SPE based table lookup function.
1 unsigned short var_table_lookup_asm(unsigned short *DataPtr, unsigned short Input)

Line 1 is the actual function declaration. This function is called with two args, a pointer to the
relevant data table (*DataPtr), and the input x value (Input). Notice that it returns an unsigned
16-bit value.

{
/*Set up X and Y data pointers*/
2 asm("lhz r12,8(r3) "); // initialize r12 to first X val
3 asm("lwz r5,0(r3) "); // Put the y-offset (from table entry) value in r5
4 asm("addi r6,r5,-8 "); // Put the number of data points times 2 in r6
5 asm("add r5,r3,r5 "); // Set r5 to the address of the first Y value

// r5 = r3 (table address) + r5 (y-offset)
6 asm("addi r7,r5,-4 "); // r7 = address of word holding last two x values

Lines 2 through 6 perform several operations to setup up the required pointers into the data
structure as indicated by the code comments. The PowerPC EABI dictates that when this function
is called, r3 holds the address of the data structure, and r4 holds the input value.

7 asm("evlwhou r8,0 (r7) "); // 64-bit r8 now holds next to last x and last x
// values

8 asm("evmergelo r4,r4,r4 "); // move r4[0:31] to r4[32:63]

Lines 7 and 8 perform SPE operations to setup up for a compare as shown below.

9 asm("cmp 1,r8,r4 "); // bounds check (input >= last x value?)
10 asm("bc 4,4,toohigh "); // if > or = last x, then input is out of bounds

Line 9 compares the input value in the lower 32-bits of r4 with the maximum x value which is in
the lower 32-bits of r8. If the input is greater than or equal to the last x value, the code branches to
the label toohigh.

/* Pre-load 4 x-values to compare with input. Note that the first time through this loop

x11 x12

x11 x12

Contents of word addressed by r7

32-bits

64-bit register r8
upper 32-bits lower 32-bits

input

Input Input

Contents of r4 (x input value)

32-bits

64-bit register r4

upper 32-bits lower 32-bits

evlwhou r8,0(r7)

evmergelo r4,r4,r4
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor6

Lookup Algorithms
 64-bit registers r6 and r7 hold x1, x2, x3, and x4. The second time through this loop, if
necessary, they will hold x5, x6, x7, and x8, and the last time through this loop, if
necessary, they will hold x9, x10, x11 and x12. */

11 asm("Loop:");
12 asm("evlwhou r6,8 (r3) "); // r6[0:31]=x(1/5/9), r6[32:63]=x(2/6/10)
13 asm("evlwhou r7,12 (r3) "); // r7[0:31]=x(3/7/11), r7[32:63]=x(4/8/12)
14 asm("cmp 1,r7,r4 "); // Early Check input > r7[32:63]? result in CR1
15 asm("evmergelohi r8,r6,r7 "); // r8[0:31]=x2/x6/x10 ,r8[32:63]=x3/x7/x11

Depending on which iteration through the loop this is, lines 12 through 15 load the x(1/5/9),
x(2/6/10), x(3/7/11) and x(4/8/12) values into vectors as shown below, in preparation for a vector
compare with the input value. Note that after these operations a vector compare can be made on x1
and x2 (r6), x2 and x3 (r8), or x3 and x4 (r7). The x(loop 1/loop 2/loop 3) designation indicates
which value x takes depending on the loop iteration. Similarly, a y(loop 1/loop 2/loop 3)
designation indicates the y value depending on the loop iteration. As an example, the second time
through the loop, the x values will be x5, x6, x7 and x8.

x(1/5/9) x(2/6/10)Contents of word addressed by r3 + 8

32-bits

64-bit register r6
upper 32-bits lower 32-bits

64-bit register r8
upper 32-bits lower 32-bits

evlwhou r6,8(r3)

evmergelohi r8,r6,r7

x(3/7/11) x(4,8,12)Contents of word addressed by r3 + 12

32-bits

64-bit register r7
upper 32-bits lower 32-bits

evlwhou r7,12(r3)

upper 32-bits lower 32-bits

upper 32-bits lower 32-bits

64-bit register r6

64-bit register r7

x(2/6/10)x(1/5/9)

x(3/7/11) x(4,8,12)

x(1/5/9) x(2/6/10)

x(3/7/11) x(4,8,12)

x(2/6/10) x(3/7/11)
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 7

Lookup Algorithms
/* Check the input against current x value pair in r6 */
16 asm("evcmplts 0,r4,r6 "); // compare input to current pair of x values in r6,

// result in CR0

Line 16 performs a vector compare of r4 to r6, which now holds x(1/5/9) and x(2/6/10). The results
of this compare are captured in the CR0 register as shown in the following diagram. Note that this
single vector compare instruction provides information that can be used for several conditional
branches later in the algorithm.

/* load the related y values in r9 and r10 */
17 asm("evlwhou r9,0 (r5) "); // r9[0:31]=y1/y5/y9 ,r9[32:63]=y3/y7/y11
18 asm("evlwhou r10,4(r5) "); // r10[0:31]=y2/y6/10 ,r10[32:63]=y4/y8/y12
19 asm("bc 12,3,BackGrd2"); // is input < both r6 x values?, if so branch

Lines 17 and 18 move y(1/5/9), y(3/7/11), and y(2/6/10), y(4/8/12) into r9 and r10 respectively (r5
holds the address of the first y value) as shown in the following diagram. These values are needed
later to calculate a return value so are loaded now. The results of the input value compare in line
16 are still in CR0 at this point, and now a conditional branch is made in line 19 based on the value
in CR0[3]. If the input value is less than both x(1/5/9) and x(2/6/10), the branch is taken, if not
execution continues inline.

Input x Input x
upper 32-bits lower 32-bits

64-bit register r4

x(1/5/9) x(2/6/10)

upper 32-bits lower 32-bits
64-bit register r6

Input < r6[0:31]?

CR0[0] CR0[1] CR0[2] CR0[3]CR0 bits set to 1 if true, 0 if false.

Input < r6[32:63]?

CR0[0] or CR[1]?
CR0[0] and CR[1]?
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor8

Lookup Algorithms
20 asm("evmergelo r12,r10,r7 "); // else save r7[32:63] and r10[32:63] in case input
 // is between r7[32:63] and the next greater x value.

21 asm("addi r3,r3,8 "); // increment x pointer in case input > r7[32:63]
22 asm("addi r5,r5,8 "); // increment y pointer in case input > r7[32:63]
23 asm("bc 12,4,Loop "); // if (input > r7[32:63]) get next four x values to

// compare

As shown in the following diagram, line 20 saves x(4/8/12) and y(4/8/12) in case the input value
is between one of the three ‘groups’ of four x values being examined in 64-bit registers r6 and r7,
i.e. x input is greater than x4, but less than x5 or greater than x8, but less than x9. Lines 21 and 22
increment the x and y pointers in case the input x value is greater than x(4/8). Line 23 checks to
see if the input is greater than all four x values and if so, branches to Loop to get the next four x
values in the table.

y(1/5/9) y(3/7/11)Contents of word addressed by r5

32-bits

64-bit register r9
upper 32-bits lower 32-bits

evlwhou r9,0(r5)

y(2/6/10) y(4/8/12)Contents of word addressed by r5 + 4

32-bits

64-bit register r10
upper 32-bits lower 32-bits

evlwhou r10,4(r5)

y(1/5/9) y(3/7/11)

y(2/6/10) y(4/8/12)

64-bit register r12
upper 32-bits lower 32-bits

evmergelo r12,r10,r7

upper 32-bits lower 32-bits

upper 32-bits lower 32-bits

64-bit register r7

64-bit register r10

x(3/7/11)

y(3/7/11) y(4,8,12)

x(4/8/12) y(4/8/12)

x(4,8,12)
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 9

Lookup Algorithms
24 asm("evsubfw r11,r9,r10 "); // else r11[0:31]=(y2/y6/y10 - y1/y5/y9),
// and r11[32:63]=(y4/y8/y12 - y3/y7/y11),
// this is (y high-y low)

25 asm("bc 4,1, comp "); // if(input > x1/x5/x9 & x2/x6/x10) branch

Line 24 calculates the difference between y high, and y low for each of the four y values in 64-bit
registers r9 and r10. These values are used later during calculation of the return value. Line 25 does
a compare of x(1/5/9) and x(2/6/10), and if the x input value is greater than both a branch is taken
to comp.

/* If no branch was taken, input is known to be between x(1/5/9) and x(2/6/10) so a return
value is interpolated. */

26 asm("evsubfw r4,r6,r4 "); // r4 = r4-r6 (input - xlow)
27 asm("evmergehi r4,r0,r4 "); // r4[0:31]-->r4[32:63]
28 asm("evmergehi r11,r0,r11 "); // r11[0:31]-->r11[32:63] (y high-y low)
29 asm("mullw r4,r4,r11 "); // (input-Xlow) * (Yhigh-Ylow)
30 asm("evsubfw r8,r6,r8 "); // (xhigh-Xlow), r8[0:31]=(X2-X1)
31 asm("evmergehi r8,r0,r8 "); // r8[0:31]-->r8[32:63]
32 asm("divw r4,r4,r8 "); // 32 bit quotient
33 asm("evmergehi r9,r0,r9 "); // r9[0:31]-->r9[32:63]
34 asm("add r3,r4,r9 "); // return answer in r3
35 asm("b return_y ");

If the branch in line 25 was not taken, the input x value is know to be between x(1/5/9) and
x(2/6/10) so beginning at line 26, a return value is interpolated based on the formula in Equation 1
on Page 2 and returned to the calling function.

/* Checking if input is between x3/x7/x11 and x4/x8/x12 */
36 asm("comp:");
37 asm("evcmplts 0,r4,r7 "); // input< r7 (input< x3/x7/x11 or input< x4/x8/x12),

// result in CR0
38 asm("bc 4,1, Loop "); // if(input > x3/x7/x11 & x4/x8/x12) get more x values
39 asm("bc 12,3,BackGrd1 "); // if(input < x3/x7/x11 & x4/x8/x12) branch.

If the code reaches the comp label at line 36, the x input value is now checked to see if it is less
than x(3/7/11) and/or x(4/8/12). The results of this compare are in CR0. If the input is greater than
both these x values, a branch is taken in line 38 to Loop to get the next set of four x values. If the
input x value is less than both of these x values it must be between x2 and x3 so execution branches
at line 39 to BackGrd1 to interpolate a y value.

/*At this point X input is known to be between x3/x7/x11 and x4/x8/x12 so a return
 value is interpolated. */
40 asm("subf r4,r8,r4 "); // r4 = r4 -r8 (input-xlow)
41 asm("mullw r4,r4,r11 "); // (input-Xlow)*(Yhigh-Ylow)
42 asm("subf r8,r8,r7 "); // (Xhigh-Xlow), r8[32:63]= x(4/8/12) - x(3/7/11)
43 asm("divw r4,r4,r8 "); // 32 bit quotient
44 asm("add r3,r4,r9 "); // return answer in r3
45 asm("b return_y ");

If neither branch in lines 38 and 39 were taken, the input x value is between x(3/5/7) and x(4/8/12).
The code starting at line 40 interpolates a y value and returns it to the calling function.

/*At this point X input is known to be between x2/x6/x10 & x3/x7/x11 so a return
 value is interpolated. */
46 asm("BackGrd1:");
47 asm("evmergehi r10,r0,r10 "); // r10[0:31]-->r10[32:63]= Y2
48 asm("subf r4,r6,r4 "); // compute (input-Xlow)
49 asm("subf r9,r10,r9 "); // (Yhigh-Ylow) or (Y3-Y2)
50 asm("mullw r4,r9,r4 "); // (input-Xlow)*(Yhigh-Ylow)
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor10

Lookup Algorithms
51 asm("subf r8,r6,r8 "); // (Xhigh-Xlow), r8[32:63]=(Y3-Y2)
52 asm("divw r4,r4,r8 "); // 32 bit quotient
53 asm("add r3,r4,r10 "); // return answer in r3
54 asm("b return_y ");

If the branch in line 39 was taken, the input x value is between x(2/6/10) and x(3/7/11). The code
starting at line 47 interpolates a y value and returns it to the calling function.

/* Input is less than the current x values in r6, so it's either too low,
 or between x4 and x5, or between x8 and x9.*/
55 asm("BackGrd2:");
56 asm("evmergehilo r4,r9,r4 "); // r9[0:31]=Yhigh r4[32:63]=input

If the branch in line 19 was taken, the input x value is less than x(1/5/9) and x(2/6/10). If the input
x value is not lower than the first x value, the code starting at line 57 interpolates a y value and
returns it to the calling function. Line 63 does a compare of the input x value and the lowest
possible x table value (x1). If it is less than x1, the code branches to toolow.

57 asm("evsubfw r5,r12,r4 "); // else, compute (Yhigh-Ylow) and (input-Xlow)
58 asm("evmergehi r10,r0,r5 "); // r4[0:31]-->r10[32:63]
59 asm("mullw r10,r5,r10 "); // (Yhigh-Ylow)*(input-Xlow)
60 asm("evmergehi r6,r0,r6 "); // r6[0:31]-->r6[32:63]
61 asm("subf r8,r12,r6 "); // (Xhigh-Xlow), r8[32:63]=(X5-X4)
62 asm("divw r10,r10,r8 "); // 32 bit quotient
63 asm("cmp 1,r4,r12 "); // Bounds Check is input < first x value
64 asm("bc 12,4,toolow "); // if true, then input out of bounds
65 asm("evmergehi r3,r0,r12 "); // r12[0:31]-->r12[32:63]
66 asm("add r3,r10,r3 "); // return answer in r3
67 asm("b return_y ");

/* OUT OF BOUNDS */
68 asm("toolow:");
69 asm("evmergehi r3,r0,r4 "); // merge contents of r4[0:31]-->r10[32:63]
70 asm("b return_y "); ");

If the code branched to toolow from line 64, the code beginning at line 69 returns the lowest y
value, or y1.

71 asm("toohigh:");
72 asm("evlwhoux r3,r6,r7 "); // r6 = last y value

73 asm("return_y:");
74 return;
}

If the code branched to toohigh from line 10, the code beginning at line 72 returns the highest y
value, or y12.
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 11

Results
5 Results
Using a test table with a range of input x values the following results were obtained. On average the SPE
based lookup code was 41% faster.

6 Summary
As shown in the preceding section, the SPE enhanced routine is significantly faster than the non-optimized
C function. The performance improvement comes from the ability to perform parallel (vector) operations
on multiple sets of data, and by minimizing the number of memory accesses needed per operation. Also,
comparing multiple sets of data enables faster search processing. Other optimization techniques were also
used, such as loop unrolling and scheduling instructions out of order to minimize pipe line stalls.

Table 1. Test Results

C code SPE code

Input x y returned time1

NOTES:
1 Timebase counts

y returned time1 SPE Execution vs C Code

0x210A 0xBCCC 175 0xBCCC 107 - 39%

0x3F0A 0x9EC6 201 0x9EC6 111 - 45%
0x4325 0x9AAA 201 0x9AAA 111 - 45%

0x5A35 0x8397 226 0x8397 132 - 42%

0x6428 0x799B 227 0x799B 133 - 41%
0x7555 0x686D 240 0x686D 145 - 40%

0x8765 0x5658 253 0x5658 137 - 46%

0x9875 0x4543 266 0x4543 160 - 40%
0xA985 0x3438 279 0x3438 159 - 43%

0xBA95 0x2308 292 0x2308 171 -41%

0xCB05 0x128B 305 0x128B 163 -47%
0xDC78 0x1116 90 0x1116 67 -26%

Average -41%
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor12

Summary
A Source Code Listing

A.1 var_table_lookup_asm()
// Copyright (c) 2006, Freescale.
//
// --
// RELEASE HISTORY
// VERSION DATE AUTHOR DESCRIPTION
// 1.0 2006-7-6 Bill Terry Initial release
// ---
// PURPOSE: This function processes two dimensional table lookups on 16-bit table entries.
//
// NOTE: Maximum number of table entries must be a multiple of 4.
//
//--

/***
 * r3 [32:63] = base address of table
 * r4 [32:63] = input value

**/

unsigned short var_table_lookup_asm(unsigned short *DataPtr, unsigned short Input)
{

 /* Set up x and y data pointers */

asm("lhz r12,8(r3) "); // initialize r12 to first X val
 asm("lwz r5,0(r3) "); // load offset to y values in r5
 asm("addi r6,r5,-8 "); // Put the number of data points x 2 in r6
 asm("add r5,r3,r5 "); // Set r5 to the address of the first Y value
 asm("addi r7,r5,-4 "); // decrement y pointer to last x value (Bnds Checking)
 asm("evlwhou r8,0 (r7) "); // r8 = last x value (Bnds Checking)
 asm("evmergelo r4,r4,r4 "); // r4[32:63] --> r4[0:31]
 asm("cmp 1,r8,r4 "); // Bounds check (input > last x value?)

asm("bc 4,4,toohigh "); // if > or = last x, then input is out of bounds (CR

/* Pre-load 4 x-values to compare with input. Note that the first time through this loop
 64-bit registers r6 and r7 hold x1, x2, x3, and x4. The second time through this loop
 (if necessary) they will hold x5, x6, x7, and x8, and the last time through this loop
 (if necessary) x9, x10, x11 and x12. */
 asm("Loop:");
 asm("evlwhou r6,8 (r3) "); // r6[0:31]=x1/x5/x9, r6[32:63]=x2/x6/x10
 asm("evlwhou r7,12 (r3) "); // r7[0:31]=x3/x7/x11, r7[32:63]=x4/x8/x12
 asm("cmp 1,r7,r4 "); // Early Check input > r7[32:63]? result in CR1
 asm("evmergelohir8,r6,r7 "); // r8[0:31]=x2/x6/x10 ,r8[32:63]=x3/x7/x11

/* Check the input against current x value pair in r6 */
 asm("evcmplts 0,r4,r6 "); // compare input to current pair of x values in r6,

 // result in CR0
/* load the related y values in r9 and r10 */
 asm("evlwhou r9,0 (r5) "); // r9[0:31]=y1/y5/y9 ,r9[32:63]=y3/y7/y11
 asm("evlwhou r10,4(r5) "); // r10[0:31]=y2/y6/10 ,r10[32:63]=y4/y8/y12
 asm("bc 12,3,BackGrd2 "); // is input < both r6 x values?, if so branch
 asm("evmergelo r12,r10,r7 "); // else save r7[32:63] and r10[32:63] in case input

 // is between r7[32:63] and the next greater x value.
asm("addi r3,r3, 8 "); // increment x pointer in case input > r7[32:63]

 asm("addi r5,r5, 8 "); // increment y pointer in case input > r7[32:63]
 asm("bc 12,4,Loop "); // if (input > r7[32:63]) get more values to compare
 asm("evsubfw r11,r9,r10 "); // else r11[0:31]=(y2/y6/y10 - y1/y5/y9),

// and r11[32:63]=(y4/y8/y12 - y3/y7/y11), this is (y
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 13

Summary
 // high-y low)
 asm("bc 4,1, comp "); // if(input > x1/x5/x9 & x2/x6/x10) branch

/* At this point X input is known to be between r6[0:31] and r6[32:63] so a return
 value is interpolated. */
 asm("evsubfw r4,r6,r4 "); // r4 = r4-r6 (input - xlow)
 asm("evmergehi r4,r0,r4 "); // r4[0:31]-->r4[32:63]
 asm("evmergehi r11,r0,r11 "); // r11[0:31]-->r11[32:63] (y high-y low)
 asm("mullw r4,r4,r11 "); // (input-Xlow) * (Yhigh-Ylow)
 asm("evsubfw r8,r6,r8 "); // (xhigh-Xlow), r8[0:31]=(X2-X1)
 asm("evmergehi r8,r0,r8 "); // r8[0:31]-->r8[32:63]
 asm("divw r4,r4,r8 "); // 32 bit quotient
 asm("evmergehi r9,r0,r9 "); // r9[0:31]-->r9[32:63]
 asm("add r3,r4,r9 "); // return answer in r3

asm("b return_y");

/* Checking if input is between x3/x7/x11 and x4/x8/x12 */
 asm("comp:");
 asm("evcmplts 0,r4,r7 "); // input< r7 (input< x3/x7/x11 or input < x4/x8/x12),

// result in CR0
 asm("bc 4,1, Loop "); // if (input > x3/x7/x11 & x4/x8/x12) get more x values
 asm("bc 12,3,BackGrd1 "); // if (input < x3/x7/x11 & x4/x8/x12) see if input is

// between x2/x6/x10 & x3/x7/x11

/*At this point X input is known to be between x3/x7/x11 and x4/x8/x12 so a return
 value is interpolated. */
 asm("subf r4,r8,r4 "); // r4 = r4 -r8 (input-xlow)
 asm("mullw r4,r4,r11 "); // (input-Xlow)*(Yhigh-Ylow)
 asm("subf r8,r8,r7 "); // (Xhigh-Xlow), r8[32:63]=(X40-X3)
 asm("divw r4,r4,r8 "); // 32 bit quotient
 asm("add r3,r4,r9 "); // return answer in r3

asm("b return_y");

/*At this point X input is known to be between x2/x6/x10 & x3/x7/x11 so a return
 value is interpolated. */
 asm("BackGrd1:");
 asm("evmergehir10,r0,r10 "); // r10[0:31]-->r10[32:63]= Y2
 asm("subf r4,r6,r4 "); // compute (input-Xlow)
 asm("subf r9,r10,r9 "); // (Yhigh-Ylow) or (Y3-Y2)
 asm("mullw r4,r9,r4 "); // (input-Xlow)*(Yhigh-Ylow)
 asm("subf r8,r6,r8 "); // (Xhigh-Xlow), r8[32:63]=(Y3-Y2)
 asm("divw r4,r4,r8 "); // 32 bit quotient
 asm("add r3,r4,r10 "); // return answer in r3

asm("b return_y");

/* Input is less than the current x values in r6, so it's either too low,
 or between x4 and x5, or between x8 and x9.*/
 asm("BackGrd2:");
 asm("evmergehilor4,r9,r4 "); // r9[0:31]=Yhigh r4[32:63]=input
 asm("evsubfw r5,r12,r4 "); // else, compute (Yhigh-Ylow) and (input-Xlow)
 asm("evmergehi r10,r0,r5 "); // r4[0:31]-->r10[32:63]
 asm("mullw r10,r5,r10 "); // (Yhigh-Ylow)*(input-Xlow)
 asm("evmergehi r6,r0,r6 "); // r6[0:31]-->r6[32:63]
 asm("subf r8,r12,r6 "); // (Xhigh-Xlow), r8[32:63]=(X5-X4)
 asm("divw r10,r10,r8 "); // 32 bit quotient
 asm("cmp 1,r4,r12 "); // Bounds Check, is input < first x value
 asm("bc 12,4,toolow "); // if true, then input out of bounds
 asm("evmergehi r3,r0,r12 "); // r12[0:31]-->r12[32:63]
 asm("add r3,r10,r3 "); // return answer in r3
 asm("b return_y");

/* OUT OF BOUNDS */
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor14

Summary
 asm("toolow:");
 asm("evmergehi r3,r0,r4 "); // merge contents of r4[0:31]-->r10[32:63]
 asm("b return_y ");
 asm("toohigh:");
 asm("evlwhoux r3,r6,r7 "); // r6 = last y value

 asm("return_y:");
 return;

}

A.2 var_table_lookup_c()
//---
// C based table lookup code
//---

unsigned short var_table_lookup_c(unsigned short *tbl_ptr, unsigned short in_value)
{

unsigned char num_XYpairs; // number of x-y pairs
unsigned short y_high; // upper bound of the y value
unsigned short y_low; // lower bound of the y value
unsigned short y_input_diff; // difference between y_low and the Y value from the

// input.
 unsigned short y_return; // return value
 unsigned short x_input_diff; // difference between input and the lower bounding X

// value
 unsigned short x_diff; // difference between the bounding X values
 unsigned short x_val; // x value pointed at by x_ptr
 unsigned short *x_ptr; // pointer to the current x_val

 /* get the count of xy pairs and check if 0 */
 if (num_XYpairs = *((unsigned char *) tbl_ptr))
 {

if (in_value <= *(tbl_ptr + 1)){ /* is the input <= first x? */
 y_return = *(tbl_ptr + 2); /* if so, return first y */

}
else if (in_value >= *(tbl_ptr + ((num_XYpairs * 2) - 1))){

/* is the input >= last x? */
y_return = *(tbl_ptr + (num_XYpairs * 2));/* if so, return last y */

}
else { /* if neither above, it must be in the middle */

x_ptr = tbl_ptr + 1;/* move ptr to first entry */

/* search up through the X points to find which two X entries input is between */
while(*x_ptr <= in_value)

x_ptr+=2;

x_val = *x_ptr;
y_low = (unsigned short) *(x_ptr - 1);

if (in_value == (unsigned short) *(x_ptr - 2)){
y_return = y_low;

}
else {

/* Determine the difference between the input and the lower bounding X value */
x_input_diff = (in_value - *(x_ptr - 2));

/* Determine the difference between the bounding X values */
x_diff = (x_val - *(x_ptr - 2));
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 15

Summary
y_high = (unsigned short) *(x_ptr + 1);

if (y_high > y_low){
/* if Slope is positive find the increase for the change in input then add
it to the y_low value */
y_input_diff =((unsigned short)((y_high - y_low) * x_input_diff))/x_diff;
y_return = (unsigned short) y_low + y_input_diff;

}
else {
/* if Slope is negative find the decrease for the change in input then subtract

 it from the y_low value */
y_input_diff =((unsigned short)((y_low - y_high) * x_input_diff))/x_diff;
y_return = (unsigned short) y_low - y_input_diff;
}

}
}
return(y_return);

}
else {

/* return first Y value if Count == 0 */
return(*(tbl_ptr + 2));

}
}

A.3 Tables
/* This table holds the data for the c-based table lookup function */

unsigned short table_var_c[]={
0x0c00, // header, first byte is number of x-y pairs

 0x110a, // x1
 0xccc8, // y1
 0x2214, // x2
 0xbbC2, // y2
 0x331e, // x3
 0xaaB5, // y3
 0x4428, // x4
 0x99A6, // y4
 0x5532, // x5
 0x889f, // y5
 0x663c, // x6
 0x7784, // y6
 0x7746, // x7
 0x667c, // y7
 0x8850, // x8
 0x556c, // y8
 0x995A, // x9
 0x445d, // y9
 0xaa64, // x10
 0x3359, // y10
 0xbb6e, // x11
 0x222d, // y11
 0xcc78, // x12
 0x1116}; // y12

/* This table holds the data for the SIMD-based table lookup function */

unsigned short table_var_asm[]=
 { 0x0000, // first four entries are the header

0x0020, // offset to start of y vals
 0x0000,

0x0020,
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor16

Summary
0x110a , // x1
0x2214, // x2
0x331e, // x3
0x4428, // x4
0x5532, // x5
0x663c, // x6
0x7746, // x7
0x8850, // x8
0x995a, // x9
0xaa64, // x10
0xbb6e, // x11
0xcc78, // x12

0xccc8, // y1 - Note the ‘interleaved’ order of the y data that allows
0xaaB5, // y3 the efficient use of the 64-bit SIMD instructions.
0xbbc2, // y2
0x99a6, // y4
0x889f, // y5
0x667c, // y7
0x7784, // y6
0x556c, // y8
0x445d, // y9
0x222d, // y11
0x3359, // y10
0x1116}; // y12
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 17

THIS PAGE INTENTIONALLY LEFT BLANK
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor18

THIS PAGE INTENTIONALLY LEFT BLANK
Enhanced Table Lookup Performance, Rev. 0

Freescale Semiconductor 19

AN3288/D
Rev. 0, 7/2006

HOW TO REACH US:
USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.

	1 Introduction
	2 Function Overview
	3 Table Format
	3.1 General Requirements
	3.2 Table Data for C Function
	3.3 Table Data for Optimized assembly Function

	4 Lookup Algorithms
	4.1 C-Based Algorithm
	4.2 SPE Optimized Algorithm
	4.2.1 Flow Diagram
	4.2.2 Code Analysis

	5 Results
	6 Summary

