
AN13952
How to Use I3C in LPC86x
Rev. 1 — 26 July 2023 Application note

Document Information
Information Content

Keywords I3C, LPC86x

Abstract This application note describes how to use I3C in LPC86x.

NXP Semiconductors AN13952
How to Use I3C in LPC86x

1 Introduction

This application note describes how to use I3C on LPC86x. It mainly includes the basic knowledge of I3C, the
introduction of I3C peripherals of LPC86x, and the introduction of I3C SDK routines.

LPC86x is an Arm Cortex-M0+ based, low-cost, 32-bit MCU family operating at CPU frequencies of up to 60
MHz. LPC86x supports up to 64 kB of flash memory and 8 kB of SRAM. The peripheral complement of LPC86x
includes a CRC engine, one I2C -bus interface, one I3C-MIPI bus interface, up to three USARTs, up to two SPI
interfaces, one multi-rate timer, one self-wake-up timer, two FlexTimers, one DMA, one 12-bit ADC, one analog
comparator, function-configurable I/O ports through a switch matrix, one input-pattern match engine, and up to
54 general-purpose I/O pins.

2 I3C overview

2.1 I3C introduction
The I2C bus has been popular in the embedded field for many years. Many kinds of sensors use the I2C
interface. I2C is often used as a communication bus between the sensor and the processor. A processor
can communicate with many I2C devices and the communication bus has only two lines. This method of
communication has been used for a long time.

With the development of the industry, the requirements for the communication method has become higher.
Firstly, lower power consumption is required. Secondly, faster speed is needed. In addition, the interrupt signal
should be implemented in the communication lines, without an additional interrupt signal line.

The I3C interface has been developed to address these sensor integration concerns, as well as those
historically encountered while using I2C, SPI, and UART in any product, by providing a fast, low-cost, low-
power, managed, two-wire digital interface. The I3C interface is intended to improve upon the features of
the I2C interface, preserving backward compatibility. Compared with I2C and UART ports, I3C has a higher
communication speed. Compared with SPI, I3C requires fewer signal lines and supports in-band interrupts.

In the new I3C specification, the names of controller and target are no longer used and they are changed to
controller and target.

2.2 I3C features
I3C has the following powerful features:

• Two-wire serial interface (up to 12.5 MHz)
• Can coexist with the I2C protocol in a network
• Support legacy I2C messaging
• Single data rate mode messaging
• Higher transmission bandwidth in the high data rate messaging modes
• Multi-controller capability
• In-band interrupt
• Hot-join
• Target reset without additional wires

2.3 I3C key features
There is a detailed introduction and description of I3C in the I3C specification. This application note mainly
explains the basic key features.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
2 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

2.3.1 I3C modes

I3C supports many transfer modes, which makes I3C more flexible.

• It supports Legacy I2C target devices and messages.
• It supports the I3C Single Data Rate (SDR) mode, an enhanced version of the I2C protocol. The SDR mode

supports private messages, broadcast messages, and direct messages. Broadcast messages are sent to all
targets and direct messages are sent to specific address targets.

• It supports High Data Rate (HDR) modes, which include four high-speed modes:
– It supports the Dual Data Rate (HDR-DDR) mode. It uses the same signaling as the SDR mode, but it runs

two times faster than SDR, because it operates the data on both edges of the SCL.
– It supports the Ternary Symbol Legacy (HDR-TSL) mode, it uses ternary coding to get higher data rates,

and it allows mixing the I2C and I3C devices.
– It supports the Ternary Symbol Pure-bus (HDR-TSP) mode. It is the same with as the HDR-TSL mode,

but it accepts only I3C devices.
– It supports the Bulk Transport (HDR-BT) mode. It uses single-lane, dual-lane, or quad-lane to get the

highest possible throughput.

This application note mainly introduces the legacy I2C mode and the SDR mode. They are the most basic and
commonly used modes.

2.3.2 I3C Single Data Rate (SDR) mode

The SDR mode is the default mode of the I3C bus. Other modes and states must be entered from the SDR
mode. Common Commands (CCCs), in-band interrupts, and dynamic address assignments are used in the
SDR mode.

The I3C SDR mode has similar operations with the I2C protocol. I3C devices and legacy I2C devices can coexist
in the same I3C network. The SDR mode also has its new features, which are not present in the I2C protocol.

For the procedures and conditions that I3C shares with I2C, the SDR mode closely follows the definitions in the
I2C specification. The I2C traffic from an I3C controller to an I2C target will be properly ignored by all I3C targets.
The I3C traffic from an I3C controller to an I3C target will not be seen by most Legacy I2C target devices,
because the I2C spike filter is opaque to I3C’s higher clock speed.

2.3.3 I3C address header

The address header of I3C is derived from the START signal or the repeated START signal. It is the same with
I2C, it includes 7 bits of address, 1 bit of RnW, and 1 bit of ACK/NACK.

The address header derived from the START signal is arbitrable and uses the open-drain IO mode. The address
header derived from the repeated START signal uses the push-pull mode.

On the address header stage, the targets can transmit some requests to the I3C controller, such as in-band
interrupt, controller role request, and hot-join request.

2.3.4 Open-drain and push-pull mode

Open-drain and push-pull modes are I/O modes for I3C signal pins. In the open-drain mode, the rising and
falling edges of the signal are very slow, which makes it difficult for the protocol to reach high speeds. In the
push-pull mode, the I/O has a strong driving ability and it can reach a higher speed.

In the I2C protocol, the SCL and SDA use the open-drain mode. To obtain a higher baud rate, the push-pull
mode is used in the I3C mode.

In the address header stage, the I3C protocol still uses the open-drain mode to accept the request from the
target and it allows the arbitration among targets.
AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
3 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

In the ninth bit stage, the handshake of controller and target requires two modes to cooperate with each other.

2.3.5 Ninth bit of SDR

The ninth bit of SDR has some roles in different conditions.

• It is the same with the I2C protocol. The target gives the ACK/NACK response to the controller after receiving
the address value. The target can send the ACK with pulling down the SDA signal to respond to the SDR write
from the controller. It also sends the ACK with leaving the SDA high-level state.

• The ninth data bit written by the controller is the parity of the preceding eight data bits. The target shall not
drive the SDA line for the data written by the controller in the SDR mode. The ninth bit of SDR is called T-bit
(T stands for transition).

• The ninth data bit allows target to end a controller read frame.

The ninth bit in the I3C protocol expresses more meanings and implements more functions.

2.3.6 Dynamic address assignment

At every system power-up, the controller assigns the dynamic address to all the targets on the bus. The
dynamic address generates a priority ranking for the in-band interrupt.

The device receives the dynamic address from the controller using two methods:

• The controller uses the Enter Dynamic Address Assignment (ENTDAA) broadcast command code to
assign the dynamic address. The target shall have a 48-bit provisioned ID.

• The controller uses the Set All Addresses to Static Address (SETAASA) broadcast command code to
request all connected targets to use their static address as their dynamic address.

2.3.7 Common Command Codes (CCCs)

Common Command Codes (CCCs) are I3C’s standardized command set. The I3C controller can use different
CCC codes to implement specific functions.

There are two main kinds of CCCs: broadcast CCCs and direct CCCs.

Broadcast CCCs are valid for all devices. All devices should respond to the broadcast CCCs. Direct CCCs have
address information and they only work on devices that match the address.

In the SDR mode, the CCC always starts with broadcast address 0x7E with writing direction. Table 1 lists some
CCCs:

Command
code

CCC type Command name Description

0x07 Broadcast Enter Dynamic Address Assignment
(ENTDAA)

The controller has started the Dynamic Address
Assignment procedure.

0x29 Broadcast Set All Addresses to Static
Addresses (SETAASA)

The controller tells every target with a static
address to use it as the dynamic address.

0x87 Direct set Set Dynamic Address from Static
Address (SETDASA)

The controller assigns a dynamic address to a
target with a known static address.

0x8D Direct set Get Provisioned ID (GETPID) Gets the target’s provisioned ID.

Table 1. Common Command Codes (CCCs)

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
4 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

2.3.8 In-band interrupt

In the I3C protocol, the target can generate in-band interrupts through the clock and data lines, without wasting
additional interrupt lines.

To request an in-band interrupt, an I3C target shall emit its address into the arbitrated address header following
a START signal. If no START is forthcoming within the bus available condition, then the I3C target may issue a
START by pulling the SDA line low and wait for the active controller to pull the SCL low.

The priority level controls the order in in-band interrupt requests. Targets with lower value addresses have
higher priority levels in in-band interrupts.

After start, the target shall drive the SDA line with its own address, followed by an RnW bit with a value of 1’b1.
If more than one target has issued an IBI request after the same START, then the active controller shall process
those IBIs in a priority-level order. The target(s) that lost the arbitration may issue another IBI request, but they
shall not do so until after the bus available condition.

2.4 I3C peripheral in LPC86X
A detailed introduction and description of the I3C is in the I3C specification. This application note mainly
explains the basic key features.

3 I3C overview in LPC86X

3.1 I3C introduction
LPC86X has one controller/target I3C-MIPI bus interface. The I3C supports DDR. It is supported by the general-
purpose DMA controller. The I3C peripheral supports the full I3C feature set, except for HDR Ternary modes
(HDR-TSP and HDR-TSL).

3.2 I3C basic configuration
In LPC86X, the I3C reset, clock, interrupt, and DMA pins can be configured.

1. Clock

Bit Symbol Value Description Reset value

- Enables clock to I3C

0 Disable

23 I3C0

1 Enable

0

Table 2. Clock

Enable the clock to the I3C in the SYSAHBCLKCTRL0 register. This enables the register interface and the
peripheral function clock. The peripheral clock source-select registers select the function of clock sources
for the serial peripherals shown in the following list. The potential clock sources are the same for each
peripheral. See Table 3.
• UART0 clock source-select register (UART0CLKSEL, address 0x4004 8090).
• UART1 clock source-select register (UART1CLKSEL, address 0x4004 8094).
• UART2 clock source-select register (UART2CLKSEL, address 0x4004 8098).
• I2C0 clock source-select register (I2C0CLKSEL, address 0x4004 80A4).
• I3C clock source-select register (I3CFCLKSEL, address 0x4004 80A8).
• I3C clock source-select register (I3CSLOWTCCLKSEL, address 0x4004 80AC).

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
5 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

• I3C clock source-select register (I3CSLOWCLKSEL, address 0x4004 80B0).
• SPI0 clock source-select register (SPI0CLKSEL, address 0x4004 80B4).
• SPI1 clock source-select register (SPI1CLKSEL, address 0x4004 80B8).

Bit Symbol Value Description Reset value

- Peripheral clock
source

0x0 FRO

0x1 Main clock

0x2 FRG0 clock

0x3 FRG1 clock

0x4 FRO_DIV= FRO / 2

0x5 Reserved

0x6 Reserved

2:0 SEL

0x7 None

0x7

31:3 - - Reserved -

Table 3. Peripheral clock source-select registers

Select a clock source for the I3C function clock using the I3CFCLKSEL register.

Bit Symbol Value Description Reset value

7:0 I3C_FC LK_DIV - i3c_fclkfast clock
divider

0x0

15:8 I3C_SL OW_TC
_CLK_D IV

- i3c_slow_tc_clkclock
divider

0x0

23:16 I3C_SL OW_CL
K_DIV

- i3c_slow_clkdivider 0x0

31:24 - - Reserved -

Table 4. I3C clock divider register (I3CCLKDIV, address 0x4004 8078) bit description

Select a clock divide for the I3C function clock using the I3CCLKDIV register.
2. Reset

Bit Symbol Value Description Reset value

- I3C reset control

0 Assert the I3C reset.

23 I3C_RST_N

1 Clear the I3C reset.

1

Table 5. Reset

Clear the I3C peripheral reset in the PRESETCTRL0 register.
3. Interrupt

Interrupt number Vector address Name Description Flags

21 094 I3C_IRQ I3C interface 0
interrupt

-

Table 6. Connection of interrupt sources to the NVIC

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
6 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

The I3C provides interrupts to the NVIC.
4. Function pins

Signal I/O Description

SCL I/O Serial clock

SDA I/O Serial clock

PUR O Pull-up resistance. There is internal
pull-up resistance on the SDA, which
is controlled by the I3C controller. If
the internal pull-up is not enough,
the PUR can be used to control an
external pull-up resistance on SDA
actively.

Table 7. Function pins

I3C has three function pins, which are clock pin SCL, data pin SDA, and Pull-Up Resistor (PUR) pin. Because
LPC86X has a switch matrix, I3C function pins can be assigned on any pins (except for special pins) on
LPC86X.

3.3 I3C baud rate
The I3C baud rate includes I2C baud rate, open-drain baud rate, push-pull baud rate. It is more complicated
than the setting of I2C. This section describes the configuration of the baud rate in detail.

1. Push-Pull Baud (PPBAUD):
• It sets the push-pull frequency as a divider from the FCLK. This frequency sets the SCL half-clock period

baseline.
• The formula for SCL in push-pull mode using PPBAUD and PPLOW is:

SCL frequency (in MHz) = FCLK / ((2 + 2 * PPBAUD) + PPLOW)
• If PPLOW is 0, then:

SCL high width = SCL low width (in ns) = (1 + PPBAUD) * 1000 / FCLK (in MHz)
• Examples:

– If FCLK = 24 MHz, then PPBAUD = 0 yields 12 MHz (42.67 ns per half period).
– If FCLK = 50 MHz, then PPBAUD = 1 yields 12.5 MHz (20 + 20 = 40 ns per half period).

2. Push-Pull Low (PPLOW):
• It changes the duty cycle for push-pull. It indicates how many more FCLK cycles to use for low.
• The formula for SCL in the push-pull mode using PPBAUD and PPLOW is:

SCL freq (in MHz) = FCLK / ((2 + 2 * PPBAUD) + PPLOW)
• If PPLOW is non-zero, then:

SCL High (in ns) = (1 + PPBAUD) * 1000 / FCLK (in MHz)
SCL Low (in ns) = (1 + PPBAUD + PPLOW) * 1000 / FCLK (in MHz)

• For example, when FCLK is 50 MHz, PPBAUD is 1, and PPLOW is 1, then the periods are:
(1 + 1) * 1000 / 50 = 20 + 20 = 40 ns high
(1 + 1 + 1) * 1000 / 50 = 20 + 20 + 20 = 60 ns low

This timing is equivalent to 10 MHz SCL, but this timing maintains the 40 ns high needed so I2C devices do
not see the high periods.

3. Open-Drain Baud (ODBAUD):
• The number of PPBAUD periods to make up one I3C open-drain half-clock baseline.

– If ODHPP is 0, the ODBAUD half-clock time period = (ODBAUD + 1) * PPBAUD high period.
– If ODHPP is 0, the formula for SCL in open-drain mode is:

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
7 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

SCL (in MHz) = FCLK / (2 + 2 * PPBAUD) * (ODBAUD + 1)
• The target to get an open-drain half-clock period is 200 ns.
• For example:

– If PPBAUD yields 12.5 MHz (40 ns per PPBAUD period), then ODBAUD = 4 can be used to get 200 ns.
– If PPBAUD = 1, FCLK = 50 MHz, and ODBAUD = 4, then open drain is:

SCL = 50 / (2 + 2 * 1) * 5 = 2.5 MHz
4. Open-Drain High Push-Pull (ODHPP):

• An optional field that allows the I3C open-drain to be long low and short high. The high period of SCL is
the PPBAUD period. This period leaves enough time for the pull-up resistor to pull the SDA high when
SCL is low. It is also quick when SCL is high and there are no changes.

• ODBAUD low half-clock time period = (ODBAUD + 1) * PPBAUD high period.
• ODBAUD high half-clock time period = PPBAUD high period.
• If ODHPP is 1, the formula for SCL in Open-Drain mode is:

SCL (in MHz) = FCLK / (1 + PPBAUD) * (ODBAUD + 1) + (1 + PBAUD)
• For example:

– If PPBAUD produces 12.5 MHz (40 ns per PPBAUD period), then ODBAUD = 4 and ODHPP = 1. These
settings provide a high period of 40 ns and a low period of 200 ns.

– If PPBAUD = 1, FCLK = 50 MHz, and ODBAUD = 4 then open drain SCL = 50 / (1 + 1) * 5 + (1 + 1) =
4.16 MHz.

5. I2C Baud (I2CBAUD):
• It indicates how many ODBAUD periods are required to communicate with I2C devices.
• For example, if ODBAUD gives 200 ns and the goal is Fm+ (Fast Mode, 1 MHz), then the sum must be 1

μs.
• I2CBAUD acts differently for odd and even values. For example, if I2CBAUD = 3, it gives 3 ODBAUD

periods low and 2 ODBAUD periods high. If I2CBAUD = 4, then it gives 3 ODBAUD periods for low and 3
ODBAUD periods for high. Also, if I2CBAUD = 3, this yields 200 * 3 = 600 ns and 200 * 2 = 400 ns, with
the sum 600 + 400 = 1000 ns = 1 μs.

6. Summary:
• The relationship and calculation if the I3C baudrate is shown in Figure 1.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
8 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

Figure 1. Summary

3.4 I3C registers

3.4.1 Controller registers

Table 8 shows controller registers.

Name Offset Description

MCONFIG 0x0 Controller configuration.

MCTRL 0x84 Controller main control.

Table 8. Controller registers

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
9 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

Name Offset Description

MSTATUS 0x88 Controller status, including interrupt
causes.

MIBIRULES 0x8C Rules for in-band interrupt use.

MINTSET 0x90 Controller interrupt set/enable.

MINTCLR 0x94 Controller interrupt clear/disable.

MINTMASKED 0x98 Masked interrupts for controller.

MERRWARN 0x9C Controller errors and warnings.

MDMACTRL 0xA0 Controller DMA control.

MDATACTRL 0xAC Controller data control.

MWDATAB 0xB0 Controller write data byte.

MWDATABE 0xB4 Controller write data byte end.

MWDATAH 0xB8 Controller write data half-word.

MWDATAHE 0xBC Controller write data byte end.

MRDATAB 0xC0 Controller read data byte.

MRDATAH 0xC8 Controller read data half-word.

MWMSG_SDR_CONTROL 0xD0 Controller write message control.

MWMSG_SDR_DATA 0xD0 Controller write message data.

MRMSG_SDR 0xD4 Controller read message in SDR mode.

MWMSG_DDR_CONTROL 0xD8 Controller write message control in
DDR mode.

MWMSG_DDR_DATA 0xD8 Controller write message data in DDR
mode.

MRMSG_DDR 0xDC Controller read message in DDR mode.

MDYNADDR 0xE4 Controller dynamic address.

Table 8. Controller registers...continued

3.4.2 Target registers

Table 9 shows target registers.

Name Offset Description

SCONFIG 0x4 Slave configuration.

SSTATUS 0x8 Slave status register.

SCTRL 0xC Slave control.

SINTSET 0x10 Slave interrupt set/enable.

SINTCLR 0x14 Slave interrupt clear/disable.

SINTMASKED 0x18 Masked interrupts for slave.

SERRWARN 0x1C Slave errors and warnings.

SDMACTRL 0x20 Slave DMA control.

Table 9. Target registers

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
10 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

Name Offset Description

SDATACTRL 0x2C Slave Data control.

SWDATAB 0x30 Slave write data byte.

SWDATABE 0x34 Slave write data byte end.

SWDATAH 0x38 Slave write data half-word.

SWDATAHE 0x3C Slave write data half-word end.

SRDATAB 0x40 Slave read data byte.

SRDATAH 0x48 Slave read data half-word.

SCAPABILITIES 0x60 Slave capabilities.

SDYNADDR 0x64 Slave dynamic address.

SMAXLIMITS 0x68 Slave maximum limits.

SIDPARTNO 0x6C Slave ID part number.

SIDEXT 0x70 Slave ID extension.

SVENDORID 0x74 Slave vendor ID.

STCCLOCK 0x78 Slave time control clock.

SMSGMAPADDR 0x7C Slave message-mapped address.

SID 0xFFC Slave module ID.

Table 9. Target registers...continued

3.5 Dynamic address assignment
Compared with the I2C protocol, one feature of the I3C protocol is that the controller can assign a dynamic
address. The dynamic address assignment allows the controller to set the address priority of each target and it
also allocates addresses for newly added targets at any time. This method allows the controller not to know the
static address of the target in advance, but to just read the PID of the target through the command and then set
the corresponding address according to the PID. The subsequent communication will use the dynamic address.

• PROCESSDAA: If it is not in the Dynamic Address Assignment (DAA) mode, it issues START, 7E, and
ENTDAA and then it emits 7E/R to process each slave. It stops just before the new Dynamic Address (DA) is
to be emitted. The next Process DAA request uses the Addr field as the new DA to assign. If NACKed on the
7E/R, then the interrupt will indicate this situation and a STOP is emitted.

After initializing the controller, the user can implement dynamic address assignment using the PROCESSDAA
request in the controller Main Control (MCTRL) register.

After sending the DAA sequence, the user can write the MWDATAB with the dynamic address. If the PID cannot
be read out, the user can re-operate according to the error flag.

After the dynamic address is assigned successfully, the controller can use the dynamic address to communicate
with the targets.

3.6 Controller send SDR message
The I3C baudrate includes the I2C baudrate (open-drain).

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
11 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

3.7 DMA usage in I3C
The I3C baud rate can reach up to 12 Mbit/s. DMA is necessary to obtain the highest baudrate for 60 MHz
system clock in LPC86X.

DMA channel # Request input DMA trigger multiplexer

13 I3C0_TX_DMA DMA_ITRIG_INMUX13

14 Reserved DMA_ITRIG_INMUX14

15 Reserved DMA_ITRIG_INMUX15

Table 10. DMA requests

DMA requests are directly connected to the peripherals. The I30_RX_DMA is connected to DMA channel 12
and the I3C0_TX_DMA is connected to DAM channel 13.

DMA channel # Request input DMA trigger multiplexer

10 I2C0_RX_DMA DMA_ITRIG_INMUX10

11 I2C0_TX_DMA DMA_ITRIG_INMUX11

12 I3C0_RX_DMA DMA_ITRIG_INMUX12

Table 11. DMA requests

The I3C has a data FIFO, which can store 8 words totally. For transmitting the data, the DMA request is sent if
the TX FIFO is not full. For receiving the data, the DMA request is sent if the RX FIFO is not empty.

After configuring the I3C and DMA, use software to start the DMA and use an I3C peripheral request to push
the DMA transferring.

25:16 XFERCOUNT The total number of transfers to be performed, minus one encoded. The number of bytes
transferred is: (XFERCOUNT + 1) x data width (as defined by the WIDTH field).
Remark: The DMA controller uses this bit field during the transfer to count down. It cannot
be used by software to read back the size of the transfer, for instance, in an interrupt
handler.
• 0x0 = a total of 1 transfer is performed.
• 0x1 = a total of 2 transfers is performed.
• 0x3FF = a total of 1024 transfers is performed.

0
Table 12. DMA configuration

In DMA configuration, the maximum number of transfers is 1024. If transferring two bytes for every I3C request,
2048 bytes can be transferred totally for every DMA descriptor. More data can be transferred using a linked
descriptor.

3.8 In-Band Interrupt (IBI) handling
The I3C baud rate includes the I2C baud rate (open-drain).

4 LPC86X SDK I3C examples introduction

There are four kinds of I3C examples in the LPC86X SDK:

• master_read_sensor_icm42688p
• interrupt_b2b_transfer
• interrupt_b2b

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
12 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

• polling_b2b_transfer
• dma_b2b_transfer

This application note introduces their implementation methods and steps.

4.1 Controller reads the I3C sensor data

4.1.1 Clock

The FRO clock is used as the clock source of I3C. The frequency division value is set to 4. The FRO clock is set
to 60 MHz. The system clock also uses the FRO clock. The I3C function clock is 15 MHz.

The code snippet is as follows:

CLOCK_Select(kI3C_Clk_From_Fro);
CLOCK_SetI3CFClkDiv(4);

BOARD_InitPins();
BOARD_BootClockFRO60M();
BOARD_InitDebugConsole();

4.1.2 I3C controller initialization

The code in this stage sets the MCONFIG and MDATACTRL registers.

1. Enable the controller to operate.
2. Enable the timeout function. If the controller has been left in a state other than STOP for more than 100 us,

then the time-out will send an MERRWARN event.
3. See the I3C specifications. A high keeper is a weak pull-up type device used when SDA (and sometimes

SCL) is in high-Z, with respect to all devices. A high keeper is used for the controller-to-target and target-to-
controller bus handoff, as well as when the bus is idle (optionally). In the LPC86X SDK example, the PUR
(Pull-Up Resistor) is used as the high-keeper method.

4. Set the open-drain stop. If ODSTOP=1, then the STOP is emitted at open-drain speeds, even for I3C
messages. This can be useful for legacy devices to ensure that the legacy devices see the STOP.

5. Set the open-drain high period with the push-pull mode. If ODHPP=1, then the open-drain high should be 1
PPBAUD for I3C messages. Otherwise, the ODHPP should be the same value as ODBAUD. Set the high
period and low period with different values, so that I2C devices do not see the high level.

6. Set the watermark of the TX integer trigger level with a trigger value of one less than full or less. As long as
there is a space in the TX buffer, the TX trigger starts. Set the watermark of the RX integer trigger level with
the trigger on not empty. As long as there is data in the RX buffer, the trigger starts. The watermark does not
work for the DMA in LPC86X.

7. The push-pull baud rate is set to 12.5 Mbit/s, the open-drain baudrate is set to 4 Mbit/s, and the I2C
baudrate is set to 400 kbit/s. The calculation method of the baud rate is a bit complicated. See the clock
description in the previous chapter. The baud rate of push-pull is relatively high, but it must be an integer
multiple of the clock source. Therefore, some baud rate setting results are inconsistent with the parameters.

I3C_MasterGetDefaultConfig(&masterConfig);
masterConfig.baudRate_Hz.i2cBaud = EXAMPLE_I2C_BAUDRATE;
masterConfig.baudRate_Hz.i3cPushPullBaud = 12500000U;
masterConfig.baudRate_Hz.i3cOpenDrainBaud = 400000U;
masterConfig.enableOpenDrainStop = false;
I3C_MasterInit(EXAMPLE_MASTER, &masterConfig, I3C_MASTER_CLOCK_FREQUENCY);

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
13 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

4.1.3 I3C controller handle

The code creates a driver handle for a non-blocking transfer, which includes:

• The transfer state machine current state.
• The byte count in the current state.
• It is read-term configured.
• The current transfer info.
• The target address that requests the IBI.
• The pointer to the IBI buffer to keep the IBI bytes.
• The IBI payload size.
• The IBI type.
• The callback functions pointer.
• The application data passed to the callback.

The application code initializes the callback and user data, sets the IRQ handler, clears all the flags, resets
the FIFO, and enables the interrupt. The MDATACTRL, MERRWARN, MSTATUS, and MINTSET registers are
configured.

Write a logic 1 to the FLUSHTB and FLUSHFB bit fields in MDATACTRL to make the buffer empty. The
MERRWARN register provides I3C errors and warnings flags. Use this window to see what is wrong with the
bus or state machine during operations.

MINTSET is used to set the interrupts of I3C.

void I3C_MasterTransferCreateHandle(I3C_Type *base,
 i3c_master_handle_t *handle,
 const i3c_master_transfer_callback_t
 *callback,
 void *userData)
{
 uint32_t instance;

 assert(NULL != handle);

 /* Clear out the handle. */
 (void)memset(handle, 0, sizeof(*handle));

 /* Look up instance number */
 instance = I3C_GetInstance(base);

 /* Save base and instance. */
 handle->callback = *callback;
 handle->userData = userData;

 /* Save this handle for IRQ use. */
 s_i3cMasterHandle[instance] = handle;

 /* Set irq handler. */
 s_i3cMasterIsr = I3C_MasterTransferHandleIRQ;

 /* Clear all flags. */
 I3C_MasterClearErrorStatusFlags(base, (uint32_t)kMasterErrorFlags);
 I3C_MasterClearStatusFlags(base, (uint32_t)kMasterClearFlags);
 /* Reset fifos. These flags clear automatically. */
 base->MDATACTRL |= I3C_MDATACTRL_FLUSHTB_MASK | I3C_MDATACTRL_FLUSHFB_MASK;

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
14 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

 /* Enable NVIC IRQ, this only enables the IRQ directly connected to the
 NVIC.
 In some cases the I3C IRQ is configured through INTMUX, user needs to
 enable
 INTMUX IRQ in application code. */
 (void)EnableIRQ(kI3cIrqs[instance]);

 /* Clear internal IRQ enables and enable NVIC IRQ. */
 I3C_MasterEnableInterrupts(base, (uint32_t)kMasterIrqFlags);
}

4.1.4 Register IBI and assigning dynamic address

Register the in-band interrupt for the sensor address. Write the sensor address to the register. If NOBYTE = 0,
then the ADDRx fields refer to targets with a mandatory IBI byte.

i3c_register_ibi_addr_t ibiRecord = {.address = {slaveAddr}, .ibiHasPayload =
 true};
I3C_MasterRegisterIBI(EXAMPLE_MASTER, &ibiRecord);
result = I3C_MasterProcessDAA(EXAMPLE_MASTER, addressList, sizeof(addressList));

The steps of the dynamic address assignment are as follows:

• Clear all the flags.
• Disable the interrupt.
• Emit the process DAA request.
• Get the VID, part number, BCR, and DCR from the target.
• Write the MWDATAB with the address to be assigned.
• Re-emit the process DAA request for more targets.
• Clear the flags and enable the interrupt.

After finishing the dynamic address assignment, all the targets have their dynamic addresses. The controller
can use the dynamic address to communicate with targets.

4.1.5 Sensor operations and I3C state machine

The operation of the sensor includes initialization, enablement, configuration registers, and so on. The middle
layer is mainly implemented by two functions:

• I3C_WriteSensor
• I3C_ReadSensor

These functions are implemented by the I3C_MasterTransferNonBlocking low-level driver routine. In this
application note, it mainly introduces the implementation of the I3C low-level driver.

The non-blocking transfer code snippet is as follows:

/* Set register data */
masterXfer.slaveAddress = deviceAddress;
masterXfer.direction = kI3C_Read;
masterXfer.busType = kI3C_TypeI3CSdr;
masterXfer.subaddress = regAddress;
masterXfer.subaddressSize = 1;
masterXfer.data = regData;
masterXfer.dataSize = dataSize;
masterXfer.flags = kI3C_TransferDefaultFlag;

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
15 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

result = I3C_MasterTransferNonBlocking(EXAMPLE_MASTER, &g_i3c_m_handle,
 &masterXfer);

The non-blocking transfer descriptor structure (_i3c_master_transfer) defines the following items:

• The bit mask of options for the transfer.
• The 7-bit target address.
• The direction (kI3C_Read or kI3C_Write).
• The sub address.
• The length of the sub address to send (in bytes).
• The pointer to the data to transfer.
• The number of bytes to transfer.
• The bus type.
• The IBI response during the transfer.

The I3C_MasterTransferNonBlocking function mainly implements the initialization of the state machine. The
state machine contains the following states:

• kIdleState
• kIBIWonState
• kSlaveStartState
• kSendCommandState
• kWaitRepeatedStartCompleteState
• kTransferDataState
• kStopState
• kWaitForCompletionState

The running state machine is implemented in the I3C_RunTransferStateMachine function. This function is the
most important implementation function called by the interrupt function.

At the beginning, sending the address header and sub address must call the interrupt function to run the state
machine.

The I3C_RunTransferStateMachine function contains the processing steps of all states and it responds
differently in different states. To increase the speed of the I3C, you can optimize the steps in this function.

1. According to the flag bits of I3C, if it is judged to be kSlaveStartState, then the state machine starts the
AUTOIBI request in the MCTRL I3C register. Change the state to kIBIWonState to receive the IBI payload
data.

2. When the state machine enters kSendCommandState, the sub-address data are sent by the I3C controller.
A repeated start signal can be sent in the kWaitRepeatedStartCompleteState state.

3. The kTransferDataState state is the key state in the state machine, because most data transferring is
implemented in this state. If the controller writes the data to the bus, the application code writes the
MWDATAB register and writes MWDATABE for the last byte. If the controller reads the data from the bus,
the application code gets the data from the MRDATAB register.

4. At the end of all operations, the stop signal is sent in the kStopState state.

A complete I3C data frame includes several different signal states. These stages are regularly combined to
achieve different functions. The I3C register gives the interface, shows different states through different flags,
and transmits signals and data through control registers and data registers. A state machine is needed in the
driver layer. These states can be combined to complete the given tasks.

Using a non-blocking mode to handle the I3C bus signals, the Arm core can do other tasks in the I3C
processing gap. However, for the 60-MHz system clock, dealing with I3C timing at 12.5 Mbit/s is already very
difficult, leaving no time for other tasks. The advantages of the interrupt mode are not fully utilized.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
16 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

4.1.6 I3C interrupt

The interrupt is the feedback from the bottom layer of the peripheral to the upper layer and many status types
can generate interrupts. After the driver function enters the interrupt, it must read the flags from the state
register to determine which state the peripheral is jumping in.

In the interrupt function (in addition to running the state machine), additional processing must be done according
to different states, which is a supplement to the state machine. For example, turn off the TX ready flag interrupt
in the kIdleState state and send the stop signal in the kStatus_Success state.

4.2 I3C interrupt transfer with state machine
Similarly to the master_read_sensor_icm42688p example, the interrupt_b2b_transfer example uses the
interrupt mode. Therefore, the controller data-transmission mechanism is the same. The controller runs the
state machine in an interrupt handler and sends different signal or data timings in different states.

This chapter does not explain the behavior of the controller too much. It focuses mainly on the operation of the
target.

4.2.1 Target initialization

The most important thing in the initialization of the target is to set the static address, vendor ID, and frequency.
Of course, the application code must also set the BCR, DCR, part number, maximum read and write length, and
so on, which have given the default values in the default configuration.

I3C_SlaveGetDefaultConfig(&slaveConfig);

slaveConfig.staticAddr = I3C_MASTER_SLAVE_ADDR_7BIT;
slaveConfig.vendorID = 0x123U;
slaveConfig.offline = false;

I3C_SlaveInit(EXAMPLE_SLAVE, &slaveConfig, I3C_SLAVE_CLOCK_FREQUENCY);

The main capabilities' registers involved are as follows:

SMAXLIMITS 0x68 Slave Maximum Limits. Capabilities

SIDPARTNO 0x6C Slave ID Part Number. Capabilities

SIDEXT 0x70 Slave ID Extension. Capabilities

SVENDORID 0x74 Slave Vendor ID. Capabilities

Table 13. Main capabilities' registers

The SCONFIG register configures the target. This register defines the static address field, enables the target,
and performs some other functions. For details, see the description of the UM register.

4.2.2 Create target handle

Before starting to transfer data, the application must do some preparation. In the
I3C_SlaveTransferCreateHandle routine, the application sets the callback routine. The FIFO transmit value
and FIFO receive value of the I3C can be read in the SCAPABILITIES register. Knowing the capacity of the
FIFO, the application can plans the number of bytes to be sent and received. Then, the application disables
the interrupt for the moment and enables the NVIC. Later, as long as the I3C internal interrupt is enabled, the
relevant event will generate an I3C interrupt.

/* Look up instance number */

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
17 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

instance = I3C_GetInstance(base);

/* Save base and instance. */
handle->callback = callback;
handle->userData = userData;

/* Save Tx FIFO Size. */
handle->txFifoSize =
2U << ((base->SCAPABILITIES & I3C_SCAPABILITIES_FIFOTX_MASK) >>
 I3C_SCAPABILITIES_FIFOTX_SHIFT);

/* Save this handle for IRQ use. */
s_i3cSlaveHandle[instance] = handle;

/* Set irq handler. */
s_i3cSlaveIsr = I3C_SlaveTransferHandleIRQ;

/* Clear internal IRQ enables and enable NVIC IRQ. */
I3C_SlaveDisableInterrupts(base, (uint32_t)kSlaveIrqFlags);
(void)EnableIRQ(kI3cIrqs[instance]);

In the application, the target first receives the data sent by the controller. Before receiving data, initialize the
receiving buffer and enable related interrupts.

/*! IRQ sources enabled by the non-blocking transactional API. */
kSlaveIrqFlags = kI3C_SlaveBusStartFlag | kI3C_SlaveMatchedFlag |
 kI3C_SlaveBusStopFlag | kI3C_SlaveRxReadyFlag |
 kI3C_SlaveDynamicAddrChangedFlag | kI3C_SlaveReceivedCCCFlag |
 kI3C_SlaveErrorFlag |
 kI3C_SlaveHDRCommandMatchFlag | kI3C_SlaveCCCHandledFlag |
 kI3C_SlaveEventSentFlag,

4.2.3 Target data transmission in interrupt mode

In the I3C protocol, the behavior of the target is guided by the controller. Therefore, the target does not need a
very complicated state machine. It only needs to respond to different interrupts according to the bus signal and
do different preparations.

The bus information can be displayed in the SSTATUS register and this register can be read to obtain relevant
status information after an interrupt is generated. If there is an error on the bus or the module, the relevant error
information can be obtained from the SERRWARN register. After entering the interrupt, the first thing to do is to
read these two registers to obtain more accurate interrupt information.

There are many flags that can cause interrupts and the corresponding interrupts can be set in the I3C SINTSET
register. The SINTMASKED register returns the status of enabled interrupts (the value of Target Status
(SSTATUS) ANDed with the value of Target Interrupt Set (SINTSET)). Not all status flags generate interrupts in
the application. Only the enabled flags generate interrupts.

Figure 2 is the processing flow in the I3C target interrupt, and the brown rectangles are the detailed execution of
each state.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
18 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

image25.emf

placeholderImage_0024.svg

image25.emf

placeholderImage_0024.svg

Start

Get status flags

kSlaveErrorFlags
!= 0UL

no

yes

Clear status flags

Check and clear
error

kI3C_SlaveBusStartFlag
!= 0UL

no

yes
Enable tx interrupt

kI3C_SlaveEventSentFlag
!= 0UL

yes
Sent IBI data

no

kI3C_SlaveReceivedCCCFlag
!= 0UL

yes
CCC operation

no

kI3C_SlaveBusStopFlag
!= 0UL

yes Flush buffers
Disable tx interrupt

kI3C_SlaveMatchedFlag
!= 0UL

Match event
callback

kI3C_SlaveTxReadyFlag
!= 0UL

Transmit data
Tx callback

kI3C_SlaveRxReadyFlag
!= 0UL

Receive data
Rx callback

Get fifo counts
compute room in TX fifo

Return

no

yes

no

yes

no

yes

Figure 2. Target data transmission in interrupt mode

In the i3c_slave_callback routine, the application code configures the buffer and its length for sending
and receiving. These operations are supplementary to the interrupt function. The application sets
g_slaveCompletionFlag when the operation is complete.

After receiving the data sent by the controller, the target will return the received data to the controller. The
completion of each data transmission mainly depends on the judgment of g_slaveCompletionFlag.

4.3 I3C interrupt transfer without state machine
To reduce the complexity of software logic, the SDK also provides a simplified version of the interrupt mode
transfer example (interrupt_b2b). The interrupt_b2b example also uses the interrupt mode, but without the
complex state machine. This method is more convenient for users to modify the code as needed. It can realize
basic functions, such as in-band interrupt, sending data, and receiving data.

4.3.1 Interrupt_b2b for controller

Same as with the master_read_sensor_icm42688p example, the initialization of the controller will configure the
baud rate and other default values.

The controller is responsible for the assignment of dynamic addresses and the existing addresses of targets
must be reset before the address is allocated each time. 0x06 is a CCC command about the Reset Dynamic
Address Assignment (RSTDAA).

/* Reset dynamic address before DAA */

I3C_MasterStart(EXAMPLE_MASTER, kI3C_TypeI3CSdr, 0x7EU, kI3C_Write);
AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
19 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

uint8_t cmdCode = 0x06U;
result = i3c_master_transferBuff(&cmdCode, 1U, kI3C_Write);

if (kStatus_Success != result)
{
 return result;
}

I3C_MasterStop(EXAMPLE_MASTER);

The operation of the dynamic address assignment is the same as the master_read_sensor_icm42688p
example.

In this example, the routines for sending start and stop signals are listed separately and the address can be
directly set in the parameters of the function when sending the start address header.

The data transfer operation is performed in the i3c_master_transferBuff function. The first thing to do is to
enable different interrupts according to the read and write directions. If it is a write operation, enable the TX
ready interrupt, and if it is a read operation, enable the RX ready interrupt. To detect error conditions, the error
flag interrupt is also turned on.

if (dir == kI3C_Write)
{
 I3C_MasterEnableInterrupts(EXAMPLE_MASTER, (uint32_t)(kI3C_MasterTxReadyFlag
 | kI3C_MasterErrorFlag));
}
else
{
 I3C_MasterEnableInterrupts(EXAMPLE_MASTER, (uint32_t)(kI3C_MasterRxReadyFlag
 | kI3C_MasterErrorFlag));
}

uint32_t timeout = 0U;
/* Wait for transfer completed. */
while ((!g_masterCompletionFlag) && (g_completionStatus == kStatus_Success) &&
 (++timeout < I3C_TIME_OUT_INDEX))
{
 __NOP();
}

Interrupt processing is executed in the I3C0_IRQHandler function. The flow chart is in Figure 3.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
20 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

image28.emf

placeholderImage_0027.svg

image28.emf

placeholderImage_0027.svg

Start

Clear status flags

errorFlags
!= 0UL

no

yes
Clear error

kI3C_MasterArbitrationWonFlag
!= 0UL

no

yes
Handle IBI event kI3C_MasterTxReadyFlag

!= 0UL

yes
Sent data

no

kI3C_MasterRxReadyFlag
!= 0UL

yes
Receive data

no

kI3C_MasterSlaveStartFlag
!= 0UL

yes
Emit start + 0x7E

Transfer finished?
Set

g_masterCompletionFlag
Disable interrupt

Return

no

yes

Get FIFO counts

no

Figure 3. Flow chart

4.3.2 Interrupt_b2b for target

The initialization of target is the same as with the Interrupt_b2b_transfer example. After the target is initialized,
the application enables the interrupt about event sending, match flag, and bus stop flag. The target starts to
prepare to receive the data sent by the controller.

As an interrupt transmission method, set the receive flag interrupt and error flag interrupt of the target. When
the completion flag is set, it means all the data has been received in the buffer. At this time, you can turn off the
interrupt and wait for the next operation. The interrupt function of the target is not as complicated as that of the
controller. It only judges several states, and then sends and receives several bytes of data. Because the target
does not need to be responsible for all signal processing like the controller, most of the cases are only passive
data transmissions in the appropriate state. Interrupt processing is executed in the I3C0_IRQHandler function.
The flow chart is in Figure 4.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
21 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

image29.emf

placeholderImage_0028.svg

image29.emf

placeholderImage_0028.svg

Start

Clear status flags

errorFlags
!= 0UL

no

yes
Clear error

no

kI3C_SlaveTxReadyFlag
!= 0UL

yes
Sent data kI3C_SlaveRxReadyFlag

!= 0UL

yes
Receive data

no

kI3C_SlaveMatchedFlag
!= 0UL

yes
Set flag

g_addressMatchFlag

kI3C_SlaveBusStopFlag
!=0UL

Set
g_slaveCompletionFlag

Disable interrupt

Return

no

yes
Get FIFO counts

no

kI3C_SlaveEventSentFlag
!=0UL

Set
g_slaveRequestSentFlag

no

yes

Figure 4. Flow chart

The application example also implements the in-band function. The target requests the IBI interrupt and sends
the first byte in the RX buffer to the controller.

The in-band function can be realized by setting the SCTRL register, which will enable the IBI value and fill the
IBIDATA value.

void I3C_SlaveRequestIBIWithData(I3C_Type *base, uint8_t *data, size_t dataSize)
{
 assert((dataSize > 0U) && (dataSize <= 8U));

 uint32_t ctrlValue;

#if (defined(I3C_IBIEXT1_MAX_MASK) && I3C_IBIEXT1_MAX_MASK)
 if (dataSize > 1U)
 {
 ctrlValue = I3C_IBIEXT1_EXT1(data[1]);
 if (dataSize > 2U)
 {
 ctrlValue |= I3C_IBIEXT1_EXT2(data[2]);
 }
 if (dataSize > 3U)
 {
 ctrlValue |= I3C_IBIEXT1_EXT3(data[3]);
 }
 ctrlValue |= I3C_IBIEXT1_CNT(dataSize - 1U);
 base->IBIEXT1 = ctrlValue;
 }

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
22 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

 if (dataSize > 4U)
 {
 ctrlValue = I3C_IBIEXT2_EXT4(data[4]);
 if (dataSize > 5U)
 {
 ctrlValue |= I3C_IBIEXT2_EXT5(data[5]);
 }
 if (dataSize > 6U)
 {
 ctrlValue |= I3C_IBIEXT2_EXT6(data[6]);
 }
 if (dataSize > 7U)
 {
 ctrlValue |= I3C_IBIEXT2_EXT7(data[7]);
 }
 base->IBIEXT2 = ctrlValue;
 }
#endif

 ctrlValue = base->SCTRL;
#if (defined(I3C_IBIEXT1_MAX_MASK) && I3C_IBIEXT1_MAX_MASK)
 ctrlValue &= ~(I3C_SCTRL_EVENT_MASK | I3C_SCTRL_IBIDATA_MASK |
 I3C_SCTRL_EXTDATA_MASK);
 ctrlValue |= I3C_SCTRL_EVENT(1U) | I3C_SCTRL_IBIDATA(data[0]) |
 I3C_SCTRL_EXTDATA(dataSize > 1U);
#else
 ctrlValue &= ~(I3C_SCTRL_EVENT_MASK | I3C_SCTRL_IBIDATA_MASK);
 ctrlValue |= I3C_SCTRL_EVENT(1U) | I3C_SCTRL_IBIDATA(data[0]);
#endif
 base->SCTRL = ctrlValue;
}

After the controller receives the IBI interrupt, it sends the address header signal. The target sends its own
address according to the clock sent by the host and participates in address arbitration. After the address is sent,
the controller will identify which target generated the interrupt and can receive the following data on the bus.

4.4 I3C polling transfer
Different from the interrupt_b2b_transfer example, polling_b2b_transfer adopts the method of sequential
execution, that is, after one step is completed, the next step is executed. The CPU has been waiting for the
execution of each step to complete, and cannot do other tasks. This is also called a blocking method.

4.4.1 Controller operations

Same as with the interrupt mode, the I3C peripheral must be initialized before the data transmission. The user
mainly configures the baud rate and other configurations use the default values. The controller registers the IBI
function and can receive the in-band interrupt of the target at any time.

I3C_MasterGetDefaultConfig(&masterConfig);
masterConfig.baudRate_Hz.i2cBaud = EXAMPLE_I2C_BAUDRATE;
masterConfig.baudRate_Hz.i3cPushPullBaud = EXAMPLE_I3C_PP_BAUDRATE;
masterConfig.baudRate_Hz.i3cOpenDrainBaud = EXAMPLE_I3C_OD_BAUDRATE;
masterConfig.enableOpenDrainStop = false;
I3C_MasterInit(EXAMPLE_MASTER, &masterConfig, I3C_MASTER_CLOCK_FREQUENCY);

memset(&masterXfer, 0, sizeof(masterXfer));

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
23 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

The blocking mode requires the parameters provided by the user to be basically the same as for the non-
blocking mode, including the target address, data transmission direction, bus type, data buffer and data length,
and so on.

/* subAddress = 0x01, data = g_master_txBuff - write to slave.
start + slaveaddress(w) + subAddress + length of data buffer + data buffer +
 stop*/
uint8_t deviceAddress = 0x01U;
masterXfer.slaveAddress = I3C_MASTER_SLAVE_ADDR_7BIT;
masterXfer.direction = kI3C_Write;
masterXfer.busType = kI3C_TypeI2C;
masterXfer.subaddress = (uint32_t)deviceAddress;
masterXfer.subaddressSize = 1;
masterXfer.data = g_master_txBuff;
masterXfer.dataSize = I3C_DATA_LENGTH;
masterXfer.flags = kI3C_TransferDefaultFlag;

result = I3C_MasterTransferBlocking(EXAMPLE_MASTER, &masterXfer);

The I3C_MasterTransferBlocking routine performs a controller-polling transfer on the I2C /I3C bus. Clear the
used flags, reset the FIFO, and turn off interrupts. Send the start signal and the sub-address. Depending on the
direction of the data transmission, send data or receive data. Clear all flags and enable interrupts. The flowchart
is in Figure 5.

image34.emf

placeholderImage_0033.svg

image34.emf

placeholderImage_0033.svg

Start

Clear all flags
Reset fifos

Disable I3C IRQ

subaddressSize
> 0

Send sub-address
Repeated start

kI3C_Write?

Transmit data

kI3C_Read?

Transmit data

Clear all flags
Enable I3C IRQ

Return

yes

no

no

yes

no
yes

Figure 5. Flow chart

Every time the I3C_MasterTransferBlocking function is executed to transfer data, the masterXfer parameter
must be reconfigured. The operation of dynamic address assignment is the same as with the interrupt transfer
method.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
24 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

4.4.2 Target operations

In the polling_b2b_transfer example, the target also uses the interrupt method, because the target receives
signals passively and it is more appropriate to use the interrupt method. If the polling method is used, the target
must wait for every signal from the controller and it cannot perform other tasks. See the target operations in the
interrupt_b2b_transfer example.

4.5 I3C transfer with DMA
The bus speed of I3C is as high as 12.5 MHz. On the LPC86X with a main frequency of 60 MHz, it is very
bandwidth-intensive to perform data transmission through the Arm core.

It is very important to use DMA to transfer data. Fortunately, the SDK of LPC86X provides the
dma_b2b_transfer example, which can be used as a reference.

This application note does not introduce the configuration of DMA. See the relevant chapters in the LPC86X
User Manual (document UM11607). On the I3C side, it is mainly about the MDMACTRL and SDMACTRL
configuration registers.

4.5.1 Controller operations

1. I3C controller initialization - same as with the interrupt mode, the application code must configure the I3C
baudrate and other default values. See the interrupt mode chapter description.

2. DMA initialization - the initialization of DMA mainly includes enabling the DMA clock, resetting the DMA
module, assigning the address of the DMA descriptor table to the register SRAMBASE, and enabling the
DMA peripheral.

3. DMA configuration - enable the corresponding DMA channel for I3C TX and RX. Create a handle for
each of them. Set the interrupt handler and set the callback functions for sending and receiving. Clear
the status and error flags for I3C. Enable the I3C interrupt. When using DMA to transfer, enable the I3C
interrupt. Because DMA only helps with transferring data, other signal conditions still require I3C interrupts
to process.

4. Non-blocking DMA transaction.

The SDK creates the following functions specifically for DMA transfers:

• I3C_MasterTransferCreateHandleDMA
• I3C_MasterTransferDMA
• I3C_MasterInitTransferStateMachineDMA
• I3C_MasterTransferDMAHandleIRQ
• I3C_MasterRunTransferStateMachineDMA

The call relationship between them is shown in Figure 6.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
25 / 31

http://www.nxp.com/doc/UM11607

NXP Semiconductors AN13952
How to Use I3C in LPC86x

image35.emf

placeholderImage_0034.svg

image35.emf

placeholderImage_0034.svg

I3C_MasterTransferDMA

I3C_MasterRunDMATransfer

I3C_MasterInitTransferStateMachineDMA I3C_MasterTransferDMAHandleIRQ

I3C_MasterRunTransferStateMachineDMA

I3C0_DriverIRQHandler(void)

I3C_CommonIRQHandler(I3C0, 0)

Figure 6. Call relationship

Similar to the example for interrupt transfers, DMA transfers also require a state machine architecture. The state
machine calls back once when the transmission starts and it is called in the interrupt later.

For sending start, stop, and restart, signals and processing IBI signals, the controller executes directly in
the interrupted state machine. For address sending and data sending and receiving, it is handled by calling
the I3C_MasterRunDMATransfer function. In the I3C_MasterRunDMATransfer function, it is used mainly to
configure the DMA channel and enable the transfer.

The DMA must configure the number of bytes transferred in advance. For controller sending, this is the active
behavior of the controller and the number of bytes transferred by DMA can be configured in advance. For
controller reception, it must be aligned with the target in advance. In the DMA example, the target sends data
to the controller through the IBI interrupt and this data provides the number of bytes that the target sends to the
controller.

4.5.2 Target operations

The target's DMA transfer code architecture is similar to the interrupt transfer mode and there is no state
machine as a controller. However, the bus signal event is passively processed in the interrupt. For data transfer,
the I3C_SlaveTransferDMA function is used.

In the I3C_MasterTransferHandleIRQ interrupt function, the following flags are processed:

• kSlaveErrorFlags
• kI3C_SlaveEventSentFlag
• kI3C_SlaveReceivedCCCFlag
• kI3C_SlaveBusStopFlag
• kI3C_SlaveMatchedFlag

They all eventually jump to the i3c_slave_callback callback function to run. In the i3c_slave_callback function,
not all states are processed. Only kI3C_SlaveCompletionEvent and kI3C_SlaveRequestSentEvent are
processed. The operations performed by the target are not as complicated as the controller. Figure 7 shows the
execution flow chart of the function I3C_MasterTransferHandleIRQ.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
26 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

image36.emf

placeholderImage_0035.svg

image36.emf

placeholderImage_0035.svg

Start

Get and Clear
status flags

errorFlags
!= 0UL

no

yesClear error
callback

no

kI3C_SlaveEventSentFlag
!=0UL

yes
Sent IBI data kI3C_SlaveReceivedCCCFlag

!=0UL

yes
Callback

no

kI3C_SlaveBusStopFlag
!=0UL

yes Callback
Abort DMA

kI3C_SlaveMatchedFlag
!= 0UL

Callback

Return

no

yes

no

no

Figure 7. I3C_MasterTransferHandleIRQ flow chart

The data transfer about DMA is implemented through the I3C_SlaveTransferDMA function as follows:

/* Start slave non-blocking transfer. */
memset(g_slave_rxBuff, 0, I3C_DATA_LENGTH);
slaveXfer.rxData = g_slave_rxBuff;
slaveXfer.rxDataSize = I3C_DATA_LENGTH;
I3C_SlaveTransferDMA(EXAMPLE_SLAVE, &g_i3c_s_handle, &slaveXfer,
 kI3C_SlaveCompletionEvent);

In the I3C_SlaveTransferDMA function, the DMA is prepared according to the data transfer direction.

if ((transfer->txData != NULL) && (transfer->txDataSize != 0U))
{
 I3C_SlavePrepareTxDMA(base, handle);
 txDmaEn = true;
 width = 2U;
}

if ((transfer->rxData != NULL) && (transfer->rxDataSize != 0U))
{
 I3C_SlavePrepareRxDMA(base, handle);
 rxDmaEn = true;
 width = 1U;

Sending and receiving are realized by the I3C_MasterSend and I3C_MasterReceive functions. For sending
data, write the data into the MWDATAB or MWDATAH register and write the last data into MWDATABE or
MWDATAHE when the TX ready flag is set to one.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
27 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

5 Summary

LPC86X provides an I3C to facilitate communication with devices with an I3C interface. Its speed is between I2C
and SPI and it has many unique features.

In the I3C specification, the speed of the I3C can be as high as 12.5 MHz. On LPC86X, such a high speed can
be achieved through DMA transmission. If you use the interrupt and polling mode, the speed may be relatively
low. The interrupt mode is more flexible. To increase the speed, you can optimize the code with removing some
conditions and state judgments. However, it must be ensured that missing states will not occur and it must be
used according to specific applications.

In the process of I3C debugging (in addition to online debugging of the code), the best way is to check the
status of the bus in real time using a logic analyzer.

6 Revision history

Table 14 summarizes the changes done to this document since the initial release.

Revision
number

Release date Description

1 26 July 2023 Initial revision

Revision history

7 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright YYYY NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
28 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

8 Legal information

8.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

8.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
29 / 31

mailto:PSIRT@nxp.com

NXP Semiconductors AN13952
How to Use I3C in LPC86x

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

I2C-bus — logo is a trademark of NXP B.V.

AN13952 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 July 2023
30 / 31

NXP Semiconductors AN13952
How to Use I3C in LPC86x

Contents
1 Introduction ... 2
2 I3C overview .. 2
2.1 I3C introduction ... 2
2.2 I3C features ... 2
2.3 I3C key features .. 2
2.3.1 I3C modes ... 3
2.3.2 I3C Single Data Rate (SDR) mode3
2.3.3 I3C address header ...3
2.3.4 Open-drain and push-pull mode 3
2.3.5 Ninth bit of SDR .. 4
2.3.6 Dynamic address assignment4
2.3.7 Common Command Codes (CCCs) 4
2.3.8 In-band interrupt .. 5
2.4 I3C peripheral in LPC86X5
3 I3C overview in LPC86X 5
3.1 I3C introduction ... 5
3.2 I3C basic configuration5
3.3 I3C baud rate .. 7
3.4 I3C registers .. 9
3.4.1 Controller registers .. 9
3.4.2 Target registers ..10
3.5 Dynamic address assignment11
3.6 Controller send SDR message 11
3.7 DMA usage in I3C ...12
3.8 In-Band Interrupt (IBI) handling 12
4 LPC86X SDK I3C examples introduction 12
4.1 Controller reads the I3C sensor data13
4.1.1 Clock ..13
4.1.2 I3C controller initialization13
4.1.3 I3C controller handle 14
4.1.4 Register IBI and assigning dynamic

address .. 15
4.1.5 Sensor operations and I3C state machine15
4.1.6 I3C interrupt ...17
4.2 I3C interrupt transfer with state machine 17
4.2.1 Target initialization ... 17
4.2.2 Create target handle ..17
4.2.3 Target data transmission in interrupt mode18
4.3 I3C interrupt transfer without state machine 19
4.3.1 Interrupt_b2b for controller 19
4.3.2 Interrupt_b2b for target21
4.4 I3C polling transfer .. 23
4.4.1 Controller operations 23
4.4.2 Target operations ...25
4.5 I3C transfer with DMA 25
4.5.1 Controller operations 25
4.5.2 Target operations ...26
5 Summary .. 28
6 Revision history .. 28
7 Note about the source code in the

document ... 28
8 Legal information ..29

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 26 July 2023
Document identifier: AN13952

	1 Introduction
	2 I3C overview
	2.1 I3C introduction
	2.2 I3C features
	2.3 I3C key features
	2.3.1 I3C modes
	2.3.2 I3C Single Data Rate (SDR) mode
	2.3.3 I3C address header
	2.3.4 Open-drain and push-pull mode
	2.3.5 Ninth bit of SDR
	2.3.6 Dynamic address assignment
	2.3.7 Common Command Codes (CCCs)
	2.3.8 In-band interrupt

	2.4 I3C peripheral in LPC86X

	3 I3C overview in LPC86X
	3.1 I3C introduction
	3.2 I3C basic configuration
	3.3 I3C baud rate
	3.4 I3C registers
	3.4.1 Controller registers
	3.4.2 Target registers

	3.5 Dynamic address assignment
	3.6 Controller send SDR message
	3.7 DMA usage in I3C
	3.8 In-Band Interrupt (IBI) handling

	4 LPC86X SDK I3C examples introduction
	4.1 Controller reads the I3C sensor data
	4.1.1 Clock
	4.1.2 I3C controller initialization
	4.1.3 I3C controller handle
	4.1.4 Register IBI and assigning dynamic address
	4.1.5 Sensor operations and I3C state machine
	4.1.6 I3C interrupt

	4.2 I3C interrupt transfer with state machine
	4.2.1 Target initialization
	4.2.2 Create target handle
	4.2.3 Target data transmission in interrupt mode

	4.3 I3C interrupt transfer without state machine
	4.3.1 Interrupt_b2b for controller
	4.3.2 Interrupt_b2b for target

	4.4 I3C polling transfer
	4.4.1 Controller operations
	4.4.2 Target operations

	4.5 I3C transfer with DMA
	4.5.1 Controller operations
	4.5.2 Target operations

	5 Summary
	6 Revision history
	7 Note about the source code in the document
	8 Legal information
	Contents

