AN12709

NXP Touch Development Guide

Rev. 1 — 07 December 2021

1 NXP Touch

NXP® Touch software is designed to speed development of your touch
applications and is ideal for use with Kinetis"MCUs. Available in source code,
this software download features touch detection algorithms and be ideally
suited for RTOS-based applications. NXP Touch software employs a modular
architecture with various touch centric controls, modules, and electrode data
objects, enabling integrated and customizable features.

NXP Touch targets to help customers do a smooth migration and easy
designing in touch applications.

It is a total solution for touch control applications, and NXP Touch offers touch
software and hardware touch sensing IP TSI.

SW library in combination with the Kinetis KE1x platform brings lots of
improvements listed below:

» Great EMC performance, noise immunity, pass the IEC61000-4-6
standard test both 3 V/10 V test.

» Support both Self-cap and mutual-cap mode, up to 6x6 matrix touch pads.

» Great performance in liquid tolerance, water, oil, cold steam, and so on.

» High configurable sensitivity, supports up to 10 mm thick glass/plastic overlay.

2 Touch sensing HW support

Application Note

Contents
1 NXP TouCh.....cccscemrriercern s 1
2 Touch sensing HW support............. 1
3 NT SW Library.....ccccceeeviiiiniinrcennns 2
4 FreeMASTER Run-Time Debugging
I o S 3
5 Supported compilers.........c.cccc.u.e... 4
6 Software download............cccccuennee 5
7 Beginning with FRDM board and
Touch DemO.........cceecemrrcreeennsieennnns 8
8 Key detector uSAFA..................... 31
9 TSI module HW introduction......... 40
10 Shielding principles............ccceeeene 53
11 New features supported in NXP
Touch software library................... 56
12 ConclusioN.......ccccvvieveeerieeniseessennas 59
13 References......cccccocoveecirececcenniennn. 59
14 Revision history..........cccccvvieenennee 60

NXP offers the latest TSI v5 HW peripheral available on Kinetis KE1x devices based on charge-transfer physical principle. This
method provides appropriate performance regarding the sensitivity and immunity against the environmental changes and EMC.

Touch sensing demo SW example is targeted for FRDM-KE 15z with inserted FRDM-TOUCH module, which is not included

together with the FRDM board and must be ordered separately.

h
P

NXP Semiconductors

NT SW Library

FRDM-TOUCH

4x touch buttons
in mutual capacitance
mode

1x touch rotary

1x touch slider
RGB LED (under edge

of FRDM-TOUCH)

N FRDM-TOUCH] 2x touch buttons
\ - : y | in self-capacitance mode
v e ——————— |

FRDM-KE15Z

Figure 1. FRDM-KE15Z and FRDM-TOUCH

3 NT SW Library

NXP offers a touch software library, free of charge. It provides all the software required to detect touches and to implement more
advanced controllers like sliders or keypads.

TSI background algorithms are available for touch keypad and analog decoders, sensitivity auto calibration, low power, proximity,
water tolerance. SW distributed in source code form in “object C language code structure”

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note 2/61

NXP Semiconductors

FreeMASTER Run-Time Debugging Tool

r Ny
APPLICATION TOUCH GUI TOOL
@ g NXP Touch Library g
=E Controls _§

Electrodes Keydetectors Filters

GPID G POl

Drlvers

TS vers

Common :
specific

Vv

MCUXpresso SDK Drivers

o ENENEIEE
$
HW

Figure 2. NXP Touch SW library block diagram

4 FreeMASTER Run-Time Debugging Tool

FreeMASTER software is debugging and visualization tool by NXP available for free download. Communication with target
processor is supported via debug port (JTAG/SWD for Kinetis) or serial port (UART) interface. Direct JTAG/SWD connection
is faster and does not require additional UART connection with board. Serial port driver code for target MCU is available for
most MCU targets. Any variable in the project can be easily monitored and modified (reads memory based on the Target-Side
Addressing TSA tables). HTML / JavaScript based GUIs can be created for further functionality.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 3/61

NXP Semiconductors

Supported compilers

@ nNxPTouch.pmp - FreeMASTER

i File Edit View Explorer Project Tools Help

e el D]) | 0 B 56 | G = [[2] (2] o O g [B LG5 M2 [Tahoma U B s U BB = = =
NXP Touch GUI b 7 ¢

Modules | Controls | Electrode | Debug

(LI XIL T LT LT
Er e

electrode safa 0,
scope
electrode safa 1,
scope
electrode safa 2,

scope
contral keypad 0 clectrode safa 3, keypad || Ox0 0
scope
electrode safa 4,
scope
electrode safa 5,
scope
contral page
| Name | Value Unit

I
Figure 3. NXP Touch GUI in FreeMASTER

5 Supported compilers

The NXP touch library is distributed as an optional middleware component selectable during the Kinetis SDK download. Proper
compiler must be selected before SDK package generation.

Supported compiler IDEs are listed below:
* IAR EWArm
» Keil uVision

* MCUXpresso available for free from NXP.

5.1 Download and Install MCUXpresso
MCUXpresso can be downloaded from the NXP webpage:
https://www.nxp.com/search ?keyword=mcuxpresso
Follow the steps below to install the IDE.

» Create login if not already registered.

» Download installer.

* Install SW.

» Launch MCUXpresso.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 4/61

https://www.nxp.com/search?keyword=mcuxpresso

NXP Semiconductors

6 Software download

Follow the steps below to build and download the SDK for FRDM-KE15z:
* Go to the webpage
https://mcuxpresso.nxp.com/en/welcome
* Login to NXP
» Select Development Board
* From Boards/Kinetis menu, select FRDM-KE15Z
* Build SDK

Software download

NGO Mcu

SOK Dasnboard Select Development Board

Search for your board or kit to gel started

I B Select Board

Search by Name Hardware Detaills
Boar
A Notifcations
& Preferénces 1 - Select a Device, Board, or Kit
FROM-KE4F -
FROM-KEEF
@ MCUxpresso IDE FRDM-KE2F

& NCUX FROM-KEQ2Z40M
2 PRESS0
Config Tools FROM-KEQ4Z

FROM-KEDEZ

i Releases Information FROM-KLO2Z

FROM-KLO3Z

FROM-KL25Z ~

Figure 4. Building SDK package

FROM-KE152
MKE15ZT
Cortex-MOP / T2MHZ

256 KB Flash
32 KB RAM

2 - FROM-KE152 @ Explore selection with Pins 100l

6.1 Add touch support to SDK

Follow the steps below to add “Touch” optional middleware (software component) and select the proper Toolchain / IDE. You can

build the package for single toolchain/IDE or select all toolchains supported.
» Add software component (optional middleware)
+ Select Touch
» Save changes
* Note SDK Version
» Use version in prefix for archive name

* Request Build

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

5/61

https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors

Software download

Praferences

Ittiefs
wiP

Select Optional Middleware
Add migdiewans, Sperating Systemns, and schwang brarias io |

MCqurl_‘s

IDE
“ M.(:U:(Dresso

Config Tools:
Click the link below to request this specific MCUXpresso SDK Build

TERMA In general, SOK builds shiould compiete within a few minutes

Select Software Components
Select oplional components from the kst below to be added 1o your SDK
2 items selected -
Solect AN Desalect A1
CM3I5 DSP Library
DMA Manager
FailF5 £
ISS0K
& LVHB
SDK Dashboard
boa SDK Builder Ve Loe
Generate a downloadable SDK archive f WAG_PMSM
I B Select Board
Dl‘\llloﬂﬂr Enwvironment slﬂlﬂﬂl
TRAT Satections here will impact Mles and examples projeq Sntox
Toueh o
& Notifications Hast0s Toalchan 10 1SB Type-C PD stack
Windows MCUXpresse IDE o

Memory Sze

50K Datails

You will be notified via email and notifications in the upper night comer of this webpage

Releases Information

6 - Request Build —

Archive Name
SDK_2 4.1_FROM-KE15Z

Dont use: [T in the nams of your

SOK

Figure 5. Add Touch Support to SDK

Documentation

Base 30K

Cortex-MOP | T2MHz

256 KB Flash
32 KB RAM

KSDH 2.4.1 (released 2018-06-18)
REL_SDK_2 4.0_RELB_RFP_RC4_5_PRE
Windows.

MCUXpresso IDE

FatFs

& MCUXpresso SDK AP Rieference Manual

6.2

Downloading SDK and Documentation
Download SDK Archive

Download SDK Documentation

» Agree to EULAs

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

6/61

NXP Semiconductors

Software download

Figure 6. SDK Downloads

SDK Downloads

MCUXpresso SDK Download both

& Download SDK Archive (10 MB)
& Download SDK Documentation

' Download Standalone Example Project

For MCUXpresso IDE, example projects can be imported as standalone
projects directly within the IDE by downloading the SDK Archive

Online Documentation
& View SDK AP| Reference Manual

Updated documentation

SDK Folder » SDK_2.4.1_FRDM-KE15Z_doc » docs

o~
Marme

MCUXpresso SDK API| Reference Manual_MKE15Z7
touch
"L Getting Started with MCUXpresso SDK
"I MCUXpresso SDK API Reference Manual_MKE15Z7
e U¥presso SDK Release Notes_MKE13Z7

SDE_2.4.1_FRDM-KE15Z_doc » docs » touch

Fa
Mame

“L NT20RM

Figure 7. SDK Documentation download

6.3 FreeMASTER Download and Installation

The latest version of the FreeMASTER is available for free download from NXP webpage below:

https..//www.nxp.com/support/developer-resources/software-development-tools/freemaster-run-time-debugging-

tool:FREEMASTER

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

7/61

https://www.nxp.com/support/developer-resources/software-development-tools/freemaster-run-time-debugging-tool:FREEMASTER
https://www.nxp.com/support/developer-resources/software-development-tools/freemaster-run-time-debugging-tool:FREEMASTER

NXP Semiconductors

Beginning with FRDM board and Touch Demo

FREEMASTER: FreeMASTER Run-Time Debugging Tool B<

OVERVIEW BUY/PARAMETRICS DOCUMENTATION DOWNLOADS DEVELOPMENT TOOLS

Filter By| Show All >

Q Recommended Software & Tools (1)

Recommended Software & Tools (1 o FreeMASTER 2.0 Application Installation (REV20.7)

Run-time Software

Middleware - Device Drivers
Software Development Tools

Debuggers and Runtime Analysis (1 DEVice Drivers (1)
(1)
IDE - Debug, Compile and Build Tools)

InitializationBootDevice Driver Code . . . W 2.0)
{REV 2.0)
Generation 0 FreeMASTER Communication Driver

FreeMASTER Communication Driver for S08, HCS12, S12 Magniv®, S6FS00/E,
MPC550uMPCS60MPCST:ox, ColdFire® VN2, Kinetis®, 532

Figure 8. FreeMASTER Application Download

7 Beginning with FRDM board and Touch Demo

7.1 FRDM board setup

» Ensure that J15 is across positions 2 and 3 for 3.3 V operation

* Connect the FRDM-TOUCH board to FRDM-KE15Z. Power on the Freedom board by connecting the USB cable to your
PC.

» The “touch_sensing” demo must be flashed to board.

7.2 Touch sensing demo example
» Download the latest FRDM-KE15Z SDK package from the MCUXpresso website as described in the chapter above.
* Launch MCUXpresso
» Drag the SDK package (.zip) to the Installed SDKs view in MCUXpresso to install the SDK

05Disk () » SDEK Folder

MName

¢ SDK_2.3.1_FRDM-KLDZZ

£ SDK_2.4.1_FRDM-KE15Z

¢ SDK_2.4.2_FRDM-KE15Z_doc

= 0

0 Installed SDKs 2 [Properties B Console (£ Problems @ Debugger Console '8 Instruction Trace ®0 Power Measurement Tool 2y SWO Trace Config

C I
TP MASAAND QU LR SHTIRNY U ALy O F LU all LA IS ILRTUET P AL RS HISAANITU LR W "
MName K Version Manifest Version Location SDK Details 0]
[+] & sDK_2.x_FRDM-KE15Z 241 330 & \SDK_24.1_FRDM-KE15Z.zip Selected SDK content

Figure 9. Importing the KE15Z SDK to MCUXpresso

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 8/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

7.2.1 Importing the touch_sensing demo

Follow the steps below to import the sw example project to the MCUXpresso IDE.
* Import SDK example (touch_sensing)
 Select frdmke 15z, click Next
» Expand demo_apps

» Check touch_sensing, click Next

U Quick.. = Glob.. ©rVaria.. % Brea.. 5S¢ Outli . Board and/or Device selection page

= SDK MCUs Available boards
= Create or import a project MCUs from installed SDKs Please select an available board for your project
Rl ke NXP MKE15Z.2 56007 Supported boards for device: MEE15Z2 56007
. Impaort SDK example(s « KEIx
T T TSI PIre TRate T e MEKE 1572 560007
- » KLOx
= Build your project
» KL2w
% Build v KW
4 Clean
= Debug your project B-id-

s B Debug
fod

! ¥ Terminate Build and Debug

Figure 10. Importing the SDK examples

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 9/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

| B 0K impon Wizard o

e
1 ” E 4
| B The propect Bdmke 152 touch_sending already existi i the wodkapace. |"r__:'
|

|
. Import projects
Prcybet e et Indimise]5e_ ProjecT fame Bt

[Use default location

Project Type Project Options
WL Project et tatis Libay SOK Debug Comate @ Semanost) UART

=] import ot files

Exampes isa = &

Mane Wersion

f W] B demo_apps \
[] ERi_¥5

| = 812 low_power

| ¥ bubble

: Eubble_penphens

| & ecompass

| =t pon_sdz12

| = netio_world

| = led_blinky

| & ipize_vips

| = powser_ranager

: power_rmode_paatch
] %= ric_tunc

] = sheil

W = touch_senging]

[
[
[
[
[
[
[
[
[
[
[
[
[

i [& driver_exarmpiles i |

Figure 11. Importing the touch sensing demo

7.2.2 Running and debugging the touch sensing example

* In the MCUXpresso IDE Project window, expand frdmke15z touch sensing

* Double-click main.c
 Build and debug the touch sensing project (to load the app into flash)

» Click the Resume icon to run the demo

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 10/ 61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

/ Resume

B weorkspace - frbmke 52 tewch sering secece/mam ¢ « MCUpresso I0E o o =
File Edit Sowce Relactor Mavgate Search Proyect Cosfiglocks Run FreeRTDS Window Help
. SR A F OO ™y &~ 0w - e &A% - - o
Progect =
=% W MU Appt
= e ke 152_tonch_senting o
B Froject Sestings
main
int madn{veid)
{
int32_t result;
bool recalib_enabled = false; /* aut
. bool one_key_only = false; J
User code for key processing
- - o 2 BOARD_InitPins();
NT library configuration
Taulic BOARD_BootC lockRUNC)
LED_REDA_IMIT(1);
LED_GREEN1_INIT(1};
LED_BLUE_INIT(1);
2 Qi] fra_init();
- Croata of MApor & preject . WT CsA Tnit();
[Tr—
‘ e Instalied SDEs T Properties © Corsole = (£ Problems [Memory @ Debugger Console 8 Instruction Trace W0 Rower Measurement Tool | 2, SWO Trace Config
N . . . & FE B
Sritmke 152 touch seding LinkServier Debug [C/+ + (NP Semico B 152, Iouch,_sending.ad
= Bulid your project [MRpresso Semihosting Telnet comsole for *from sensing LinkServer Debug' started on port $7711 @ 137.0.9.1)
Build project (%) K5
« Debug your project B-U-H-
Debug project g %
¥

Figure 12. Debugging the demo

7.2.3 Explore the touch_sensing demo
* Press E1 on FRDM-KE15Z — RGB LED turns Yellow
* Press E2 on FRDM-KE15Z — RGB LED turns Cyan
* Press Up on FRDM-TOUCH - RGB LED turns Yellow
* Press Right on FRDM-TOUCH — RGB LED turns Green
* Press Down on FRDM-TOUCH - RGB LED turns Blue
* Press Left on FRDM-TOUCH — RGB LED turns White
 Scroll slider on FRDM-TOUCH from right to left — RGB intensity is reduced
 Scroll around rotary on FRDM-TOUCH - RGB hues change

7.3 Standalone FreeMASTER GUI

» With FRDM-TOUCH installed on FRDM-KE15Z and the touch_sensing demo loaded in flash, connect USB cable between

board and PC

-All the touch electrodes should respond by changing color or intensity on the RGB LED.

» Launch FreeMASTER
» Drag the NXPTouchKE15Z.pmp file onto the FreeMASTER window
-Project Tree changes to NXP Touch Library

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

11/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

SDK_2.4.1_FRDM-KE15Z » middleware » touch » freemaster v O Search fre.. @ E MXPTouchKE15Z - FreeMASTER
Mame o == ° File Edit View Explorer Project Tools
Project - FreeMASTER . e
driver BWH:F o 68 & == |
v ‘ File Edit View Explorer Project Tools Help
[7 ek_qn908Dxedk i D] e g s dmmp) 17 e e e [T KD -] Tl L
11 frdm_kel52 rojec — = | 12 electrode_usafa_0 Details

B NxPTouchKE157 =
\

B MxPTouchONI080xedk \

Figure 13. FreeMASTER Example

7.3.1 FreeMASTER GUI Connection

Freemaster supports several communication protocols like serial COMx or direct connection over the debug interface. Follow the
steps to connect via onboard Mbed USB to serial port.

+ Select Connection Wizard from Tools menu and click Next
» Use direct connection to on-board USB port, Next

» Ensure Mbed Serial Port (COMxx) selected, Next

* COMxx UART port will be detected, select Yes, Finish

Select Communication Port Type 4

What commuracation inferface is used lo connec! your hos! compuler and the targel board?

(¥ Lise direct connection o on-board USE port

UART compuler ports intlude the hardware RS20 inlefraces, USB-0-UART senal cables as well as
direcl USE connechon 1o trget application running FreeMASTER LUSB-COC driver.

Make sure your target apphicabon is compiled with FreeMAS TER Communscation Dnver with the
FMSTR_USE_SCL FMSTR_USE_LPUART or FMSTR_USE_LSB_CDC configuration option

Saenial LART Ports 1o probe: Bawd-tates o probe
W COM13 - mbed Senal Port (COM13) 255000 ~
128000
W 115200
57600

Figure 14. Set FreeMASTER communication

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 12/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

EBoard Detected at UART Ports b4 |

FreeMASTER has delecled a board connecied fo COMTI LIART pon atl ¢ ommunicabon
bawd rate of 115200 bps. Do you want 1o keep the selings?

(§ Yes use he delected por selings and star using FreeMASTER ool

k_ " Mo._leave e Connechon 'Wizard without any changes made

< Back Fimish | Cancel

| - T E— 1 1

Figure 15. Select UART

7.3.2 TOUCH SW LAYERS Tab

To see the information about the touch sw components select the “TOUCH SW LAYERS” tab in the Control page window and then
click “READ CONFIGURATION FROM BOARD” and wait for upload to complete.

You can scroll down to examine:
* NT CONTROLS

Keypad_1, Aslider_2, Arotary_3 and electrodes used for each control
* NT ELECTRODES

Information for all 12 electrodes used

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 13/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

O MR TauchiENLT - FreehASTER - m] x
Fia Bt View Dpoes Propct oo el
FHDT S me T A o o o [b 2K . - it
e
=
¥ eleciode usala) Detads Couml g =0 X

FEADCOBFICUIA T FIECh] BOARD

NT SYSTEM: Finie cralgmetbees i RAM

sk e [ma]

mrtulsrshon brne (e

NT CONTROLS: 2 B
Elrewede Name:
Decuades 1 ELI O E2 El_3 El_4 EL% O ELG O EL? 1 ElL% 2 EL%
= EL1D = El_II ® EL12
Consrcl Trpe " .. W
g >
I
Wava Wik e el

Wk_ﬂ(r.m i ﬁ ity S0e¥nsiurt

Done

Figure 16. FreeMASTER-Touch SW Layers

7.3.3 MODULES Tab

If the MODULES tab is selected in Control page window, all 12 electrodes defined in sample project are shown. Signal values
change during scans. When the Up arrow on FRDM-TOUCH is pressed a valid touch is indicated for electrode 2. Please note that
electrodes are indexed starting from zero, no matter on the electrode names defined in SW setup.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 14 /61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

B HePToukKE15Z - FrockiasSTER

- =] x
Fis [d7 View Dplorwr Peopnt Took Mag
SHST wwd e Sl aha s [Elt b BT Ry Y
i
= piecvoge 1t 0 Deteis
tsk: meduls_tsd_0
Eirrwsie pame Ry desecnr Raw Cm Basetone O Sl Towth Flags
maly ol kL Ay L]
maty et eaun?) 18
maly 132 L Lk] i
maly [3300 []
mafy 5333 3833 218]
mafy K0 3385 N80 5
-l 000 35820 58008]
e M FAEET] SMENN %
ity Flsa Wn L) L]
aly i) I SaMN 18
maty L HaM g %
ks L e ahzh]
£ -4
e Wik et Farued
[TR ——

Figure 17. FreeMASTER-MODULES Tab, electrodes view

const struct nt_electrode * const nt_tsi_module_electrodes[] = {
&E1 1, &E1 2, &F1 3, &El 4, &E1 5, &Fl 6, &FE1 7, &FE1 8, &E1 o, &F1 18, &E1 11, &E1 12, NULL
1

Figure 18. Module electrode assignment in “nt_setup.c”

7.3.4 CONTROLS Tab

If the CONTROLS tab in Control page window is selected, the 3 touch controls (keypad, rotary, and slider) in sample project
are shown.

When any of the keypad electrodes on FRDM-TOUCH is pressed a valid touch is indicated for the keypad control.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 15/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

[WP TouchKE15Z - FroaliasTER

Fls [View Dplorer Peopit Tools Melp
SHET s e Bl g o R S ORI AT Y

B S0P Tonsh Library

oy
=
i e 0O X
v ©
Nam tircizde Trpe [Ao Touch ool sirchzdn
g o w =

aslider e

N Flarwade Type Pivtuia Range Tomach Tl vt D, Ton e wmaty

i L s Pt

oy (@)

N Hiechade T f ey Ragr Tk RIEE Divwcion: tenalid loch

sty d i gt

I— Pared
Plisptustnn Co | [PRlarisbin S

Figure 19. CONTROLS Tab - keypad

7.3.5 ELECTRODES Tab

Detailed information about the electrode Touch/Release events can be monitored in ELECTRODES Tab. Follow the steps
below, please:

» Select the ELECTRODES tab in Control page window
» Use the SELECTED ELECTRODE pulldown to select electrode_usafa_1
» Press and hold the E2 electrode on FRDM-KE15Z and a valid touch is shown in State 0 (or 2)

* Release the E2 electrode and a valid release is shown in State 1 (or 4)

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note 16 /61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

@ HoPTeuchkE 152 « FreehAASTER o ®

Fie It Vew Ubgplow Poee Tooh Help
FT-T = R A e Tei e ST

B SO0 Touch Litrary
=

BBersd_uzgmal e
Lt
w
Seaps of electrode_uiafs_1 | meavared dars Re | eas
Fure_Sagnal Segnad Basime Flap e 0 1] st | T_stamp | Samir T stamp 3 Sasir § T _stamp §
s s BT 1 2 visnse [e 2 L1381 1 LIS

Figure 20. ELECTRODED Tab — Touch and Release events

7.3.6 FreeMASTER Oscilloscope View

After clicking to “scope”, the most of the important touch sensing signals and key detector values can be monitored. Just single
electrode can be selected and monitored. Follow the steps below to watch the signals for the selected electrode, several options
are possible:

» From the MODULES tab, click the scope link for an electrode

(An error appears if you mistakenly click the electrode_usafa_x, just click Yes)
» From the CONTROLS tab, click the Name of the control to see all electrodes in that control
» From the CONTROLS tab, click the scope link for a single electrode

* From the ELECTRODES tab, select an electrode from the scroll window, then click oscilloscope at the bottom of the
Control page window

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 17 /61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

simees® T MODULES and CONTROLS tabs, click scope link

Electrode name Keydetector Raw Cat Baseline Cnt Signal Touch Flags
usafa 50893 50000 50806 16
nsafy 60463 60470 60465 16

Scope of electrode_usafa_3 | measured data

ELECTRODES tab, click on oscilloscope view

2 0:24:43 840 - 0:24:44 520 2 0:24:41.700 1 2442 50

Mame Value Uit Pariod

Figure 21. Entering Oscilloscope view

7.3.7 Single Electrode Scope View

All-important key detector signals are visible in the scope window so that the sensitivity and touch thresholds can be easily tuned
for the individual electrodes. When Electrode 2 (Up arrow) is pressed on FRDM-TOUCH, the signal step and touch detection
are visible.

@ MKPTouchKE1SE - FreeMASTER - . .
Ele Edt Nww Jeepe Prowat Took Hep o -
SHDT 98 &k ﬂ@-,g;z:'p:'glilf; 3 3 ATy W
NP Toueh Liary s omcrosn unan 3 soes GOV AU (S e U2 e b et TGN SO0 st 3N Weriude sl T owy Svou SR secme seats 2 seecbend o
electrode u Dietails 15508
o 1an Filtered S|gnal
gj o
.‘f__) — i_um j
= Boame Raw signal —— Deadband
@ 124 Baseline
n: 12600
Ll 1see-
T
"
.
= .
o - Noise \v
L] g
0)| Ew
=z ni
" Deadband counts
y
= wL
i
" Touch Release
L=
o
- Eas
[S g"
3 Entry event {:ount
(&) 185
s
T : 4 $ L] T] " (-] 7 1
Tt fene]
< >
_wm|w-w |

Figure 22. Single Electrode Scope View — key detector signals

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 18 /61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

7.3.8 Slider Control Scope View
Values like slider detected position, keypad button masks (flags) can be monitored as well.

For instance, analog slider consists from two electrodes. If we slide by finger from left to right, we will see the signal changes on
electrode 0 and electrode 1. The position and direction is calculated from both electrode signals.

@ MxPTouchKEISZ - FraeMASTER - o X
e [t Viw Eplorer Propa Took Help
GHDT =98 e B 2E B> O [Er £ 0N W LB U8
I 0P Touch Library v, pant poassa e et grecss ot a1t et e e ot coutn i1 sncnetit ugp cosmes pkue 3 el e
B9 cnvsol_asiider 1 Details L
C ue
o - iti
S |, Position
m g
o] i .
o
— af
Rt
« Flags — direction, movement, touch
o 14 \
o
o = &
[o
" Siiderelectrode 0/~
[77]
© g Slide from left to right
5 —
w st Touch Release
“ Slider electrode 1 A
e
= = = = = = = = = = =
Time juec]
contrei paga | cotvet b e sacicacips

Figure 23. Slider signals

7.4 Touch Sensing demo SW configuration

7.4.1 FRDM-TOUCH

RGB LED on FRDM-KE15Z responds to touches on:
* 4 Touch buttons
» Touch Rotary

* Touch slider

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 19/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

Touch buttons:
Up—-LEDis red
Down —LED is blue
Left— LEDis white
Right —LED is green

Touch Rotary:
Multiple LED hues

Touch slider:
Adjusts brightness of RGB LED

Nxo FRDM-TOUCH

Figure 24. FRDM-TOUCH controls

7.4.2 TSI channel assignment

touch rotary mutual button
=y) Muteal ey 1 Mutual Key 2
&l <—r 21 .--"'7_"'\ o3 2— y ; ; "
FTESTSIO_CHOD 71852\ s & -
L 8v™ - e I
P/ A N \"ft /3"‘/ =5 3 rel EXT s
5 54 5 EXT_245;
FTE4TSI0_CHE - FTE11/TSI0_CH3
- ROTARY SEMNE0R
- Mutual Key 3 Nutual Key 4
FTBETSI0_CHS x . =
- . '\' .-— i
FTE4TSI0_CHY = o - =
- FTEANVTSIO_CHZ
TSI Ex

nty

touch slider re TSI BT 1
E1 PTDSTSIO_CHE PTD&TSI0_CHT
Clides 4
X
PTDT/TSIO_CH1O BTD/TSIO CHE

Figure 25. Schematic of TSI inputs

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 20/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

7.4.2.1 Assigning the TSI channels in SW

The touch demo SW is based on Kinetis SDK. The advantage of this is that the SDK contains support for all MCU peripherals, like
UART, Timers, SPI drivers, and so on.

However, only a few files from SDK are utilized by the touch library. Mainly the low-level drivers for TSI and timer are needed. But
these files may be replaced by the user-defined drivers. It means that the library source files can be easily integrated to another
SW project independently on Kinetis SDK.

In the Kinetis SDK, the virtual electrode assignment to the physical TSI channel is done in “board.h” file.

* push buttons - mutual electrodes */
#define FRDM_TOUCH_BOARD_TSI_MUTUAL_ELECTRODE_1
#define FROM_TOUCH_BOARD_TSI_MUTUAL_ELECTRODE_2
#define FRDM_TOUCH_BOARD_TSI_MUTUAL_ELECTRODE_3

#define FROM_TOUCH_BOARD_TSI_MUTUAL_ELECTRODE_4

* Rotary - self electrodes */

#define FRDM_TOUCH_BOARD_TSI_ROTARY_ELECTRODE_1
#define FRDM_TOUCH_BOARD_TSI_ROTARY_ELECTRODE_

% 2
#define FRDM_TOUCH_BOARD_TSI_ROTARY_ELECTRODE_3

#define FRDM_TOUCH_BOARD_TSI_ROTARY_ELECTRODE_4

NT_TSI_TRANSFORM_MUTUAL(FROM_TOUCH_BOARD_TSI_MUTUAL_RX_ELECTRODE_1,FRDM_TOUCH_BOARD_TSI_MUTUAL_TX_ELECTRODE_1)//
TX_ELECTRODE_2)//

NT_TSI_TRANSFORM_MUTUAL (FRDM_TOUCH_BOARD_TSI_MUTUAL_RX_ELECTRODE_2,FRDM_TOUCH_BOARD_TSI_MUTUAL

NT_TSI_TRANSFORM_MUTUAL (FRDM_TOUCH_BOARD_TSI_MUTUAL_RX_ELECTRODE_3, FRDM_TOUCH_BOARD_TSI_MUTUAL_TX_|

NT_TSI_TRANSFORM_MUTUAL(FROM_TOUCH_BOARD_TSI_MUTUAL_RX_ELECTRODE_4,FROM_TOUCH_BOARD_TSI_MUTUAL_TX_ELECTRODE_4)//

#define FROM_TOUCH_BOARD_TSI_MUTUAL_TX_ELECTRODE_1 TF_TSI_MUTUAL_CAP_TX_CHANNEL_3 /* PTE1L */
#define FROM_TOUCH_BOARD_TSI_MUTUAL_RX_ELECTRODE_1 TF_TSI_MUTUAL_CAP_RX_CHANNEL_6 /* PTDS

TF_TSI_MUTUAL_CAP_TX_CHANNEL_3 /* PTE1L */

#define FRDM_TOUCH_BOARD_TSI_MUTUAL_TX_ELECTRODE_2 X _

#define FROM_TOUCH_BOARD_TSI_MUTUAL_RX_ELECTRODE_2 TF_TSI_MUTUAL_CAP_RX_CHANNEL_7 /= PTDG */
#define FROM_TOUCH_BOARD_TSI_MUTUAL_TX_ELECTRODE_3 TF_TSI_MUTUAL_CAP_TX_CHANMEL 2 /* PTE10 */
#define FROM_TOUCH_BOARD_TSI_MUTUAL_RX_ELECTRODE_3 TF_TSI_MUTUAL_CAP_RX_CHANNEL_6 /* PTDS */
#define FROM_TOUCH_BOARD_TSI_MUTUAL_TX_ELECTRODE_4 TF_TSI_MUTUAL_CAP_TX_CHANNEL_2 /* PTE1D */
#define FROM_TOUCH_BOARD_TSI_MUTUAL_RX_ELECTRODE_4 TF_TSI_MUTUAL_CAP_RX_CHANNEL_7 /* PTD6

/* Slider - self electrodes */

#define FRDM_TOUCH_BOARD_TSI_SLIDER_ELECTRODE_1 TF_TSI_SELF_CAP_CHANNEL_1@ /* PTD1 */

#define FROM_TOUCH_BOARD_TSI_SLIDER_ELECTRODE_2 TF_TSI_SELF_CAP_CHANNEL_S /* PTD7 %/

#define FRDM_TOUCH_BOARD_TSI_1 TF_TSI_SELF_CAP_CHANNEL_22
#define FROM_TOUCH_BOARD_TSI_2 TF_TSI_SELF_CAP_CHANNEL_23

TF_TSI_SELF_CAP_CHANNEL_@
TF_TSI_SELF_CAP_CHANNEL_1 /
TF_TSI_SELF_CAP_CHANNEL_9 I

TF_TST_SELF_CAP_CHANNEL_8

Figure 26. TSI channel assignment in SW

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

21/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

7.4.3 Application code in main() Function

if ((result = nt_init(&System 0, nt memory pocol, sizeof (nt_memory pool))) !'= NI &
— {
- L L] L] "
1] gsehiresus) Initialization
case NI _FARILURE:
nt_printf:"\nﬂannnt initialize HXP Touch duse to a non-specific error.\n"):
break;
cage NT OUT OF MEMORY:
nt_printf:"\ntannut initialize WXP Touch due to a lack of free memory.\n"):
break:;
B }
while(l); /* add cods to handle this srror */

nt_pIintf:"\nNHF Touch is successfully initialized.\n");
nt_printf ("Unused memory: %d bytes, you can make the memory pocl smaller without

/% Enable slectrodes and controls

£ .
nt_enable () ; Enable used things

F* Kevpad slectrodsst/
nt_control keypad set autorepeat rate (&Keypad 1, 100, 1000);
nt_control keypad register callback(&Keypad 1, &keypad callback);

JS* Slider electrodes */
nt_control aslider register callback(&hSlider 2, &faslider callback);

/% Rotary slectrodes +/
nt_control arotary register callback(thRotary 3, Larotary callback):;

St System TSI overflow warning callback +F Register EUET‘It ca"backS

nt_system register callback(&system callback):

St Auto TSI register recallibration function, not ussed as default &/
if (recalilx enabled)
E

recalib status = (tsi_status_t) nt_module recalibrate(&nt_tsi module):

if (one_key only)
nt_control keypad only one key wvalid(&Eeypad 1, true):

pit_inic(); INitialize periodical timer for nt_trigger() task

while (1)

o

ne_rask(); Periodical call of nt_task()
FMSTR Poll():

B }

1

Figure 27. Application init

NXP Touch Development Guide, Rev. T, 07 December 2021
Application Note 22/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

7.4.4 SW library synchronization and processing functions

There are two main api functions: “nt_trigger()” and “nt_task()” that must be periodically called by the SW application in order to
trigger the touch sensing measurement and process the results.

7.4.4.1 nt_trigger function

This function should be called by the application periodically in a timer interrupt, or in a task to trigger

new data measurement. Depending on the module implementation, this function may take the data

immediately, or may only start the hardware sampling with interrupt enabled. If the TSI module measurement is triggered, whole
sequence of input channels will be scanned consequently. It means that the new measurement sequence should not be triggered
until the previous sequence is completed. The function returns:

* NT_SUCCESS when the trigger was performed without any errors or warnings.
» NT_FAILURE when a problem is detected, such as module not ready, overrun (data loss) error,
and so on. Regardless of the error, the trigger is always initiated.

This is an example of the NT library triggering:

//For example, there is a callback routine from any pericdical scurce (for example 5 ms)
static void Timer_ bmsCallBack (void)
{
f({nt_trigger() != NT_SUCCESS)
{
// Trigger error

}

Figure 28. nt_trigger() function call

7.4.4.2 nt_task function

This function should be called by the application as often as possible, in order to process the data acquired during

the data trigger. This function should be called at least once per trigger time. Internally, this function passes the
NT_SYSTEM_MODULE_PROCESS and NT_SYSTEM_CONTROL_PROCESS command calls to each object configured in
Modules and Controls. The function returns:

* NT_SUCCESS when data acquired during the last trigger are now processed
* NT_FAILURE when no new data are ready

This is an example of running a task of the NT library:

// Main never—-ending loop of the application

(1)
{
1f (nt_task() == NT_SUCCESS)
{
// NWew data has been processed
4

}

Figure 29. nt_task() function call

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 23/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

7.4.5 Event callback functions

Every user enabled control must have its “callback” function defined, which is used for servicing the events generated by control
like “Touch” or “Release” events. See the example below for keypad callback function.

=

=

- }

i }

switch (event)

= switch (index)

case J:
break:
case 1:
break:
case Z2:
break:
case 3
break:
case 4:
break:;
case 5:
break;
defanlt:
break;

break;
case NT EEYPAD TOUCH:

= switch (index)

case 0:
break:
case 1:
break;
case Z2:
break;
case 3
break:
case 4:
break:
case 5:
break:
defanlt:
break:

break;

Fl static woid keypad callback(const stronct nt control *control,

enum nt_control keypad event event,
uint3i2Z t index)

case NT KEYPAD RELEASE:

{

Release event

{

Touch event

Figure 30. Keypad callback function

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

24 /61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

7.4.6 SW Application setup in “nt_setup.c” file

Most of the configuration, like TSI register HW sensitivity, key detector settings, assignments of electrodes and global timebase
is provided in “nt_setup.c”.

To define the modules, electrodes, controls, and system, create the initialized instances of the structure types, as described in the
following section.

The code below shows an example configuration of four electrodes on the FRDM-KE15z board.
There are several key detectors (touch-evaluation algorithms) available in the NXP Touch library. The
electrode structure types must always match the module and algorithm types.

In the SW demo example key detector “USAFA” is used. All keys can share single key detector settings or different key detector
setting structures can be assigned to different electrodes for better flexibility.

[struet nt keydstector usafa nt keydetector usafa E1 1 = |
.signal filter.coefl = Z,

.base avrg.nZ order = 9,
.non_activity avrg.n2 order = 15,
.entry event cnt = 1,
.deadband cnt = 1,
.signal to noise ratioc = 35,
.min noise limit = 200,
.dc_track esnabkled = 0,

.dc track cnt = 100,

- 1:

[const| struct nt keydetesctor usafa nt keydstector usafa E1 3 = |
.s1gnal filter.coefl = Z,

.base avrg.nZ order = 12,
.non_activity avrg.n2 order = 15,
.entry event cnt = 4,
.deadband cnt = 3,
.signal to noise ratioc = 4,

.min noise limit = &0,

.dc track esnabkled = 1,

.dc track cnt = 100,

= I

Figure 31. Key detector SW definitions

The electrode structure types must match the hardware module used for the data-measurement algorithm in the application. In
this case, it is the “nt_electrode” type. Define the electrode parameters and the “nt_key detector” interface.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 25/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

/* Electrodes */
[eonst struct nt_slectrods E1_1 = |
.shielding electrode = NULL,
.keydetector params.usafa = &nt keydetector usafa E1 1,
.keydetector interface = &nt keydetector usafa interface,
.pin_input = FRDM TOUCH BOARD TSI 1,
- 1i
H eonst struct nt slectrods E1 2 =
.shielding electrode = NULL,
.keydetector params.usafa = &nt_keydetector_usafa E1 1,
.keydetector interface = &nt keydetector usafa interface,
.pin_input = FRDM TOUCH BOARD TSI 2,

Figure 32. Electrode SW definitions

St Modulss */
[const struet nt slectrods * const nt tsi module slsctrodss[] = |
&E1 1, &E1 2, &E1_3, &E1 4, &E1 5, &El1 &, &E1 7, &El1 8, &E1_9,
-}
[l const struct nt_modules nt_tsi_mudule =
.interface = &nt module tsi_ interface,
-wtrmark hi = £5535,
.wtrmark lo = 0,
.config = (wveoid*)&tsi_hw_config,
.instance = 0,
.electrodes = &nt_tsi module slectrodes[0],

.safety_interface = &nt safety interface,
.safety _params.gpio = (void*)&my safety params,
.recalik config = (wvelid*)&recalik configuration,

- }:

Figure 33. TSI module definition

&E1_10,

Once the modules and electrodes are set up, you can define the Controls. In this case, the control_0 is the Analog Slider control.

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

26 /61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

[l eonst struct nt_slectrode * const Feypad 1 controls[] = {
&E1 1, &El1 2, &El1 3, &El 4, &El 5, &El 6, NULL Keypad electrodes
-}
[eonst struct nt elsctrods * const Aslider_2_controls[] = {
&E1 7, &E1 B, NULL :
],."- - Slider electrodes
] eonst struct nt_electrods * const ARotary_ 2 controls[] = {
&F1 %, &E1 10, &E1 11, &El1 12, NULL
L, T - - - Rotary electrodes
£l const struct nt_control arotary nt_control _arotary ARotary 3 = |
.range = 72,

L5 Rotary range

o const struct nt_control_ aslider nt _control aslider &Slider 2 = |

.range = 160, . .
.insensitivity = 2, Slider range and granularity
-1z
[l eonst struct nt_control keypad nt_control_keypad Feypad 1 = {
.groups = NULL,

.groups_size = 0,
.multi touch = (uint32 t []) {0x0C,0x18,0x30,0x24, 0x3C, 0],
.multi_ touch size = 5,

- }:

[eonst struct nt_control Reypad 1 = |
.2lectrodes = &FReypad 1 controls[0],
.control_params.keypad = &nt_control_keypad FReypad 1,
.interface = &nt control keypad interface,

- };

] const struct nt control &Slider 2 = |
.electrodes = &ASlider_E_contrcls[D],
.control params.aslider = &nt_ control aslider ASlider 2,
.interface = &nt _control aslider interfacse,

-1

[l eonst struct nt_control ARotary 3 = |

.electrodes = &ARotary 3_controls[0],

.control params.arotary = &nt_control arotary ARotary 3,

.interface = &nt control arotary interfacs,

Figure 34. Example of Keypad control SW definitions

Now we are ready to connect all the pieces together in the “system” structure.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 27 /61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

P
AT System TS

[eonst struct nt control * const System 0 controls[] = {
&Feypad 1, &&Slider 2, &ARotary 3, NULL

-}

[eonst struct nt moduls * const System 0 modules[] = |
Ent tsi module, NULL

-}

-] const struct nt system System 0 = |
-time periocd = TIME PERICD,
-init_time = 400,

.safety period multiple = 0,
.safety crc hw = true,

.controls = &S8ystem 0 controls[0],
.modules = &S8ystem 0 modules[0],

=

Figure 35. nt_system sw configuration

The Kinetis E family of MCUs contains the most advanced TSI v5 peripheral. The module must be configured for a proper
operation. However, the NT library helps during the application development, and it is not necessary to deal with the TSI module
differences. The TSI hardware setup is displayed below. The “tsi_hw_config” contains register settings used for both Self and
Mutual capacitive modes.

If one of these 2 modes is unused by application, the redundant register settings are ignored.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 28 /61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

const tsi_config t tsi_hw_config = {
.configSelfCap.commonConfig.mainClock = kTSI MoinClockSlection 8,
.configSelfCap. commonConfig.ssc_mode = ETSI ssc_prbs_method,
.configSelfCap. commonConfig.mode = kTSI _SensingModeSlection_Self,
.configSelfCap. commonConfig.dvelt = ETSI DwoltOption 3,
.configSelfCap. commonConfig.cutoff = RTSI_SincCutoffiiv_@,
.configSelfCap.commonConfig.order = RTSI_SincFilterOrder_2,
.configSelfCap. commonConfig.decimation = kTSI _SincDecimationValue_d4,
.configSelfCap. commonConfig.chargeNum = kTSI SscChargeNumValue 4,
.configSelfCap. commonConfig.prbsOutsel = RTSI_SscPrbsOutsel_2,
.configSelfCap. commonConfig.noChargeNum = BTSI_SscNoChargeNumValue 2,
.configSelfCap. commonConfig.ssc_prescaler = RTSI_ssc_div_by 2,
.configSelfCap.enableSensitivity = true,
.configSelfCap.enableShield = false,
.configSelfCap.xdn = kTSI _SensitivityXdnOption 2,
.configSelfCap.ctrim = kTSI _SensitivityCtrimOption 8,
.configSelfCap. inputCurrent = kTSI _CurrentMultiple InputValue_ 8,
.configSelfCap.chargeCurrent = kTSI _CurrenttultipleChargeValue_ 8,
cconfigMutual .commonConfig.mainClock = ETSI MainClockSlection @,
.configMutual . commonConfig.ssc_mode = ETSI _ssc_prbs_method,
.configMutual .commonConfig.mode = kTSI SensingModeSlection Mutual,
.configMutual .commonConfig.dvolt = TSI _DveltOption_3,
.configMutual .commonConfig. cutoff = kTSI _SincCutoffiiv @,
configMutual.commonConfig.order = ETSI _SincFilterOrder_2,
.configMutual . commonConfig.decimation = kTSI_SincDecimationVolue_d4,
.configMutual . commonConfig.chargelum = BTSI_SscChargeNumValue 4,
.configMutual .commonConfig.nolhargeNum = BTSI_SschoChargeNumValue 2,
configMutual.commonConfig.prbosOutsel = kTSI _SscPrbsOutsel_2,
.configMutual . commonConfig.ssc_prescaler = kTSI _ssc_div_by_2,
.configMutual .preCurrent = RTSI MutualPreCurrent_dud,
.configMutual .preResistor = BTSI _MutualPreResistor_dk,

cconfigMutual.
.configMutual
.configMutual

senseResistor = RTSI _MutualSenseResistor 16k,

.boostCurrent = BRTSI_MutualSenseBoostCurrent_Bud,
JtxDriveMode = RTSI_Mutwal TxDriveModeOption @,

.configMutual
LconfigMutual
.configMutual
.configMutual
.thresl = @,

.thresh = 65535,

.pmosLeftCurrent = BRTSI_MutualPmosCurrentMirrorleft_32,
.pmosRightCurrent = BTSI_MutualPmosCurrentMirrorfRight_1I,
.enableNmosMirror = true,

.nmosCurrent = RTSI_MutualMmosCurrentMirror_1,

L

Figure 36. TSI HW settings in SW

7.5 NXP Touch library memory requirements

Memory requirements depend on the “size of the application”, very basically said on the number of electrode inputs and on the
number of controls like keypad keys, sliders, and so on used in the application.

The Touch library was newly written and targeted for the 32-bit Kinetis Arm cortex-M MCUs. In order to use the benefits of the
32-bit architecture, we stored most of the structures, pointers, and constants into flash in 32-bit format. AImost nothing is placed
to RAM.

Because of this approach the data in flash is aligned properly and it has a proper size for Arm calculations without any further
bit-manipulations required by CPU and without losing of the precision. This allows us to save CPU time during the calculations.

This is also preventing against the issues connected with porting to the different compilers.

The smallest Kinetis-L device had 16 kB Flash, while most of the devices supporting the TSI peripheral have 32 kB or more Flash
on the chip. It is possible to fit the touch sensing part of the SW into 32 kB Flash Kinetis devices with reserves for the rest of
the application.

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note 29/61

NXP Semiconductors

Beginning with FRDM board and Touch Demo

See the typical memory requirements in table below for the SW projects passed on the KSDK (including) and FreeMASTER
disabled, please.

The most of the Flash (ROM) constants are defined in structures contained in “nt_setup.c” config. file. By the size and complexity
of this file, we can estimate the total memory requirements.

7.5.1 Memory size optimization

The total flash memory required depends on the complexity of the touch application, that is number of electrodes and controls
enabled. With the rising complexity, the size of Flash and RAM required rises proportionally. The key detector C-structures can be
temporarily placed to RAM, by removing the “const” keyword before the structure definition, see figure 29. The most of the runtime
variables used by electrode data, key detectors and by filter calculations are created on the “nt_memory_pool[]“, which is defined
as a static RAM array, which size should be adequately selected depending on the application needs. See the nt_memory_pool
definition as 4000 byte array. Please note that depending on the compiler, the proper alignment is required for Arm Cortex-M
cores. The proper array size may be estimated using the “nt_mem_get_free_size”, which returns the remaining memory after the
proper initialization.

#1f defined(TCCRRM)
uint8 t nt memory pool[4000]; /* IAR EWARM compiler =/
felse
uint8 t nt memory pool[4000] _ attribute ((aligned (4))); /* EKeil, GCC compi

fendif

Figure 37. nt_memory_pool initialization

if ((result = nt_init{&System_D, nt_memory pool, |sizeof (nt_memory pool)l)) = NT SUCCESS)
{

switch(result)

{
case NT FAILURE:
nt_printf ("\nCannot initialize NXP Touch dus to a non-specific srror.\n");

break;

case NT OUT OF MEMORY:
nt_printf("\nCannot initialize NXP Touch due to a lack of fres memory.\n");
break;

1

while(l); /* add cods to handle this srror */

}

ully initialized.\n");

nt_printf ("\nNXP Touch is successf
tes \n", [int)nt_mem_get_free_size{});

nt_printf ("Unused memory: %d by

Figure 38. Nt_memory_pool size

7.5.2 Removing the FreeMASTER

By default FreeMASTER is enabled in the touch demo application, which is needed to run the FreeMASTER GUI during the
development stage. FreeMASTER itself consumes some resources, so it is recommended to remove it from the final SW project
as soon as the touch sensing tuning is completed. The FreeMASTER support can be globally disabled in the touch application by
the definition “NT_FREEMASTER_SUPPORT 07, see the picture below.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 30/61

NXP Semiconductors

Key detector uSAFA

tifndef NT FREEMASTEE SUPPCET
fd=fine NT_FREEMFLSTER_SUPPDRT o
fendaif

Figure 39. Disable FreeMASTER support in the touch library

Then the rest of the FreeMASTER definitions and references like the TSA table, “init_freemaster_uart()” and “FMSTR_Init()”
functions must be removed from the SW project, see the figure below, please.

e
*# This list desscribes all TS54 tables that should bs sxportsd to the
* FresMASTER applicaticon.
*/

//#ifndsf FMSTR PE USED

// FMSTR TSA TABLE LIST BEGIN()

r FMSTR T5A TABLE (nt frmstr tsa table)
// FMSTR TSA TAELE LIST END()
//#endif]

/* FresMASTER communicates cover the default UART instance */
//init freemaster uart();

/* FresMASTER initialization */

A (veid) FMSTR Init () ;

while(l)
{
nt_task();

//FMSTR _Poll();
}

Figure 40. Remove FreeMASTER references

Table 1. NXP Touch typical memory requirements (FreeMASTER removed)

App. size 2 electrodes 28 electrodes
FLASH [kB] 14 28
SRAM [kB] 2.2 7.2

8 Key detector uUSAFA

Three key detectors are supported by NXP Touch Library:
» AFID (patented, easy CPU calculations)
» SAFA - Self-Adaptive Filter Algorithm (patented)
* USAFA - “unidirectional” SAFA (recommended)

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 31/61

NXP Semiconductors

Key detector uSAFA

SAFA is the most advanced algorithm used.

SAFA means that the Signal Adaptive Filter Algorithm is a filtering SW algorithm patented by NXP, where “u” means unidirectional.
It is based on moving average filter with different weight. Noise level (dead-band) limitation is used together with noise level
tracking and automatic threshold adaptation. Typical touch signal level is tracked and used as “predicted” touch signal value.

8.1 Key detector uSAFA signals

Following signals are the most important:

» Baseline is the basic reference signal, which moves very slowly with the time and environmental changes. All of the other
signals are referenced to the baseline.

« Signal level, is an elementary filtered raw touch sensing signal (SW low-pass filter used). If you touch, this signal reflects
the change.

» Noise floor (min noise limit), we expect that the ambient system noise will not cross this value in the normal environment
(no added EMC noise). It means that normally the system noise is much below this value. We have set it to 100 in SW
experimentally, while the real value may be much lower.

» Deadband, is the noise level, which must be crossed by signal to detect the Touch or Release condition. Deadband is
defined as (min_noise_limit x SNR) in this case. For instance, when SNR = 6. So that Deadband = 100 * 6 = 600 counts.

» Predicted signal, is the typical signal level, when the button is touched. We adapt this value, upon a touch or release.
» For the TOUCH event, the signal must rise above the 25% of the Predicted signal and it crosses the Deadband level.
» For the RELEASE event, the signal must drop below the 80% of the Predicted signal.

» Event counters (“entry_event_cnt” and “deadband_cnt”) are used for debouncing the Touch and Release Events

I* SAFA keydetector settings ™/
const struct nt_keydetector_usafa keydec usafa =

" Electrodes */
-signal_filter = {2},
base_awrg ={n2 order =10},
.non_activity_avrg = {n2 _order = NT_FILTER._MOVING _AVERAGE_MAX ORDER}],
-entry_event_cnt =4,
.deadband_cnt =4,
.signal_to_noise_ratio = b,
.min_noise_limit= 100,
.dc_track_enabled =1,
.dec_track_ent =100,

Figure 41. uSAFA deadband threshold setting

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 32/61

NXP Semiconductors

Key detector uSAFA

shecirode_usara_1_sonal eiecirodde_ussts 0_1_sonal

ehecirode_usala_0_baseine

predicted touch signal

lecirode_useis 0_deadberd_h

T
domm

3000 {

=08 Jeadband = min_noise *SNR

!

AN baseline count

min_noise_limit (app noise flgor level)

il
2

ouch detected

Release detected

Figure 42. Key detector uSAFA signals

8.2 Key detector uSAFA filter parameters

All filters are based on moving average SW filtering, where the order is taken as power of two (2n).

For instance, order = 10 means, 210 = 1024 samples will be averaged.

It means if we increase to “11”, 2048 samples will be averaged, and the filtering will be 2-times slower.

Oppositely, if we decrease to “9” or “8”, it will be 2 or 4-times faster. So that by the changing the order of the filters, we can control
the response and adaptation speed. All filters and debouncing counters are depending on the “time_period” parameter which is
equal with the TSI scan period.

See the figure below with comments describing the parameters:

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

33/61

NXP Semiconductors

Key detector uSAFA

I* SAFA keydetector settings =/

{

.signal_filter = {2}, Il Coefficient of the input IIR signal filter, used to suppress high-frequency noise.
.base_avrg = {n2_order = 10}, // Settings of the moving average filter for the baseline in the release state of an electrode.
.non_activity avrg = {n2_order = 15}, // Settings of the moving average filter for the signals in the inactivity state of an electrode. (for example baseline in a touch state).
entry_event _cnt = 4, // Sample count for the touch event. This means that this count of samples must meet the touch condition to trigger a real touch event.
deadband_cnt=4, // Sample count for the deadband filter. This field specifies the number of samples that cannot proceed to the next event.
signal_to_noise_ratio = 6, // Signal-to-noise ratio — it is used for counting the minimum size of the signal that is ignored

i ise_limit =100, // Minimal system noise floor level

ed =1, | // When the DC-tracker is enabled, then the Keydetector resets, when there is a significant signal drop below the baseline detected

=100, /I Number of samples requested (length of the negative signal drop) after that the DC tracker resets the keydetector.

const struct nt_system system_0 ={

.controls = &controls[0],
.modules = &modules[0],

Figure 43. Key detector uSAFA parameters

8.3 DC tracker feature

DC-tracker helps to adapt to the special situation, when the signal suddenly drops much below the baseline. This can happen in
the real-word application.

For instance, when there is some object present on the sensor electrode during a power-up, and it is removed after a while, it must
recover and adapt thresholds to the new situation to be able to detect the “regular” touches.

The DC tracker resets the key detector when the signal drop is higher than (2 * min_noise_limit).
The DC tracker reaction time is configurable and given by multiple: dc_track_cnt * time_period.

In the example below, the key detector is rests after the timeout of 5000 ms.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 34/61

NXP Semiconductors

Key detector uSAFA

o I-I = m:um m.lﬂ"'_'.ﬁJ.W‘l m.ﬂ_!.ﬂm m.lﬂzm m;_n_mae mmu_uun;n venl_ont m.-u-;w-m
S0
00 !
ﬁ tracker Reset Touch twents_'1
1 Negative signal drop -
%NW i predicted tch. signal
i
s
S0+
52500 - deadband [r1t|ikt:1'r1r|'kh]
0 (signal drop > 5.000ms) 8& (signal drop > 2*min_noise_limit) ;
1500 f “'k.___lr T‘L_ baseline
nﬂ-__
108
106~
1
e
-§m
g
- [
"
-
= Touch events properly recognized
an-
35
30
n251
fuo
15
in
a5
: 10 1l 12 13 14 15 1% 17 18 19 k.
Time [122]
Figure 44. DC tracker reaction

8.4 Key detector uSAFA tuning

By changing of the key detector parameters we can tune the touch sensitive threshold, change the noise adaptation speed and
robustness against the external influences.

If we change the SNR from 6 to 15, the Deadband threshold will change from 600 to 1500.

Delta signal values < min_noise_limit (100) are ignored, taken as noise floor.

Delta signal values > min_noise_limit (100), but < Deadband taken as increased system noise and used for the automatic
deadband threshold adaptation

Delta values > Deadband are handled as a 15t Touch event condition.
2 Touch event condition is to cross the 25% of the predicted touch signal
Both conditions must be passed to trigger the Touch event counter.

If the number of Touch events >= “entry_event_cnt” (used to debounce the glitches), then the TOUCH is evaluated by SW.

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note 35/61

NXP Semiconductors

Key detector uSAFA

{
signal_filter = {2},

.base_avrg = {.n2_order = 10},
.non_activity_avrg = {.n2_order = 15},
.entry_event_cnt = 4,

.deadband_cnt = 4,

e & R P PP P

.min_noise_Ilimit = 100,

.dc_track_enabled = 1,
.dc_track_cnt = 100,

};

Figure 45. uSAFA key detector settings

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 36/61

NXP Semiconductors

Key detector uSAFA

— i e

= min_noise_limit = 100
signal_to_noise ratio =6

b
|
[
-
Deadband = min_noise_limit * SNR = 600
-

e

|
H|
B

Figure 46. uSAFA tuning SNR =6

ek e e s 1 bk e e L S

- /_/_/7 predlcted tch. signal
F

oy

i

B

Deadlmnd = mln _noise_| Ilmlt *SNR = lEUD

L] I

e

L

e

) - - £ 1) CEl Crl
b

Figure 47. uSAFA tuning SNR = 15

8.4.1 Noise level adaptation

Noise detection and noise level adaptation is used to overcome the harsh environment or to pass the EMC immunity tests on the
EMC bench.

When the noise signal crosses the “min_noise_level” (100), then the noise level is accumulated and increased, resulting to the
Deadband update given be: “noise_level * SNR”

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 37/61

NXP Semiconductors

Key detector uSAFA
For instance, if the noise_level rises to 130, then the Deadband is updated from (100*15) to (130*15) so that the threshold rises
to 130% to adapt to the increased noise conditions.

When the noise level decreases, it will return automatically down to “min_noise_level” (100) after a while. The speed of the noise
level adaptation and recovering can be controlled by the order of the SW filter “base_avrg”.

3, K
a0

wm MIN_noise_limit = 100
. Signal_to_noise ratio = 15
= DAse_avrg = 10

hOk Ut 0_sgral slachade usets 0.1 sgral OO At O_tansirg T At 0 _deadana b oo _unets 0 reits schade ety _0_sniry et _ont T et 0 seadand ot

Increased Deadband: noise_level * SNR
-

Lm.’/‘/\/ﬂ\ signal with noise

Increased noise level

Figure 48. Noise level adaptation

If we change the “base_avrg” filter order from 10 to 8, the noise level adaptation will be 4x faster than before, so that it can update
the deadband threshold much faster and react to the increased noise. Note that the noise level recovers automatically, when the
noise signal is gone. The noise level recovery speed is hardcoded to be 16x faster than the noise accumulation, which is suitable
for most cases, but it can be accelerated in the SW if desired.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 38/61

NXP Semiconductors

Key detector uSAFA

e T e R S e

{
signal_filter = {2},

xxxxxxxxxxx Pt P

.non_activity_avrg = {.n2_order = 15},

.entrv_event cnt = 4,

.deadband cnt = 4,

.signal to noise ratio=15,// 6

.min_noise limit = 100,

.dc track enabled =1,

.dec track cnt =100,

%

Figure 49. uSAFA base filter tuning for noise adaptation

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 39/61

NXP Semiconductors

TSI module HW introduction

v aatn 0 i s aats 1 vord s, inats) taseve st s, seatard 5 scrain e 3, o sncrsin saain 5 aney wrwe g e unatn 3 sesckara srd

“= min_hoise_lmit =100

== signal_to_noise_ratio = 15 | Deadband recovery
=== pbase avrg =8
= :
£

Ll

Ll

oF

E

i

i Noise level recovery

14 _'

120

20

18

e

El:

i

1]

1]

™ " ™ " " R - L} L~ m L]

Figure 50. Noise level recovery

9 TSI module HW introduction

9.1 TSI v5 main features
» Support both of Self-cap sensor and Mutual-cap sensor
» Enhanced noise immunity to support system EMC standard Test
» Enhanced sensitivity to support wide range of overlay thickness
» Capability to wake MCU from stop2 and low-power modes
 Fully support NXP touch sensing software (NT) library
» Support DMA data transfer

9.2 TSI methods

Touch sensing interface (TSI) provides touch sensing detection on capacitive touch sensors. The external capacitive touch sensor
is typically formed on PCB and the sensor electrodes are connected to TSI input channels through the I/O pins in the device.

Two different touch sensing methods are supported, the self-capacitive mode and the mutual-capacitive mode.

KE15z MCU supports up to 25 inputs in Self-Capacitive mode and up to 6x6 inputs can be implemented in the Mutual mode. Both
mentioned methods can be combined on single PCB, while only the lower 12 TSI channels TSI[0:11] can be used for Mutual mode.
Please note that TSI[0:5] are TSI TX pins and TSI[6:11] are TSI RX pins in Mutual mode.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 40/ 61

NXP Semiconductors

TSI module HW introduction

TSI_SINC | TSI_SSC0

TSICH F DVOLT SETCLK TSI_SSC1 | TSI_SSC2

I
g |
| " 1 Mux Analog Front End " I
P1sno) | | | = S wWRer 17 Main Cioch s8¢ !
! 1 . r L
1 r) et — : Tt " | l ™ Divider :
: : | : ‘K.'llh'k o - I
Wamsican T30,)] I L :
Sersor] | Wp
+ Batrix] | " | el £ |
i y feebes L & t Digital SING Filter I
1]
] i I | | |
1 ! Analog Frort End |
: ! | Sell-cap sensing l I
I | j
| _ Incagranon |
:“'l‘-i]' | Ciharge transter draut Cap * |
Selfcap |
Sensori2 i L :] : | L~ 1 l — :
cm-P Y
et T P I
: 1
. ,r.suz,u]: ! — L— I
o T M —— Touch Sensing Interface l) I
. 1 Sel-cap | 1l (TSI) Prachig | Dischig
LO24] ¥ sonserzs = == |
- |
_____________________________________ e — — —
| |

| L
Tis:!::n?DEV':LCT? ITSI_'I‘HSD| [MODE I S_* TSICNT

5_" stands for all registers whose name starts from S_. It controls self-cap sensing.
M_* stands for all registers whose name starts from M_. It conirols mutual-cap sensing.

Figure 51. Kinetis KE1x TSI v5 block diagram

9.3 Self vs. Mutual capacitance
E-field distribution between self-cap sensor and mutual-cap sensor is different.

For self-cap, capacitance exists between electrode to system ground. Touch changes field through human body and creates
extra capacitance.

For mutual-cap, sense capacitance exists between 2 electrodes. Touch changes field through human body and reduces the
mutual capacitance. TSI IP is to convert the capacitance changing from the sensor to digital code for application.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 41/61

NXP Semiconductors

TSI module HW introduction

Self Sansor Patlam

[

Dielectric
Overlay
Cas Cs
PCB 3
10 pir Reuting

Figure 52. Self-capacitance principle

Ground Hatch

Mutual Sensor Pattemn

Dielectric

Overlay
_im @ =3

0 pin Routing

10 pin

Figure 53. Mutual-capacitance principle

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 42 /61

NXP Semiconductors

TSI module HW introduction

9.4 Self-cap. HW architecture

Charge transfer method (which has intrinsic noise immunity) is used to detect touch event. One sampling clock including
non-overlapping ph1 (sample phase) and ph2 (transfer phase) is controlled to charge electrode capacitor and transfer the charge
to internal integration capacitor through Charge Transfer Circuit (CTC). Stepped saw tooth generates at node of Vci. Vci is
detected by comparator, when it surpasses positive reference Vp, Ci will be discharged to negative reference Vm. Then next
scanning cycle continues. When touch happens, input capacitance will increase and then the number of saw tooth ramp up steps is
reduced. The difference of the number is detected by digital filter. Digital filter suppresses the noise of number and outputs counts
which can be used by software to detect touch.

NXP Touch SW library does the touch signal inversion in the SW.

phl Vex ph2 Charge Transfe Digital
rge Transfer
Vo t y Circuit Filter [counts
MUX A
On-IP charge _~ transfer
e
_________ -p?ia'5;1a| e
| : | counts H
. " Vp = "
On-chip ' '
| PV _d:,‘j;f :
______ _—— e} Vim —f no no i
Off-chi : | | touch touch !
-chip Cf Cp: parastic cap 1 : | :
. .
Cp Cftouch cap i counts ' touch time §
carhrospace : :
Lves : behavior E
L

Figure 54. Self-cap sensing HW architecture

9.5 Mutual-cap. HW architecture

Mutual-cap sensing includes transmitter and receiver. Under clocking, transmitter outputs pulses which decouple through mutual
cap thenreach receiver site. Receiver amplifies the signal with noise cancellation method which is similar as charge transfer circuit
in self-cap sensing.

--

| .
| I : behavior }
| : i Vp rf = counts :
| DadSVtPI i V. Ci touch :
. i : .
!) (Tx]l Transmitter E Vm — ! | 1o no E
- | | ; . | touch touch :
Cm: mutual cap ! Ecounts ! ' E
| wansmission | reduced by touch : time ;
\ |Cp: parastic self H :
\\ Cf: touch self cap | e S SSSsssssssssmssssssseses *
—
\ﬁ_".’:‘h“_“’l ! Digital
o A o L m i m Recelver Filter [counts
Cp__'\—r/\ pl pad‘fwtol
eamhreaspace | RX)
~vss vss = |

I
Oﬁfchijl On-chip| On-IP
| I

Figure 55. Mutual-cap sensing HW architecture

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 43/61

NXP Semiconductors

TSI module HW introduction

9.6 Understanding the TSI Measurement

9.6.1 Self-capacitance mode in details

Inside the TSI IP module, the TSI scan is operated by non-overlapping clock ph1/ph2 and trans-conductance amplifier. There are
two phases controlled by the ph1 and ph2 respectively for the TSI scan module:

» Sample phase: The switch ph1 controls the sample phase, when ph1 turns on, the external touch electrode Cx is charged
by vdd3v.

» Charge phase: The switch ph2 controls the charge phase, when ph1 turns off then ph2 turns on, the charge on the
capacitor Cx flows to the internal integrated capacitor Ci, which generates the average current Icx.

Via the trans-conductance amplifier which consists of two current mirrors, the Icx are also be amplified according to the input and
charge current mirror setting. The final average current to charge the integrated Ci equals to Xch*Xin*Icx. As the integrated Ci is
charged by the average current, the voltage Vciramps on Ci, when the Vci becomes larger than the pre-setting Vp, the comparator
will stop this TSI scan round and the digital filter will record the sample result as TSICNT.

vdd3v . Amplifier H
Vex lex - e, MiRtleR e Meh*Xinlox
Y e S I./" I?q-.l ™ ey _{r }-f;l “\:I Aeh Al > I'T
pht ph2 DN/ S : sk
sample charge current mirror; input current mirror; charge :
' i
IN CHIP)
OUT CHIP

Towch Electrode

Te

Figure 56. Self-Capacitive Block

E sample | charge | HMFIEE charge

OFF |
Switching Clock: phl o . .

Switching Clock: ph2 | . |
[, , ,) N STEP.!.P.
E i i 1 2 STEF
: ! 1 STEP
Comparator: Vi — 2000 <" pom e e e e e vm

Single TSI Scan

Figure 57. Self-Capacitive Mode Timing

9.6.2 Mutual-capacitance mode in details

The mutual capacitive mode measures the capacitance between two electrodes connected to two TSI channels. One of the TSI
channels is used as a transmit (TX) channel and the other as a receive (RX) channel.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 44 /61

NXP Semiconductors

TSI module HW introduction

There are two phases controlled by the switching clock for the TSI mutual capacitive mode:

» Charge phase: The switch ph1 controls the charge phase, when ph1 turns on, the transmit channel outputs pulses which
is coupled through the mutual capacitance Cm. Receiver converts the received voltage pulse (Vpre+AV) to the current
Icharge through the resistor Rs.

» Discharge phase: The switch ph2 controls the discharge phase, when ph1 turns off then ph2 turns on, the transmit
channel changes the voltage from Vdd5v to OV. Receiver converts the received voltage change (Vpre-AV) to the current
Idischarge through Rs.

As the integrated Ci is charged/discharged by the mirrored/amplified current from the receiver, the voltage Vci ramps on Ci, when
Vci becomes larger than the pre-setting Vp, the comparator will stop this TSI scan round and the digital filter will record the sample
result as TSICNT.

D

11 current mirror: left i)
| current mirror: right,
i

Digital Sample
filter result

_____ S —— ; M_PMIRRORR L

—— " % —
lerarge M_PMIRRORL leng

Figure 58. Mutual Capacitive Block

ON OFF

Switching Clock: phl —

I charge Ildischarge! charge !discharge!

OFF ON

Switching Clock: ph2

Tx

Rx

Comparator: Vci

! 0 STEP : 1STEP :
Single TSI Scan |

Figure 59. Mutual Capacitive Mode Timing

NOTE

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 45/61

NXP Semiconductors

TSI module HW introduction

Due HW limitation on the early MKE15z256 silicon, if TSI is operated in the Mutual mode, then TSI channels 0 to 5 are reserved
for TSI functionality and cannot be used for other purposes like GPIO. This must be considered during designing the board. This
HW limitation has been fixed on the later KE16x devices.

9.7 TSI IP HW register Tuning — Self Cap mode

The HW register settings is available in SW structure: “hw_config” located in file: “nt_setup.c”.

The structure includes set of tunable parameters for both self-cap. and mutual-cap. modes.

In the self-cap. mode the basic mode is with the sensitivity boost disabled. With the sensitivity boost enabled, the tuning becomes
trickier, because the more parameters come into play.

9.7.1 Sensitivity in Self Cap with Boost Disabled

In this mode the tuning is easier, because of a few parameters, which are important for sensitivity and length of accumulation. See
the picture below for more details about the important parameters highlighted in green color.

NOTE

NSTEP is the result of TSI single scan, Decimation is the factor responsible for multiple scan result accumulation.

/* Self-cap and mutual-cap mode config */
const tsi_config_t hw_config =

.configSelfCap. commonConfig.mainClock = KTSI_MainClockSlection_0, /1 Set main clock
.configSelfCap.commonConfig. mode = KTS1_SensingModeSlection_Self, // Choose SelfCap sensing mode
configSelfCap.commonConfig dvolt = kTSI_DvoltOption_0, /I DVOLT (Vp-Vm)
.configSelfCap. commonConfig.cutoff = kTSI_SincCutoffDiv_0, /I Cutoff divider
.configSelfCap. commonConfig.order = KTSI_SincFilterOrder_2, /f SINC filter order
configSelfCap commonConfig.decimation = kTSI_SincDecimationValue_4, /I SINC decimation value
-.configSelfCap.enableSensitivity = false, /f SENS_BOOST= OFF
.configSelfCap xdn = kTSI_SensitivityXdnOption_3, if Sens S_XDN
.configSelfCap. cirim = kTSI_Sensitivity CirimOption_0 /i Sens S_CTRIM
-.configSelfCap. inputCurrent = KTSI_CurrentMultipleinputValue 0 /1 Sens & XIN=1/8
-.configSelfCap.chargeCurrent = KTSI_CurrentMultipleChargeValue_0, // 3ens S _XCH

I —

SDK File: “fsl_tsi_v5.h”
NSTEP Ci x'Vp —Vml typedef enum _tsi_current multiple_input
= {
FddSU ™ CS e S VI N s Y H ﬁ- KTSI_CurrentMultiplelnputvalue_0=10U, /1= § XIN=1/8*/

- KTSI_CurrentMultiplelnputvalue_1=1U, /1< S_XIN=1/4%
Hsi_current_multiple_input_t;

Figure 60. TSI register tuning in Self-Cap mode, Sensitivity Boost = OFF

9.7.2 Sensitivity in Self Cap with Boost Enabled

Enabling Sensitivity Boost feature can increase sensitivity by removing part of parasitic capacitance “virtually”. So touch can
work well under the thick overlay with sensitivity boost enabled. The TSI self-capacitive mode implements the sensitivity boost
by canceling the external intrinsic capacitance, and the value of the capacitance to be canceled ranges from 2.5pF to 20pF,
configurable in register TSI_MODE[S_CTRIM].

For example, given the intrinsic capacitance of the touch electrode is 20pF(it can be calculated by NSTEP formula), setting the
S_CTRIM value as 5.0pF can make the effective intrinsic capacitance become 15pF. As the intrinsic sensitivity of the touch key is
given by ACs/Cs, The less intrinsic capacitance would result in more sensitive touch response.With this sensitivity boost enabled,
sensitivity can be improved to ACs/(Cs-S_CTRIM*(S_XDN/S_XCH)).

The figure below shows the block diagram of TSI self-capacitive mode with sensitivity boost enabled. The sensitivity boost module
generates the average current Ictrim by the similar sample/charge on a configured internal capacitor Ctrim. The final average
current to charge the Ci will be the orignal Icx substract the Ictrim. As a result, the capacitance of the external touch electrode
seems substracted by the Ctrim. By the way, the actual Ctrim substracted equals to (Xdn/Xch)*Ctrim.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 46 /61

NXP Semiconductors

TSI module HW introduction

.......................................

vd3v I Amplifier !
Verim lexrim | Xin*lctrim Xen*Xin*Ictrim
v g heengee | i : : _wwvwvi :_\\ e T o —
gha gh2 E ! Senitivity
samp| charge ! current mirror: input current mirror: down H boast p—
Ctrim ! ! o
wdd3v | Amplilfier %T
. LB

sample charge

i
! current mirror: input current mirror: charge
i

! i o o
Wex lcx i Kin=lcx Xeh=Xin=lcx .| {lex = lctrim
SR s e 'd T e —“\ W: m“muﬁ Digital
phi ph2 | i Vm filter result
| i

IN CHIP

Figure 61. TSI block in Self-Cap mode, Sensitivity Boost = ON

/* Self-cap and mutual-cap mode config *f

const tsi_confia_t hw_config =
{

configSelfCap. commonConfig. mainClock = kTSI_MainClock Slection_0, /{ Set main clock
configSelfCap. commonConfig.mode = KTSI_SensingModeSlection_Self. // Choose SelfCap sensing mode

configSelfCap.commonConfig.dvolt = kTSI_DvoltOption_0, If DVOLT (Vp-Vm)
configSelfCap. commonConfig.cutoff = KTSI_SincCutoffDiv_0, i Cutoff divider
configSelfCap.commonConfig.order = KTSI_SincFilterOrder_2, M SINC filter order
configSelfCap.commonConfig.decimation = KTSl_SincDecimationValue_4, /I SINC decimation value
configSelfCap. enableSensitivity = true, ff SENS_BOOST=0ON
configSelfCap.xdn = KTSI_SensitivityXdnOption_3, 1S _XDN

configselfCap. ciim = KTS1_Sensitivity CtrimOption_0, II'S_CTRIM
configSelfCap.inputCurmrent = KTSI_CurrentMultipleinputValue_0, S _XIN

.confioSelfCap.chargeCurrent = KTSl_CurrentMultipleChargeValue 0, // 5 _XCH

Ci x(Vp —Vm)

NSTEP =
vdd3v X (Cs — S_CTRIM x (S_XDN +S§_XCH)) x S_XIN x S_XCH

S_CTRIM: configurable, the capacitance to be removed.
S_XDN/S_XCH: configurable, the capacitance multiplier.

The actual capacitance to be removed is : 5- CTRIM C 5_ Y¥DN = 5_ xXc H)

Figure 62. Sensitivity tuning in Self cap mode with Boost On

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 47 /61

NXP Semiconductors

TSI module HW introduction

9.7.3 TSI Scan time and result accumulation
The scan time determines the size and time of the conversion result.

TSI supports multiple scan per channel, which means TSI performs multiple scans in order to get better SNR and resolution. The
final scan result will be accumulated in TSI_DATA[TSICNT] counter as the NSTEP multiplied by number of scans, and the scan
time will multiple of single TSI scan time. Please note that with higher Decimation, the number of scans is increased, which results
to the physically longer TSI counter accumulation and increased resolution. Please note that if the Order is higher than 1, then the
scan number physically executed by TSI is smaller than the scan number calculated by HW, which may be beneficial to get the
higher resolution.

NSTER NSTER

2 2
1] 1 !
L LN

Single Scan Single Scan

Scan Number 0 Scan Number N

Multiple Scan Per Channel

TSI counter result accumulation

—

Decimation ®¢" ScanNumb Decimation X Order
CAaNNUMOCY sysruted —
Cutof f sxecured Cutoff

ScanNumber.zicyicres =

Figure 63. TSI scan time and accumulation

The parameters of Decimation, Order and Cutoff affects the final accumulated scan result and total scan time as well. Setting the
Order as 2 is recommended as it can save scan time to achieve the same digital scan result.

NSTEP x Decimation® %"

Cutoff

Tnstep X Decimation X Order
ScanTime = Tnstep X ScanNumber,qa = Cutoff
uto

ScanResult = NSTEP x ScanNumber, i yiated =

Figure 64. Scan Result vs. Scan Time formulas

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 48/61

NXP Semiconductors

TSI module HW introduction

I* Self-cap and mutual-cap mode config */
const tsi_confio_t hw_config =
{

/* Self capacitance measuremeant config */

configSelfCap.commonConfig.cutoff = KTSI_SincCutoffDiv_0, ff Cutoff divider =1
configSelfCap.commonConfig.order = kTSI_SincFilterOrder_2, ffORDER =2
configgeliCap. commonConfia decimation = kTSI_SincDecimationValue 8, /I DECIMATION = 8

ScanNumberCalc (NSTEP multiple) = (8*2) / 1 = 64

Figure 65. Decimation and Cutoff settings

9.8 Clock Generation and Spread Spectrum Clocking

TSI clock can be derived from the selectable, asynchronous internal clock reference “Main Clock”, which can be furtherly divided
to get the final TSI scan clock frequency.

Basic and Advanced (SSC) clock modes are available as the clock options.
SSC (Spread Spectrum Modulated Clock) may be beneficial for higher EMC immunity and reduce the EMI.
» Basic: When SSC_MODE=10b, then the switching clock is divided from main clock directly, as the basic clock generation.

» Advanced (SSC): When SSC_MODE=00b/01b, then the switching clock is generated from SSC module, as the advanced
clock generation.

= basic o /2
own Ciock MainClock/{PRESCALE+1) |N
20.72MHz 5
Switching Clock
16.65MHz o Divider _.I awitching ¢
13.87MHz a5
11.91MHz s s
advanced Touch KE"I"*
SSC -
SETCLK PRESCALE

Figure 66. TSI v5 clock generation block diagram

« |f SSC is disabled:

The TSI Switching Clock = TSI_MainClock / (SSC_PRESCALE NUM+1)| 2
« |f SSC is enabled:

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 49/61

NXP Semiconductors

TSI module HW introduction

The TSI Switching Clock = TSI_MainClock / (SSC_PRESCALE_NUM+1) (BASE_NOCHARGE_NUM+1)+
(PRBS_OUTSEL+1)/2+(CHARGE_NUM+ 1))

main clock [JUUULUUUUUUU]

S -

Switching Clock

t1 t2 t3
Figure 67. SSC clock principle
Variable Register Descriptions
t1 TSI_SSCO[BASE_NOCHARGE _NUM] SSCHighWidth
©2 TSI_SSCO[PRBS_OUTSEL] SSCHighRandomWidth
3 TSI_SSCO[CHARGE_NUM] SSCLowWidth

Figure 68. PRBS random clock generation

/* Self-cap and mutual-cap mode config */

Figure 69. PRBS register Clock settings in SSC mode

9.9 TSI IP HW register Tuning — Mutual Capacitance mode

Since the principle of TSI functionality is different in the Mutual mode, comparing to the Self-capacitance mode, the modified HW
block is used with the Transmitting and Receiving circuits and the set of parameters, which must be configured by user is different.

9.9.1 Sensitivity tuning for Mutual mode

The default register configuration is the experimentally proven and should fit for most of the applications. The parameters denoted
in “bold” are the most important for basic tuning:

.configMutual.commonConfig.mainClock = kTS| _MainClockSlection_0, // Set main clock

.configMutual.commonConfig.mode = kTS|_SensingModeSlection_Mutual, // sensing mode = Mutual OK

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 50/61

NXP Semiconductors

TSI module HW introduction

.configMutual.commonConfig.dvolt = kTSI_DvoltOption_0, // Default: 0 (best) internal comparator threshold voltage
.configMutual.commonConfig.cutoff = kTS|_SincCutoffDiv_0, // Divides the accumulated result, 0 recommended
.configMutual.commonConfig.order = kTS|_SincFilterOrder 2, // Length and multiply of the accumulated result
.configMutual.commonConfig.decimation = kTS[_SincDecimationValue_4, // Multjple of real TS/ scans (longer acc.)
.configMutual.commonConfig.chargeNum = kTS|_SscChargeNumValue_4, // SSC clock settings
.configMutual.commonConfig.noChargeNum = kTS|_SscNoChargeNumValue_2, //SSC clock settings
.configMutual.preCurrent = kTS| _MutualPreCurrent 4uA, // Default: 4uA, controlling the RX signal bias voltage.
.configMutual.preResistor = kTS|_MutualPreResistor_4k, // Default: 4k, controlling the RX bias voltage; URX > 0
.configMutual.senseResistor = kTS|_MutualSenseResistor_10k, // Rs resistor, used for transiation of the received U fo /
.configMutual.boostCurrent = kTS|_MutualSenseBoostCurrent_0uA, // Sens boost factor minimized (No benefits for SNR)
.configMutual. TXDriveMode = kTS| _MutualTXDriveModeOption_0, // Default O: (5V/-5V), 1: (0/5V) TX signal waveform gener
.configMutual. pmosLeftCurrent = kKTS[_MutualPmosCurrentMirrorLeft_32, // Change this for sensitivity tuning,.

.configMutual. pmosRightCurrent = kTS|_MutualPmosCurrentMirrorRight_1, // Default: 1

.configMutual.enableNmosMirror = true, // Default: frue, Must be enabled

.configMutual.nmosCurrent = kTS|_MutualNmosCurrentMirror_1, // Default: 1, the same as “MutualPmosCurrentMirrorRight”

Besides the clock settings, this is directly influencing the speed of the measurement (switching clock) and accumulated result.
There are not many parameters which can be tuned differently from the default values.

» kTSI _DvoltOption 0is recommended
o kTSI _SincCutoffDiv_0is recommended
* KTSI_SincFilterOrder 2is recommended, we can try to decrease to “1”, while increasing the decimation
 SincDecimationValue_4 can be increased to get higher number of scans, longer accumulation time and higher resolution.
There is no option to control the strength of the Transmitter signal.
We can only control the shape of the generated TX signal:
TX signal options:
* kTS| _MutualTXDriveModeOption_0= 0U, /*I< TX drive mode is -5v~+5v, used in mutual-cap mode */
* kTS| _MutualTXDriveModeOption 1= 1U, /*!< TX drive mode is Ov~+5v, used in mutual-cap mode */

The following two parameters are responsible for setting the proper RX signal bias (offset) voltage which should be: Vpre > 0 in
all cases for proper functionality, see the figure below.

» kTS| _MutualPreCurrent 4uA (default)
* kTS| _MutualPreResistor_4k (default)

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 51/61

NXP Semiconductors

TSI module HW introduction

1
1
OFF
Switching Clock: ph1 J o A

charge Vdhcharge ! chirge 'discharge!
1 1

Switching Clock: ph2

|
|
)
i i
| |
| 1 == Vposy
]
Tx J _— - Ll GND
1
]

. élq_l_ - N e
" ﬂ U L vy

I
|
i
t OFF aN
)
i
]
L

Comparator: Ve . e .
! OSTER 1 1 STER 1
' Singla'TSI Scan

Figure 70. RX offset settings

We can measure the RX signal level and properly tune Vpre. Or we can try to switch the Transmitter to be transmitting the 0-5V
levels instead -5V/5V

* kTS| _MutualTXDriveModeOption 0 - Default 0: (5V/-5V), we can try to change to 0-5V

* KTS[_MutualSenseResistor_10k (default value). This resistor “Rs” is used for translating the received VRX voltage to
current (Ichg / Idis) for current amplifier input.

vddSw Transmitter | amplifier
T ! prrsssssssasnassmsnnnsy | ¥
= : . Wrx Aeceiver : T, S ; IW!" Wel vp '.'.l‘"'--. -
ah 1 s = ™ Oy Ay [> * - | . | Digital | |Sample
charge ® o : oS Mo Phag vml, -~ | filter result
o i current mirror: left : & L L |
o i = ! current mirror: right: Phasg _
2 L g | Ly ; ot T
— discharge P ¥ <Rs¥
=" e L _M_PMIRRORR,
g = : age = B0 PRMBEDEL %
INCHIP "_l:? M_PMIRROAL
OuUT CHIP

. “cm‘ Mutual Electrode

te Tp

Figure 71. Mutual Sense resistor settings

Since the size of the Rs resistor converts the received voltage signal to Ichg, then the value of Rs is responsible for sensitivity as
well. So, it makes sense to play with this value, even that 10kOhm is recommended default value. Higher Rs value sensitivity.

* KTSI_MutualSenseBoostCurrent OuA is the default value, responsible for “Sensitivity Boost” in Mutual mode, which is
different from Self cap mode.

With default settings (OuA) the boost feature is very weak. Increasing the value increases the sensitivity, but also the sensitivity to
noise, so that SNR may not be improved. We can try to increase the boost current setting per small steps to get the best results.

» kTS| _MutualPmosCurrentMirrorLeft 32 this is very important parameter, controlling the gain of the internal current
amplifier. Higher number results to higher ampilification.

Because the amplification factor is given by:

kTSI_MutualPmosCurrentMirrorLeft / kTSI_MutualPmosCurrentMirrorRight.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 52 /61

NXP Semiconductors

Shielding principles

* KTSI_MutualPmosCurrentMirrorRight 17— this is recommended to have default value = 1
o kTS| _MutualNmosCurrenitMirror_1

Both settings above should stay equal, cut increasing the values may lead to the faster response.
* configMutual.enableNmosMirror = true

This must be “true” in all cases

9.9.2 Mutual sensitivity tuning remarks

» We should play only with the parameters in bold at the beginning.
.configMutual. pmosLeftCurrent = kTS| _MutualPmosCurrentMirrorLeft 32, // Change this for sensitivity tuning,.
.configMutual.commonConfig.decimation = kTS/|_SincDecimationValue_4, // Multiple of real TS/ scans (longer accumulation)
configMutual.commonConfig.order = kTSI_SincFilterOrder 2, /7 Length and multiply of the accumulated result, try “1” as well.

.configMutual.senseResistor = kTS| _MutualSenseResistor_10k, // Rs resistor, used for translation of the received voltage
to current

« Then we can try to increase the sensitivity boost current per small steps to achieve the best results:
.configMutual.boostCurrent = kTS|_MutualSenseBoostCurrent_OuA
* Then we can try to adapt the RX bias voltage by:
.configMutual.preCurrent = kTSI_MutualPreCurrent_4uA, // Default: 4uA, controlling the Rx signal bias voltage.
.configMutual. preResistor = kTS|_MutualPreResistor_4k, // Default: 4k, controlling the Rx bias voltage; Urx must be > 0
* Keep M_PMIRRORR and M_NMIRROR the same
kTS!_MutualPmosCurrentMirrorLeft = kTSI _MutualNmosCurrentMirror_1
kTSI_MutualPmosCurrentMirrorRight = kTSI_MutualPmosCurrentMirrorRight_ 1

» Keep in mind that the clock settings affect the result of the measurement (length of the accumulation) and the
accumulated value in the counter.

10 Shielding principles

Shielding methods are used to eliminate or the environmental influences like temperature drifts, humidity on PCB or water droplets
on the touch control panel.

* Issue: Critical for humid environments is that new touch interfaces are capable of detecting differences between water
drops and water layer capacitance or finger capacitance.

» Workaround: Keypad designs with a “shield” electrode(s) that detects or compensates the overall system noise or overall
keypad capacitance.

10.1 SW shield function

The NT library provides the SW shielding function. This function is intended to detect false touches caused by water drops and
to eliminate low-frequency noise modulated on the capacitance signal. When shielding function is enabled, the shield capacitive
value is subtracted from the related electrode capacitive raw signal.

The library shown good performance under water droplets and thin water films. It just needs the proper calibration to detect
touches accurately under these conditions.

Shield electrode itself can be used additionally as a GUARD sensor, when an “invalid touch” is detected on it.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 53/61

NXP Semiconductors

Shielding principles

Signal_E3 BaseLine_E3 BaseLine_SH1 Signal_SH1
4700

e Y

4650 \

|
4600 | -

E3

4550 |

43500

L

Figure 72. SW shielding compensation principle

Example figure shows an electrode instant signal and its shield. As seen from the shield signal (blue), at time = 10 seconds, a thin
water film is placed on the board. But the electrode signal (green) stays around its baseline (red). At time = 12.5 seconds, a finger
touch is made. The electrode delta seems like a regular touch signal due to the subtraction from the shield.

10.1.1 SW Shield Setup

The shield electrode is mostly the special electrode or PCB pattern, which is not touched under the normal conditions and it is used
to detect the unwanted events.

The shield electrode can be assigned to the regular electrode. All regular touch electrodes may share single shielding electrode
or different shield electrodes can be assigned for different touch sensing electrodes. In special cases, the regular electrodes may
be used as shields for the other electrodes, for instance to compensate the unwanted touch signal crosstalk’s between adjacent
buttons to avoid unwanted touch detection.

The SW shielding setup is given by the parameters in “nt_electrode” structure definition and may be assigned to every electrode.
If the “.shielding_electrode” is undefined or NULL, the shielding feature is unused and the rest of the parameters are ignored.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 54 /61

NXP Semiconductors

Shielding principles

ol o
e U e P e Bl

g g g

{
pin_input = EVB_BOARD SHIELD ELECTRODE,
kevdetector interface = &nt_kevdetector usafa_interface,
keydetector_params.usafa = &keydec usafa kevpad,

2

Figure 73. SW shield electrode assignment and config

» "shielding_electrode" is the electrode used for shielding, shielding electrode has its own configuration. If the common
signal change is detected simultaneously on the “SH” electrode and the “normal” electrode, then the SW compensation
may activate.

« "shield_threshold" is the minimal common signal level, where the shielding is activated

» "shield_gain" is the multiplication factor used for shielding electrode signal (to make the shield electrode signal
proportional to the “normal” touch electrode)

» "shield_sens" is the maximal shield electrode offset signal, used for common signal offset compensation. It means that all
signal values < "shield_sens" (800) will be compensated (sw subtracted) and if the value > "shield_sens" (800), it won’t be
compensated and it can be evaluated as a valid touch, under “worse” environmental conditions.

Shielding electrode is not expected to be touched under the normal conditions. We can setup a key detector and “touch” threshold
for it as well so it may act as a GUARD sensor as well (water split issue detection, etc). And then block the particular key or
complete keypad.

10.2 SW Shield Advantages and Disadvantages

The shielding strength must be configured and tuned for every electrode separately in SW setup. However, this can provide better
flexibility, in case of special needs or complex PCB layout.

The shielding electrodes occupies the standard TSI channels and they behave as they are scanned as regular touch electrodes.

10.3 HW Shielding feature (driven shield signal)

Besides the SW shielding available in the library, KE15z device provides another approach for shielding. This is different technique
than previously described one, because the parasitic capacitance compensation is done on physical level.

The KE15z device support one HW shielding signal output available at TSI ch12 (PTC5).
Can be enabled by single TSI module register bit in hw_config by:
.configSelfCap.enableShield = true,

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 55/61

NXP Semiconductors

New features supported in NXP Touch software library

Active Shield out—»>

Analog Buffer

TSI CHx

v

Figure 74. Active Shield output generation

The driven-shield signal is a buffered “copy” of the sensor-charging signal. (sample amplitude, frequency and phase)
The buffer provides enough current to drive the high parasitic capacitance of the hatch fill on the PCB acting as a Shield electrode.

The Effect of Liquid Droplets and Liquid Stream on Cap sensor section, because the shield electrode is driven with a voltage which
is the same as the sensor-switching signal, the capacitance added by a liquid droplet when on the touch surface will be nullified.

For the best water-tolerance performance, it is required that the driven shield signal has the same “shape” (voltage and phase)
as the sensor-switching signal.

The PCB with active shield feature must be carefully designed and the discrete external components must be properly selected
and tuned for good functionality.

Active Shield can reduce the intrinsic capacitance of the PCB, which increases the overall sensitivity of the standard touch
electrodes, which can be beneficial for instance for Proximity sensing.

11 New features supported in NXP Touch software library

The hardware and software enhancements that support the latest KE1x devices are as follows:
» KE17 supports two on-chip TSI peripherals and more channels.
» Flexible hardware register configuration for individual TSI channels can be selected.

» More Active Shield outputs can be selected and enabled.

11.1 Adding support for second TSI peripheral module

The KE17Z device supports a second on-chip TSI peripheral. It adds more available TSI channels and allows the TSI scans to
be performed in parallel, which reduces the overall response time.

Adding the software configuration for a second TSI peripheral is very easy. The same “tsi_hw_config” structure can be shared
by both TSI peripherals or a secondary “tsi_hw_config” structure can be created when different “general” register settings are
needed for the second TSI peripheral. In both cases, the “general” register settings may be overridden by a specific “tsi_hw_config”
assigned to an individual electrode or a group of electrodes. NXP Touch library selects and reloads the proper TSI register settings
before the electrode is scanned.

11.1.1 Second TSI module setup in the “nt_setup.c” file

Both TSI peripheral modules are identical in terms of functionality and register settings, but their TSI inputs are routed to different
pins, depending on the device package. See the device reference manual and datasheet for proper TSI channel assignments.
Some channels may be unavailable on the smaller package derivatives.

Every on-chip TSI module has its own configuration register group. Both modules can share common hardware register settings
(“tsi_hw_config”defined in the “nt_sefup.c”file), but they have different groups of electrodes defined. See Figure 75.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 56 /61

NXP Semiconductors

New features supported in NXP Touch software library

const struct nt electrode *const|ntitsiimoduleielectrodesil[]| = {&E1 1, &El1 3,
&E1 8, &E1_9,
const struct nt_electrode *const|nt tsi module electrodes 2[]| = {&El_2, NULL}:
const struct nt module nt tsi module 1 = {
.interface = &nt module tsi interface,

.wtrmark hi
.wtrmark 1lo
.config
.instance
.electrodes

|(void *)&tsi hw config,|

U ’

=|&nt_tsi_module_electrodes 1[0],|

|3
const struct nt module nt tsi module 2 = {
.interface = &nt module tsi interface,
.wtrmark hi = 65535,
.wtrmark lo = 0,
.config = ﬂv01d *)&tsl_hw config, |
.instance = 1,

.electrodes |&nt_tsi_module electrodes 2([0], |

} i

Figure 75. Adding support for a second peripheral to the configuration file

11.2 Flexible TSI hardware configuration assignment

It can be beneficial to use the different hardware configuration for different TSI modules to match the application needs. In that
case, the two different TSI hardware configuration structures must be created and assigned to different TSI peripherals like
“tsi_hw_config1”and “fsi_hw_config2’.

The NXP Touch library then reads the proper register configuration assigned to the module while performing the individual scans.
The TSI hardware configuration structures contain the common register values used globally for all TSI channels (electrodes)
assigned to the given TSI module.

This approach works only on devices physically supporting more TSI modules on a chip.

11.2.1 Assigning a specific hardware configuration to an electrode

When a better flexibility is required, a special hardware configuration valid for an individual electrode can be assigned. This
situation may occur when a specific electrode or an electrode group must be tuned separately, because a different physical
behavior or a different sensitivity is required.

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 57161

NXP Semiconductors

New features supported in NXP Touch software library

const struct nt electrode El1 1 = {
.shielding electrode = NULL,
.multiplier = 0,
.divider = 0,
.shield threshold = 5,
.shield gain = 30,
.shield attn =1,
.shield sens = 800,
.keydetector params.usafa = &nt_keydetector_ usafa El1 1,
.keydetector interface = &nt_ keydetector usafa interface,
.pin_input = FRDM TOUCH BOARD TSI 1,
-tsi_hw config = (wvoid *)&tsi hw config specific,

Figure 76. Specific hardware configuration assigned to a given electrode

Whenthe “#si_hw_config”parameterin the ‘nt_electrode"structure is left undefined, the software library uses the default hardware
configuration assigned globally for the TSI module.

The library just checks this parameter during the runtime and if it is different from “MULL”, then an alternative hardware register
configuration for a specific electrode is reloaded before a specific electrode is being scanned. This approach can be also used for
KE1x devices with a single TSI module on a chip. Different electrodes (channels) assigned to a single TSI module can be scanned
with different register settings.

11.3 Added Active Shield options

Starting from the KE1x devices, more Active Shield (AS) outputs are available for the self-capacitive mode. Every TSI peripheral
supports up to 3 buffered AS outputs, which adds more flexibility for PCB design and more options for AS usage. See Shielding
principles for details.

» The flexibility means that the AS can be enabled only for a single electrode or a group of electrodes and the rest of the
electrodes can be scanned without the AS enabled.

» Another option is to use more AS outputs for different group of electrodes.

The individual AS outputs are activated together with the regular TSI channel being scanned by the TSI module. The shield
activation/deactivation can be enabled/disabled by the S_W_SHIELD [2:0] individual bits in the TSI_MODE register.

See the below figures for more details about the AS settings in the NXP Touch configuration:

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 58 /61

NXP Semiconductors

Conclusion
const tsi config t tsi hw config = {
.configSelfCap.commonConfig.mainClock = kTSI MainClockSlection O,
.configSelfCap.commonConfig.ss5c mode = KTSI ssc prbs method,
.configSelfCap.commonConfig.mode = KTSI_ SensingModeSlection Self,
.configSelfCap.commonConfig.dvolt = kTSI DvoltOption O,
.configSelfCap.commonConfig.cutoff = KTSI_SincCutoffDiv 0,
.configSelfCap.commonConfig.order = kTSI SincFilterOrder 2,
.configSelfCap.commonConfig.decimation = kTSI SincDecimationValue 6,
.configSelfCap.commonConfig.chargeNum = kTSI _SscChargeNumValue 4,

.configSelfCap.commonConfig.prbsoutsel
.configSelfCap.commonConfig.noChargeNum
.configSelfCap.commonConfig.ssc prescaler = kTSI ssc div by 2,
.configSelfCap.enableSensitivity false,

| .configselfCap.enableshield = kTSI shieldalloff, |

kTSI SscPrbsQutsel 2,
kTSI SscNoChargeNumValue 2,

Figure 77. AS settings in NXP Touch software configuration

The ‘configSelfCap.enableShield” parameter contains the AS settings used for the current hardware configuration. Different
hardware configuration structures can be assigned to different groups of electrodes.

For KE17z7 and KE16z7, the following possible parameters and AS combinations are available:

typedef enum tsi shield
{

kTSI shieldalloOff QUu, /*!< No pin used */
kTSI_shieldOOn = 1U, /*!< Shield 0 pin used */
kTSI_shieldlOn 2U, /*!< shield 1 pin used */
kTSI_shieldland0On 3U, /*!< sShield 0,1 pins used */
kTSI shield20n 4u, /*!< Shield 2 pin used */
kTSI shield2and0On 50, /*!< Shield 2,0 pins used */
kTSI shield2andl0On 6U, /*!< Shield 2,1 pins used */
KTSI shieldAllOn 70, /*!< Shield 2,1,0 pins used */
} tsi shield t;

Figure 78. AS options

12 Conclusion

This document describes basic usage and development using the NXP Touch library demonstrated on FRDM-KE1x boards
and FreeMASTER-based NXP GUI Tool. The TSI hardware capacitive touch sensing principles and touch sensitivity tuning is
described in detail. The last section describes the shielding methods available in the NXP Touch library and TSI hardware.

13 References

1. NXP Touch library reference manual
https://www.nxp.com/docs/en/reference-manual/NT20RM.pdf

1. KE15 Touch Sensing Interface (Document: KE15ZTSIUG)
http://www.nxp.com/doc/KE15ZTSIUG

1. FRDM-TOUCH Quick Start Guide

NXP Touch Development Guide, Rev. 1, 07 December 2021
Application Note 59/61

https://www.nxp.com/docs/en/reference-manual/NT20RM.pdf
http://www.nxp.com/doc/KE15ZTSIUG

NXP Semiconductors

https://www.nxp.com/docs/en/user-guide/FRDMTOUCHQSG.pdf
1. Kinetis KE1xZ Sub-Family Reference Manual
https://www.nxp.com/webapp/Download?colCode=KE1XZP100M72SFORM
1. AN3863, Designing Touch Sensing Electrodes — Application Note
https://www.nxp.com/docs/en/application-note/AN3863.pdf

14 Revision history

Table 2. Revision history

Revision history

Revision number Date Substantive changes
1 07 December 2021 Added New features supported in
NXP Touch software library
0 01/2020 Initial release

NXP Touch Development Guide, Rev. 1, 07 December 2021

Application Note

60 /61

https://www.nxp.com/docs/en/user-guide/FRDMTOUCHQSG.pdf
https://www.nxp.com/webapp/Download?colCode=KE1XZP100M72SF0RM
https://www.nxp.com/docs/en/application-note/AN3863.pdf

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. AMBA,
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
uVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07 December 2021
Document identifier: AN12709

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 NXP Touch
	2 Touch sensing HW support
	3 NT SW Library
	4 FreeMASTER Run-Time Debugging Tool
	5 Supported compilers
	5.1 Download and Install MCUXpresso

	6 Software download
	6.1 Add touch support to SDK
	6.2 Downloading SDK and Documentation
	6.3 FreeMASTER Download and Installation

	7 Beginning with FRDM board and Touch Demo
	7.1 FRDM board setup
	7.2 Touch sensing demo example
	7.2.1 Importing the touch_sensing demo
	7.2.2 Running and debugging the touch sensing example
	7.2.3 Explore the touch_sensing demo

	7.3 Standalone FreeMASTER GUI
	7.3.1 FreeMASTER GUI Connection
	7.3.2 TOUCH SW LAYERS Tab
	7.3.3 MODULES Tab
	7.3.4 CONTROLS Tab
	7.3.5 ELECTRODES Tab
	7.3.6 FreeMASTER Oscilloscope View
	7.3.7 Single Electrode Scope View
	7.3.8 Slider Control Scope View

	7.4 Touch Sensing demo SW configuration
	7.4.1 FRDM-TOUCH
	7.4.2 TSI channel assignment
	7.4.2.1 Assigning the TSI channels in SW

	7.4.3 Application code in main() Function
	7.4.4 SW library synchronization and processing functions
	7.4.4.1 nt_trigger function
	7.4.4.2 nt_task function

	7.4.5 Event callback functions
	7.4.6 SW Application setup in “nt_setup.c” file

	7.5 NXP Touch library memory requirements
	7.5.1 Memory size optimization
	7.5.2 Removing the FreeMASTER

	8 Key detector uSAFA
	8.1 Key detector uSAFA signals
	8.2 Key detector uSAFA filter parameters
	8.3 DC tracker feature
	8.4 Key detector uSAFA tuning
	8.4.1 Noise level adaptation

	9 TSI module HW introduction
	9.1 TSI v5 main features
	9.2 TSI methods
	9.3 Self vs. Mutual capacitance
	9.4 Self-cap. HW architecture
	9.5 Mutual-cap. HW architecture
	9.6 Understanding the TSI Measurement
	9.6.1 Self-capacitance mode in details
	9.6.2 Mutual-capacitance mode in details

	9.7 TSI IP HW register Tuning – Self Cap mode
	9.7.1 Sensitivity in Self Cap with Boost Disabled
	9.7.2 Sensitivity in Self Cap with Boost Enabled
	9.7.3 TSI Scan time and result accumulation

	9.8 Clock Generation and Spread Spectrum Clocking
	9.9 TSI IP HW register Tuning – Mutual Capacitance mode
	9.9.1 Sensitivity tuning for Mutual mode
	9.9.2 Mutual sensitivity tuning remarks

	10 Shielding principles
	10.1 SW shield function
	10.1.1 SW Shield Setup

	10.2 SW Shield Advantages and Disadvantages
	10.3 HW Shielding feature (driven shield signal)

	11 New features supported in NXP Touch software library
	11.1 Adding support for second TSI peripheral module
	11.1.1 Second TSI module setup in the “nt_setup.c” file

	11.2 Flexible TSI hardware configuration assignment
	11.2.1 Assigning a specific hardware configuration to an electrode

	11.3 Added Active Shield options

	12 Conclusion
	13 References
	14 Revision history

