
1 NXP Touch
NXP® Touch software is designed to speed development of your touch
applications and is ideal for use with Kinetis®MCUs. Available in source code,
this software download features touch detection algorithms and be ideally
suited for RTOS-based applications. NXP Touch software employs a modular
architecture with various touch centric controls, modules, and electrode data
objects, enabling integrated and customizable features.

NXP Touch targets to help customers do a smooth migration and easy
designing in touch applications.

It is a total solution for touch control applications, and NXP Touch offers touch
software and hardware touch sensing IP TSI.

SW library in combination with the Kinetis KE1x platform brings lots of
improvements listed below:

• Great EMC performance, noise immunity, pass the IEC61000-4-6
standard test both 3 V/10 V test.

• Support both Self-cap and mutual-cap mode, up to 6x6 matrix touch pads.

• Great performance in liquid tolerance, water, oil, cold steam, and so on.

• High configurable sensitivity, supports up to 10 mm thick glass/plastic overlay.

2 Touch sensing HW support
NXP offers the latest TSI v5 HW peripheral available on Kinetis KE1x devices based on charge-transfer physical principle. This
method provides appropriate performance regarding the sensitivity and immunity against the environmental changes and EMC.

Touch sensing demo SW example is targeted for FRDM-KE15z with inserted FRDM-TOUCH module, which is not included
together with the FRDM board and must be ordered separately.

Contents

1 NXP Touch......................................1
2 Touch sensing HW support.............1
3 NT SW Library.................................2
4 FreeMASTER Run-Time Debugging

Tool... 3
5 Supported compilers....................... 4
6 Software download..........................5
7 Beginning with FRDM board and

Touch Demo....................................8
8 Key detector uSAFA......................31
9 TSI module HW introduction......... 40
10 Shielding principles....................... 53
11 New features supported in NXP

Touch software library...................56
12 Conclusion.....................................59
13 References....................................59
14 Revision history.............................60

AN12709
NXP Touch Development Guide
Rev. 1 — 07 December 2021 Application Note

Figure 1. FRDM-KE15Z and FRDM-TOUCH

3 NT SW Library
NXP offers a touch software library, free of charge. It provides all the software required to detect touches and to implement more
advanced controllers like sliders or keypads.

TSI background algorithms are available for touch keypad and analog decoders, sensitivity auto calibration, low power, proximity,
water tolerance. SW distributed in source code form in “object C language code structure”

NXP Semiconductors
NT SW Library

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 2 / 61

Figure 2. NXP Touch SW library block diagram

4 FreeMASTER Run-Time Debugging Tool
FreeMASTER software is debugging and visualization tool by NXP available for free download. Communication with target
processor is supported via debug port (JTAG/SWD for Kinetis) or serial port (UART) interface. Direct JTAG/SWD connection
is faster and does not require additional UART connection with board. Serial port driver code for target MCU is available for
most MCU targets. Any variable in the project can be easily monitored and modified (reads memory based on the Target-Side
Addressing TSA tables). HTML / JavaScript based GUIs can be created for further functionality.

NXP Semiconductors
FreeMASTER Run-Time Debugging Tool

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 3 / 61

Figure 3. NXP Touch GUI in FreeMASTER

5 Supported compilers
The NXP touch library is distributed as an optional middleware component selectable during the Kinetis SDK download. Proper
compiler must be selected before SDK package generation.

Supported compiler IDEs are listed below:

• IAR EWArm

• Keil uVision

• MCUXpresso available for free from NXP.

5.1 Download and Install MCUXpresso
MCUXpresso can be downloaded from the NXP webpage:

https://www.nxp.com/search?keyword=mcuxpresso

Follow the steps below to install the IDE.

• Create login if not already registered.

• Download installer.

• Install SW.

• Launch MCUXpresso.

NXP Semiconductors
Supported compilers

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 4 / 61

https://www.nxp.com/search?keyword=mcuxpresso

6 Software download
Follow the steps below to build and download the SDK for FRDM-KE15z:

• Go to the webpage

https://mcuxpresso.nxp.com/en/welcome

• Login to NXP

• Select Development Board

• From Boards/Kinetis menu, select FRDM-KE15Z

• Build SDK

Figure 4. Building SDK package

6.1 Add touch support to SDK
Follow the steps below to add “Touch” optional middleware (software component) and select the proper Toolchain / IDE. You can
build the package for single toolchain/IDE or select all toolchains supported.

• Add software component (optional middleware)

• Select Touch

• Save changes

• Note SDK Version

• Use version in prefix for archive name

• Request Build

NXP Semiconductors
Software download

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 5 / 61

https://mcuxpresso.nxp.com/en/welcome

Figure 5. Add Touch Support to SDK

6.2 Downloading SDK and Documentation
• Download SDK Archive

• Download SDK Documentation

• Agree to EULAs

NXP Semiconductors
Software download

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 6 / 61

Figure 6. SDK Downloads

Figure 7. SDK Documentation download

6.3 FreeMASTER Download and Installation
The latest version of the FreeMASTER is available for free download from NXP webpage below:

https://www.nxp.com/support/developer-resources/software-development-tools/freemaster-run-time-debugging-
tool:FREEMASTER

NXP Semiconductors
Software download

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 7 / 61

https://www.nxp.com/support/developer-resources/software-development-tools/freemaster-run-time-debugging-tool:FREEMASTER
https://www.nxp.com/support/developer-resources/software-development-tools/freemaster-run-time-debugging-tool:FREEMASTER

Figure 8. FreeMASTER Application Download

7 Beginning with FRDM board and Touch Demo

7.1 FRDM board setup
• Ensure that J15 is across positions 2 and 3 for 3.3 V operation

• Connect the FRDM-TOUCH board to FRDM-KE15Z. Power on the Freedom board by connecting the USB cable to your
PC.

• The “touch_sensing” demo must be flashed to board.

7.2 Touch sensing demo example
• Download the latest FRDM-KE15Z SDK package from the MCUXpresso website as described in the chapter above.

• Launch MCUXpresso

• Drag the SDK package (.zip) to the Installed SDKs view in MCUXpresso to install the SDK

Figure 9. Importing the KE15Z SDK to MCUXpresso

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 8 / 61

7.2.1 Importing the touch_sensing demo
Follow the steps below to import the sw example project to the MCUXpresso IDE.

• Import SDK example (touch_sensing)

• Select frdmke15z, click Next

• Expand demo_apps

• Check touch_sensing, click Next

Figure 10. Importing the SDK examples

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 9 / 61

Figure 11. Importing the touch sensing demo

7.2.2 Running and debugging the touch sensing example
• In the MCUXpresso IDE Project window, expand frdmke15z_touch_sensing

• Double-click main.c

• Build and debug the touch sensing project (to load the app into flash)

• Click the Resume icon to run the demo

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 10 / 61

Figure 12. Debugging the demo

7.2.3 Explore the touch_sensing demo
• Press E1 on FRDM-KE15Z – RGB LED turns Yellow

• Press E2 on FRDM-KE15Z – RGB LED turns Cyan

• Press Up on FRDM-TOUCH – RGB LED turns Yellow

• Press Right on FRDM-TOUCH – RGB LED turns Green

• Press Down on FRDM-TOUCH – RGB LED turns Blue

• Press Left on FRDM-TOUCH – RGB LED turns White

• Scroll slider on FRDM-TOUCH from right to left – RGB intensity is reduced

• Scroll around rotary on FRDM-TOUCH – RGB hues change

7.3 Standalone FreeMASTER GUI
• With FRDM-TOUCH installed on FRDM-KE15Z and the touch_sensing demo loaded in flash, connect USB cable between

board and PC

-All the touch electrodes should respond by changing color or intensity on the RGB LED.

• Launch FreeMASTER

• Drag the NXPTouchKE15Z.pmp file onto the FreeMASTER window

-Project Tree changes to NXP Touch Library

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 11 / 61

Figure 13. FreeMASTER Example

7.3.1 FreeMASTER GUI Connection
Freemaster supports several communication protocols like serial COMx or direct connection over the debug interface. Follow the
steps to connect via onboard Mbed USB to serial port.

• Select Connection Wizard from Tools menu and click Next

• Use direct connection to on-board USB port, Next

• Ensure Mbed Serial Port (COMxx) selected, Next

• COMxx UART port will be detected, select Yes, Finish

Figure 14. Set FreeMASTER communication

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 12 / 61

Figure 15. Select UART

7.3.2 TOUCH SW LAYERS Tab
To see the information about the touch sw components select the “TOUCH SW LAYERS” tab in the Control page window and then
click “READ CONFIGURATION FROM BOARD” and wait for upload to complete.

You can scroll down to examine:

• NT CONTROLS

Keypad_1, Aslider_2, Arotary_3 and electrodes used for each control

• NT ELECTRODES

Information for all 12 electrodes used

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 13 / 61

Figure 16. FreeMASTER-Touch SW Layers

7.3.3 MODULES Tab
If the MODULES tab is selected in Control page window, all 12 electrodes defined in sample project are shown. Signal values
change during scans. When the Up arrow on FRDM-TOUCH is pressed a valid touch is indicated for electrode 2. Please note that
electrodes are indexed starting from zero, no matter on the electrode names defined in SW setup.

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 14 / 61

Figure 17. FreeMASTER-MODULES Tab, electrodes view

Figure 18. Module electrode assignment in “nt_setup.c”

7.3.4 CONTROLS Tab
If the CONTROLS tab in Control page window is selected, the 3 touch controls (keypad, rotary, and slider) in sample project
are shown.

When any of the keypad electrodes on FRDM-TOUCH is pressed a valid touch is indicated for the keypad control.

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 15 / 61

Figure 19. CONTROLS Tab - keypad

7.3.5 ELECTRODES Tab
Detailed information about the electrode Touch/Release events can be monitored in ELECTRODES Tab. Follow the steps
below, please:

• Select the ELECTRODES tab in Control page window

• Use the SELECTED ELECTRODE pulldown to select electrode_usafa_1

• Press and hold the E2 electrode on FRDM-KE15Z and a valid touch is shown in State 0 (or 2)

• Release the E2 electrode and a valid release is shown in State 1 (or 4)

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 16 / 61

Figure 20. ELECTRODED Tab – Touch and Release events

7.3.6 FreeMASTER Oscilloscope View
After clicking to “scope”, the most of the important touch sensing signals and key detector values can be monitored. Just single
electrode can be selected and monitored. Follow the steps below to watch the signals for the selected electrode, several options
are possible:

• From the MODULES tab, click the scope link for an electrode

(An error appears if you mistakenly click the electrode_usafa_x, just click Yes)

• From the CONTROLS tab, click the Name of the control to see all electrodes in that control

• From the CONTROLS tab, click the scope link for a single electrode

• From the ELECTRODES tab, select an electrode from the scroll window, then click oscilloscope at the bottom of the
Control page window

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 17 / 61

Figure 21. Entering Oscilloscope view

7.3.7 Single Electrode Scope View
All-important key detector signals are visible in the scope window so that the sensitivity and touch thresholds can be easily tuned
for the individual electrodes. When Electrode 2 (Up arrow) is pressed on FRDM-TOUCH, the signal step and touch detection
are visible.

Figure 22. Single Electrode Scope View – key detector signals

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 18 / 61

7.3.8 Slider Control Scope View
Values like slider detected position, keypad button masks (flags) can be monitored as well.

For instance, analog slider consists from two electrodes. If we slide by finger from left to right, we will see the signal changes on
electrode 0 and electrode 1. The position and direction is calculated from both electrode signals.

Figure 23. Slider signals

7.4 Touch Sensing demo SW configuration

7.4.1 FRDM-TOUCH
RGB LED on FRDM-KE15Z responds to touches on:

• 4 Touch buttons

• Touch Rotary

• Touch slider

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 19 / 61

Figure 24. FRDM-TOUCH controls

7.4.2 TSI channel assignment

Figure 25. Schematic of TSI inputs

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 20 / 61

7.4.2.1 Assigning the TSI channels in SW

The touch demo SW is based on Kinetis SDK. The advantage of this is that the SDK contains support for all MCU peripherals, like
UART, Timers, SPI drivers, and so on.

However, only a few files from SDK are utilized by the touch library. Mainly the low-level drivers for TSI and timer are needed. But
these files may be replaced by the user-defined drivers. It means that the library source files can be easily integrated to another
SW project independently on Kinetis SDK.

In the Kinetis SDK, the virtual electrode assignment to the physical TSI channel is done in “board.h” file.

Figure 26. TSI channel assignment in SW

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 21 / 61

7.4.3 Application code in main() Function

Figure 27. Application init

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 22 / 61

7.4.4 SW library synchronization and processing functions
There are two main api functions: “nt_trigger()” and “nt_task()” that must be periodically called by the SW application in order to
trigger the touch sensing measurement and process the results.

7.4.4.1 nt_trigger function

This function should be called by the application periodically in a timer interrupt, or in a task to trigger

new data measurement. Depending on the module implementation, this function may take the data

immediately, or may only start the hardware sampling with interrupt enabled. If the TSI module measurement is triggered, whole
sequence of input channels will be scanned consequently. It means that the new measurement sequence should not be triggered
until the previous sequence is completed. The function returns:

• NT_SUCCESS when the trigger was performed without any errors or warnings.

• NT_FAILURE when a problem is detected, such as module not ready, overrun (data loss) error,

and so on. Regardless of the error, the trigger is always initiated.

This is an example of the NT library triggering:

Figure 28. nt_trigger() function call

7.4.4.2 nt_task function

This function should be called by the application as often as possible, in order to process the data acquired during
the data trigger. This function should be called at least once per trigger time. Internally, this function passes the
NT_SYSTEM_MODULE_PROCESS and NT_SYSTEM_CONTROL_PROCESS command calls to each object configured in
Modules and Controls. The function returns:

• NT_SUCCESS when data acquired during the last trigger are now processed

• NT_FAILURE when no new data are ready

This is an example of running a task of the NT library:

Figure 29. nt_task() function call

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 23 / 61

7.4.5 Event callback functions
Every user enabled control must have its “callback” function defined, which is used for servicing the events generated by control
like “Touch” or “Release” events. See the example below for keypad callback function.

Figure 30. Keypad callback function

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 24 / 61

7.4.6 SW Application setup in “nt_setup.c” file
Most of the configuration, like TSI register HW sensitivity, key detector settings, assignments of electrodes and global timebase
is provided in “nt_setup.c”.

To define the modules, electrodes, controls, and system, create the initialized instances of the structure types, as described in the
following section.

The code below shows an example configuration of four electrodes on the FRDM-KE15z board.

There are several key detectors (touch-evaluation algorithms) available in the NXP Touch library. The

electrode structure types must always match the module and algorithm types.

In the SW demo example key detector “uSAFA” is used. All keys can share single key detector settings or different key detector
setting structures can be assigned to different electrodes for better flexibility.

Figure 31. Key detector SW definitions

The electrode structure types must match the hardware module used for the data-measurement algorithm in the application. In
this case, it is the “nt_electrode” type. Define the electrode parameters and the “nt_key detector” interface.

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 25 / 61

Figure 32. Electrode SW definitions

Figure 33. TSI module definition

Once the modules and electrodes are set up, you can define the Controls. In this case, the control_0 is the Analog Slider control.

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 26 / 61

Figure 34. Example of Keypad control SW definitions

Now we are ready to connect all the pieces together in the “system” structure.

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 27 / 61

Figure 35. nt_system sw configuration

The Kinetis E family of MCUs contains the most advanced TSI v5 peripheral. The module must be configured for a proper
operation. However, the NT library helps during the application development, and it is not necessary to deal with the TSI module
differences. The TSI hardware setup is displayed below. The “tsi_hw_config” contains register settings used for both Self and
Mutual capacitive modes.

If one of these 2 modes is unused by application, the redundant register settings are ignored.

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 28 / 61

Figure 36. TSI HW settings in SW

7.5 NXP Touch library memory requirements
Memory requirements depend on the “size of the application”, very basically said on the number of electrode inputs and on the
number of controls like keypad keys, sliders, and so on used in the application.

The Touch library was newly written and targeted for the 32-bit Kinetis Arm cortex-M MCUs. In order to use the benefits of the
32-bit architecture, we stored most of the structures, pointers, and constants into flash in 32-bit format. Almost nothing is placed
to RAM.

Because of this approach the data in flash is aligned properly and it has a proper size for Arm calculations without any further
bit-manipulations required by CPU and without losing of the precision. This allows us to save CPU time during the calculations.

This is also preventing against the issues connected with porting to the different compilers.

The smallest Kinetis-L device had 16 kB Flash, while most of the devices supporting the TSI peripheral have 32 kB or more Flash
on the chip. It is possible to fit the touch sensing part of the SW into 32 kB Flash Kinetis devices with reserves for the rest of
the application.

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 29 / 61

See the typical memory requirements in table below for the SW projects passed on the KSDK (including) and FreeMASTER
disabled, please.

The most of the Flash (ROM) constants are defined in structures contained in “nt_setup.c“ config. file. By the size and complexity
of this file, we can estimate the total memory requirements.

7.5.1 Memory size optimization
The total flash memory required depends on the complexity of the touch application, that is number of electrodes and controls
enabled. With the rising complexity, the size of Flash and RAM required rises proportionally. The key detector C-structures can be
temporarily placed to RAM, by removing the “const” keyword before the structure definition, see figure 29. The most of the runtime
variables used by electrode data, key detectors and by filter calculations are created on the “nt_memory_pool[]“, which is defined
as a static RAM array, which size should be adequately selected depending on the application needs. See the nt_memory_pool
definition as 4000 byte array. Please note that depending on the compiler, the proper alignment is required for Arm Cortex-M
cores. The proper array size may be estimated using the “nt_mem_get_free_size”, which returns the remaining memory after the
proper initialization.

Figure 37. nt_memory_pool initialization

Figure 38. Nt_memory_pool size

7.5.2 Removing the FreeMASTER
By default FreeMASTER is enabled in the touch demo application, which is needed to run the FreeMASTER GUI during the
development stage. FreeMASTER itself consumes some resources, so it is recommended to remove it from the final SW project
as soon as the touch sensing tuning is completed. The FreeMASTER support can be globally disabled in the touch application by
the definition “NT_FREEMASTER_SUPPORT 0”, see the picture below.

NXP Semiconductors
Beginning with FRDM board and Touch Demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 30 / 61

Figure 39. Disable FreeMASTER support in the touch library

Then the rest of the FreeMASTER definitions and references like the TSA table, “init_freemaster_uart()” and “FMSTR_Init()”
functions must be removed from the SW project, see the figure below, please.

Figure 40. Remove FreeMASTER references

Table 1. NXP Touch typical memory requirements (FreeMASTER removed)

App. size 2 electrodes 28 electrodes

FLASH [kB] 14 28

SRAM [kB] 2.2 7.2

8 Key detector uSAFA
Three key detectors are supported by NXP Touch Library:

• AFID (patented, easy CPU calculations)

• SAFA – Self-Adaptive Filter Algorithm (patented)

• uSAFA – “unidirectional” SAFA (recommended)

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 31 / 61

SAFA is the most advanced algorithm used.

SAFA means that the Signal Adaptive Filter Algorithm is a filtering SW algorithm patented by NXP, where “u” means unidirectional.
It is based on moving average filter with different weight. Noise level (dead-band) limitation is used together with noise level
tracking and automatic threshold adaptation. Typical touch signal level is tracked and used as “predicted” touch signal value.

8.1 Key detector uSAFA signals
Following signals are the most important:

• Baseline is the basic reference signal, which moves very slowly with the time and environmental changes. All of the other
signals are referenced to the baseline.

• Signal level, is an elementary filtered raw touch sensing signal (SW low-pass filter used). If you touch, this signal reflects
the change.

• Noise floor (min noise limit), we expect that the ambient system noise will not cross this value in the normal environment
(no added EMC noise). It means that normally the system noise is much below this value. We have set it to 100 in SW
experimentally, while the real value may be much lower.

• Deadband, is the noise level, which must be crossed by signal to detect the Touch or Release condition. Deadband is
defined as (min_noise_limit x SNR) in this case. For instance, when SNR = 6. So that Deadband = 100 * 6 = 600 counts.

• Predicted signal, is the typical signal level, when the button is touched. We adapt this value, upon a touch or release.

• For the TOUCH event, the signal must rise above the 25% of the Predicted signal and it crosses the Deadband level.

• For the RELEASE event, the signal must drop below the 80% of the Predicted signal.

• Event counters (“entry_event_cnt” and “deadband_cnt”) are used for debouncing the Touch and Release Events

Figure 41. uSAFA deadband threshold setting

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 32 / 61

Figure 42. Key detector uSAFA signals

8.2 Key detector uSAFA filter parameters
All filters are based on moving average SW filtering, where the order is taken as power of two (2^n).

For instance, order = 10 means, 210 = 1024 samples will be averaged.

It means if we increase to “11”, 2048 samples will be averaged, and the filtering will be 2-times slower.

Oppositely, if we decrease to “9” or “8”, it will be 2 or 4-times faster. So that by the changing the order of the filters, we can control
the response and adaptation speed. All filters and debouncing counters are depending on the “time_period” parameter which is
equal with the TSI scan period.

See the figure below with comments describing the parameters:

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 33 / 61

Figure 43. Key detector uSAFA parameters

8.3 DC tracker feature
DC-tracker helps to adapt to the special situation, when the signal suddenly drops much below the baseline. This can happen in
the real-word application.

For instance, when there is some object present on the sensor electrode during a power-up, and it is removed after a while, it must
recover and adapt thresholds to the new situation to be able to detect the “regular” touches.

The DC tracker resets the key detector when the signal drop is higher than (2 * min_noise_limit).

The DC tracker reaction time is configurable and given by multiple: dc_track_cnt * time_period.

In the example below, the key detector is rests after the timeout of 5000 ms.

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 34 / 61

Figure 44. DC tracker reaction

8.4 Key detector uSAFA tuning
By changing of the key detector parameters we can tune the touch sensitive threshold, change the noise adaptation speed and
robustness against the external influences.

If we change the SNR from 6 to 15, the Deadband threshold will change from 600 to 1500.

• Delta signal values < min_noise_limit (100) are ignored, taken as noise floor.

• Delta signal values > min_noise_limit (100), but < Deadband taken as increased system noise and used for the automatic
deadband threshold adaptation

• Delta values > Deadband are handled as a 1st Touch event condition.

• 2nd Touch event condition is to cross the 25% of the predicted touch signal

• Both conditions must be passed to trigger the Touch event counter.

• If the number of Touch events >= “entry_event_cnt” (used to debounce the glitches), then the TOUCH is evaluated by SW.

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 35 / 61

Figure 45. uSAFA key detector settings

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 36 / 61

Figure 46. uSAFA tuning SNR = 6

Figure 47. uSAFA tuning SNR = 15

8.4.1 Noise level adaptation
Noise detection and noise level adaptation is used to overcome the harsh environment or to pass the EMC immunity tests on the
EMC bench.

When the noise signal crosses the “min_noise_level” (100), then the noise level is accumulated and increased, resulting to the
Deadband update given be: “noise_level * SNR”

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 37 / 61

For instance, if the noise_level rises to 130, then the Deadband is updated from (100*15) to (130*15) so that the threshold rises
to 130% to adapt to the increased noise conditions.

When the noise level decreases, it will return automatically down to “min_noise_level” (100) after a while. The speed of the noise
level adaptation and recovering can be controlled by the order of the SW filter “base_avrg”.

Figure 48. Noise level adaptation

If we change the “base_avrg” filter order from 10 to 8, the noise level adaptation will be 4x faster than before, so that it can update
the deadband threshold much faster and react to the increased noise. Note that the noise level recovers automatically, when the
noise signal is gone. The noise level recovery speed is hardcoded to be 16x faster than the noise accumulation, which is suitable
for most cases, but it can be accelerated in the SW if desired.

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 38 / 61

Figure 49. uSAFA base filter tuning for noise adaptation

NXP Semiconductors
Key detector uSAFA

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 39 / 61

Figure 50. Noise level recovery

9 TSI module HW introduction

9.1 TSI v5 main features
• Support both of Self-cap sensor and Mutual-cap sensor

• Enhanced noise immunity to support system EMC standard Test

• Enhanced sensitivity to support wide range of overlay thickness

• Capability to wake MCU from stop2 and low-power modes

• Fully support NXP touch sensing software (NT) library

• Support DMA data transfer

9.2 TSI methods
Touch sensing interface (TSI) provides touch sensing detection on capacitive touch sensors. The external capacitive touch sensor
is typically formed on PCB and the sensor electrodes are connected to TSI input channels through the I/O pins in the device.

Two different touch sensing methods are supported, the self-capacitive mode and the mutual-capacitive mode.

KE15z MCU supports up to 25 inputs in Self-Capacitive mode and up to 6x6 inputs can be implemented in the Mutual mode. Both
mentioned methods can be combined on single PCB, while only the lower 12 TSI channels TSI[0:11] can be used for Mutual mode.
Please note that TSI[0:5] are TSI TX pins and TSI[6:11] are TSI RX pins in Mutual mode.

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 40 / 61

Figure 51. Kinetis KE1x TSI v5 block diagram

9.3 Self vs. Mutual capacitance
E-field distribution between self-cap sensor and mutual-cap sensor is different.

For self-cap, capacitance exists between electrode to system ground. Touch changes field through human body and creates
extra capacitance.

For mutual-cap, sense capacitance exists between 2 electrodes. Touch changes field through human body and reduces the
mutual capacitance. TSI IP is to convert the capacitance changing from the sensor to digital code for application.

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 41 / 61

Figure 52. Self-capacitance principle

Figure 53. Mutual-capacitance principle

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 42 / 61

9.4 Self-cap. HW architecture
Charge transfer method (which has intrinsic noise immunity) is used to detect touch event. One sampling clock including
non-overlapping ph1 (sample phase) and ph2 (transfer phase) is controlled to charge electrode capacitor and transfer the charge
to internal integration capacitor through Charge Transfer Circuit (CTC). Stepped saw tooth generates at node of Vci. Vci is
detected by comparator, when it surpasses positive reference Vp, Ci will be discharged to negative reference Vm. Then next
scanning cycle continues. When touch happens, input capacitance will increase and then the number of saw tooth ramp up steps is
reduced. The difference of the number is detected by digital filter. Digital filter suppresses the noise of number and outputs counts
which can be used by software to detect touch.

NXP Touch SW library does the touch signal inversion in the SW.

Figure 54. Self-cap sensing HW architecture

9.5 Mutual-cap. HW architecture
Mutual-cap sensing includes transmitter and receiver. Under clocking, transmitter outputs pulses which decouple through mutual
cap then reach receiver site. Receiver amplifies the signal with noise cancellation method which is similar as charge transfer circuit
in self-cap sensing.

Figure 55. Mutual-cap sensing HW architecture

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 43 / 61

9.6 Understanding the TSI Measurement

9.6.1 Self-capacitance mode in details
Inside the TSI IP module, the TSI scan is operated by non-overlapping clock ph1/ph2 and trans-conductance amplifier. There are
two phases controlled by the ph1 and ph2 respectively for the TSI scan module:

• Sample phase: The switch ph1 controls the sample phase, when ph1 turns on, the external touch electrode Cx is charged
by vdd3v.

• Charge phase: The switch ph2 controls the charge phase, when ph1 turns off then ph2 turns on, the charge on the
capacitor Cx flows to the internal integrated capacitor Ci, which generates the average current Icx.

Via the trans-conductance amplifier which consists of two current mirrors, the Icx are also be amplified according to the input and
charge current mirror setting. The final average current to charge the integrated Ci equals to Xch*Xin*Icx. As the integrated Ci is
charged by the average current, the voltage Vci ramps on Ci, when the Vci becomes larger than the pre-setting Vp, the comparator
will stop this TSI scan round and the digital filter will record the sample result as TSICNT.

Figure 56. Self-Capacitive Block

Figure 57. Self-Capacitive Mode Timing

9.6.2 Mutual-capacitance mode in details
The mutual capacitive mode measures the capacitance between two electrodes connected to two TSI channels. One of the TSI
channels is used as a transmit (TX) channel and the other as a receive (RX) channel.

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 44 / 61

There are two phases controlled by the switching clock for the TSI mutual capacitive mode:

• Charge phase: The switch ph1 controls the charge phase, when ph1 turns on, the transmit channel outputs pulses which
is coupled through the mutual capacitance Cm. Receiver converts the received voltage pulse (Vpre+∆V) to the current
Icharge through the resistor Rs.

• Discharge phase: The switch ph2 controls the discharge phase, when ph1 turns off then ph2 turns on, the transmit
channel changes the voltage from Vdd5v to 0V. Receiver converts the received voltage change (Vpre-∆V) to the current
Idischarge through Rs.

As the integrated Ci is charged/discharged by the mirrored/amplified current from the receiver, the voltage Vci ramps on Ci, when
Vci becomes larger than the pre-setting Vp, the comparator will stop this TSI scan round and the digital filter will record the sample
result as TSICNT.

Figure 58. Mutual Capacitive Block

Figure 59. Mutual Capacitive Mode Timing

NOTE

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 45 / 61

Due HW limitation on the early MKE15z256 silicon, if TSI is operated in the Mutual mode, then TSI channels 0 to 5 are reserved
for TSI functionality and cannot be used for other purposes like GPIO. This must be considered during designing the board. This
HW limitation has been fixed on the later KE16x devices.

9.7 TSI IP HW register Tuning – Self Cap mode
The HW register settings is available in SW structure: “hw_config” located in file: “nt_setup.c”.

The structure includes set of tunable parameters for both self-cap. and mutual-cap. modes.

In the self-cap. mode the basic mode is with the sensitivity boost disabled. With the sensitivity boost enabled, the tuning becomes
trickier, because the more parameters come into play.

9.7.1 Sensitivity in Self Cap with Boost Disabled
In this mode the tuning is easier, because of a few parameters, which are important for sensitivity and length of accumulation. See
the picture below for more details about the important parameters highlighted in green color.

NOTE

NSTEP is the result of TSI single scan, Decimation is the factor responsible for multiple scan result accumulation.

Figure 60. TSI register tuning in Self-Cap mode, Sensitivity Boost = OFF

9.7.2 Sensitivity in Self Cap with Boost Enabled
Enabling Sensitivity Boost feature can increase sensitivity by removing part of parasitic capacitance “virtually”. So touch can
work well under the thick overlay with sensitivity boost enabled. The TSI self-capacitive mode implements the sensitivity boost
by canceling the external intrinsic capacitance, and the value of the capacitance to be canceled ranges from 2.5pF to 20pF,
configurable in register TSI_MODE[S_CTRIM].

For example, given the intrinsic capacitance of the touch electrode is 20pF(it can be calculated by NSTEP formula), setting the
S_CTRIM value as 5.0pF can make the effective intrinsic capacitance become 15pF. As the intrinsic sensitivity of the touch key is
given by ∆Cs/Cs, The less intrinsic capacitance would result in more sensitive touch response.With this sensitivity boost enabled,
sensitivity can be improved to ∆Cs/(Cs-S_CTRIM*(S_XDN/S_XCH)).

The figure below shows the block diagram of TSI self-capacitive mode with sensitivity boost enabled. The sensitivity boost module
generates the average current Ictrim by the similar sample/charge on a configured internal capacitor Ctrim. The final average
current to charge the Ci will be the orignal Icx substract the Ictrim. As a result, the capacitance of the external touch electrode
seems substracted by the Ctrim. By the way, the actual Ctrim substracted equals to (Xdn/Xch)*Ctrim.

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 46 / 61

Figure 61. TSI block in Self-Cap mode, Sensitivity Boost = ON

Figure 62. Sensitivity tuning in Self cap mode with Boost On

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 47 / 61

9.7.3 TSI Scan time and result accumulation
The scan time determines the size and time of the conversion result.

TSI supports multiple scan per channel, which means TSI performs multiple scans in order to get better SNR and resolution. The
final scan result will be accumulated in TSI_DATA[TSICNT] counter as the NSTEP multiplied by number of scans, and the scan
time will multiple of single TSI scan time. Please note that with higher Decimation, the number of scans is increased, which results
to the physically longer TSI counter accumulation and increased resolution. Please note that if the Order is higher than 1, then the
scan number physically executed by TSI is smaller than the scan number calculated by HW, which may be beneficial to get the
higher resolution.

Figure 63. TSI scan time and accumulation

The parameters of Decimation, Order and Cutoff affects the final accumulated scan result and total scan time as well. Setting the
Order as 2 is recommended as it can save scan time to achieve the same digital scan result.

Figure 64. Scan Result vs. Scan Time formulas

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 48 / 61

Figure 65. Decimation and Cutoff settings

9.8 Clock Generation and Spread Spectrum Clocking
TSI clock can be derived from the selectable, asynchronous internal clock reference “Main Clock”, which can be furtherly divided
to get the final TSI scan clock frequency.

Basic and Advanced (SSC) clock modes are available as the clock options.

SSC (Spread Spectrum Modulated Clock) may be beneficial for higher EMC immunity and reduce the EMI.

• Basic: When SSC_MODE=10b, then the switching clock is divided from main clock directly, as the basic clock generation.

• Advanced (SSC): When SSC_MODE=00b/01b, then the switching clock is generated from SSC module, as the advanced
clock generation.

Figure 66. TSI v5 clock generation block diagram

• If SSC is disabled:

The TSI Switching Clock = TSI_MainClock / (SSC_PRESCALE_NUM+1) / 2

• If SSC is enabled:

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 49 / 61

The TSI Switching Clock = TSI_MainClock / (SSC_PRESCALE_NUM+1) / ((BASE_NOCHARGE_NUM+1)+
(PRBS_OUTSEL+1)/2+(CHARGE_NUM+ 1))

Figure 67. SSC clock principle

Figure 68. PRBS random clock generation

Figure 69. PRBS register Clock settings in SSC mode

9.9 TSI IP HW register Tuning – Mutual Capacitance mode
Since the principle of TSI functionality is different in the Mutual mode, comparing to the Self-capacitance mode, the modified HW
block is used with the Transmitting and Receiving circuits and the set of parameters, which must be configured by user is different.

9.9.1 Sensitivity tuning for Mutual mode
The default register configuration is the experimentally proven and should fit for most of the applications. The parameters denoted
in “bold” are the most important for basic tuning:

.configMutual.commonConfig.mainClock = kTSI_MainClockSlection_0, // Set main clock

.configMutual.commonConfig.mode = kTSI_SensingModeSlection_Mutual, // sensing mode = Mutual OK

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 50 / 61

.configMutual.commonConfig.dvolt = kTSI_DvoltOption_0, // Default: 0 (best) internal comparator threshold voltage

.configMutual.commonConfig.cutoff = kTSI_SincCutoffDiv_0, // Divides the accumulated result, 0 recommended

.configMutual.commonConfig.order = kTSI_SincFilterOrder_2, // Length and multiply of the accumulated result

.configMutual.commonConfig.decimation = kTSI_SincDecimationValue_4, // Multiple of real TSI scans (longer acc.)

.configMutual.commonConfig.chargeNum = kTSI_SscChargeNumValue_4, // SSC clock settings

.configMutual.commonConfig.noChargeNum = kTSI_SscNoChargeNumValue_2, //SSC clock settings

.configMutual.preCurrent = kTSI_MutualPreCurrent_4uA, // Default: 4uA, controlling the RX signal bias voltage.

.configMutual.preResistor = kTSI_MutualPreResistor_4k, // Default: 4k, controlling the RX bias voltage; URX > 0

.configMutual.senseResistor = kTSI_MutualSenseResistor_10k, // Rs resistor, used for translation of the received U to I

.configMutual.boostCurrent = kTSI_MutualSenseBoostCurrent_0uA, // Sens boost factor minimized (No benefits for SNR)

.configMutual.TXDriveMode = kTSI_MutualTXDriveModeOption_0, // Default 0: (5V/-5V), 1: (0/5V) TX signal waveform gener

.configMutual.pmosLeftCurrent = kTSI_MutualPmosCurrentMirrorLeft_32, // Change this for sensitivity tuning,.

.configMutual.pmosRightCurrent = kTSI_MutualPmosCurrentMirrorRight_1, // Default: 1

.configMutual.enableNmosMirror = true, // Default: true, Must be enabled

.configMutual.nmosCurrent = kTSI_MutualNmosCurrentMirror_1, // Default: 1, the same as “MutualPmosCurrentMirrorRight”

Besides the clock settings, this is directly influencing the speed of the measurement (switching clock) and accumulated result.
There are not many parameters which can be tuned differently from the default values.

• kTSI_DvoltOption_0 is recommended

• kTSI_SincCutoffDiv_0 is recommended

• kTSI_SincFilterOrder_2 is recommended, we can try to decrease to “1”, while increasing the decimation

• SincDecimationValue_4 can be increased to get higher number of scans, longer accumulation time and higher resolution.

There is no option to control the strength of the Transmitter signal.

We can only control the shape of the generated TX signal:

TX signal options:

• kTSI_MutualTXDriveModeOption_0 = 0U, /*!< TX drive mode is -5v~+5v, used in mutual-cap mode */

• kTSI_MutualTXDriveModeOption_1 = 1U, /*!< TX drive mode is 0v~+5v, used in mutual-cap mode */

The following two parameters are responsible for setting the proper RX signal bias (offset) voltage which should be: Vpre > 0 in
all cases for proper functionality, see the figure below.

• kTSI_MutualPreCurrent_4uA (default)

• kTSI_MutualPreResistor_4k (default)

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 51 / 61

Figure 70. RX offset settings

We can measure the RX signal level and properly tune Vpre. Or we can try to switch the Transmitter to be transmitting the 0-5V
levels instead -5V/5V

• kTSI_MutualTXDriveModeOption_0 - Default 0: (5V/-5V), we can try to change to 0-5V

• kTSI_MutualSenseResistor_10k (default value). This resistor “Rs” is used for translating the received VRX voltage to
current (Ichg / Idis) for current amplifier input.

Figure 71. Mutual Sense resistor settings

Since the size of the Rs resistor converts the received voltage signal to Ichg, then the value of Rs is responsible for sensitivity as
well. So, it makes sense to play with this value, even that 10kOhm is recommended default value. Higher Rs value sensitivity.

• kTSI_MutualSenseBoostCurrent_0uA is the default value, responsible for “Sensitivity Boost” in Mutual mode, which is
different from Self cap mode.

With default settings (0uA) the boost feature is very weak. Increasing the value increases the sensitivity, but also the sensitivity to
noise, so that SNR may not be improved. We can try to increase the boost current setting per small steps to get the best results.

• kTSI_MutualPmosCurrentMirrorLeft_32 this is very important parameter, controlling the gain of the internal current
amplifier. Higher number results to higher amplification.

Because the amplification factor is given by:

kTSI_MutualPmosCurrentMirrorLeft / kTSI_MutualPmosCurrentMirrorRight.

NXP Semiconductors
TSI module HW introduction

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 52 / 61

• kTSI_MutualPmosCurrentMirrorRight_1 – this is recommended to have default value = 1

• kTSI_MutualNmosCurrentMirror_1

Both settings above should stay equal, cut increasing the values may lead to the faster response.

• configMutual.enableNmosMirror = true

This must be “true” in all cases

9.9.2 Mutual sensitivity tuning remarks
• We should play only with the parameters in bold at the beginning.

.configMutual.pmosLeftCurrent = kTSI_MutualPmosCurrentMirrorLeft_32, // Change this for sensitivity tuning,.

.configMutual.commonConfig.decimation = kTSI_SincDecimationValue_4, // Multiple of real TSI scans (longer accumulation)

configMutual.commonConfig.order = kTSI_SincFilterOrder_2, // Length and multiply of the accumulated result, try “1” as well.

.configMutual.senseResistor = kTSI_MutualSenseResistor_10k, // Rs resistor, used for translation of the received voltage
to current

• Then we can try to increase the sensitivity boost current per small steps to achieve the best results:

.configMutual.boostCurrent = kTSI_MutualSenseBoostCurrent_0uA

• Then we can try to adapt the RX bias voltage by:

.configMutual.preCurrent = kTSI_MutualPreCurrent_4uA, // Default: 4uA, controlling the Rx signal bias voltage.

.configMutual.preResistor = kTSI_MutualPreResistor_4k, // Default: 4k, controlling the Rx bias voltage; Urx must be > 0

• Keep M_PMIRRORR and M_NMIRROR the same

kTSI_MutualPmosCurrentMirrorLeft = kTSI_MutualNmosCurrentMirror_1

kTSI_MutualPmosCurrentMirrorRight = kTSI_MutualPmosCurrentMirrorRight_1

• Keep in mind that the clock settings affect the result of the measurement (length of the accumulation) and the
accumulated value in the counter.

10 Shielding principles
Shielding methods are used to eliminate or the environmental influences like temperature drifts, humidity on PCB or water droplets
on the touch control panel.

• Issue: Critical for humid environments is that new touch interfaces are capable of detecting differences between water
drops and water layer capacitance or finger capacitance.

• Workaround: Keypad designs with a “shield” electrode(s) that detects or compensates the overall system noise or overall
keypad capacitance.

10.1 SW shield function
The NT library provides the SW shielding function. This function is intended to detect false touches caused by water drops and
to eliminate low-frequency noise modulated on the capacitance signal. When shielding function is enabled, the shield capacitive
value is subtracted from the related electrode capacitive raw signal.

The library shown good performance under water droplets and thin water films. It just needs the proper calibration to detect
touches accurately under these conditions.

Shield electrode itself can be used additionally as a GUARD sensor, when an “invalid touch” is detected on it.

NXP Semiconductors
Shielding principles

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 53 / 61

Figure 72. SW shielding compensation principle

Example figure shows an electrode instant signal and its shield. As seen from the shield signal (blue), at time = 10 seconds, a thin
water film is placed on the board. But the electrode signal (green) stays around its baseline (red). At time = 12.5 seconds, a finger
touch is made. The electrode delta seems like a regular touch signal due to the subtraction from the shield.

10.1.1 SW Shield Setup
The shield electrode is mostly the special electrode or PCB pattern, which is not touched under the normal conditions and it is used
to detect the unwanted events.

The shield electrode can be assigned to the regular electrode. All regular touch electrodes may share single shielding electrode
or different shield electrodes can be assigned for different touch sensing electrodes. In special cases, the regular electrodes may
be used as shields for the other electrodes, for instance to compensate the unwanted touch signal crosstalk’s between adjacent
buttons to avoid unwanted touch detection.

The SW shielding setup is given by the parameters in “nt_electrode” structure definition and may be assigned to every electrode.
If the “.shielding_electrode” is undefined or NULL, the shielding feature is unused and the rest of the parameters are ignored.

NXP Semiconductors
Shielding principles

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 54 / 61

Figure 73. SW shield electrode assignment and config

• "shielding_electrode" is the electrode used for shielding, shielding electrode has its own configuration. If the common
signal change is detected simultaneously on the “SH” electrode and the “normal” electrode, then the SW compensation
may activate.

• "shield_threshold" is the minimal common signal level, where the shielding is activated

• "shield_gain" is the multiplication factor used for shielding electrode signal (to make the shield electrode signal
proportional to the “normal” touch electrode)

• "shield_sens" is the maximal shield electrode offset signal, used for common signal offset compensation. It means that all
signal values < "shield_sens“ (800) will be compensated (sw subtracted) and if the value > "shield_sens“ (800), it won’t be
compensated and it can be evaluated as a valid touch, under “worse” environmental conditions.

Shielding electrode is not expected to be touched under the normal conditions. We can setup a key detector and “touch” threshold
for it as well so it may act as a GUARD sensor as well (water split issue detection, etc). And then block the particular key or
complete keypad.

10.2 SW Shield Advantages and Disadvantages
The shielding strength must be configured and tuned for every electrode separately in SW setup. However, this can provide better
flexibility, in case of special needs or complex PCB layout.

The shielding electrodes occupies the standard TSI channels and they behave as they are scanned as regular touch electrodes.

10.3 HW Shielding feature (driven shield signal)
Besides the SW shielding available in the library, KE15z device provides another approach for shielding. This is different technique
than previously described one, because the parasitic capacitance compensation is done on physical level.

The KE15z device support one HW shielding signal output available at TSI ch12 (PTC5).

Can be enabled by single TSI module register bit in hw_config by:

.configSelfCap.enableShield = true,

NXP Semiconductors
Shielding principles

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 55 / 61

Figure 74. Active Shield output generation

The driven-shield signal is a buffered “copy” of the sensor-charging signal. (sample amplitude, frequency and phase)

The buffer provides enough current to drive the high parasitic capacitance of the hatch fill on the PCB acting as a Shield electrode.

The Effect of Liquid Droplets and Liquid Stream on Cap sensor section, because the shield electrode is driven with a voltage which
is the same as the sensor-switching signal, the capacitance added by a liquid droplet when on the touch surface will be nullified.

For the best water-tolerance performance, it is required that the driven shield signal has the same “shape” (voltage and phase)
as the sensor-switching signal.

The PCB with active shield feature must be carefully designed and the discrete external components must be properly selected
and tuned for good functionality.

Active Shield can reduce the intrinsic capacitance of the PCB, which increases the overall sensitivity of the standard touch
electrodes, which can be beneficial for instance for Proximity sensing.

11 New features supported in NXP Touch software library
The hardware and software enhancements that support the latest KE1x devices are as follows:

• KE17 supports two on-chip TSI peripherals and more channels.

• Flexible hardware register configuration for individual TSI channels can be selected.

• More Active Shield outputs can be selected and enabled.

11.1 Adding support for second TSI peripheral module
The KE17Z device supports a second on-chip TSI peripheral. It adds more available TSI channels and allows the TSI scans to
be performed in parallel, which reduces the overall response time.

Adding the software configuration for a second TSI peripheral is very easy. The same “tsi_hw_config” structure can be shared
by both TSI peripherals or a secondary “tsi_hw_config” structure can be created when different “general” register settings are
needed for the second TSI peripheral. In both cases, the “general” register settings may be overridden by a specific “tsi_hw_config”
assigned to an individual electrode or a group of electrodes. NXP Touch library selects and reloads the proper TSI register settings
before the electrode is scanned.

11.1.1 Second TSI module setup in the “nt_setup.c” file
Both TSI peripheral modules are identical in terms of functionality and register settings, but their TSI inputs are routed to different
pins, depending on the device package. See the device reference manual and datasheet for proper TSI channel assignments.
Some channels may be unavailable on the smaller package derivatives.

Every on-chip TSI module has its own configuration register group. Both modules can share common hardware register settings
(“tsi_hw_config” defined in the “nt_setup.c” file), but they have different groups of electrodes defined. See Figure 75.

NXP Semiconductors
New features supported in NXP Touch software library

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 56 / 61

Figure 75. Adding support for a second peripheral to the configuration file

11.2 Flexible TSI hardware configuration assignment
It can be beneficial to use the different hardware configuration for different TSI modules to match the application needs. In that
case, the two different TSI hardware configuration structures must be created and assigned to different TSI peripherals like
“tsi_hw_config1” and “tsi_hw_config2”.

The NXP Touch library then reads the proper register configuration assigned to the module while performing the individual scans.
The TSI hardware configuration structures contain the common register values used globally for all TSI channels (electrodes)
assigned to the given TSI module.

This approach works only on devices physically supporting more TSI modules on a chip.

11.2.1 Assigning a specific hardware configuration to an electrode
When a better flexibility is required, a special hardware configuration valid for an individual electrode can be assigned. This
situation may occur when a specific electrode or an electrode group must be tuned separately, because a different physical
behavior or a different sensitivity is required.

NXP Semiconductors
New features supported in NXP Touch software library

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 57 / 61

Figure 76. Specific hardware configuration assigned to a given electrode

When the “.tsi_hw_config” parameter in the “nt_electrode” structure is left undefined, the software library uses the default hardware
configuration assigned globally for the TSI module.

The library just checks this parameter during the runtime and if it is different from “NULL”, then an alternative hardware register
configuration for a specific electrode is reloaded before a specific electrode is being scanned. This approach can be also used for
KE1x devices with a single TSI module on a chip. Different electrodes (channels) assigned to a single TSI module can be scanned
with different register settings.

11.3 Added Active Shield options
Starting from the KE1x devices, more Active Shield (AS) outputs are available for the self-capacitive mode. Every TSI peripheral
supports up to 3 buffered AS outputs, which adds more flexibility for PCB design and more options for AS usage. See Shielding
principles for details.

• The flexibility means that the AS can be enabled only for a single electrode or a group of electrodes and the rest of the
electrodes can be scanned without the AS enabled.

• Another option is to use more AS outputs for different group of electrodes.

The individual AS outputs are activated together with the regular TSI channel being scanned by the TSI module. The shield
activation/deactivation can be enabled/disabled by the S_W_SHIELD [2:0] individual bits in the TSI_MODE register.

See the below figures for more details about the AS settings in the NXP Touch configuration:

NXP Semiconductors
New features supported in NXP Touch software library

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 58 / 61

Figure 77. AS settings in NXP Touch software configuration

The “configSelfCap.enableShield” parameter contains the AS settings used for the current hardware configuration. Different
hardware configuration structures can be assigned to different groups of electrodes.

For KE17z7 and KE16z7, the following possible parameters and AS combinations are available:

Figure 78. AS options

12 Conclusion
This document describes basic usage and development using the NXP Touch library demonstrated on FRDM-KE1x boards
and FreeMASTER-based NXP GUI Tool. The TSI hardware capacitive touch sensing principles and touch sensitivity tuning is
described in detail. The last section describes the shielding methods available in the NXP Touch library and TSI hardware.

13 References
1. NXP Touch library reference manual

https://www.nxp.com/docs/en/reference-manual/NT20RM.pdf

1. KE15 Touch Sensing Interface (Document: KE15ZTSIUG)

http://www.nxp.com/doc/KE15ZTSIUG

1. FRDM-TOUCH Quick Start Guide

NXP Semiconductors
Conclusion

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 59 / 61

https://www.nxp.com/docs/en/reference-manual/NT20RM.pdf
http://www.nxp.com/doc/KE15ZTSIUG

https://www.nxp.com/docs/en/user-guide/FRDMTOUCHQSG.pdf

1. Kinetis KE1xZ Sub-Family Reference Manual

https://www.nxp.com/webapp/Download?colCode=KE1XZP100M72SF0RM

1. AN3863, Designing Touch Sensing Electrodes – Application Note

https://www.nxp.com/docs/en/application-note/AN3863.pdf

14 Revision history
Table 2. Revision history

Revision number Date Substantive changes

1 07 December 2021 Added New features supported in
NXP Touch software library

0 01/2020 Initial release

NXP Semiconductors
Revision history

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 60 / 61

https://www.nxp.com/docs/en/user-guide/FRDMTOUCHQSG.pdf
https://www.nxp.com/webapp/Download?colCode=KE1XZP100M72SF0RM
https://www.nxp.com/docs/en/application-note/AN3863.pdf

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. AMBA,
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07 December 2021
Document identifier: AN12709

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 NXP Touch
	2 Touch sensing HW support
	3 NT SW Library
	4 FreeMASTER Run-Time Debugging Tool
	5 Supported compilers
	5.1 Download and Install MCUXpresso

	6 Software download
	6.1 Add touch support to SDK
	6.2 Downloading SDK and Documentation
	6.3 FreeMASTER Download and Installation

	7 Beginning with FRDM board and Touch Demo
	7.1 FRDM board setup
	7.2 Touch sensing demo example
	7.2.1 Importing the touch_sensing demo
	7.2.2 Running and debugging the touch sensing example
	7.2.3 Explore the touch_sensing demo

	7.3 Standalone FreeMASTER GUI
	7.3.1 FreeMASTER GUI Connection
	7.3.2 TOUCH SW LAYERS Tab
	7.3.3 MODULES Tab
	7.3.4 CONTROLS Tab
	7.3.5 ELECTRODES Tab
	7.3.6 FreeMASTER Oscilloscope View
	7.3.7 Single Electrode Scope View
	7.3.8 Slider Control Scope View

	7.4 Touch Sensing demo SW configuration
	7.4.1 FRDM-TOUCH
	7.4.2 TSI channel assignment
	7.4.2.1 Assigning the TSI channels in SW

	7.4.3 Application code in main() Function
	7.4.4 SW library synchronization and processing functions
	7.4.4.1 nt_trigger function
	7.4.4.2 nt_task function

	7.4.5 Event callback functions
	7.4.6 SW Application setup in “nt_setup.c” file

	7.5 NXP Touch library memory requirements
	7.5.1 Memory size optimization
	7.5.2 Removing the FreeMASTER

	8 Key detector uSAFA
	8.1 Key detector uSAFA signals
	8.2 Key detector uSAFA filter parameters
	8.3 DC tracker feature
	8.4 Key detector uSAFA tuning
	8.4.1 Noise level adaptation

	9 TSI module HW introduction
	9.1 TSI v5 main features
	9.2 TSI methods
	9.3 Self vs. Mutual capacitance
	9.4 Self-cap. HW architecture
	9.5 Mutual-cap. HW architecture
	9.6 Understanding the TSI Measurement
	9.6.1 Self-capacitance mode in details
	9.6.2 Mutual-capacitance mode in details

	9.7 TSI IP HW register Tuning – Self Cap mode
	9.7.1 Sensitivity in Self Cap with Boost Disabled
	9.7.2 Sensitivity in Self Cap with Boost Enabled
	9.7.3 TSI Scan time and result accumulation

	9.8 Clock Generation and Spread Spectrum Clocking
	9.9 TSI IP HW register Tuning – Mutual Capacitance mode
	9.9.1 Sensitivity tuning for Mutual mode
	9.9.2 Mutual sensitivity tuning remarks

	10 Shielding principles
	10.1 SW shield function
	10.1.1 SW Shield Setup

	10.2 SW Shield Advantages and Disadvantages
	10.3 HW Shielding feature (driven shield signal)

	11 New features supported in NXP Touch software library
	11.1 Adding support for second TSI peripheral module
	11.1.1 Second TSI module setup in the “nt_setup.c” file

	11.2 Flexible TSI hardware configuration assignment
	11.2.1 Assigning a specific hardware configuration to an electrode

	11.3 Added Active Shield options

	12 Conclusion
	13 References
	14 Revision history

