
Application Note

AN2365/D
Rev. 0, 10/2002

Using the
Programmable Time
Accumulator TPU
Function (PTA) with the
MPC500 Family

Stan Ostrum

Metrowerks

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

n
c

..
.

This TPU Programming Note is intended to provide simple C interface routines to the
programmable time accumulator TPU function (PTA). 1 The routines are targeted for the
MPC500 family of devices, but they should be easy to use with any device that has a TPU.

1 Functional Overview
This TPU input function measures the total high time, low time or period of an input signal
over a user defined number of periods, and presents the result to the host CPU in the form of
a 32-bit accumulation.

2 Detailed Description
The programmable time accumulator (PTA) function measures either period, high time or low
time of an input signal over a programmable number of periods. The number of periods over
which the measurement is made is selectable over the range 1 to 255. Four modes of
measurement are available:

• Mode 1 measures total high time over the selected number of periods.

• Mode 2 measures total low time over the selected number of periods.

• Mode 3 measures total period over the selected number of periods, starting on a
rising edge.

• Mode 4 measures total period over the selected number of periods, starting on a
falling edge.

Figure 1 shows the four operating modes. All four examples are based on an accumulation of
seven periods, which are numbered below each waveform. Dark shaded areas in the bar below
each waveform indicate which parts of the waveform are actually measured. Unshaded areas
are not included in the measurement. Lightly shaded areas are part of the next measurement
cycle.

The output of the PTA function is a 32-bit result, which is expressed in counts of the selected
TPU timebase. The user can select either TCR1 or TCR2 as the timebase for the measurement.
The number of TCR counts that have been accumulated multiplied by the period of one TCR
count will give the total measurement expressed in seconds.

1The information in this Programming Note is based on TPUPN06. It is intended to
compliment the information found in that Programming Note.

For More Information On This Product,

 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The PTA function operates continuously. After the specified number of periods has elapsed, the TPU
updates the 32-bit result parameter, generates an interrupt request to the host CPU, and restarts the process
for the next measurement cycle.

This function is very similar to the original PPWA function, although it has several major enhancements
over that function:

1. 32-bit accumulation instead of 24 bit
2. Option of high or low time measurement instead of high time only
3. Option of starting period accumulation on rising or falling edge instead of rising only
4. Better noise immunity

The PTA function does not link to other TPU channels at the end of each accumulation. If this feature is
required, the period/pulse width accumulation (PPWA) function should be used.
2 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

PTA C Level API

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1. PTA Operating Modes

2.1 PTA C Level API
Rather then controlling the TPU registers directly, the PTA routines in this TPU Programming Note may be
used to provide a simple and easy interface. There are 3 routines for controlling the PTA function in 2 files
(tpu_pta.h and tpu_pta.c). The tpu_pta.h file should be included in any files that use the routines. This file
contains the function prototypes and useful #defines. Each of the routines in tpu_pta.c will be looked at in
detail, the routines are:

• Initialization Function:

— void tpu_pta_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, UINT8 timebase,
UINT8 mode, UINT8 max_count);
Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

PTA C Level API

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Return Value functions:

— UINT32 tpu_pta_get_accumulation(struct TPU3_tag *tpu, UINT8 channel);

— UINT8 tpu_pta_get_period_count(struct TPU3_tag *tpu, UINT8 channel);

2.1.1 void tpu_pta_init
This function is used to initialize a channel to run the PTA function. This function has 6 parameters:

• *tpu - This is a pointer to the TPU3 module to use. It is of type TPU3_tag which is defined in
m_tpu3.h.

• channel - This is the TPU channel number of the PTA channel. This parameter should be assigned
a value of 0 to 15.

• priority - This is the priority to assign to the channel. This parameter should be assigned a value of
TPU_PRIORITY_HIGH, TPU_PRIORITY_MIDDLE or TPU_PRIORITY_LOW. The TPU
priorities are defined in mpc500_utils.h.

• timebase – This is the TPU timebase to use for PTA measurements. This parameter should be
assigned a value of TPU_PTA_TCR1 or TPU_PTA_TCR2.

• mode – This is the mode to use for PTA measurements. This parameter should be assigned a value
of TPU_PTA_HIGH_TIME_ACCUM, TPU_PTA_LOW_TIME_ACCUM,
TPU_PTA_PERIOD_ACCUM_RISE, or TPU_PTA_PERIOD_ACCUM_FALL.

• max_count – This is the number of periods or pulses that are accumulated before the measurement
restarts. This parameter should be assigned a value in the range 0 to 255. A value of zero or one
results in the accumulation of one period or pulse width.

Care should be taken when initializing TPU channels. The TPU’s behavior may be unpredictable if a
channel is reconfigured while it is running. The channels should be stopped before they are configured. This
is done by setting the channel’s priority to disabled. If the channel is currently being serviced when the
priority is set to disable it will continue to service the channel until the state ends. To make sure the channel
is not being serviced, you need to wait for the longest state execution time after disabling the channel. All
channels are disabled out of reset so the channels can be configured immediately from reset.

The tpu_pta_init function attempts to wait between the disabling of the channels before it starts configuring
them, however the actual execution speed of the code will be depend on the specific system. If you are not
configuring the channels from reset, then ideally it is best to have the functions disabled before calling this
function. TPU channels can be disabled by using the tpu_disable function in the mpc500_utils.c file. For
example, disabling channel 0 is done like this: tpu_disable(tpu, 0);

2.1.2 UINT32 tpu_pta_get_accumulation
This function returns the current value of the 32-bit accumulation. This function has 2 parameters:

• *tpu – This is a pointer to the TPU3 module to use. It is of type TPU3_tag which is defined in
m_tpu3.h.

• channel – This is the TPU channel number of the PTA channel. This parameter should be assigned
a value of 0 to 15.

This function is normally called when the TPU signals the host CPU via an interrupt request that the
accumulation is complete. The CPU must execute this call and read the result before the next accumulation
has exceeded 16 bits.
4 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Example 1

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.1.3 UINT8 tpu_pta_get_period_count
This function returns the current value of the 8-bit period count parameter. This parameter is used by the
TPU to count the number of input signal periods that have elapsed since the start of the last accumulation
sequence. When period_count equals max_count, a measurement sequence has been completed. This
function has 2 parameters:

• *tpu – This is a pointer to the TPU3 module to use. It is of type TPU3_tag which is defined in
m_tpu3.h.

• channel – This is the TPU channel number of the PTA channel. This parameter should be assigned
a value of 0 to 15.

3 Programmable Time Accumulator Examples
The following examples show configuration of the programmable time accumulator function for both period
and pulse width measurement. Each example is a C program that shows how to configure and use the PTA
interface routines.

3.1 Example 1

3.1.1 Description
This sample program show a simple PTA example that measures the total period over a selected number of
periods, starting on a rising edge, of an input signal connected to channel 0 on TPUA. A simple interrupt
handler is used to trigger the acquisition of the completed measurement.

The program then runs in an infinite loop, continuing to read back each accumulated measurement from the
input on TPUA channel 0.

3.1.2 Program
/**/

/* FILE NAME: tpu_pta_example1.c COPYRIGHT (c) 2002 */

/* VERSION: 1.1 All Rights Reserved */

/* */

/* DESCRIPTION: This sample program show a simple PTA example that */

/* measures the total period over a selected number of periods, starting */

/* on a rising edge, of an input signal connected to channel 0 on TPUA. */

/* A simple interrupt handler is used to trigger the acquisition of the */

/* completed measurement. */

/* */

/* The program is targeted for the MPC555 but should work on any MPC500 */

/* device with a TPU. For other devices the setup routines will also need */

/* to be changed. */

/*==*/

/* HISTORY ORIGINAL AUTHOR: Stan Ostrum */
Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Example 1

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/* */

/* REV AUTHOR DATE DESCRIPTION OF CHANGE */

/* --- ----------- --------- --------------------- */

/* 1.0 Stan Ostrum 03 Sep 02 Initial version of function. */

/* 1.1 Stan Ostrum 17 Sep 02 Revised after review. */

/**/

#include "mpc555.h" /* Define MPC555 registers, this needs to be */

 /* changed if other MPC500 devices are used. */

#include "mpc500_util.h" /* Utility routines for using MPC500 devices */

#include "tpu_pta.h" /* TPU PTA functions */

UINT32 accumulation; /* global variable for period/PW accumulation */

void main ()

{

 struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

 setup_555(); /* Metrowerks setup routine for MPC555 */

 /* initialize Prog. Time Accum function with: */

 /* - Input signal on TPU A channel 0 */

 /* - Use TCR1 timebase */

 /* - Measure periods, start with rising edge */

 /* - Max count value of 10 */

 /* - Schedule as high priority in the TPU */

 tpu_pta_init(tpua, 0, TPU_PRIORITY_HIGH, TPU_PTA_TCR1, \

 TPU_PTA_PERIOD_ACCUM_RISE, 10);

 tpu_interrupt_enable(tpua, 0); /* enable PTA interrupts */

 while (1) { /* loop and measure */

 }

}

/***

FUNCTION : ext_Int_Handler

PURPOSE : Respond to external interrupts from the PTA function.

INPUT NOTES : All enabled external interrupts jump into this routine.

RETURN NOTES : If PTA interrupt, get accumulation, clear the interrupt,
6 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Example 2

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 and quit.

GENERAL NOTES :

***/

void ext_Int_Handler()

 {

 struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

 extern UINT32 accumulation; /* global accumulation value */

 if (tpu_check_interrupt(tpua, 0)) /* test PTA int. status bit */

 {

 accumulation = tpu_pta_get_accumulation(tpua, 0);

 tpu_clear_interrupt(tpua, 0); /* clear interrupt */

 }

 else

 {

 /* process external interrupt from another source */

 }

 }

3.2 Example 2

3.2.1 Description
This sample program show a simple PTA example that measures the total high time over a selected number
of periods of an input signal connected to channel 0 on TPUA. A simple interrupt handler is used to trigger
the acquisition of the completed measurement.

The program then runs in an infinite loop, continuing to read back each accumulated measurement from the
input on TPUA channel 0.

3.2.2 Program
/**/

/* FILE NAME: tpu_pta_example2.c COPYRIGHT (c) 2002 */

/* VERSION: 1.0 All Rights Reserved */

/* */

/* DESCRIPTION: This sample program show a simple PTA example that */

/* measures the total high time over a selected number of periods of an */

/* input signal connected to channel 0 on TPUA. */

/* A simple interrupt handler is used to trigger the acquisition of the */

/* completed measurement. */
Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Example 2

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

/* */

/* The program is targeted for the MPC555 but should work on any MPC500 */

/* device with a TPU. For other devices the setup routines will also need */

/* to be changed. */

/*==*/

/* HISTORY ORIGINAL AUTHOR: Stan Ostrum */

/* */

/* REV AUTHOR DATE DESCRIPTION OF CHANGE */

/* --- ----------- --------- --------------------- */

/* 1.0 Stan Ostrum 16 Sep 02 Initial version of function. */

/**/

#include "mpc555.h" /* Define MPC555 registers, this needs to be */

 /* changed if other MPC500 devices are used. */

#include "mpc500_util.h" /* Utility routines for using MPC500 devices */

#include "tpu_pta.h" /* TPU PTA functions */

UINT32 accumulation; /* global variable for period/PW accumulation */

void main ()

{

 struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

 setup_555(); Metrowerks setup routine for MPC555 */

 /* Initialize Prog. Time Accum function with: */

 /* - Input signal on TPU A channel 0 */

 /* - Use TCR1 timebase */

 /* - Measure high times */

 /* - Max count value of 15 */

 /* - Schedule as high priority in the TPU */

 tpu_pta_init(tpua, 0, TPU_PRIORITY_HIGH, TPU_PTA_TCR1, \

 TPU_PTA_HIGH_TIME_ACCUM, 15);

 tpu_interrupt_enable(tpua, 0); /* enable PTA interrupts */

 while (1) { /* loop and measure */

 }

}

8 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Function State Timing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The external interrupt handler code that is used for this example is shown in Example 1 above.

3.3 Function State Timing
When calculating the worst case latency for the TPU, the execution time of each state of the TPU is needed.
The state timings for each of the four modes of the PTA function are shown below in Table 1. The states
used by the C interface functions are shown in Table 2.

NOTE: Execution times do not include the time slot transition time (TST= 10 or 14 CPU clocks)

Table 1. PTA Function State Timing

State Number and Name Max. CPU Clock Cycles RAM Accesses by TPU

S0 INIT_PTA 6 1

S1 POS_TRANS0_PTA

 High time accumulate 54 6

 Low time accumulate 54 6

 Period accumulate - Rising 16 2

 Period accumulate - Falling 16 2

S2 POS_TRANS1_PTA

 High time accumulate 18 2

 Low time accumulate 12 1

 Period accumulate - Rising 44 6

 Period accumulate - Falling 44 6

S3 NEG_TRANS0_PTA

 High time accumulate 50 6

 Low time accumulate 50 6

 Period accumulate - Rising 16 2

 Period accumulate - Falling 16 2

S4 NEG_TRANS1_PTA

 High time accumulate 12 1

 Low time accumulate 22 2

 Period accumulate - Rising 44 6

 Period accumulate - Falling 44 6

Table 2. PTA API Function State Usage

PTA API Function State Uses

tpu_pta_init S1

tpu_pta_get_accumulation none

tpu_pta_get_period_count none
Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Function Code Size

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.4 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or
emulation DPTRAM memory microcode space. PTA function code size is:

55 µ instructions + 8 entries = 63 long words

4 Notes on Use and Performance of
the PTA Function

4.1 Performance
Like all TPU functions, the performance limit of the PTA function in a given application is dependent to
some extent on the service time (latency) associated with activity on other TPU channels. This is due to the
operational nature of the scheduler. In the case of the PTA function, this limits the maximum frequency and
minimum pulse widths of the signal that can be properly measured.

Since the scheduler assures that the worst case latencies in any TPU application can be calculated, it is
recommended that the guidelines given in the TPU reference manual are used along with the information
given in the PTA function state timing table to perform an analysis on any proposed TPU application that
appears to approach the performance limits of the TPU.

4.2 Usage Notes and Restrictions

4.2.1 Short Measurement Cycles
If the frequency of the PTA input signal is too high and the number of periods in each measurement cycle
is too low, the CPU may not have enough time to process the interrupt at the end of the cycle and read the
accumulated result before the end of the next measurement cycle. Additionally, the CPU must be able to
execute the API call to read the accumulated result before the next accumulation has exceeded 16 bits. This
is due to the fact that the call to read the accumulated result clears the high word of the 32-bit accumulation.
If this does not occur, then the next measurement result will be invalid.

4.2.2 Maximum Accumulation
The PTA function allows a maximum accumulation of 32 bits of the selected TCR timebase. If the
accumulation overflows, an interrupt is generated to the CPU, but the function continues to run normally.
Investigation of the returned parameters by the CPU may reveal that an overflow has occurred, but under
some circumstances it may be difficult to tell this condition from a valid termination of a measurement
sequence. For this reason, the prescaler of the selected timebase should be set to ensure that the long- est
measurement under worst case conditions does not exceed 32 bits.

4.2.3 Reading the Incomplete Accumulation
Under some circumstances, it may be advantageous to get an approximation of how far the active ac-
cumulation has progressed. This can be achieved by calling the API function tpu_pta_get_accumulation to
get the partial measurement and then calling tpu_pta_get_period_count to determine the number of periods
10 Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

Noise Immunity

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

over which the partial accumulation has been made. Note that the returned period count value may have an
error of one with respect to the accumulated value read, and that the partial accumulation can be up to one
pulse width/period or $8000 TCR timebase clocks (if pulse width/period very long) less than the real value
at the instant of reading.p

4.3 Noise Immunity
The PTA function is designed to filter out individual pulses which are too short to be measured correctly.
These will not cause anomalous results in any of the measurement modes. However, repetitive noise on the
input signal can cause anomalous results and also increased TPU activity, leading to an overall reduction in
system performance. For this reason, every effort should be made to present the TPU with a noise free
signal. Guaranteed minimum measurable pulse width or period can be determined by calculating worst-case
latency for the PTA function. Refer to Section 3.3, “Function State Timing” for more information.
Using the Programmable Time Accumulator TPU Function

For More Information On This Product,
 Go to: www.freescale.com

AN2365/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Using the Programmable Time Accumulator TPU Function (PTA) with the MPC500 Family
	1 Functional Overview
	2 Detailed Description
	Figure�1. PTA Operating Modes
	2.1 PTA C Level API
	2.1.1 void tpu_pta_init
	2.1.2 UINT32 tpu_pta_get_accumulation
	2.1.3 UINT8 tpu_pta_get_period_count

	3 Programmable Time Accumulator Examples
	3.1 Example 1
	3.1.1 Description
	3.1.2 Program

	3.2 Example 2
	3.2.1 Description
	3.2.2 Program

	3.3 Function State Timing
	Table�1. PTA Function State Timing�
	Table�2. PTA API Function State Usage

	3.4 Function Code Size

	4 Notes on Use and Performance of the PTA Function
	4.1 Performance
	4.2 Usage Notes and Restrictions
	4.2.1 Short Measurement Cycles
	4.2.2 Maximum Accumulation
	4.2.3 Reading the Incomplete Accumulation

	4.3 Noise Immunity

