|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN2794

Page Table Translation Setup

by Networking and Multimedia Group
Freescal e Semiconductor, Inc.
Austin, TX

This application note describes memory management unit
(MMU) page table setup for classic Power
Architecture®-based devices, such asthe MPC755. The
simplest page table setup is discussed using the page table
translation mechanism to augment the block address
translation (BAT) registers. TLB miss, instruction storage
interrupt (1S), data storage interrupt handling (DSI), and
on-demand paging are also discussed.

© 2010 Freescale Semiconductor, Inc. All rights reserved.

[SEEN I

Terminology ...

Rev. 1, 08/201

Contents

Typesof Trandationcoovvin..

Page Table Setup

ExceptionHandling

Revision History

freescale"

semiconductor

0

|
y

'
A

Terminology

1 Terminology

The following terms are used in this document:

BAT
DINK

DS

ISI

Hash function

Hash collision
MMU

MSR

Page
PTE

PTEG
SDR1

SRXx
SRR1

TLB

Block address trandation mechanism. A set of registers that contain the
translation information and access privileges for blocks of memory.

Dynamic interactive nano kernel. Thisis anano kernel and debugger for the
PowerPC systems.

Data storage interrupt (offset 0x300). Thisis the exception that a Power
Architecture-based processor takes when adata access cannot be trand ated by the
MMU.

Instruction storage interrupt (offset 0x400). This is the exception that a Power
Architecture-based processor takes when an instruction access cannot be
translated by the MMU.

A mathematical construct that generates indexes (hash values) into atable to
minimize collisions.

A condition where two hash values index into the same table entry.

Memory management unit. This on-chip unit manages memory accesses on a
processor.

Machine state register. Contains information on various states of the processor.
4 Kbytes of contiguous memory starting at a 4-Kbyte boundary

Page table entry. Contains the information on how amemory page may be
translated. PTEs are stored in memory and each one is 8 bytesin size.

A group of 8 PTEs. The address of a PTEG should be aligned to a 64-byte
boundary.

A register that definesthe high-order bitsfor the physical base addressand thesize
of the page table.

Segment register used for page trand ation.

Machine status save restore register 1. This register stores information when an
exception is taken.

Translation lookaside buffers. These on-chip storage entities store (cache)
recently accessed PTEs.

2 Types of Translation

Processor-generated memory accesses require address translation before they go out to the memory
subsystem. Instruction and data access translations are enabled through two bits (IR and DR, respectively)
in the machine state register (MSR).

When trandation is disabled the processor is said to be in real addressing mode. In this mode all memory
is mapped one-to-one with effective memory/cache attributes (WIMG settings) of 0001 or 0011.

When translation is enabled, address translation is performed either through BATSs or page tables and
TLBs. Figure 1 summarizes the trand ation types.

Page Table Translation Setup, Rev. 1

Freescale Semiconductor

Page Table Setup

0 Effoctive Add 31| Address Translation Disabled
ective ress | (MSRIIR] = 0, or MSR[DR] = 0)

Y
Segment Descriptor Match with BAT Registers
Located

T=1) | (T=0)

Page Address Translation

0 l 51

Virtual Address

Block Address Translation

Direct-Store Segment

Translation
Y
Look Up in Real Addressing Mode
Page Table Effective Address = Physical
Address
0 Y 31 0 Y 31 0 Y 310 Y 31
|ImpIementation-Dependent| | Physical Address | | Physical Address | | Physical Address |

Figure 1. Address Translation Types

For more details about the trand ation types, see the Programming Environments Manual for 32-Bit
I mplementations of the Power PC Architecture™.

3 Page Table Setup

This application note explains how to set up pagetablesfor use as extraBATS. It does not provide detailed
descriptions of registers and terms. These can be found in the Programming Environments Manual for
32-Bit Implementations of the PowerPC™ Architecture.

To set up page tables the following steps are followed. Note that the MMU should be off (translation
disabled through M SR[IR,ID]) when the following setup isrun. At the end of the setup, the MMU isturned
back on.

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 3

Page Table Setup

3.1 Page Table Size

One pagetableentry (8 bytes) covers4 Kbytesof memory. For example, to set up pagesfor sixteen Mbytes
of memory, 4096 entries (or 32 Kbytes of page table space) are required. However, dueto the likelihood

of collisonsin accessing the PTEs, a minimum of four times as much, or 16384 entries (or 128 Kbytes of
page table space), is recommended.

Table 1 lists the minimum recommended page table sizes for different memory sizes. The *x’ for
HTABORG gets filled with the upper address bits of the page table in memory (see Section 3.2,
“Configuring SDR1 Register”).

Table 1. Minimum Recommended Page Table Sizes

Recommended Minimum Settings fo_r Ifiecommended
Minimum
Memory Govered Memory for Page Number of Number of HTABORG
Tables Mapped Pages PTEGs (Maskable Bits | HTABMASK
(PTEs) 7-15)

8 Mbytes (229) 64 Kbytes (219) 213 210 X XXXX XXXX 0 0000 0000
16 Mbytes (2%%) 128 Kbytes (217) 214 o™ X XXXX XXXO 0 0000 0001
32 Mbytes (22°) 256 Kbytes (218) 215 212 X XXXX XX00 0 0000 0011
64 Mbytes (229) 512 Kbytes (219) 216 213 X XXxX X000 0 0000 0111
128 Mbytes (227) 1 Mbyte (220) 217 214 X xxxx 0000 00000 1111
256 Mbytes (228) 2 Mbytes (22) 218 215 x xxx0 0000 00001 1111
512 Mbytes (229) 4 Mbytes (222 219 216 X Xx00 0000 00011 1111
1 Gbytes (230 8 Mbytes (229 220 217 x X000 0000 00111 1111
2 Gbytes (23") 16 Mbytes (22%) 221 218 x 0000 0000 01111 1111
4 Gbytes (2%?) 32 Mbytes (22°) 222 219 0 0000 0000 11111 1111

Assuming the starting and ending memory addresses are in r3 and r4 registers respectively, the following
code stores the page table size to r6.

//calcul ate PT_size ((end-start)*8/4096)*4 or (end-start)/128
//mnimumsize of PT_size is 64 Kbytes
/I PT_size is * 4 (to satisfy mninmum

/lrequirement) (see table 7-22 of PEM for 32 bit nanual)

sub ré, r4, r3

srwi ré, r6, 7 //div by 128 to get pt_size
rlwvinm r8, r6, 20, 12, 31 /lis PT_size >= 64 Kbytes
bne cont

lis r6, 0x10 /1if not set to 64 Kbytes

cont:

Page Table Translation Setup, Rev. 1

4 Freescale Semiconductor

Page Table Setup

3.2 Configuring SDR1 Register

The HTABORG field of SDR1 register (Figure 2) contains the upper 16 bits of the page table location.
HTABORG

and HTABMASK of SDR1 register need to be programmed according to Table 1.

[] Reserved

HTABORG 0000 00O HTABMASK

0 15 16 22 23 31

Figure 2. SDR1 Register Format

SDR1[HTABMASK] isamask with as many low-order ones as there are low-order zeros in the
HTABORG. For example, if the page tableislocated at 0OXO3A0_0000, HTABORG and HTABMASK
should be programmed to 0b0O000_0011 1010 0000 and ObO000_0000_0001_1111 respectively. The
relation between the HTABMASK, HTABORG and the size of the memory constrain the location of the
page table. The best way to satisfy these requirementsisto place the page table at the upper end of the
physical memory. For example, for 64 Mbytes of memory, 512 Kbytes of memory isrequired for the page
tables (from Table 1). Placing the table at the upper end of the memory will yield page table base address
of 0x0400_0000 - 0x0008_0000 = 0x03F8_0000. An address of 0x03F8_0000 satisfies the requirement
that HTABORG = 0b00O00_0011 1111 1000 and HTABMASK = 0b0000_0000_0000_0111.

Thefollowing PowerPC assembly code cal culates the page table | ocation and sets the SDR1. In the assembly code,
ré contains the page table size (see Section 3.1, “Page Table Size"), and memSize is afunction that returns (in r3)
the total memory available on a system. SDR1 is Specia Purpose Register (SPR) 25.

/lcalcul ate PT_location (nmenSi ze-PT_si ze)

bl mensSi ze

sub r3, r3, r6 /1 PT_|l oc=menti ze- PT_si ze
//set up SDR1

xor ro9, r9, r9

ori r9, r9, Oxffff

/] set HTABORG of SDR1
rlwinm r8, r9, 16, 0, 15 /[r8=0xff ff 0000
and ri5, r3, r8 /1 r9=0x0000f f f f
// set HTABMASK of SDR1
/lin Cit is:
[/ for (i =0x0000ffff;(sdrl_val ue&(i<<16)) && i>0;i>>=1);
ht abmask:
rlwnm r8, r9, 16, 0, 15 /1i<<16

and. rg8, r8, ri5 //cl=sdril_val ue & i<<16

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 5

Page Table Setup

beq

cnpli
bl e

Srw

b

exit _ht abmask:

exi t _ht abmask
rg, 0

exi t _ht abmask
rg, r9, 1

ht abmask

/lif ¢c1=0 then exit
/1i>0 ?
/lif i=<0 then exit

[1i>>=1

// now r9 should have t he HTABMASK

or

nt spr

r15, rl15, r9
25, r15

/1l set SDR1

3.3 Configuring the Segment Registers

The segment registers contain the virtual segment IDs (V SIDs) that are used for page table translation. The
upper 4 bits of effective address dictate which segment register to use. If more than one segment register
is being used, then each one needs to have a unique VSID. To accomplish this, the following code loads
up the V SIDs with consecutive numbers. In the code, r8 and r9 contain the starting and ending address of
the memory area to be covered by page tables.

//set up SRx

rlwinm

rlwinm

Srx_set:
bl
addi
cnpw
bl e

r3, r8, 4, 28,
r4, r9, 4, 28,

set_srx
r3, r3, 1
r3, r4

srx_set

Where set_srx is defined as:

//set srx registers

. gl obal

set_srx:

cnpwi
beq
cnpwi
beq
[1fill
crpwi
beq

set_srx

rd4, O
msroO
r4, 1

msrl

r4, 15

nmsrlb

31 [/l extract 4 MSBs

31 [/l extract 4 MSBs

/ l expects r8=val ue r9=sr index

in the same sequence for SR2 up to SR14 here

Page Table Translation Setup, Rev. 1

Freescale Semiconductor

Page Table Setup

ntsrO:

nt sr 0, r3

bl r
nmsrl:

n sr 1, r3

bl r

//fill in the same sequence for SR2 up to SR14 here
nmsri15:

nt sr 15, r3

bl r

3.4 Clearing the Page Tables

Before setting up the page tables, it isimportant to zero out the page table memory spacefirst. Thisis
because pagetable entriesare searched by looking at the valid bit of the entriesand finding aninvalid entry.
If the memory areais not cleared first, then false valid entries will create table collisions.

To clear the page table memory area, a simple store word instruction is used. Other means can be used as
well. Assuming r6 contains the table size in bytes and r7 contains the table location, the following
assembly code clears the page table memory.

//clear out page table nenory

rlwvinm r6, r6, 30, 0, 31 //divide by 4
nctr ré

xor r8, r8, r8

subi r7, r7, 4 /] pre-decrement r7

zero_out _pte:
stwu r8, 4(r7)

bdnz zero_out_pte

3.5 Constructing the Page Table

When looking for a page table entry for a page (4-Kbyte block), the processor uses a hash function, in
combination with the segment registers (for the VSID field of the virtual address) and the SDR1 register,
to construct a PTE group (PTEG) address (see Figure 3). In asimilar fashion, when software sets up the
page tables, it should use the same algorithm to construct the PTEG addressfor a PTE. Oncethe PTEG is
calculated from the algorithm, then thefirst empty PTE (asindicated by the valid bit being cleared) isused
to storethetrandationinformation. If all the PTEsin aPTEG areaready used (valid), then the second hash
valueisgenerated from thefirst hash by inverting al the bits (one’'s complement). To indicate that the PTE
is placed there using the second hash, the software setsthe H bit in the upper PTE. The detailed assembly
codeis described in subsequent sections. The processisrepeated for each page of the memory areathat is
covered by the page table.

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 7

Page Table Setup

~€——Virtual Page Number (VPN) —_— >
0 45 23 24 29 30 39 40 51
52-Bit Virtual Address Virtual Segment ID API Byte Offset
(24-bit) (6-bit) | (12-bit)
' | Page Index (16-bit) |
(3 Bit)
Y
000 (16-bit)
| |
Y Y
Hash Function
SDR1
0 67 1516 22 23 31 0 8'9 18
XXXX XX . vvn 00 00....011.. .1 Hash Value
(16-bit) 0000000 (9-bit) (19-bit)
| I Mask L 1 .
L Ve 1 Tgpits L 10bits
Base l
Address Y
AND
Yv
PAGE TABLE
OR PTEO PTE7
| —| |<—8hbytes }
PTEGO
0 Y 67 Y 15 16 v 25 26 31 .
(7-bit) (9-bit) (10-bit) 0 ?BOE?“? 0l; .
‘ PTEG Select |
32-Bit Physical Address of Page Table Entry PTEGN
<«———64Bytes —— »
Upper PTE Lower PTE
01 24 25 26 31 0 19 23 25 29 31
VSID API Physical (Real) Page Number
(24-bit) (6-bit) (RPN) (20-bit) 000RICl |o|PP
? T L I ?
\ H v WIMG

32-Bit Physical Address |

RPN (20-bit)

|Byte Offset (12 bit) |

Figure 3. Generation of Addresses for Page Tables

Page Table Translation Setup, Rev. 1

Freescale Semiconductor

Page Table Setup

The following sections detail how a PTE isloaded into the table.

3.5.1 Segment Register Selection and Loop Setup

PTEs are constructed for each page in the memory range covered. For each page we figure out which
segment register to use. Segment register is selected by the 4 upper bits of the effective address (there are
16 segment registers). The following source code sets up the loop for each page in the address range that
isto be covered and reads the appropriate segment register.

//1oop for each 4k bl ock of menory
| oad_PTEs:

cnpw r3, r4

bge check_| ow_nmenory
//figure out which sr we need

rlwinm r8, r3, 4, 28, 31

/1 get _srx expects input in r8 and outputs to rl13
get_srx

Where get_srx is:

/get srx registers

. gl obal get_srx

get _srx:

crpwi rg, 0

beq nfsr0

crpwi rg, 1

beq nfsrl

/l...repeat for nfsr2 up to nfsril5
nf sr0:

nf sr ri3, o

bl r
nfsrl:

nf sr ri3, 1
bl r

//...repeat for sr2 up to sri5

3.5.2 Setting Up Upper and Lower PTEs

PTEs have the format shown at the bottom of Figure 3, with an upper word and a lower word. We set up
the PTE before we search in the table to find where to put it. The following code, which assumes SRx

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 9

V¥ ¢
i

Page Table Setup

content in r13, effective addressin r3 and WIMG bitsin r5, sets up the upper word of the PTE inr11 and
the lower word of the PTE in r12.

3.5.3

//construct V/IVSID/API for loading to PTE | ater

rlwinm r11, r13, 7, 1, 24 /lextract VSID from SRx
riwm r11, r3, 10, 26, 31 /lextract APl from EA

//and insert in VSID APl reg
oris ri1, r11, 0x8000 //set Valid bit

//set up lower word of the PTE with EA=PA

rlwinm r12, r3, 0, 0, 19 [/l extract RPN
rlwm r12, r5, 3, 25, 28 /linsert WMG
ori r12, rl1l2, 0x182 /1 R=C=1, PP=10

Generating the First Hash Value

Thefirst hash valueis generated by performing an exclusive OR of the 19 low-order bits of the VSID and

bits 4-19 of the effective address preceded by three Os (see Figure 4).

Page Table Translation Setup, Rev. 1

10

Freescale Semiconductor

Page Table Setup

Primary Hash:
VA5 VA23

Low-Order 19 Bits of VSID (from Segment Register)

XOR
4 19

000 Page Index (Virtual Address bits 24—39 or Effective Address bits 4-19)

Output of Hashing Function 1 Hash Value 1
I0 8I | 9 18I
Secondary Hash:
0 18
Hash Value 1

One’s Complement Function

i

Output of Hashing Function 2 Hash Value 2

0 8 9 18
I L

Figure 4. Hashing Functions for Page Tables

The assembly code that generates the hashl vaue is below. The code assumes the effective addressisin
r3 and the segment register contents are in r13. It stores the hashl value into r14.

//hashl = SRx[13-31] xor (0b00O || EA[4-19])

rlwinm r14, r3, 20, 16, 31 [/ extract EA[4-19]
rlwinm r12, r13, 0, 13, 31 [l extract SRx[13-31]
xor rl4, rl4, rl2 /1 xor the two

3.54 Calculating the PTEG Address

The PTEG address is then generated according to the algorithm shown in Figure 3. The code for this part
of the algorithm is below. In this code, the SDR1 value is assumed to be contained in r15, and the hashl
valueisstored in r15. At the end of this code, r9 holds the PTEG address.

//cal cul ate PTEG address

/| PTEG address = SDR1[0-6] ||

/1 (SDR1[7-15] | (SDR1[23-31] & hash[13-21]))
/1 || hash[22-31] || 0b0O00000

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 11

|
y

'
A

Page Table Setup

cal cul at e_PTEG
rlwinm
and
rlwinm

or

xor
rlwim
rlwim

rlwim

3.5.5

ri2,
ril2,
r8,

ril2,

ro,
ro,
ro,
ro,

rl4, 22, 23, 31
rl2, r15
r15, 16, 23, 31

rl2, r8

r9, r9
ri5, 0, 0, 6
r12, 16, 7, 15

ri4, 6, 16, 25

[/ hash[13- 21]

/1tnmpl = SDR1[23-31] & hash[13-21]
/1 SDR1[7- 15]

//tmp2 = SDR1[7-15] | tnpl
!/ zero out PTEG address
/linsert SDR1[0-6] into PTE addr[O0-6]
/linsert tnp2 into PTE addr[7-15]
/linsert hash[22-31] into
/1 PTE addr[16- 25]

Searching for an Empty PTE location

After we have the address of the PTEG, we traverse through the eight PTEs within the PTEG to find an
empty (available) PTE. An empty PTE isidentified by itsvalid bit (bit O of the upper PTE) being clear. In

this code, r9 holds the address of the PTEG.

//search for an entry within the 8 PTEs in the PTEG

subi

ro,

r9, 8

//search and insert entry

mectr

r10,
r10

8

/| pre-decrenent

r9 for PTE search

Page Table Translation Setup, Rev. 1

12

Freescale Semiconductor

Page Table Setup

next:
I wzu r8, 8(r9) /11 oad PTE
rlwinm r8, r8, 1, 31, 31 //check valid bit
beq exit_loop //if we find an enpty PTE then

/1 exit |oop
bdnz next /1 ot herw se conti nue
/1if we get here then we did not find an enpty entry in which case we generate

//2nd hash (see Section 3.5.7, “Cenerating the Second Hash Val ue”)

3.5.6 Loading the Upper and Lower Words of PTE

After we have successfully located an empty PTE location, we load the PTE we constructed in
Section 3.5.2, “ Setting Up Upper and Lower PTES,” to the empty table location.

exit _| oop:
//we have found an enpty PTE. Populate it for current EA
stw r11, 0(r9) //1oad upper word of PTE

stw r12, 4(r9) //1oad | ower word of PTE

3.5.7 Generating the Second Hash Value

If thereisno empty PTE within the PTEG in the previous section, a second hash is calculated. The second
hash isaone’s complement of the first hash (see Figure 4). The following code first checks if second hash
has aready been attempted (indicated by the H bit in the PTE (contained inr11) that we are trying to insert
tothetable). If not, then it performs the second hash; otherwise, it flagsan error. The first hash is assumed
tobeinrl4.

/| Check to see whet her second hash already tried

rlwinm r12, r11, 26, 31, 31 //check for Hbit in V/VSIDAPI
Il register

bne return_error /lif set, flag an error

//if second hash not tried, then try second hash

Xoris rl4, rl4, Oxffff /] ones- conpl ement hashl

Xori ri4, rl4, Oxffff [/ r1l4=hash2

ori r11, r11, 0x40 //set Hbit in V/VSID APl register
b cal cul ate_PTEG /1 to indicate 2nd hash

3.5.8 Set Up Completion

The preceding setup is performed for each page in the address range covered. If an error is encountered
(see Section 3.5.7, “ Generating the Second Hash VValue™), an error isreturned to the calling routine and the
program exits.

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 13

|
y

'
A

Exception Handling

4 Exception Handling

4.1 TLB Miss Exception Handling

The MPC755, MPC744x, and MPC745x have a feature in which software table search is enabled or
disabled; in MPC603e and other processors with the MPC603e core, hardware table search is not
supported. When software table search is enabled and memory access does not hit on the on-chip TLBs or
BATS, the processor generates one of the TLB exception handlers. Instruction TLB miss exception (offset
0x1000) is generated when an instruction access can't be translated; data TLB load miss exception (offset
0x1100) is generated when a data |oad access cannot be translated and data TLB store miss exception
(offset 0x1200) is generated when a data store access can't be translated by the on-chip TLBs or BAT
registers or the C bit in a PTE needed to be updated. The system software needs to search for a PTE from
memory and load an on-chip TLB aswell as update the R and C bits of the PTE. For details please read
the respective user’s manualsfor the processors. The exception handling routines are described in Figures
5-16 and 5-17 of the MPC603e RISC Microprocessor User’s Manual and Figures 5-33, 5-34 and 5-35 of
the MPC7450 RISC Microprocessor Family User’s Manual .

The MPC603e (and other processors with the MPC603 core) set the MSR[TGPR] bit after takinga TLB
miss exception. This bit maps four specia purpose registers TGPRO-TGPR3 to GPRO-GPRS.
TGPRO-TGPR3 are accessed through GPR0O-GPR3 and are used as temporary registers for use in the
exception handler. With the TGPR bit set, software cannot access GPRO-GPR3. Using GPR4-GPR31
results in indeterminate behavior. For inter-processor compatibility purposes this feature was not used in
writing the code below. For code compactness (i.e. to get the same code to work on al the processors), the
MSR[TGPR] bit is cleared immediately after a TLB miss exception as follows:

nf msr r3
oris r3, r3, 0x0002
xoris r3, r3, 0x0002
nt nsr r3

R3 (GPR3) should be saved after the MSR bit is cleared. Saving it before the bit is cleared only resultsin
saving the TGPRS3 register.

The following code shows the implementation of the exception handling for the TLB miss exception.
Before it getsto this routine, r23 isloaded with the contents of the DMISS register (or TLBMISS for
MPC744x/MPC745x), r24 is|oaded with DCMP (or PTEHI for MPC744x/MPC745x), and r25 is |oaded
with RPA (or PTELO for MPC744x/MPC745x). See the processor’s user’'s manual for details on what
these registers mean. These registers are also discussed in TLB Trandation for the MPC603e/MPC755
(AN2795) and TLB Translation for the MPC745x/MPC744x (AN2796).

//1TLB m ss exception for processors with software table search

/'l enabled - in these routines ex_type holds the exception offset
do_TLB:

nr r3, r23 //get EA of mss

li rd4, 1 //try 1st hash first

bl get _pteg /1 get pteg address

Page Table Translation Setup, Rev. 1

14 Freescale Semiconductor

nr r5, r24 //get crmp val ue

li r4, 8 /11 oad counter

ntctr ra /11 oad counter

subi r3, r3, 8 /| pre-decrenent pteg pointer
next 1:

I wzu rd, 8(r3) //get pte

cnpw rd, r5 // conpare with conpare val ue

beq got _pte

bdnz next1

//if we get here first, then hash has failed

nr r3, r23 /1 get EA of mss

li r4, 2 //try 2nd hash

bl get _pteg

nr r5, r24 //get cmp val ue

li r4, 8 /11 oad counter

ntctr ra /11 oad counter

subi r3, r3, 8 /| pre-decrenent pteg pointer
next 2:

I wzu rd4, 8(r3) //get pte

cnpw rd, r5 // conpare with conpare val ue

beq got _pte

bdnz next 2

/1 if we get here, then both hashes have fail ed

b quit_graceful ly /Il page fault case
got _pte:
//read | ower pte from nmenory

| wz r5, 4(r3)

//set Rbit in pte

ori r5 r5, 0x100
lis rd4, ex_type@ /1 get high order address
ori rd,rd4, ex_type@ // get |ow order address

Page Table Translation Setup, Rev. 1

Exception Handling

Freescale Semiconductor

15

h

Exception Handling

| wz

crpwi

bne

r4,0(r4) /1 load the exception type
r4, 0x1000 /1 is this an | TLB m ss?
i gnore_G bit // if not (i.e. thisis

// DTLBS or DTLBL), then ignore G bit

//check G bit for |ITLB m sses

rlwinm

bne

ignore_G bit:

crpwi

bne

rlwinm

bne

r6, r5, 29, 31, 31//check G bit for ITLB ni ss

quit_gracefully //if Gbit set, then it is a page protection

//violation

r4, 0x1200 // is this a DTLB Store miss?
cont _TLB_handl e /1 if not DTLBS (i.e. this is
/] DTLBL), then don't check/set C bit
// also don't check for page violations
r6, r5,6 25, 31, 31//check C bit
ski p_pte_update //if set,then no need to check/update

/1 other bits of pte

// check for page violations (PP bits) for DTLB store m ss

rlwinm

beq

rlwinm

crpwi
beq

r4, r5, 31, 31, 31//if PP=0x check SRR1[KEY]
check_SRR1_key

rd4, r5, 0, 30, 31 //if PP=11, then it is page protection
r4, 0x3 //violation

quit_graceful ly

//set Chbit in pte for DTLBS (DTLB store)

ori

b

check_SRR1_key:
nfsrrl
rlwinm

beq

r5 r5, 0x80 //there is no violation, continue

cont _TLB_handl e

r4
r4, r4, 13, 31, 31

quit_gracefully // page protection violation if

Page Table Translation Setup, Rev. 1

16

Freescale Semiconductor

Exception Handling

/1 PP=0x and SRR1[KEY] =1

cont _TLB_handl e:
//store pte to page table in nmenory & rpa
stw r5, 4(r3)
/1 dcbf 0, r3

ski p_pte_update:
/1if this is 603e or 755 store to rpa otherwi se store to ptelo
nf spr r9, 287 /1 Only use upper half of PVR
rlwinm r9,r9, 16, 16, 31

cnpl i cr0,0,r9, Ox6 //1s this an MPC603? (i.e. PVR = 0x0006_nnnn)
beq store_to_rpa

crpl i 0, 0,r9, 0x0008 /1ls this MPC750/ MPC755?

beq store_to_rpa

cnpl i cr0,0,r9, 0x81 //1s this an MPC8240? (i.e. PVR = 0x0081_nnnn)
beq store_to_rpa

cnpl i cr0,0,r9,0x8081 //Is this an MPC8245? (i.e. PVR = 0x8081_nnnn)
beq store_to_rpa

nt spr ptelo, r5
b ski p_rpa
store_to_rpa:

nt spr rpa, rb5
ski p_rpa:
//get ready for tlbld/tlbli

nr r3, r23 //get mss address

//if this is an ITLB miss, then do tlbli otherwi se do tlbld

lis rd4, ex_type@ /] get high order address
ori rd,rd, ex_type@ // get |ow order address
I wz r4,0(r4) /1 load the exception type
cnmpw r4, 0x1000 // is this a DTLB | oad miss?

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 17

Exception Handling

bne
sync
tlbie
sync
tlbli
sync

b

do_t1 bl d:
sync
tlbie
sync
tlbld

sync

do_tlbld
r3 //invalidate
r3 /11 oad

cont_restore

r3 //invalidate

r3 /11 oad

Theget _pt eg routine returns the address of the PTEG given data or instruction address and the desired
hash function (1 or 2). The MPC603e implements HASH1 and HASH2 registers for this purpose (that is,
to hold PTEG address for first-hash and second-hash values respectively), but, for the sake of
inter-processor compatibility and simplicity, the registers were not used here. Likewise, the MPC755 and
MPC745x/MPC744x implement similar registers. The get _pt eg routine is provided next.

FHEEEEEEEr i b i

/1 get_pteg

/1 Returns the pteg |l ocation for a given address and
I either the first or second hash

I i nput : r3 = effective address

/1 r4a =1 or 2 to indicate desired hash

I output: r3 = pteg address

/1 uses: ri7

FEEEEEEEEEE bbb b innrd

. gl obal

get _pt eg:
nflr
bl
bl

bl
crpw

get _pteg

rl7
set up_upm

transl ati on_of f

gener at e_hash

r4, 1

Page Table Translation Setup, Rev. 1

18

Freescale Semiconductor

Exception Handling

bnel flip_hash

bl cal cul ate_pteg
nr r3, r9

bl restore_mnsr
nilr rl7

bl r

4.2 DSI/ISI Exception Handling for On-Demand Paging

DSl or ISl exception occurs for amemory access that cannot be trandated through BATs and page tables.
For on-demand paging, a PTE is allocated for the missing address at run time after taking the DSI or 1SI
exception. The exception handler needs to find a spot for the new PTE in the pagetable. If thereisno free
PTE in all the 16 PTE locations (8 generated from the first hash and 8 from the second), an entry is cast
out from the table. To minimize memory activity, a PTE (and a corresponding page) that is not modified
isselected asavictim PTE to be cast out. If al the 16 PTEs are modified, the last one is flushed from
memory to disk. The source code to do the exception handling for DINK is shown below.

/] On-denand page:

I If this is a DSI exception in user code, allocate a page table

I translation for the exception on the fly and conti nue.

I if we get to this point of the program we have run into exception while
I runni ng user code

#i f def ON_DEMAND_PAGE

nf dar r3 //setup translation for current page
li r4, Oxofff
andc r3, r3, r4 //start addr = rounded down to page boundary

//check if current page is within the nenory size

lis r4, menSize@
ori r4, r4, menSi ze@
| wz r4, 0(r4)

cnpw r3, r4

bgt qui t_dsi //if greater than menfize quit
addi r4, r3, 0x1000 //end addr = srr0+4k

li r5 0 /1w mg=0

bl pte_l oad

crpwi r3, 1

bne quit_gracefully //pte_load success

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 19

Exception Handling

nf dar

andc

addi

bl

quit_dsi:

r3 /lon failure try replacing a page
r4, OxOfff

r3, r3, r4

r4, r3, 0x1000

r5 0

replace_pte

The restore_t o_user routine restores register values from the user programming model to the
hardwareregisters. PTE_| oad isthe code provided in Section 3, “ Page Table Setup.” r epl ace_pt eis
similar to pt e_| oad with the main difference that it looks for unmodified PTE within 16 PTES: 8 from
thefirst hash and the rest from the second hash. The routine assumesthat all 16 PTE |ocations are occupied
by valid PTEs mainly becauseit is called after PTE_| oad has returned an error indicating no free PTE.
r epl ace_pt e iswritten asfollows where the various “ branch and link” (bl) instructions are linking to
code as described in various sections of Section 3, “Page Table Setup.”

FHEEEEEEEr i b rrrrd

/'l replace_pte

/1 Creates a PTE for an address by casting out another
I PTE.

I i nput: r3 = address that needs a PTE

/1 rd4 = wny

I out put : none

FHEEEEEEE i b rrrrd

. gl obal

repl ace_pte:

nflr

bl
bl
bl

cal cul at e_PTER:

bl
bl

crpwi

bne

replace_pte

ri7
prol og //turn off translation & set pointer to user prog nodel
gener at e_hash //see Section 3.5.3, “Cenerating the First Hash Val ue”

const ruct _upper_pte

//see Section 3.5.2, “Setting Up Upper and Lower PTEs”

cal cul ate_pteg //see Section 3.5.4, “Calculating the PTEG Address”

search_pteg_for_cast // see bel ow

r8, 0

cont _1sthash2

Page Table Translation Setup, Rev. 1

20

Freescale Semiconductor

Exception Handling

//try 2nd hash
bl flip_hash //see Section 3.5.7, “Cenerating the Second Hash Val ue”
b cal cul ate_PTE®

cont _1st hash2
crpwi rg, 1
bne popul at e // see bel ow
/1if we get here all 16 PTEs are valid, and nodified. W need

//to flush out the last of these 16 PTEs to (sinulated) disk

/lextract | ower PTE

| wz r6, 4(r9)

/lextract real page address (don't know how | can get the effective

I or virtual page address since | don't have the hash val ue).
I VWhen we flush, we should translate the real page address to
I virutal (effective) address

rkwinm r6, r6, 0, 0, 19

/1 flush page
// Now we flush this nodified page to disk

bl flush_page_t o_di sk //this depends on system (not inplenented)

popul at e:

// popul ate the pte for the new page

nr r5 r4

bl popul ate_pte

bl epi |l og //turn on translation
nilr rl7

bl r

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 21

}{—

Exception Handling

Thesear ch_pteg_for_cast routinelooksfor an unmodified PTE. The source code is provided
below:

//search pteg for cast
/1 This is the same as search_pteg but instead of searching for an
/1 enpty entry it looks for an unchanged (C bit cleared) entry
I for repl acement
/1 input:r9 = pteg address, rl1ll = upper PTE, r14 = hash
/1 output:r9 = pte address, r8 = 1 on error
// uses:rl10, r12
search_pteg_for_cast:
//search for an entry within the 8 PTEs in the PTEG
subi r9, r9, 8 /'l pre-decrenent r9 for PTE search
I rio, 8

ntctr ri1o

next 2:
I wzu r8, 8(r9) /11 oad PTE
rlwvinm r8, r8, 25, 31, 31 // check changed bit
beq pt eg_success?2 /1if we find unchanged PTE then

/1 exit |oop

bdnz next 2 /] ot herwi se conti nue

//we have exhausted the list. Let's see if we have already tried

/I second hash

rlwinm r12, r11, 26, 31, 31 //check for Hbit in V/VSIDAPI
/'l register

bne pteg_failure2 /1if set flag an error

li rg, 0 //try 2nd hash
bl r
pteg_failure2:
li rg, 1
bl r
pt eg_success2:
li rg8, 2
bl r

Page Table Translation Setup, Rev. 1

22 Freescale Semiconductor

Revision History

The routine has three return values. On successfully finding an unmodified page, it returnsa?2. If thefirst
hash fails, it returnsa 0. If both the first and second hashesfail, it returnsa 1. In all cases, the routine also
returns a pointer to the victim PTE in r9.

5 Revision History

Table 2 provides arevision history for this application note.

Table 2. Document Revision History

Rev. .
Number Date Substantive Change(s)
1 08/2010 | In Section 4.2, “DSI/ISI Exception Handling for On-Demand Paging,” changed nf srr 0 to nf dar .
0 10/2004 Initial public release

Page Table Translation Setup, Rev. 1

Freescale Semiconductor 23

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN2794
Rev. 1
08/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC, , are trademarks of
Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. The Power
Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by
Power.org.

© 2010 Freescale Semiconductor, Inc.

BUILTON |

freescale"

semiconductor

	1 Terminology
	2 Types of Translation
	Figure 1. Address Translation Types

	3 Page Table Setup
	3.1 Page Table Size
	Table 1. Minimum Recommended Page Table Sizes

	3.2 Configuring SDR1 Register
	Figure 2. SDR1 Register Format

	3.3 Configuring the Segment Registers
	3.4 Clearing the Page Tables
	3.5 Constructing the Page Table
	Figure 3. Generation of Addresses for Page Tables
	3.5.1 Segment Register Selection and Loop Setup
	3.5.2 Setting Up Upper and Lower PTEs
	3.5.3 Generating the First Hash Value
	Figure 4. Hashing Functions for Page Tables

	3.5.4 Calculating the PTEG Address
	3.5.5 Searching for an Empty PTE location
	3.5.6 Loading the Upper and Lower Words of PTE
	3.5.7 Generating the Second Hash Value
	3.5.8 Set Up Completion

	4 Exception Handling
	4.1 TLB Miss Exception Handling
	4.2 DSI/ISI Exception Handling for On-Demand Paging

	5 Revision History
	Table 2. Document Revision History

