

AN11074
Using LPC122x ROM division routines

Rev. 1 — 1 May 2011 Application note

Document information

Info Content

Keywords LPC1227, LPC1226, LPC1225, LPC1224, LPC122x Cortex-M0 Division
ROM

Abstract LPC122x devices are equipped with constant-runtime integer division
routines stored in ROM. These routines operate independently of tool
chain and because they are stored in ROM, using them requires very little
flash memory. Because the runtime of these routines is not affected by
the numerator and divisor being used, they are well suited for high
reliability and real time applications.

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

 AN11074 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 May 2011 2 of 10

Contact information
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

1 20110501 Initial version.

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

1. Introduction

In order to fully appreciate the usefulness of the LPC122x ROM based constant runtime
integer division routines, a thorough background of how division is commonly
implemented on Cortex-M0 devices is required. The topics covered include the
differences between M0 and other devices (such as M3), the ARM EABI, and design
trade-offs for division algorithms. Once these topics are covered, developers will have all
requisite knowledge required to implement direct calls to the division routines stored in
ROM, and subsequently implement wrapper routines which ‘overload’ the EABI
functions.

2. Cortex-M0 vs Cortex-M3/M4

There are a host of differences between the Cortex-M0 architecture and the Cortex-
M3/M4 architecture, but a commonly overlooked difference is that the Cortex-M0 does
not feature hardware dividers of any sort. Thus, in order to perform division, software
routines must be used. The implementation of these routines is commonly implemented
through the inclusion of precompiled libraries contained in a developer’s tool-chain. The
same C language program when compiled on various tool chains can vary in regard to
these division routines, or they can even vary version to version of the same tool chain.

3. ARM Enhanced Application Binary Interface (EABI)

To enable interoperability between tool chains ARM has defined a standard calling
convention for integer division on Cortex-M0. This convention is detailed in the ARM
EABI documentation, available from ARM directly. The signatures for the four functions
defined in the conventions are detailed in Fig 1. Please note that the directive
__value_in_regs is implemented by several ARM tool-chains, but is not part of ANSI C
and may not be available in all development environments. In the event that it is not
supported, care must be taken to ensure that return results are contained in registers
rather than passed back via the stack.

typedef struct { int quot, int rem; } idiv_return;
typedef struct { unsigned quot, unsigned rem; } uidiv_return;

int __aeabi_idiv(int numerator, int denominator);
unsigned __aeabi_uidiv(unsigned numerator, unsigned denominator);
__value_in_regs idiv_return __aeabi_idivmod(int numerator,

int denominator);
__value_in_regs uidiv_return __aeabi_uidivmod(unsigned numerator,

unsigned denominator);

Fig 1. Prototypes for ARM EABI 32-bit integer division operations

As an example, take the following C function:

unsigned int simpleDiv (unsigned int a, unsigned int b)
{
 unsigned int x;
 x = a / b;
 return x;
}

Fig 2. C language routine using ‘/’ division operator

 AN11074 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 May 2011 3 of 10

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

 AN11074 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 May 2011 4 of 10

Inspecting the disassembly of this clearly shows how the EABI convention is used:

0x00000146: b570 p. PUSH {r4-r6,lr}
0x00000148: 4604 .F MOV r4,r0
0x0000014a: . , 460d F MOV r5 r1
0x0000014c: 4629)F MOV r1,r5
0x0000014e: 4620 F MOV r0,r4
0x00000150: f000f8c0 BL __aeabi_uidivmod ;
0x2d4
0x00000154: 4606 .F MOV r6,r0
0x00000156: , 4630 0F MOV r0 r6
0x00000158: bd70 p. POP {r4-r6,pc}

Fig 3. ARM Thumb2 assembly of C routine

4. Runtime of division routines

In real time and high reliability applications the consistency of an algorithm can be
critically important. In other words, it may be disadvantageous to use a routine which is
performance optimized if this routine behaves differently based on the value of the
arguments passed to it.

Note that the performance measurements contained in this section make use of CPU
cycles rather than real time units. Doing so removes the dependency of operating
frequency, making it easier to conceptually compare results.

When comparing the surfaces seen in Fig 4 and Fig 5, notices how Vendor A’s
performance is on average faster, but in cases where the numerator is greater than the
divisor, the runtime is drastically faster. The magnitude of this inconsistency may vary
from tool-chain to tool-chain, and may even vary between release versions of a given
tool-chain.

Not only does the runtime of the routines stored in the LPC122x family out perform both
of the plots below, it also has a much lower variability1. Because the routines are stored
in the physical device itself they are not affected by tool chain used, making the LPC122x
parts very flexible while maintaining their consistent runtime.

While it is outside the scope of this application note, it should be mentioned that the
particular implementation used by a given tool chain may also affect a program’s image
size, as typically a trade-off is made between performance (typically larger) and code
density (typically slower). As it will be shown later in this application note, by using
wrapper functions to implement EABI compliant routines using the ROM library, code
size can be reduced while typically improving performance and simultaneously
maintaining a high degree of runtime consistency.

1. Testing resulted in an average of 122 cycles per division operation with a coefficient of variation (CV)
for runtime of 0.33 % across the set of data tested.

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

Fig 4. A particular tool-chain’s division runtime

 AN11074 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 May 2011 5 of 10

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

Fig 5. An alternate tool-chain’s division runtime

5. Invoking ROM division routines directly

Invoking the division library in software is straight forward. There is a defined structure
which implements a table of function pointers to the various division operations. This is
seen in Fig 6.

typedef struct { int quot; int rem; } idiv_return;
typedef struct { unsigned quot; unsigned rem; } uidiv_return;

typedef struct{
 /* Signed integer division */
 int (*sidiv) (int numerator, int denominator);
 /* Unsigned integer division */
 unsigned (*uidiv) (unsigned numerator, unsigned
denominator);
 /* Signed integer division with remainder */
 idiv_return (*sidivmod) (int numerator, int denominator);
 /* Unsigned integer division with remainder */
 uidiv_return(*uidivmod) (unsigned numerator, unsigned
denominator);
} LPC_ROM_DIV_STRUCT;

Fig 6. Signatures of the division API functions

There is an API table at a fixed address in ROM. Fig 9 illustrates the organization of API
tables in ROM. The first element of this table points to the division API table. In the
example code shown in Fig 7 this is stored in the pointer pDivAPI. Once the table has

 AN11074 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 May 2011 6 of 10

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

 AN11074 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 May 2011 7 of 10

been located, all that remains to be done is to call the desired member function, in this
case uidiv.

int main(void)
{
 unsigned int result;
 //Entry to OM API Table - f x d location R i e
 const void**const pROMTable = (const void**) 0x1FFC0000;

 //Entry to Division API - location may vary across ROM versions
 LPC_ROM_DIV_STRUCT*const pDivAPI = (LPC_ROM_DIV_STRUCT*) pROMTable[0];

 result = pDivAPI->uidiv(500,321);

 return 0;
}
Fig 7. Calling uidiv

6. “Overloading” EABI division

There are several reasons why it is desirable to overload the ‘/’ and ‘%’ operators with
the ROM based division routines on LPC122x. Most obviously, directly invoking the ROM
calls can be cumbersome, and results in code that isn’t as readable as standard C.

A secondary side effect is that many standard C libraries use division and will invoke
EABI division, and at link time the libraries included with tool-chain will be imported into
the program image. This would result in fragmented division performance, as well as
duplicate functionality and increased code size. These issues may not affect all
applications, but it is likely that a majority of developers would prefer to use overloaded
routines to alleviate the issues stated above. Fortunately, accomplishing this is relatively
easy; in the case of the LPC122x many major tool chains already support this out of the
box.

Modern tool chains have smart linkers which will use local implementations of library
routines without any additional configuration required. This is the case in KEIL MDK and
IAR Embedded Workbench, and may apply to other embedded development platforms.

GCC does not automatically behave this way, but use of the linker flag --allow-multiple-
definition can be used to enable this feature. In the case of LPCXpresso (an Eclipse
distribution using GCC) LPC122x projects should automatically include support for
overloading division with the ROM routines.

As an example, by defining a function with an EABI compliant signature, the ROM call
can be wrapped in a function which will overload the desired functionality. This can be
seen in Fig 8.

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

int __aeabi_idiv(int numerator, int denominator)
{
 //Entry to OM API Table - f x d location R i e
 const void**const pROMTable = (const void**) LPC_122x_DIVROM_LOC;

 //Entry to Division API - location may vary across ROM versions
 LPC_ROM_DIV_STRUCT*const pDivAPI = (LPC_ROM_DIV_STRUCT*) pROMTable[0];

 return pDivAPI->sidiv(num,div);
}
Fig 8. An EABI compliant signed integer division wrapper function

7. Performance enhancement: caching ROM entries at startup

While all LPC122x devices feature division libraries stored in ROM, future revisions of the
LPC122x ROM may not store these routines at the same location. Because of this, the
use of the ROM library must look up function locations at runtime to ensure operation on
future device versions.

Fig 9. Conceptual diagram illustrating how division routines are stored in ROM

Notice how the code contained in Fig 8 will dereference the symbol
LPC_122x_DIVROM_LOC twice, each time the division routines are invoked. By storing
these locations in a table (or cache) in RAM during system startup, performance can be
further improved. It is necessary that this caching occur very early in execution in case
CMSIS compliant routines such as SystemInit(void) perform any division operations.
While it is outside the scope of this application note, example code is provided in the
included source archive which illustrates this caching strategy.

AN11074 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 May 2011 8 of 10

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

 AN11074 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 1 May 2011 9 of 10

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

8.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11074
 Using LPC122x ROM division routines

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2011. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 May 2011

Document identifier: AN11074

9. Contents

1. Introduction ...3
2. Cortex-M0 vs Cortex-M3/M43
3. ARM Enhanced Application Binary Interface

(EABI) ...3
4. Runtime of division routines4
5. Invoking ROM division routines directly6
6. “Overloading” EABI division..............................7
7. Performance enhancement: caching ROM

entries at startup ...8
8. Legal information ..9
8.1 Definitions ..9
8.2 Disclaimers...9
8.3 Trademarks ..9
9. Contents...10

	1. Introduction
	2. Cortex-M0 vs Cortex-M3/M4
	3. ARM Enhanced Application Binary Interface (EABI)
	4. Runtime of division routines
	5. Invoking ROM division routines directly
	6. “Overloading” EABI division
	7. Performance enhancement: caching ROM entries at startup
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

	9. Contents

