Freescale Semiconductor

Application Note

AN2365/D
Rev. 0, 10/2002

Using the
Programmable Time
Accumulator TPU
Function (PTA) with the
MPC500 Family

This TPU Programming Note is intended to provide simple C interface routines to the
Stan Ostrum programmable time accumulator TPU function (PTA). 1 The routines are targeted for the
Metrowerks MPC500 family of devices, but they should be easy to use with any device that hasa TPU.

1 Functional Overview

This TPU input function measures the total high time, low time or period of an input signa
over a user defined number of periods, and presents the result to the host CPU in the form of
a 32-bit accumulation.

2 Detailed Description

The programmabl e time accumulator (PTA) function measures either period, high time or low
time of an input signal over a programmable number of periods. The number of periods over
which the measurement is made is selectable over the range 1 to 255. Four modes of
measurement are available:

* Mode 1 measures total high time over the selected number of periods.
* Mode 2 measures total low time over the selected number of periods.

* Mode 3 measures total period over the selected number of periods, starting on a
rising edge.

* Mode 4 measures total period over the selected number of periods, starting on a
falling edge.

Figure 1 shows the four operating modes. All four examples are based on an accumulation of
seven periods, which are numbered below each waveform. Dark shaded areasin the bar below
each waveform indicate which parts of the waveform are actually measured. Unshaded areas
are not included in the measurement. Lightly shaded areas are part of the next measurement
cycle.

The output of the PTA function is a 32-bit result, which is expressed in counts of the selected
TPU timebase. The user can select either TCR1 or TCR2 asthe timebase for the measurement.
The number of TCR counts that have been accumulated multiplied by the period of one TCR
count will give the total measurement expressed in seconds.

The information in this Programming Note is based on TPUPNOG. It is intended to
compliment the information found in that Programming Note.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

freescale”

For More Information On This Product, semiconductor
Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

Freescale Semiconductor, Inc.

The PTA function operates continuoudly. After the specified number of periods has elapsed, the TPU
updates the 32-bit result parameter, generates an interrupt request to the host CPU, and restarts the process
for the next measurement cycle.

This function is very similar to the original PPWA function, although it has several major enhancements
over that function:

32-bit accumulation instead of 24 bit
Option of high or low time measurement instead of high time only

Option of starting period accumulation on rising or falling edge instead of rising only
Better noise immunity

A wbdpE

The PTA function does not link to other TPU channels at the end of each accumulation. If this feature is
required, the period/pulse width accumulation (PPWA) function should be used.

2 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

g |

Freescale Semiconductor, Inc.
PTA C Level API

1. HIGH TIME PULSE WIDTH MEASUREMENT (H5Q =00}

[S I

|
3 4 H & 70 1

PERIOD, COUNT:
I T- | O [5 -:1:::

INITIALIZE MEASUREMENT COMPLETE —
HSR =11 INTERRUPT CPU, RESET COUNTERS,

START NEXT ACCUMULATION

2 LOW TIME PULSE WIDTH MEASUREMENT (H5Q =01}

|_|1|7||

PERKID. COUNT: .
Ij——I_ [_:_:-:-EIZI
INITIALIZE MEASUREMENT COMPLETE —

HSR =11 INTERRUPT CPU, RESET COUNTERS,
START NEXT ACCUMULATION

1. PERIOD MEASUREMENT — RISING EDGE START (H5Q =10}

[S N

2

|

]
F
(]
=]
=
o

PERIDD COUNT:

INITIALIZE MEASURBMENT COMPLETE =
HE5R=1 INTERRUPT CPU, RESET COUNTERS,
START NEXT ACCUMULATION

4. PERIOD MEASUREMENT — FALLING EDGE STAAT (H5Q =11}

[O B |

PERIDD COUNT: 2 3 4 3 G 70
INITIALIZE MEASUREMENT CGOMPILETE =
HE5R=11 INTERRUPT CPU, RESET COUNTERS,

START HEXT ACCUMULATION

Figure 1. PTA Operating Modes

2.1 PTA C Level API

Rather then controlling the TPU registers directly, the PTA routinesin this TPU Programming Note may be
used to provide asimple and easy interface. There are 3 routines for controlling the PTA function in 2 files
(tpu_pta.h and tpu_pta.c). The tpu_pta.h file should be included in any files that use the routines. Thisfile
contains the function prototypes and useful #defines. Each of the routinesin tpu_pta.c will be looked at in
detail, the routines are:

e [nitialization Function:

— void tpu_pta_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, UINT8 timebase,
UINT8 mode, UINT8 max_count);

Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
°TA C Level API

* Return Vaue functions:
— UINT32 tpu_pta_get_accumulation(struct TPU3_tag *tpu, UINT8 channel);
— UINT8 tpu_pta_get_period_count(struct TPU3_tag *tpu, UINT8 channel);

2.1.1 void tpu_pta_init
Thisfunction is used to initialize a channel to run the PTA function. This function has 6 parameters:

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

» channel - Thisisthe TPU channel number of the PTA channel. This parameter should be assigned
avalue of 0to 15.

» priority- Thisisthepriority toassigntothechannel. Thisparameter shoul d beassigned aval ueof
TPU_PRIORITY_HIGH, TPU_PRIORITY_MIDDLE or TPU_PRIORITY_LOW. The TPU
priorities are defined in mpc500_utils.h.

o timebase— Thisisthe TPU timebase to use for PTA measurements. This parameter should be
assigned avalue of TPU_PTA _TCR1or TPU_PTA TCR2.

* mode— Thisisthe modeto use for PTA measurements. This parameter should be assigned avalue
of TPU_PTA_HIGH_TIME_ACCUM, TPU_PTA_LOW_TIME_ACCUM,
TPU_PTA_PERIOD_ACCUM_RISE, or TPU_PTA_PERIOD_ACCUM_FALL.

* max_count —Thisisthe number of periodsor pulsesthat are accumulated before the measurement
restarts. This parameter should be assigned avalue in the range 0 to 255. A value of zero or one
results in the accumulation of one period or pulse width.

Care should be taken when initializing TPU channels. The TPU’s behavior may be unpredictable if a
channel isreconfigured whileit isrunning. The channels should be stopped before they are configured. This
is done by setting the channel’s priority to disabled. If the channel is currently being serviced when the
priority is set to disable it will continue to service the channel until the state ends. To make sure the channel
is not being serviced, you need to wait for the longest state execution time after disabling the channel. All
channels are disabled out of reset so the channels can be configured immediately from reset.

Thetpu_pta _init function attemptsto wait between the disabling of the channels before it starts configuring
them, however the actual execution speed of the code will be depend on the specific system. If you are not
configuring the channels from reset, then idedlly it is best to have the functions disabled before calling this
function. TPU channels can be disabled by using the tpu_disable function in the mpc500_utils.c file. For
example, disabling channel 0 is done like this: tpu_disable(tpu, 0);

2.1.2 UINT32tpu_pta _get _accumulation

This function returns the current value of the 32-bit accumulation. This function has 2 parameters:

* *tpu-—Thisisapointer to the TPU3 module to use. It is of type TPU3_tag which isdefined in
m_tpu3.h.

e channel — Thisisthe TPU channel number of the PTA channel. This parameter should be assigned
avalueof 0to 15.

This function is normally called when the TPU signals the host CPU via an interrupt request that the
accumulationiscomplete. The CPU must executethiscall and read the result before the next accumulation
has exceeded 16 bits.

4 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Example 1

2.1.3 UINT8 tpu_pta _get period count

This function returns the current value of the 8-bit period count parameter. This parameter is used by the
TPU to count the number of input signal periods that have elapsed since the start of the last accumulation
sequence. When period_count equals max_count, a measurement sequence has been completed. This
function has 2 parameters:

* *tpu-—Thisisapointer to the TPU3 module to use. It is of type TPU3_tag which isdefined in
m_tpu3.h.

e channel — Thisisthe TPU channel number of the PTA channel. This parameter should be assigned
avalueof 0to 15.

3 Programmable Time Accumulator Examples

Thefollowing examples show configuration of the programmable time accumulator function for both period
and pulse width measurement. Each example is a C program that shows how to configure and use the PTA
interface routines.

3.1 Examplel

3.1.1 Description

This sample program show asimple PTA example that measures the total period over a selected number of
periods, starting on arising edge, of an input signal connected to channel 0 on TPUA. A simple interrupt
handler is used to trigger the acquisition of the completed measurement.

The program then runsin aninfinite loop, continuing to read back each accumulated measurement from the
input on TPUA channel 0.

3.1.2 Program

IR R R R R EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEERE SRR Ry

/* FILE NAME: tpu_pta_exanplel.c COPYRI GHT (c) 2002 */

/* VERSION:. 1.1 Al Rights Reserved */
/* */
/* DESCRI PTION: This sanpl e program show a sinple PTA exanpl e that */

/* neasures the total period over a selected nunber of periods, starting */
/* on a rising edge, of an input signal connected to channel 0 on TPUA */
/* A sinple interrupt handler is used to trigger the acquisition of the */
/* conpl et ed neasurenent. */
/* */
/* The programis targeted for the MPC555 but should work on any MPC500 */
/* device with a TPU. For other devices the setup routines will also need */

/* to be changed. */

/* */

/* H STORY ORI G NAL AUTHOR: Stan Ostrum */

Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

xample 1

/* */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
I % Ll il oy
/* 1.0 Stan Ostrum 03 Sep 02 Initial version of function. */
/* 1.1 Stan Ostrum 17 Sep 02 Revi sed after review */

/**/

#i ncl ude "npc555. h" /* Define MPC555 registers, this needs to be */

/* changed if other MPC500 devices are used. */

#i ncl ude "npc500_util.h" /* Utility routines for using MPC500 devices */
#i nclude "tpu_pta.h" /* TPU PTA functions */
Ul NT32 accunul ati on; /* gl obal variable for period/ PWaccumrul ation */

void main ()

{
struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */
set up_555(); /* Metrowerks setup routine for MPC555 */
/* initialize Prog. Time Accum function with: */
/* - Input signal on TPU A channel 0 */
/* - Use TCRL tinebase */
/* - Measure periods, start with rising edge */
/* - Max count val ue of 10 */
/* - Schedul e as high priority in the TPU */
tpu_pta_init(tpua, 0, TPU PRIORITY_H GH TPU PTA TCR1, \
TPU_PTA_PERI OD_ACCUM RI SE, 10);
tpu_i nterrupt _enabl e(tpua, 0); /* enable PTA interrupts */
while (1) { /* 1oop and nmeasure */
}
}

/***

FUNCTI ON . ext_Int_Handl er

PURPCOSE : Respond to external interrupts fromthe PTA function.

I NPUT NOTES : Al enabled external interrupts jump into this routine.
RETURN NOTES : If PTAinterrupt, get accunulation, clear the interrupt,

6 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

and quit.
GENERAL NOTES

***/

void ext_Int_Handl er()

{
struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */
extern U NT32 accunul ati on; /* gl obal accumul ation val ue */
if (tpu_check_interrupt(tpua, 0)) /* test PTAint. status bit */
{
accunul ation = tpu_pta_get_accunul ation(tpua, 0);
tpu_clear_interrupt(tpua, 0); /* clear interrupt */
}
el se

{

/* process external interrupt from another source */

}

3.2 Example 2

3.2.1 Description

Example 2

This sample program show asimple PTA example that measures the total high time over a selected number
of periods of aninput signal connected to channel 0 on TPUA. A simpleinterrupt handler is used to trigger

the acquisition of the completed measurement.

The program then runsin an infinite loop, continuing to read back each accumulated measurement from the

input on TPUA channel 0.

3.2.2 Program

/**/

/* FILE NAME: tpu_pta_exanple2.c COPYRI GHT (c) 2002 */

/* VERSION:. 1.0 Al Rights Reserved */
/* */
/* DESCRI PTION: This sanpl e program show a sinple PTA exanpl e that */

/* neasures the total high tine over a selected nunber of periods of an */
/* input signal connected to channel 0 on TPUA. */
/* A sinple interrupt handler is used to trigger the acquisition of the */

/* conpl eted neasurenent. */

Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
xample 2

/* */
/* The programis targeted for the MPC555 but should work on any MPC500 */

/* device with a TPU. For other devices the setup routines will also need */

/* to be changed. */
/* */
/* H STORY ORI G NAL AUTHOR: Stan Gstrum */
/* */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
I % Ll il oy
/* 1.0 Stan Ostrum 16 Sep 02 Initial version of function. */

IR R EEEEEEEEEEREEEEEEEEEEEEEREEEEEEEE SRR EEEEEEEEEEERE SRR EEEEEY]

#i ncl ude "npc555. h" /* Define MPC555 registers, this needs to be */
/* changed if other MPC500 devices are used. */

#i ncl ude "npc500_util.h" /* Uility routines for using MPC500 devices */
#i nclude "tpu_pta.h" /* TPU PTA functions */
Ul NT32 accumul ati on; /* gl obal variable for period/ PWaccunul ation */

void main ()

{
struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */
set up_555(); Met rower ks setup routine for MPC555 */
/* Initialize Prog. Tine Accum function wth: */
/* - Input signal on TPU A channel 0 */
/* - Use TCRL tinebase */
/* - Measure high tines */
/* - Max count val ue of 15 */
/* - Schedule as high priority in the TPU */
tpu_pta_init(tpua, 0, TPU PRIORITY_H GH TPU PTA TCR1, \
TPU_PTA_HI GH_TI ME_ACCUM 15);
tpu_i nterrupt_enabl e(tpua, 0); /* enable PTA interrupts */
while (1) { /* loop and nmeasure */
}
}
8 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Function State Timing

The externa interrupt handler code that is used for this exampleis shown in Example 1 above.

3.3 Function State Timing

When calculating the worst case latency for the TPU, the execution time of each state of the TPU is needed.
The state timings for each of the four modes of the PTA function are shown below in Table 1. The states

used by the C interface functions are shown in Table 2.
Table 1. PTA Function State Timing

State Number and Name Max. CPU Clock Cycles RAM Accesses by TPU

SO INIT_PTA 6 1
S1 POS_TRANSO_PTA

High time accumulate 54 6

Low time accumulate 54 6

Period accumulate - Rising 16 2

Period accumulate - Falling 16 2
S2 POS_TRANS1_PTA

High time accumulate 18 2

Low time accumulate 12 1

Period accumulate - Rising 44 6

Period accumulate - Falling 44 6
S3 NEG_TRANSO_PTA

High time accumulate 50 6

Low time accumulate 50 6

Period accumulate - Rising 16 2

Period accumulate - Falling 16 2
S4 NEG_TRANS1 PTA

High time accumulate 12 1

Low time accumulate 22 2

Period accumulate - Rising 44 6

Period accumulate - Falling 44 6

NOTE: Execution times do not include the time slot transition time (TST= 10 or 14 CPU clocks)

Table 2. PTA API Function State Usage

PTA API Function State Uses
tpu_pta_init S1
tpu_pta_get_accumulation none
tpu_pta_get_period_count none

Using the Programmable Time Accumulator TPU Function

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
-unction Code Size

3.4 Function Code Size

Total TPU function code size determines what combination of functions can fit into a given ROM or
emulation DPTRAM memory microcode space. PTA function code sizeis:

55 pinstructions + 8 entries= 63 long words

4 Notes on Use and Performance of
the PTA Function

4.1 Performance

Like all TPU functions, the performance limit of the PTA function in a given application is dependent to
some extent on the service time (latency) associated with activity on other TPU channels. Thisis dueto the
operational nature of the scheduler. In the case of the PTA function, this limits the maximum frequency and
minimum pulse widths of the signal that can be properly measured.

Since the scheduler assures that the worst case latencies in any TPU application can be calculated, it is
recommended that the guidelines given in the TPU reference manual are used along with the information
given in the PTA function state timing table to perform an analysis on any proposed TPU application that
appears to approach the performance limits of the TPU.

4.2 Usage Notes and Restrictions

4.2.1 Short Measurement Cycles

If the frequency of the PTA input signal is too high and the number of periods in each measurement cycle
istoo low, the CPU may not have enough time to process the interrupt at the end of the cycle and read the
accumulated result before the end of the next measurement cycle. Additionally, the CPU must be able to
execute the API call to read the accumulated result before the next accumulation has exceeded 16 bits. This
isdueto the fact that the call to read the accumulated result clears the high word of the 32-bit accumulation.
If this does not occur, then the next measurement result will be invalid.

4.2.2 Maximum Accumulation

The PTA function alows a maximum accumulation of 32 bits of the selected TCR timebase. If the
accumulation overflows, an interrupt is generated to the CPU, but the function continues to run normally.
Investigation of the returned parameters by the CPU may reveal that an overflow has occurred, but under
some circumstances it may be difficult to tell this condition from a valid termination of a measurement
sequence. For this reason, the prescaler of the selected timebase should be set to ensure that the long- est
measurement under worst case conditions does not exceed 32 hits.

4.2.3 Reading the Incomplete Accumulation

Under some circumstances, it may be advantageous to get an approximation of how far the active ac-
cumulation has progressed. This can be achieved by calling the API function tpu_pta _get_accumulation to
get the partial measurement and then calling tpu_pta get_period_count to determine the number of periods

10 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Noise Immunity

over which the partial accumulation has been made. Note that the returned period count value may have an
error of one with respect to the accumulated value read, and that the partial accumulation can be up to one
pulse width/period or $8000 TCR timebase clocks (if pulse width/period very long) less than thereal value
at the instant of reading.p

4.3 Noise Immunity

The PTA function is designed to filter out individual pulses which are too short to be measured correctly.
These will not cause anomalous resultsin any of the measurement modes. However, repetitive noise on the
input signal can cause anomalous results and also increased TPU activity, leading to an overall reduction in
system performance. For this reason, every effort should be made to present the TPU with a noise free
signal. Guaranteed minimum measurable pul se width or period can be determined by cal culating worst-case
latency for the PTA function. Refer to Section 3.3, “Function State Timing” for more information.

Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

z “ freescale”

semiconductor

AN2365/D

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Using the Programmable Time Accumulator TPU Function (PTA) with the MPC500 Family
	1 Functional Overview
	2 Detailed Description
	Figure�1. PTA Operating Modes
	2.1 PTA C Level API
	2.1.1 void tpu_pta_init
	2.1.2 UINT32 tpu_pta_get_accumulation
	2.1.3 UINT8 tpu_pta_get_period_count

	3 Programmable Time Accumulator Examples
	3.1 Example 1
	3.1.1 Description
	3.1.2 Program

	3.2 Example 2
	3.2.1 Description
	3.2.2 Program

	3.3 Function State Timing
	Table�1. PTA Function State Timing�
	Table�2. PTA API Function State Usage

	3.4 Function Code Size

	4 Notes on Use and Performance of the PTA Function
	4.1 Performance
	4.2 Usage Notes and Restrictions
	4.2.1 Short Measurement Cycles
	4.2.2 Maximum Accumulation
	4.2.3 Reading the Incomplete Accumulation

	4.3 Noise Immunity

