
S32V234 APEX SW Self-test Method and

Example

1. Introduction

The S32V234 processor offers dual APEX accelerators

that provides high-performance parallel processing

capabilities. It is a parallel hybrid processor well suited

for the processing of large amount of data. During the

processor run-time, a random hardware failure may

occur unpredictably. For example, physical damage

particles (alpha, neutron) or EMI-radiation may lead to

a permanent fault which cannot be recovered.

Therefore, it is necessary to have a method to detect

APEX hardware faults when APEX is used in safety

related computation.

This application note describes how to detect

permanent faults inside the hardware through software

at the application level and provides an example to

fulfill the published safety assumptions in S32V234

Safety Manual. It is assumed that the developer is

familiar with the APEX software development

environment and the code implementation is based on

Vision SDK 1.5.1 and eIQ Auto 2.0.0.

NXP Semiconductors Document Number: AN13192

Application Notes Rev. 0 , 02/2021

Contents

1. Introduction .. 1

2. APEX SW self-test method .. 2

3. Fault injection and reaction .. 4

4. APEX SW self-test implementation 5

4.1 Test-pattern example in eIQ Auto 5

4.2 Implementation .. 6

4.3 Example for evaluation of test-pattern method 8

5. Summary .. 8

6. Reference .. 9

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/s32v2-processors-for-vision-machine-learning-and-sensor-fusion:S32V234?utm_medium=AN-2021

APEX SW self-test method

S32V234 APEX SW Self-test Method and Example, Rev. 0, 02/2021

2 NXP Semiconductors

This document contains the following sections:

• APEX SW self-test method: This section describes the approach towards APEX permanent faults

detection based on safety manual assumption.

• APEX fault injection and reaction: This section describes how to inject faults into APEX and the

corresponding reaction.

• APEX SW self-test implementation: This section describes a SW self-test example based on a specific

pattern test on the entire APEX pipeline at the application level and an example for evaluating the

self-test effectiveness.

The following abbreviations are used in the application note.

Table 1. Acronyms and abbreviations

Abbreviations Description

APU Array Processing Unit

ACF APEX Core Framework

CU Computational Unit

DMA Direct Memory Access

FTTI Fault Tolerant Time Interval

DMS Driver monitoring system

NN Neural network

2. APEX SW self-test method

The Figure 1 shows the APEX block diagram. In general, the fault detection for the APEX is the

responsibility of the software since most hardware components of APEX are not designed with hardware

safety mechanisms. For many applications, it is sufficient to check the data processing path for

permanent faults once within FTTI.

APEX SW self-test method

S32V234 APEX SW Self-test Method and Example, Rev. 0, 02/2021

NXP Semiconductors 3

Figure 1. APEX Block diagrams

At a lower level, the APEX processing pipeline contains the following steps:

1. Transfer data from external/host memory to APU memory.

2. Process input data (residing in APU memory) with the APU processor to produce output data

(also in APU memory).

3. Transfer output data from APU memory back to external/host memory.

Random hardware faults may occur at a random time in various hardware components (e.g. DMA,

DFIFO). Software self-test aims to detect these faults during processing. There are several assumptions

in the S32V234 Safety Manual, some of them are:

• Assumption:[SM_951] The APEX will be tested for permanent faults by SW. For example, known

picture content will be processed and compared to a known reference.

• Assumption:[SM_952] The evaluation of the result will be done with a HW element independent

from APEX (e.g. Cortex-A53®).

• Assumption:[SM_954] A timeout supervision will be used to detect a stalled APEX engine.

There are several approaches to detect permanent faults inside APEX based on the above assumptions.

1) Assumption:[SM_951]: Test-pattern method: A known test-pattern is processed and compared

with an expected value, and this application note mainly introduces this approach.

2) Instruction level checks: It is possible to execute instruction-set level checks by developing a

software test library that would test all the sub-components of the APEX (DMA, Computational

Units or CU, etc.), but this is not covered in this document.

3) Assumption:[SM_952]: CPU Cross check: Cortex-A53 is used to compare APEX processing

result with expected result. Cortex-A53 is used to calculate expected value based on dynamic

test pattern input if necessary.

Fault injection and reaction

S32V234 APEX SW Self-test Method and Example, Rev. 0, 02/2021

4 NXP Semiconductors

4) Assumption:[SM_954]: Timeout supervision: APEX timeout mechanism has been implemented

in Vision SDK APEX driver. APEX timeout errors can be captured by the application level

through the return value of the running process. The developer needs to deal with such errors as

ACF_TIMEOUT_ERROR using appropriate reaction.

3. Fault injection and reaction

Some fault injection methods can be used to inject errors in APEX to trigger and verify the effectiveness

of the safety mechanism related to APEX. During the system level development, the safety system

developer is required to test the validity of the self-test approach in the specific safety-related system.

Table 2 shows some ways to inject errors into APEX at the application level.

Table 2. Fault injection and reaction

Safety mechanism Fault injection Description Reaction

APEX SW Self-test Fault injection in

test-pattern

Change the test-pattern’s

values to simulate data

transfer errors.

Changes caused by error

injection can be detected via

self-test. The reaction to the

fault is application

dependent.

APEX C/SMEM

EDC

Fault injection in

APEX memories

S32V includes a feature to

validate the APEX memory

errors detection logic. The

developer could inject faults

into memories via

programming. (refer to

Reference Manual Rev. 5

chapter 71 for details)

The parity errors of APEX

code memory and shared

memory are directly

reported to the FCCU for

user-defined handling, e.g.

interrupt or reset.

APEX Timeout

Supervision

Fault injection at

run time

Reset all APEX hardware

blocks and APEX driver

specific entities via

programming.

A timeout error can be

captured and handled by the

application.

In most cases, the application probably take an aggressive recovery approach and call

APEX_Reset(<apex id>) on the faulty APEX if possible.

APEX SW self-test implementation

S32V234 APEX SW Self-test Method and Example, Rev. 0, 02/2021

NXP Semiconductors 5

4. APEX SW self-test implementation

This section demonstrates the test-pattern method implementation based on the Driver Monitoring

System (DMS) demo. The test-pattern method is efficient to guarantee all the APEX resources used in

your application can be tested and easy to implement. The APEX self-test workflow diagram is shown

in the following figure.

Figure 2. Self-test work flow

The APEX accelerator is typically used for a single functionality in a use-case, i.e. it is used for a single

CNN process in eIQ Auto which is used for the entire run-time period. It means there is no graph change

(graph is used to represent the execution of a NN) at run-time. Thus you can use this functionality to test

for permanent faults inside the HW.

Example 1(eIQ Auto): Use the same NN with a different pre-defined input, and then check whether the

output matches the expected value. This guarantees that all the APEX resources used in your application

are tested.

Example 2(APEXCV): If your application is running algo X on APEX, e.g. HOG detector, it could use a

mini invocation of it for the self-test with a small input, and then check whether the output matches the

expected value.

4.1 Test-pattern example in eIQ Auto

The NXP eIQ Auto Deep Learning toolkit for S32V23x processors provides functionality for developers

to design their own convolution neural network (CNN) based applications while taking advantage of

NXP's massively parallel APEX architecture.

The workflow of eIQ Auto can be simplified as follows:

1) Fetch input data (with preprocessing if needed) and feed to the network input tensor.

2) Execute the network.

3) Fetch output data from network output tensor and continue postprocessing.

APEX SW self-test implementation

S32V234 APEX SW Self-test Method and Example, Rev. 0, 02/2021

6 NXP Semiconductors

The design of the test-pattern affects fault detection coverage to a certain extent. The test-pattern can be

customized by the developer to achieve the expected target of APEX SW self-test. There are two

examples for reference shown in the following figure (Consider a 4x4 feature-map with three channels

in NHWC format tensor).

Figure 3. Test-pattern data examples

4.2 Implementation

In the aspect of safety, eIQ Auto does not verify the correctness of computations, it is the application's

responsibility to detect errors in computations arising from hardware faults or other forms of data

corruption. This section introduces the APEX SW self-test implementation based on the DMS demo.

The DMS provides a real-time evaluation of the presence and the state of the driver. The driver behavior

classification NN was processed by eIQ Auto through APEX processor. The known test-pattern can be

inserted into the processing stream periodically within the FTTI. The processing time of self-test

depends on the complexity of the deployed NN in the application. If the self-test time takes too long, the

developer should consider using small input size for self-test. The developer can also create a

customized simple graph as a self-test graph to decrease the self-test time and increase the flexibility.

The following steps show running the same NN with a small input size for self-testing.

1) Define a small-size tensor as a test-pattern container, the tensor datatype should be int8 and the

target name needs to be set to APEX.

// Clone the graph used in the application.

std::map<std::string, Tensor*> lInputTensors;

auto netSelfTest = originalGraph->Clone(workspace, lInputTensors);

// Configure input to self-test graph

lInput = netSelfTest->AddTensor(std::unique_ptr<Tensor>(Tensor::Create<>

("APEX_NET_INPUT_TENSOR", DataType_t::SIGNED_8BIT, TensorShape<TensorFormat_t::NHWC>{1, PATTERN_HEIGHT,
PATTERN_WIDTH, 3},TensorLayout<TensorFormat_t::NHWC>())));

lInput->SetQuantParams({QuantInfo(-1, 1)});

lInput->Allocate(Allocation_t::OAL);

APEX SW self-test implementation

S32V234 APEX SW Self-test Method and Example, Rev. 0, 02/2021

NXP Semiconductors 7

// Set target to APEX

Status_t status;

status = netSelfTest->SetTargetHint(TargetType::APEX());

if (Status_t::SUCCESS != status)

{

 std::cout << "ERROR: Can not start APEX self test" << std::endl;

}

status = netSelfTest->Prepare();

if (Status_t::SUCCESS != status)

{

 std::cout << "ERROR: Can not start APEX self test" << std::endl;

}

2) Fill data for test-pattern

// Create test-pattern

cv::Mat lPattern(PATTERN_HEIGHT, PATTERN_WIDTH, CV_8UC3, cv::Scalar(10, 120, 240));

// Load pattern data to Tensor

TensorRange<int8_t> lTensorRange(*mInputTensor);

auto ptr = lTensorRange.begin();

for (int32_t row = 0; row < lPattern.rows; ++row)

{

 for (int32_t col = 0; col < lPattern.cols; ++col)

 {

 auto &Pixel = lPattern.at<cv::Vec3b>(row, col);

 *ptr++ = Pixel.val[0];

 *ptr++ = Pixel.val[1];

 *ptr++ = Pixel.val[2];

 }

}

3) Run self-test and compare output result with known results (Note that the developer should

prepare the known reference output tensor by running the NN beforehand).

status = netSelfTest->Run();

if (Status_t::SUCCESS != status)

{

 std::cout << "APEX net verification failed" << std::endl;

 return false;

}

if(TensorEqual())

{

 std::cout << "* [APEX - AIRunner self test] SUCCESS *\n";

}

else

{

 std::cout << "* [APEX - AIRunner self test] ERROR *\n";

}

Summary

S32V234 APEX SW Self-test Method and Example, Rev. 0, 02/2021

8 NXP Semiconductors

4.3 Example for evaluation of test-pattern method

Assumption on certain preconditions: For the APEX SW self-test approach mentioned in this

document, it is assumed that APEX permanent faults will lead to incorrect final calculation results.

However, it should be noted that some APEX internal faults may not be reflected in the calculation

results. The diagnostic coverage is related to the algorithms that the developers use in self-test, e.g. if

you use the APEX gaussian filter as a self-test algorithm, some of the test-pattern data will be smoothed

or removed by the filter, which means it will lose some of the detection effectiveness during processing.

Example for test-pattern fault injection: Fault can be injected into the test-pattern by modifying one

pixel’s single-channel value to simulate APEX fault scenario (e.g. Input pattern is a BGR Mat with size

of [32,32,3] accessing the elements of the matrix and modifying one pixel’s R channel data), then count

detected faults and total fault injection times.

The fault detection coverage is based on the following formula:

 𝑓𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

Test Result:

Table 3. Fault detection coverage

QuantInfo Detected faults Total injected faults Fault detection coverage Self-test time

(-1, 0) 781477 786432 0.993699

2.2 ms (0, 128) 775911 786432 0.986622

(0, 255) 773843 786432 0.983992

• The QuantInfo represents the input Tensor’s Min/Max value that is for quantization. More details

see eIQ_Auto_UserGuide chapter 13.32.

• Total injected faults: The test-pattern is a Mat with [32, 32, 3] shape, injecting fault by

modifying one pixel’s single-channel value from 0-255, so the number of total injected faults is

32*32*3*256 = 786432.

• The test results were based on test-pattern A in Figure 3 and the same NN used in the DMS

demo as the self-test algorithm.

5. Summary

APEX SW self-test can detect permanent faults inside the hardware and enhance the system’s

robustness, while the self-test approach is highly related to application scenarios. The developer needs to

implement corresponding system level safety measures. The verification of self-test method also needs

to be designed by the developer. The sample code in this note is for reference only. For more

information, please refer to the device Reference Manual and the Safety Manual.

Reference

S32V234 APEX SW Self-test Method and Example, Rev. 0, 02/2021

NXP Semiconductors 9

6. Reference

1. Safety Manual for S32V234, S32V234SM, Rev. 3, 10/2017

2. ACF User Guide, UG-10267-03-17 – included in VSDK release package

3. S32V234 Reference Manual, S32V234RM, Rev. 5, 11/2019

4. eIQ Auto UserGuide – included in eIQ Auto release package

Document Number: AN13192
Rev. 0

02/2021

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,

ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,

POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2021 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. APEX SW self-test method
	3. Fault injection and reaction
	4. APEX SW self-test implementation
	4.1 Test-pattern example in eIQ Auto
	4.2 Implementation
	4.3 Example for evaluation of test-pattern method

	5. Summary
	6. Reference

