Freescale Semiconductor

Application Note

AN2363/D
Rev. 0, 10/2002

Using the Frequency
Measurement TPU
Function (FQM) with the
MPC500 Family

This TPU Programming Note is intended to provide simple C interface routines to the
Randy Dees frequency measurement TPU function (FQM). 1 The routines are targeted for the MPC500
TECD Applications family of devices, but they should be easy to use with any device that has a TPU.

1 Functional Overview

The FQM function counts the number of pulses that are presented to a channel pin within a
user specified time window. The pulse count is available to the user as a 16-bit number. Either
rising or falling edges can be used as the beginning of a pulse. There are two basic modes of
operation. In single shot mode, pulses are accumulated for a single window time. In
continuous mode, pulses are automatically accumulated in repetitive windows. The FQM
function is built into both ROM banks of the TPU3 modules on the MPC500 devices.

2 Description

Thetimewindow is specified asanumber of TCR clock ticks. The maximum value is 0x8000.
Either TCR may be used as the time base. The function is initialized by specifying the time
window and issuing a host service request. The channel is then initialized by the microcode
and waits for the first selected edge. The time window begins with the first selected edge
following initiaization. Thus the function can be pre-initialized to wait for pulses to appear
on the pin.

The term “selected edge” is used to describe an edge, either rising or falling, that has been
specified as the beginning of a pulse. Sincethe first selected edge to appear after initialization
starts the first window, the second selected edge is counted as the end of the first pulse. Thus
pulses are counted asthey complete. The number of compl eted pul ses is accumulated until the
time window expires. At that time the accumulated number is written to parameter RAM and
an interrupt service request is generated. Partial pulses are not counted. |f pulse completion
coincides with the end of window time, it is counted as a compl ete pul se.

In single-shot mode, the function idles when a pulse is complete. New single-shot
accumulation times can be initiated by issuing a host service request. Window accumulation
time can also be changed prior to issuing the request.

The information in this Programming Note is based on TPUPNOQ3. It is intended to
compliment the information found in that Programming Note.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

freescale"

For More Information On This Product, semiconductor

Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

Freescale Semiconductor, Inc.
nitialization Functions (tpu_fgm_init)

In continuous mode, a new time accumulation window begins coincident with the end of the previous
window, and pulse counting restarts at zero. If a pulse begins in a window and continues into the next
window, it is counted as the first pulse in the new window when the first selected edge in the new window
is detected. Thus, no pulseis lost, even when it straddles accumulation windows. At the end of each time
accumulation period, the newly-accumulated value is written to parameter RAM and an interrupt service
reguest is generated. The accumulated value is available to the CPU until the end of the current window.
When the current window ends, the accumulated value is overwritten. CPU interrupt latency must be less
than window time in order to guarantee that no accumulation values are missed. In continuous mode, the
user can modify the length of the time accumulation window at any time by changing the window value in
parameter RAM. The new window length takes effect at the end of the current window time. It is not
necessary to disable the function or issue a host service request in order to make the change.

The FQM function has been optimized for fast execution and small size. The function does not attempt to
distinguish false edges due to noisy inputs. Any pulselong enough to pass through the pin synchronizer and
digital filter is counted. The pin synchronizer and digital filter reject all pulses narrower than two CPU
system clocks and passal pulseswider than four CPU system clocks. A companion functionto FQM, called
pulse accumulate in a programmable window (PAPW) offers noise rejection of longer pulses at the expense
of dightly longer execution time and increased code size. PAPW can be used in the same manner as FQM.

3 FQMC Level API

e [nitialization Functions

— void tpu_fgm_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, UINT8 mode,
UINT8 edge, UINT8 timer, UINT16 wind_sz)

» Change Operation Function
— voidtpu_fgm_update window_size(struct TPU3_tag *tpu, UINT8 channel, UINT16 wind_sz)
* Vaue Return Functions
— UINT16 tpu_fgm_get_pulse(struct TPU3 tag *tpu, UINT8 channel)
» General TPU Functions (defined in mpc500_util.h):
— void tpu_enable(struct TPU3 tag *tpu, UINT8 channel, UINT8 priority)
— void tpu_disable(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority)
— void tpu_interrupt_enable(struct TPU3_tag *tpu, UINT8 channel)
— void tpu_interrupt_disable(struct TPU3_tag *tpu, UINT8 channel)
— voidtpu_clear_interrupt(struct TPU3_tag *tpu, UINT8 channel)
— UINT8 tpu_check_interrupt(struct TPU3_tag *tpu, UINT8 channel)

3.1 Initialization Functions (tpu_fgm_init)
This function initializes the FQM function and sets the initialization mode. To change the operating mode,
this function can be called again. This function has the following parameters:

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

e channel - Thisisthe channel number that has the FQM function assigned to it.

e priority - Thisisthe priority to assign to the FQM function. The TPU priority definitions are
defined in mpc500_utils.h. See Table 1 for values that are defined for the channel priority.

2 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Change Operation Function

Table 1. TPU Priorities

TPU Priorities Definition
TPU_PRIORITY_DISABLE 0b00
TPU_PRIORITY_LOW 0b01
TPU_PRIORITY_MEDIUM 0b10
TPU_PRIORITY_HIGH Ob11

* mode - This parameter setsthe operating mode of the TPU3 FQM function either single-shot mode
or continuous mode.

* edge- This parameter sets whether therising or falling edge should be used in measuring the
incoming frequency. It is used both in the Host Sequence bits and for the PAC definition in the
Channél_Control.

e timer - This parameter sets whether the TPU3 TCR1 or TCR2 clock should be used for measuring
the incoming frequency.

e wind_sz - This parameter setstheinitial value for the window size for measuring the incoming
frequency. The window should be less than or equal to 0x8000.

3.2 Change Operation Function
tpu_fgm_update window_size

This functions allows the window size to be modified.

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

e channdl - Thisisthe channd number that has the FQM function assigned to it.
» wind sz - This parameter setsthe new size of the window used to measure the input frequency.

3.3 Value Return Function

tpu_fgm_get_pulse
This function returns the number of TCR ticks that were measured for the incoming frequency.

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

e channel - Thisisthe channel number that has the FQM function assigned to it.

3.4 General TPU Functions

The following routines are generic and are useful for all TPU functions.
void tpu_enable(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority)

This function enables the TPU channel and can be used to change the channel priority.

* *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which isdefined in
m_tpu3.h.

e channel - Thisisthe channd number that has the FQM function assigned to it.

Using the Frequency Measurement TPU Function 3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
seneral TPU Functions

e priority - Thisisthe new channel priority.
void tpu_disable(struct TPU3_tag *tpu, UINT8 channel)

This function disables the TPU channel. It sets the priority to 0 to disable the channel.

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

e channdl - Thisisthe channd number that has the FQM function assigned to it.
o priority - Thisisthe new channel priority.
void tpu_interrupt_enable(struct TPU3_tag *tpu, UINT8 channel)

This function enables the interrupt bit for the specified channel.

e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

e channdl - Thisisthe channd number that has the FQM function assigned to it.
void tpu_interrupt_disable(struct TPU3_tag *tpu, UINT8 channel)

This function disables the interrupt bit for the specified channel.

* *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.

e channel - Thisisthe channel number that has the FQM function assigned to it.
void tpu_clear_interrupt(struct TPU3_tag *tpu, UINT8 channel)

Thisfunction clears the interrupt bit for the specified channel.
e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.
e channel - Thisisthe channel number that has the FQM function assigned to it.
UINT8tpu_check_interrupt(struct TPU3_tag *tpu, UINT8 channel)
Thisfunction checkstheinterrupt bit for the specified channel to seeif it isset. Thisfunction returns TRUE
if this channel caused the interrupt, FAL SE otherwise.
e *tpu- Thisisapointer to the TPU3 moduleto use. It is of type TPU3_tag which is defined in
m_tpu3.h.
e channdl - Thisisthe channd number that has the FQM function assigned to it.

4 Configuration of FQM Function

The CPU configures the FQM function as follows:

1. Theappropriate channel priority bits are cleared, disabling the channel.

The FQM function number is written to the channel function select bits.
CHANNEL_CONTROL and WINDOW _SIZE are written to channel parameter RAM.
The host sequence bits are written, selecting the desired action edge and mode of operation.
An HSR isissued to initialize the function.

The channel priority bits are written to enable the function and assign channel priority.

The TPU executes the initialization state.

NoarwWDN

4 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Code Listing

All of these steps are included in the C level tpu_fgm_init() function. See Section 3.1, “Initialization
Functions (tpu_fgm_init).”

After initiaization, the TPU waits for the first sel ected edge to begin the time window. At the expiration of
the time window, the accumulated value is written to the PULSE _COUNT parameter and an interrupt
service request is made. This can be read with the C level function tpu_fgm_get_pulse. See Section 3.3,
“Value Return Function.” In single-shot mode, the function then goes to an idle state. In continuous mode,
the function immediately begins pulse accumulation in a new window. In continuous mode an interrupt
service request is made at the completion of every window time. The tpu_fgm_get pulse function can be
called after an interrupt has occurred.

Once single-shot mode has completed, another single-shot sequence can be scheduled by issuing an
initialization HSR. Mode and window time parameters can be modified before writing to the HSR register.
If an initialization HSR is made prior to the expiration of a current time window, that accumulation is
aborted and a new accumulation begins.

During continuous mode operation, the window time parameter can be modified without re-initialization.
The new time period takes effect as soon as the current window time expires. The C level function
tpu_fgm_update window_size can be caled to updated the window size. See Section 3.2, “Change
Operation Function.” If aninitialization HSR is made prior to the expiration of a current time window, the
current accumulation is aborted and a new accumulation begins. To change mode during continuous mode
operation, first disable the channel, then write the appropriate parameter registers and host sequence hits,
issue an HSR, and then write the priority bits. This procedure prevents indeterminate results due to
modification of sequence bitswhile the function is running.

5 Example Code

The following code shows an example program that initializes the TPU FQM ROM function using the C
level API (see Section 5.1, “Code Listing”). The example shows the FQM function on channel 0. It then
waits until it has made ameasurement and then reads the result. The program then goesinto an endless|oop.
Also shown (see Section 12.1, “MIOS Initialization Script for WindRiver SingleStep') is a debugger script
that unitizesthe M10S PWM channel 0 to the frequency of approximately 4882 hertz. This can be connected
to TPU A channel 0 for to make a measurement. Also included is a SingleStep script for reading the channel
0 parameter RAM (see TPU Read Channel 0 Parameter RAM Script).

This example code was written and tested for the WindRiver DiabData C Compiler version 4.3g, but should
be potable to other compiler environments.

5.1 Code Listing

IR RS EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEERY]

/* FILE NAME: tpu_tsmexl.C............... COPYRI GHT (c¢) 2002 */

/**/

#i ncl ude "npc555. h" /*Define all of the MPC555 registers, */
/* Change for other MPC500 devices. */

#i ncl ude "npc500. c" /* Configuration routines for MPC555 EVB, */
/* change if other hardware is used. */

#i ncl ude "npc500_util.h" /* Utility routines */

Using the Frequency Measurement TPU Function 5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Zode Listing

#i nclude "tpu_fgmh" /* TPU FQM functions */
struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

void main ()

{

int x; /* Just an integer to hold a value */

U NT8 chan=0; /* set to channel 0 */

U NT16 freq;
/* Hardware Setup -- nmachi ne settings (watchdog, timers, speed, etc.) */
set up_npc500(40); /*Setup device and program PLL to 40MHz*/

setup_tpu(tpua); /* Do general TPU set up. */

tpu_fgminit(tpua, chan, TPU PRIORITY_HI GH, TPU_ FQM FALL_EDGE CONT,
TPU_FQM FALL, TPU_FQM TCR1, 0x8000);

t pu_ready(tpua, chan);

freq = tpu_fgmget_pul se(tpua, chan);

whi | e(1){
/* Hold at end of program */
X=4;

b

} /* End of main */

voi d setup_tpu(struct TPU3_tag *tpu)
{

t pu- >TPUMCR. R = 0x0020; /* divide by 1, supervisor and user access. */
t pu- >TPUMCR3. R = 0x0040; /* enabl e enhanced prescaler - divide by 2 */

tpu->TICRB.CIRL = 5; /* set interrupt level to 5.... */
tpu->TICR B. I LBS = 0O;
}
6 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Example Description

5.2 Example Description

This example sets the Enhanced prescaler to divide by 2 and it sets the TCR1 prescaler to 2. This gives a
TCRA1 clock frequency of 10 MHz (divide by 4 of the 40 MHz system clock). This yields a resolution of
100ns. The sample window is open for 0x8000 (32768) TCR1 clock periods which gives awindow time of
3.2768 mS. This allows for a minimum frequency measurement of approximately 305 Hz.

Frequency = counts
g Y TCR1period(x)windowsize

Figure 1. Frequency Formula

The MIOS example PWM shown in Section 12.1, “MIOS Initialization Script for WindRiver SingleStep”
generates a frequency of 4882.8 Hz. The FQM gives a measurement of 0x10 (16).

Frequency = 16
qUeNCY = T5ons(x)32768
Frequency = _16

3.27mS

Frequency = 4882.8Hz

Figure 2. Frequency Calculation

6 Header File Definitions

All of the previous sections of code are found in the mpc500_util.c file that is contained in the Freescale
MPC500 header files. The following definitions for the code prototypes, TPU parameter RAM structures,
and common TPU definitions, including the function ID numbers of the internal TPU3 ROM functions, are
found in the file mpc500_util.h.

#i f ndef _MPCoixx_UTIL_H
#define _MPCoxx_UTIL_H

#i ncl ude "m conmon. h"

#i ncl ude "m tpu3. h"

void tpu_func(struct TPU3_tag *tpu, U NT8 channel, U NT8 function_nunber);
U NT8 tpu_get _func(struct TPU3_tag *tpu, U NT8 channel);

void tpu_hsr(struct TPU3_tag *tpu, U NT8 channel, Ul NT8 hsr);

U NT8 tpu_get _hsr(struct TPU3_tag *tpu, U NT8 channel);

void tpu_hsq(struct TPU3_tag *tpu, U NT8 channel, U NT8 hsq);

U NT8 tpu_get_hsqg(struct TPU3_tag *tpu, U NT8 channel);

Using the Frequency Measurement TPU Function 7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
=xample Description

void tpu_enable(struct TPU3_tag *tpu, U NT8 channel, U NT8 priority)
void tpu_disable(struct TPU3_tag *tpu, U NT8 channel);

void tpu_interrupt_enable(struct TPU3_tag *tpu, U NT8 channel)

void tpu_interrupt_disable(struct TPU3_tag *tpu, U NT8 channel)

void tpu_clear_interrupt(struct TPU3_tag *tpu, U NT8 channel);

U NT8 tpu_check_interrupt(struct TPU3_tag *tpu, U NT8 channel);

#define tpu_ready(tpu, channel) while(tpu_get_hsr(tpu, channel)!=0)

/**********************************
* TPW3 *
* *

KKK KKK KKK K K K kR Kk ok kK ok Rk kK ok ok ok Rk ok ok ok kK [

/* Define data structure for one TPU channel. This is useful */
/* to allow indexing along the channels. */
struct TPU paramtag {

VUI NT16 par anD;

VUI NT16 parant;

VUl NT16 paran®;

VUl NT16 par anB;

VUl NT16 par amt

VUl NT16 par anb

VUl NT16 par anb;

VUl NT16 paranv;

struct TPU paranB2_tag {
VUl NT32 par anmd
VUl NT32 par an;
VUI NT32 paramt
VUl NT32 par anb;

/* Define TPU Function numbers for standard TPU mask */
/* TPU BANK 0 */

#defi ne TPU_FUNCTI ON_PTA OxF

#def i ne TPU_FUNCTI ON_QOM OxE

#define TPU_FUNCTI ON_TSM 0xD

#defi ne TPU_FUNCTI ON_FQM 0xC

#defi ne TPU_FUNCTI ON_UART 0xB

8 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
FQM Initialization Function

#define TPU_FUNCTI ON_NI TC OXxA
#def i ne TPU_FUNCTI ON_COWM 0x9
#define TPU_FUNCTI ON_HALLD 0x8
#def i ne TPU_FUNCTI ON_MCPWM 0x7
#defi ne TPU_FUNCTI ON_FQD 0x6
#defi ne TPU_FUNCTI ON_PPWA 0x5
#defi ne TPU_FUNCTI ON_OC 0x4
#def i ne TPU_FUNCTI ON_PWM 0x3
#define TPU_FUNCTI ON_DI O 0x2
#def i ne TPU_FUNCTI ON_SPWM 0x1
#def i ne TPU_FUNCTI ON_SI OP 0x0

/* TPU BANK 1 */

/* Only 2 functions are different in bank 1 */
#define TPU_FUNCTI ON_I D 0x5

#defi ne TPU_FUNCTI ON_RWIPI N 0x1

/* TPU Scheduler Priorities */
#define TPUPRIORITY HIGH 3
#define TPU_PRI ORI TY_M DDLE 2
#define TPU PRORITY_LOW 1
#define TPU_PRI ORI TY_DI SABLE 0

/* TPU CGeneral */

#defi ne TPU_CHANNEL_MASK OxF
#define TPU PRI ORI TY_MASK 0x3
#define TPU HSR MASK 0x3
#defi ne TPU_HSQ MASK 0x3

#endif /*ifdef _MPCSXx_UTIL_H */

7 FQM C Level API Code

7.1 FQM Initialization Function

The initialization routine initializes the channel to run the FQM function. It should be called a second time
to change the operating conditions (rise to falling edge or single shot to continuous mode).

/***

FUNCTI ON cotpu_fgminit

LEERE SRR EEREEY

Using the Frequency Measurement TPU Function 9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
QM Initialization Function

void tpu_fgminit(struct TPU3_tag *tpu, U NT8 channel, U NT8 priority,
U NT8 node, U NT8 edge, U NT8 tinmer, U NT16 w nd_sz)
{
Ul NT16 channel _control;
Ul NT16 pac;
Ul NT16 tbs;
Ul NT8 hsq;

/* di sabl e channels so they can be configured safely */

t pu_di sabl e(tpu, channel);

/* FQMis function 0xC */
tpu_func(tpu, channel, TPU_FUNCTI ON_FQM ;

/* disable interrupts on channels so they can be configured safely */

tpu_i nterrupt _di sable(tpu, channel);

/* mask off illegal values */

nmode = (nmode & TPU_FQM MODE_MASK) ;
edge = edge & TPU_FQM PAC_MASK;

pac = edge << 2;

thbs = (tiner & TPU_FQM TBS_MASK) << 6;

/* Initialize Paraneter RAM */

channel _control = (tbs | pac | TPU_FQM PSC);

t pu- >PARM R[channel] [TPU_FQM CHANEL_CONTRCL] = channel _control ;
t pu- >PARM R[channel] [TPU_FQV_ W NDOW S| ZE] = wi nd_sz;

AR R EE R EEE AR EEEEEE SRR EEEEEE SRRy

/* Configure the Channels. */

/**/

if ((edge == TPU_ FQM FALL) && (nbde == TPU_FQM SINGLE)) {
hsq = TPU_FQM FALL_EDGE_SI NG,
}
else if ((edge == TPU FQM FALL) && (nmode == TPU_FQM CONT)) {
hsq = TPU_FQM FALL_EDGE_CONT;
}
else if ((edge == TPU_FQM FALL) && (npde == TPU_FQM SI NGLE)) {

10 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

FQM Change Window Size Function

hsq = TPU_FQV RI SE_EDGE_SI NG,

}

el se hsq = TPU_FQM RI SE_EDGE_CONT;
t pu_hsq(tpu, channel, hsq);
tpu_hsr(tpu, channel, TPU FQM INIT);

/* Enabl e channel by assigning a priority to them */

t pu_enabl e(t pu, channel, priority);

} /* End tpu_fgminit */

7.2 FQM Change Window Size Function

Thetpu_fgm_update window routine should be called to change the size of the sample window.

/***

FUNCTI ON : tpu_fgm.updat e_wi ndow

LEERE SRR EEEE R EEEY

voi d t pu_f gm updat e_wi ndow_si ze(struct TPU3_tag *tpu,

U NT8 channel, U NT16 wi nd_sz)

t pu- >PARM R[channel] [TPU_FQM W NDOW SI ZE] = wi nd_sz;

} /* End tpu_fgmupdate_w ndow */

7.3 FQM Get Value Return Function

The function tpu_fgm_get_pulse returns the number of TCR clocks of the frequency on the input channel.

IR EEA RS EE SRR EEEEEEEEEEEEEER]

FUNCTI ON : tpu_fgm.get _pul se
***/
Ul NT16 tpu_fgmget _pul se(struct TPU3 _tag *tpu, U NT8 channel)

{
U NT16 pul se;

tpu_ready(tpu, channel);
pul se = tpu->PARM R[channel] [TPU_FQM PULSE_COUNT] ;
return (pul se);

} /* End tpu_fgmget_pul se */

Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

11

Freescale Semiconductor, Inc.
Zhannel Control

8 FQM Function Parameters

This section provides detailed descriptions of FQM function parameters stored in channel parameter RAM.
Figure 3 shows the parameter RAM assignment used by the FQM function.

PARAMETER RAM
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0x30YYWO
0x30YYW2
0x30YYW4 CHANEL_CONTROL
0x30YYW6 WINDOW_SIZE
0x30YYW8 PULSE_COUNT
0x30YYWA IN_WINDOW_ACCUMULATOR
0x30YYWC
0x30YYWE
I:lz Written By CPU I:lz Written by CPU and TPU W = Primary Channel Number

YY =0x41 For TPU_A, 0x45 For
TPU_B and 0x5D For TPU_C

= Written By TPU = Unused Parameters

Figure 3. FQM Parameters

8.1 Channel Control

Thisparameter isused by the function to initialize the channel . It must be written by the CPU prior toissuing
a host service request and assigning priority to the channel. The only legal values for this parameter are
shown in Figure 3. Any other values cause indeterminate operation. Bits 9-15 are not used and areignored.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NOT USED TBS PAC PSC

Figure 4. Channel Control Bit Encoding

Table 2. Channel Control Bit Definitions

Function TBS PAC PSC
- 1 1
Detect Rising Edge 0 0
Detect Falling Edge 0 1 0
Capture TCR1, Match TCR1 0 0 0 0
Capture TCR1, Match TCR1

8.1.1 PSC

These bits are used by the initialization state to configure the channel. Since thisis an input function these
bits must always be set to the NIL value (11).

12 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
NINDOW_SIZE

8.1.2 PAC

These bits are used during function initialization to configure the transition detector. Although the detector
itself can be set to detect rising edges, falling edges, both rising and falling edges, or to not detect any edge,
FQM deals only with rising or falling edges, and thus recognizes only the PAC values that correspond to
these two cases. The edge type selected must also be the same as the edge specified by host sequence bit 1.
If the two selections are not the same, the function does not perform correctly.

Table 3. Channel Control PAC Definitions

PAC Setting Definition Value
Detect Rising Edge TPU_FQM_RISE 0x1
Detect Falling Edge TPU_FQM_FALL 0x2

8.1.3 TBS

These bits are used during initialization to select the timebase for the function. Either TCR1 or TCR2 can
be selected.

Table 4. Channel Control TBS Definitions

TBS Setting Value
Capture TCR1, Match TCR1 TPU_FQM_TCR1 0x1
Capture TCR2, Match TCR2 TPU_FQM_TCR2 0x3

8.2 WINDOW_SIZE

This parameter specifies the duration of the accumulation window. It is written by the CPU. Duration is
specifiedin TCR clock ticks. The maximum valueis 0x8000. Minimum window timeis based on the service
latency of the function, which varies according to the type and number of functions active at any onetime.
This parameter must be written prior to issuing a host service request and assigning priority to the channel.
Oncethe channel is enabled, window size can be changed at any time while the channel isrunning. The new
value takes effect when current window time expires.

8.3 PULSE_COUNT

This is the 16-bit result register for the function. It contains the number of pulses detected during the
previous window. Since the register is written by the TPU at the end of each window time, in continuous
mode the CPU has only one window time in which to read the stored value. In single shot mode, the value
remainsin the register until the next window accumulation is scheduled and that window time ends.

8.4 IN_WINDOW_ACCUMULATION

FQD uses this 16-hit location to store a running pulse accumulation value during each window time. The
valueisreset to zero at the beginning of each window. IN_WINDOW_ACCUMULATION is ascratchpad
value. CPU reads of the register do not affect function operation, but CPU writes can corrupt an
accumulation in progress.

Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Zhannel Function Select Registers

9 Host Interface to the FOM Function

This section provides information concerning the TPU host interface to the FQM function.

9.1 Channel Function Select Registers

Encoded 4-hit fields within the channel function select registers specify one of 16 time functions to be
executed on the corresponding channel. The Channel Function bits should be set to 0xC to select the FQM
ROM function.

9.2 Host Sequence Registers

The host sequencefield sel ectsthe mode of operation for the time function selected on agiven channel. The
meaning of the host sequence bits depends on the time function specified. Meanings of host sequence bits
and host service request bits for pre-defined time functions will be provided in a subsequent draft of this
document.

Table 5. Host Sequence Bit Definitions (0x30YY14 — 0x30YY16)

Bit Setting Definition
0b00 Begin with Falling Edge, Single-Shot Mode
0b01 Begin with Falling Edge, Continuous Mode
0b10 Begin with Rising Edge, Single-Shot Mode
Ob11 Begin with Rising Edge, Continuous Mode

9.3 Host Service Request Registers

The host servicerequest field sel ectsthe type of host service request for the time function selected on agiven
channel. The meaning of the host service request bitsis determined by time function microcode. See Table 6
for the Host Service routines defined for the FQM function

Table 6. Host Service Bit Definitions

Bit Setting Definition
0b00 No Host Service (Reset Condition
0bO1 Not Used
0b10 Initialize
Ob11 Not Used

9.4 Channel Priority Registers

The channel priority registers (CPR1, CPR2) assign one of three priority levels to a channel or disable the
channel.

14 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
derformance

10 Performance and Use of the FQM Function

10.1 Performance

Since microcode must execute whenever an edge is detected, there is a minimum pulse period which
guaranteesthat all pulseswill be counted. When asingle FQM functionisin use and no other TPU channels
are active, the absolute minimum pulse width is 22 CPU cyclesplusa TST time. To anayze the performance
of an application that appears to approach the limits of the TPU, use the guidelines given in the TPU
reference manual and the information in Table 7 below.

Table 7. FQM State Timing

State Number and Name | Max CPU Clock Cycles RAM Accesses by TPU
S1INIT_FQM 6 1
S2 FIRST_EDGE_FQM 8 2
S3 COUNT_EM_FQM
Match only 16 4
Transition only 12 2
Match and Transition 22 4

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 CPU clocks).

10.2 Changing Mode

The host sequence bitsare used to select the FQM function operating mode. Change host sequence bit values
only when the function is stopped or disabled (channel priority bits =0b00). Disabling the channel before
changing mode avoids conditions that cause indeterminate operation.

11 Frequency Measurement Examples

The FQM function counts pulses within a user-specified time window. The following examples show the
capabilities of the function. Each example includes a description of the example, a diagram of initia
parameter RAM content, initial control bit settings, and a diagram showing the relationship between the
window and the pulses. Assume a pulse period of 75 TCR1 clock ticks. Thisis not required to set up the
function but isused to illustrate what happensto partial pulses and edges concurrent with the end of window
time. Unless otherwise noted, all examples use TPU channel 0.

11.1 Example 1

11.1.1 Description

Single-shot mode. Count the number of pulses beginning with afalling edge using TCR1. Accumulate for
500 (0x1F4) TCR1 clock ticks and stop. Store the accumulated value in location 0x30Y'Y W08.

Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
xample 2

11.1.2 Initialization

Load parameter RAM as shown. Write HSQ =0b00, then issue HSR =0b10 to initialize. Enable channel
interrupt, select the function in the channel function select register, and set the channel priority bitsto start
the function.

CH_CNTL =0xB
WIND_SZ = 0x1F4

11.1.3 Timing Diagram

ACCUM VALUE: 0 1 2 3 4 5 & 0
e SAMPLE WINCOW
COMPLETE
COUNT=5
INIT TG & STOP

11.2 Example 2

11.2.1 Description

Single-shot mode. Count the number of pulses beginning with arising edge using TCR2. Accumulate for
300 (0x12C) TCR2 clock ticks and stop. Store the accumulated value in location 0x30Y YWO08. Notethat in
this example the end of a pulseis coincident with the end of awindow. If this edge passes through the digital
filter before the window expiresit is counted. However, if the edge has occurred but the digital filter has not
qualified it, the pulseis not counted.

11.2.2 Initialization

Load parameter RAM as shown. Write HSQ =0b10, then issue HSR =0b10 to initialize. Enable channel
interrupt, select the function in the channel function select register, and set the channel priority bitsto start
the function.

CH_CNTL = 0x67
WIND_SZ = 0x12B

16 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
xample 3

11.2.3 Timing Diagram

ACCUM VALUE: 0 1 2 3 4 0

COMPLETE
COUNT = 4
IMIT TR & STOF

T r—— SAMPLE WINDOW ——3

11.3 Example 3

11.3.1 Description

Continuous mode. Count the number of pulses beginning with a falling edge using TCR2. Accumulate for
350 (0x15E) TCR2 clock ticks. At the end of each window time, store the accumulated value in location

0x30Y YWO08.

11.3.2 Initialization

Load parameter RAM as shown. Write HSQ = 0b01, then issue HSR = 0b10 to initialize. Enable channel
interrupt, select the function in the channel function select register, and set the channel priority bitsto start

the function.
CH_CNTL = 0x6B

WIND_SZ = 0x15E

11.3.3 Timing Diagram

ACCUM VALUE: 0 1 2 3 4 a1 2 3 4 50 1
rlE—— SAMPLE WINDOW)\(SAMPLE WINDOW
COMPLETE COMPLETE
COUNT=4 COUNT =4
INIT IRG TRG

11.4 Example 4

11.4.1 Description

Continuous mode. Count the number of pulses beginning with arising edge using TCR1. Accumulate for
300 (0x12C) TCR1 clock ticks and stop. Store the accumulated value in location 0x30Y Y WO08. Notethat in
this example the end of a pulseis coincident with the end of awindow. If this edge passes through the digital

Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
vIIOS Initialization Script for WindRiver SingleStep

filter before the window expiresit is counted. However, if the edge has occurred but the digital filter has not
qualified it, the pulse will be counted in the next window time.

11.4.2 Initialization

Load parameter RAM as shown. Write HSQ = 0b11, then issue HSR = 0b10 to initialize. Enable channel
interrupt, select the function in the channel function select register, and set the channel priority bitsto start
the function.

CH_CNTL = 0x07
WIND_SZ = 0x12C

11.4.3 Timing Diagram

ACCUM VALUE: 0 1 2 3 4 0 1 2 3 40 1 2

|

T E——— SAMPLE WINDOW el SAMPLE WINDOW 4){

COMPLETE COMPLETE
COUNT =4 COUNT = 4
NIT RGO TR

12 Debugger Scripts

Thefollowing debugger scriptswere written and used for the WindRiver SingleStep debugger version 7.6.2.
Thefirst just sets up the MIOS PWMO to generate a continuous 4.882 kilo-hertz square wave.

12.1 MIOS Initialization Script for
WindRiver SingleStep

echo "M CS. DBG'

echo "SDS nacro script to denonstrate the use of the M OS"
echo "PWM and DASM Based on appnote AN1778."

echo "al - original script, 1999"

echo "rd - nodified with conments to the screen, 20APR2000"

#
echo " H#HHHHHHHHHHHHHHHHHHHHHHHHHHH "
#echo "set fast slew rate, and disable pull up/down in PDMCR'

#wite -1 0x2fc03c = Oxf3000000

€ChO " HHHHHHHHHHHHHHHHH
echo "ALL CHANNELS"

echo "Status and control for MCPSM (nmain clock"”

18 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
vIIOS Initialization Script for WindRiver SingleStep

echo "divider for the MOSi.e. main divider for all"
echo "PWM s)"
echo "set prescaler to divide by 16"

wite -w 0x306816 = 0x8000

echo " ####HHHHH T
echo " CHANNEL 0"

echo "PWM Period register (resolution of the waveform"
echo "set PWWD to generate a square wave 1/ 16 system cl ock"
echo "(assunming | MB running at half speed)"

wite -w 0x306000 = 0x2

echo "PWWD period = 0x2"

echo "PWM Pul se width register (How many periods --"
echo "from above-- that are high"

echo "PWWD pul se width = 0x1"

wite -w 0x306002 = Ox1

echo "PWM Status and control (Divider per P\ = = 0x5400"
echo "PWWD output, prescal er divide by 256"
wite -w 0x306006 = 0x5400

€ChO " #HHHHHHHHHHHHHHHHH

exit

End of script

TPU Read Channel 0 Paraneter RAM Scri pt

start of script - tpu_pram dbg

echo "this script reads TPU_A, TPU B, or TPU C channel 0 paraneter RAM

echo "rd. 18sept2002"

Original version 18Sept2002

nmodi fied fromtpu_pwn dbg

5 july 2001 - added uppercase.

echo ""

if ($#argv < 1) then

echo "*****ERROR***** j|]egal TPU selected. Defaulting to TPU A"
@ base = 0x304000

el se

if ($1 =="'a" || $1 =="'A) then
@ base = 0x304000

elseif ($1 =='"b" || $1 =="B") then

Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
vIIOS Initialization Script for WindRiver SingleStep

@ base = 0x304400

elseif ($1 =="'c" || $1 =="'C) then
@ base = 0x305c00

endi f

@ hsr add "? ($base + Oxla)°

echo "check location " *? -x ($base + Oxla)’

@hstat = “read -Vrux $hsradd=short”
echo "Host service request = "$hstat
if ($hstat == 0) then
echo "Host service request conpleted"
el se
echo "TPU " $1 " failed to start running"

endi f

echo "Read TPU " $1 " Channel 0 Paraneter RAM'

echo -b "Paranmeter 0 = \c"
read -ruxw ~? -x ($base + 0x100) =short
echo -b "Paranmeter 1 = \c"
read -ruxw ~? -x ($base + 0x102) =short
echo -b "Paranmeter 2 = \c"
read -ruxw ~? -x ($base + 0x104) =short
echo -b "Paranmeter 3 = \c"
read -ruxw ~? -x ($base + 0x106) =short
echo -b "Paraneter 4 = \c"
read -ruxw “? -x ($base + 0x108) =short
echo -b "Paranmeter 5 = \c"
read -ruxw “? -x ($base + 0x1l0a) =short
echo -b "Paranmeter 6 = \c"
read -ruxw ~? -x ($base + 0x10c) =short
echo -b "Paraneter 7 = \c"

read -ruxw ~? -x ($base + 0x10e) =short

end of script

Host service request

is cleared (=0)"

20 Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
vIIOS Initialization Script for WindRiver SingleStep

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

vIIOS Initialization Script for WindRiver SingleStep

22

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
vIIOS Initialization Script for WindRiver SingleStep

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Frequency Measurement TPU Function

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Z “freescale:

semiconductor

AN2363/D

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Using the Frequency Measurement TPU Function (FQM) with the MPC500 Family
	1 Functional Overview
	2 Description
	3 FQM C Level API
	3.1 Initialization Functions (tpu_fqm_init)
	Table�1. TPU Priorities

	3.2 Change Operation Function
	3.3 Value Return Function
	3.4 General TPU Functions

	4 Configuration of FQM Function
	5 Example Code
	5.1 Code Listing
	5.2 Example Description
	Figure�1. Frequency Formula
	Figure�2. Frequency Calculation

	6 Header File Definitions
	7 FQM C Level API Code
	7.1 FQM Initialization Function
	7.2 FQM Change Window Size Function
	7.3 FQM Get Value Return Function

	8 FQM Function Parameters
	Figure�3. FQM Parameters
	8.1 Channel Control
	Figure�4. Channel Control Bit Encoding
	Table�2. Channel Control Bit Definitions
	8.1.1 PSC
	8.1.2 PAC
	Table�3. Channel Control PAC Definitions

	8.1.3 TBS
	Table�4. Channel Control TBS Definitions

	8.2 WINDOW_SIZE
	8.3 PULSE_COUNT
	8.4 IN_WINDOW_ACCUMULATION

	9 Host Interface to the FQM Function
	9.1 Channel Function Select Registers
	9.2 Host Sequence Registers
	Table�5. Host Sequence Bit Definitions (0x30YY14 – 0x30YY16)

	9.3 Host Service Request Registers
	Table�6. Host Service Bit Definitions

	9.4 Channel Priority Registers

	10 Performance and Use of the FQM Function
	10.1 Performance
	Table�7. FQM State Timing

	10.2 Changing Mode

	11 Frequency Measurement Examples
	11.1 Example 1
	11.1.1 Description
	11.1.2 Initialization
	11.1.3 Timing Diagram

	11.2 Example 2
	11.2.1 Description
	11.2.2 Initialization
	11.2.3 Timing Diagram

	11.3 Example 3
	11.3.1 Description
	11.3.2 Initialization
	11.3.3 Timing Diagram

	11.4 Example 4
	11.4.1 Description
	11.4.2 Initialization
	11.4.3 Timing Diagram

	12 Debugger Scripts
	12.1 MIOS Initialization Script for WindRiver SingleStep

