
Document Number: SMRTSPDMFWP
Rev 1
04/2009

White Paper

Smart Speed Technology
Driving the Mobile Future

Overview
Freescale’s Smart Speed technology architecture is an intelligent integrative approach that uses hardware
accelerators to offload the CPU and a Smart Speed switch to bring parallelism to the system. The 6x5 Smart Speed
crossbar switch nearly eliminates wait states. This results in fewer effective cycles per instruction (eCPI) required,
enabling Freescale Mobile eXtreme Convergence (MXC) cellular architecture and i.MX applications processors to drive
equivalent performance to processors with higher clock speeds, but without the power consumption penalty that goes
with higher operating frequencies. This paper discusses the theory and implementation of Smart Speed technology,
including how the eCPI measurement can be used to compare the true processing speeds of very different processor
architectures.

Contents
1 The Portable Power Problem 1

2 Device Capabilities: Power Curve Relativity 1

3 Processing Elements: Choosing an Architecture 3

3.1 General-purpose Processor Approach 3

3.2 Two-processor Approach 3

3.3 Specialized Execution Unit Approach 4

3.4 Comparing eCPI Measurements 4

3.5 eCPI Measurements in Freescale Processors 4

4 System Parallelism: Effective Communication
between Execution Units 7

5 Extending Battery Life in Your Portable Design 8

6 Smart Speed Technology: Tying it All Together 9

6.1 Smart Speed Technology in a Nutshell 10

7 References 11

8 Further Reading 11

Freescale Semiconductor, Inc. Smart Speed™ Technology: Driving the Mobile Future 1

1 The Portable Power Problem
Historically, processor technology has been driven by wired devices such as the personal computer. Cranking up
processor clock speeds was once adequate to support new applications and hardware, although these higher clock
rates greatly increased the need for power. As mobile devices began to surge in popularity and capability, many silicon
providers took the same “speeds and feeds” approach to mobile solutions, but at great expense: users could never
travel too far from an alternate energy source because battery life was too short. With the rise of mobile computing,
handheld devices have taken the lead in driving new processor technology. Semiconductor manufacturers’ attention
has now turned to delivering better performance with minimal power drain.

As wireless handheld devices once only thought about in science fiction become reality, the capabilities of
architectures—not the speed of their clocks—will be the key to increased functionality. Consider that the computing
capability that required a room full of machinery less than 30 years ago can easily fit in your pocket today. Cell phones
today can replace laptop computers, just as laptops are replacing desktop computers. But to move mobile capabilities
forward for the next 30 years, design philosophies must change, or else our pocket-sized mobile devices will become
wired once again to large packs of energy and cooling equipment.

To achieve this goal, Freescale Semiconductor decided to rethink processor architectures. From the transistor level to
memory accesses, software builds and power-saving modes, innovative thinking and engineering resulted in
processors with Smart Speed technology. These processors enable wireless mobile devices to deliver longer play
times with the level of performance to drive power-hungry applications, such as videoconferencing and 3-D gaming.

2 Device Capabilities: Power Curve Relativity
Because batteries have only improved their capacity about five percent every two years [1], mobile devices need to
become more power efficient in every product cycle. Factors that can greatly change the power curve include these
system changes:

• Efficient architecture

• Efficient design

• Intelligent power management solutions

• Energy management systems

Figures 1a, 1b and 1c illustrate these necessary changes. Figure 1a shows the energy gap between the battery and
capabilities based on using a traditional architecture and just increasing the clock speed, while still using the same
battery. Figure 1b shows the energy gap based on the system changes for efficient energy management listed above.
As these figures show, the challenge is to build a solution that is more in line with the available energy capabilities. The
two to five percent energy source increase from improving battery technology slightly decreases the burden. However,
Figure 1c shows that ever-faster over-the-air speeds are enabling new power-hungry features such as mobile TV and
broadcast multimedia. At some point, traditional power architectures may not be able to keep up with the features that
the mobile marketplace demands.

This paper will concentrate on some of the architectural and design aspects used to close the energy gap. The
expectation to continually add features without making large demands on the available energy source requires a
dramatic paradigm shift from “speeds and feeds” design to Smart Speed technology.

Smart Speed Technology: Driving the Mobile Future

2 Smart Speed™ Technology: Driving the Mobile Future Freescale Semiconductor

Figure 1a: Energy gap based on system, battery and features without Smart Speed technology

Time

E
n

er
g

y

Energy GapPower Requirements
Capabilities

Battery Capabilities

Figure 1b: Energy gap targets based on Smart Speed technology implementations

Time

E
n

er
g

y

Energy GapPower Requirements

Energy GapPower Requirements

Capabilities

Battery Capabilities

Figure 1c: Performance and energy requirements needed for mobile applications

Time

F
ea

tu
re

s

Performance/
Stamina Gap

Overall System Perfo
rm

ance

Battery Energy Density

1G
Voice

2G
QCIF Video
2D Graphics

2.5G
CIF Video

2D Graphics

3G
D1 Video

3D Graphics

4G
HD Video

3D Graphics

Phone

PDA

Games

Still Camera

MP3 Player

Video

DVB

Smart Speed Technology: Driving the Mobile Future

Freescale Semiconductor, Inc. Smart Speed™ Technology: Driving the Mobile Future 3

3 Processing Elements: Choosing an Architecture
Microprocessors generally have been measured solely on clock speeds—kilohertz, megahertz and gigahertz. When
processors were still fairly simple machines, this measure was close enough. Unfortunately, using clock speed as a
measurement has long been outdated, and a new measurement is necessary.

If the same architecture is used between two devices, measurements such as clock speed (MHz) and instruction count
(MIPS) are practical. But the diversity of portable products being designed will place many limits on those designs. As
designs change with new innovations, the measurement must reflect the benefits of the innovations relative to previous
offerings. The measurement of Cycles per Instruction (CPI) has been applied to measure dissimilar architectures. But
even this technique falls a bit short.

This paper expands upon the proposal to add a minor modification to the CPI metric—using Effective Cycles per
Instruction (eCPI) to measure the differences between architectures [9]. To show how eCPI works, we will use three
different popular architecture types to demonstrate how the comparisons can be done, with results of the differences
measured for some popular use cases.

3.1 General-purpose Processor Approach

Architecture A uses the philosophy that a general purpose processor is the heart of the system. To make the system
faster, the clock needs to be turned up. Without going into details, as the clock speed rises, the amount of processing
accomplished does not increase linearly; therefore, the eCPI does not tend to lower linearly. So, to make a processor
that halves the eCPI, for example, the clock speed may need to rise by a factor of 2.5. And, to make further speed
improvements, the internals may need to change dramatically to support the same instruction set architecture (ISA).

The big benefit, though, is the ease of backward compatibility. Since the same instructions are used, we only need to
change application software if there are problems introduced due to timing. In many cases, the architecture can handle
that. The result of running the software can produce the data for the metric, where one would need to measure the
number of clock cycles used and the number of instructions needed to create the application. We can obtain the
numbers using a simulator or development system, and this can lead us to the eCPI measurement of architecture A.

eCPIA =
)(#
)(

AnsInstructio
AsClockCycle

3.2 Two-processor Approach

Architecture B adds a second general purpose processor to the system. A general purpose processor for this purpose
can consist of either a RISC- or CISC-based processor or a DSP. Since there are many types of general purpose
execution units (GEU), they will require the instructions for the software to run, as well as the data, to be retrieved from
memory. Some are more efficient than others, and as we mix and match we can begin to see the benefits of using
eCPI.

In general, RISC machines will require more instructions to execute a job, and therefore are a good choice for the
baseline architecture for determining the number of instructions it takes to perform a task. However, this is more to make
the measurement graphs look nicer—the baseline can be obtained from any of the architectures. The key is to use a
consistent baseline. To determine the baseline, simply run the task on the chosen baseline GEU, and record the number
of clock cycles used as well as the number of instructions. In the case of architecture B, the task should be rewritten to
take advantage of the two GEUs. Though this will introduce additional overhead for inter-processor communication, this
should allow the task to be performed more quickly (although there are cases where this is not true). Since architecture B
is now introducing some level of parallelism into the system, by taking the measurement of the number of clock cycles
we can determine the relative eCPI of architecture B. The eCPI of architecture B can then be calculated to measure
against architecture A.

eCPIB =
)(#
)(

AnsInstructio
BsClockCycle

Smart Speed Technology: Driving the Mobile Future

4 Smart Speed™ Technology: Driving the Mobile Future Freescale Semiconductor

3.3 Specialized Execution Unit Approach

In the design of architecture C, it was decided to introduce specialized execution units (SEU) in order to run the task
more efficiently. Specialized execution units have the advantage of needing little to no instructions transferred from
memory, and are more efficient at using memory for performing a task. They also use less power than GEUs in
performing the task, thereby dramatically increasing the overall performance of the architecture. Architecture C also
offers the benefits of parallelism that architecture B was able to achieve, but in most cases with less inter-processor
communication. Again, as we did for architecture B, we rewrite the code to take advantage of the one or more SEUs
added to the system, run the task, and record the number of clock cycles needed to perform the task. As we have done
with the previous architectures, we can find the eCPI of architecture C.

eCPIC =
)(#
)(

AnsInstructio
CsClockCycle

3.4 Comparing eCPI Measurements

Once we have computed the eCPIs of the architectures, we make a simple comparison where the lower number is
best. In general, eCPIA would be closer to the 1.2 to 1.7 range. Most RISC processors for portable hardware fall into
that range. Although most processors will tout that an instruction is completed each clock cycle, the eCPI will take into
account the need to stall the pipeline based on requiring data from a previous instruction, and the need to wait for
instructions and data to be retrieved from memory. Architecture B should allow for an eCPI closer to 1 to be achieved,
though this depends on the ability to split the task among the multiple GEUs. Use caution here: if you use
multiprocessor computing systems built with GEUs of the past as a benchmark, the use of more than four processors
typically marked a point of diminishing returns for processing capabilities for generic operating systems, and much care
is needed to ensure that the memory subsystem will be able to feed the processors. Beyond that, the inter-processor
communication outweighed any gain of adding a GEU. This rule of thumb can be changed when the application and
architecture is specifically tuned, but may not show a benefit in a general computing environment. This can be seen as
many tasks reach diminishing returns at three processors. In a majority of cases, architecture C can achieve an eCPI of
well below 1. This can be accomplished because architecture C lowers the number of memory transactions and can
more efficiently handle the task being performed. Unlike the RISC or DSP architecture, it is tuned to the task and will
therefore perform more of the needed computation per clock cycle.

The eCPI measures the efficiency of the architecture for the given task, but in creating a portable design, you must take
the clock speed into account relative to the eCPI. If the eCPI of architecture A is 1.5, and the eCPI of architecture C is
0.25, it may be possible to use only 1/6th the MHz rating for architecture C to equal the speed of architecture A. One still
needs to take memory speed requirements into account, but in general this comparison shows how MHz and MIPS are
impractical methods of measuring different processors.

A proof point of this compares architecture A with architecture C; this shows the effectiveness of the approach most
quickly. From MPEG4 tests, it has been measured that the decoding of a stream on a RISC-based processing element
takes about 217 million cycles to run 138 million instructions [3]. It has been further shown that a larger clip in software
on the GEU takes about 2.644 seconds at 266 MHz, or 703.30 million cycles. The number of instructions would change
linearly, thus requiring 447.26 million instructions.

3.5 eCPI Measurements in Freescale Processors

The same case was run on the Freescale i.MX21 applications processor integrating a Hantro MPGE4 hardware
decoder, where the use case was completed in about 0.5 seconds or 133.00 million cycles [4]. The SEU was actually
only running at 133 MHz in the system, and not the 266 MHz execution speed of the GEU. However, since eCPI
measures the system or SoC cycles, the same measurement point in the system should be applied, and therefore the
0.5 seconds are multiplied by the 266 MHz used as the measuring point in the previous case.

Smart Speed Technology: Driving the Mobile Future

Freescale Semiconductor, Inc. Smart Speed™ Technology: Driving the Mobile Future 5

Table1: eCPI measurements based on MPEG4 decode use case

Architecture A Architecture C

Cycles required (millions) 703.30 133.00

Instructions executed (millions) 447.26 447.26

 03.0 75.1 IPCe

Equation 1: Effective MHz rating of Architecture C with SEU for MPEG4 decode

1.57 (eCPIA) / 0.30 (eCPI C) * 266 MHz = 1392 MHz (equivalence)

Using this use case, it can be shown that the i.MX21 SoC has the same capability of a 1.4 GHz GEU. Of course, the
i.MX21 processor has additional SEUs that incorporate capabilities such as video pre- and post-processing and video
encoding, that when used all together would rival GEUs of much higher MHz ratings. In addition, this use case does not
recognize that the CPU is essentially idle, so yet more processing can be done in parallel, without an impact to the
cycles required, though the number of instructions executed could increase greatly. It also shows that since the duty
cycle can be decreased to 20 percent, the system can be put into low power modes to save energy. Within Freescale’s
Mobile eXtreme Convergence (MXC) and i.MX families of processors, many SEUs are added to decrease the eCPI of
the system, for functions such as video pre- and post-processing, video processing, graphics and baseband functions.
The ability to provide parallelism in the system using a combination of GEU and SEU for performance and flexibility aids
these families of products to close the energy gap for the capabilities required in mobile consumer devices.

This analysis can be extended further as newer family members have superior capabilities than that of the i.MX21
processor. The i.MX31 applications processor, for instance, has the ability to encode VGA MPEG4 video, and the
MXC91321 and i.MX21 processors also have the ability to encode CIF MPEG4. Using the same method as before, we
develop Table 2, based on CIF encoding. It has been measured that for an encode case the CPU can perform about
311 million instructions in 421 million cycles. This is based on a QCIF video encode that would use the on-chip cache
more efficiently than would be the case for a larger CIF video used in the follow-on measurement, thus skewing the
eCPI of architecture A downward. Even with this change in the favor of Architecture A, we can see the benefit of the
SEU as shown in Table 2 and Equation 2.

Table 2: eCPI measurements based on MPEG4 encode use case

Architecture A Architecture C

Cycles Required (millions) 2797.26 313.88

Instructions Executed (millions) 2066.38 2066.38

 51.0 53.1 IPCe

Equation 2: Effective MHz rating of Architecture C with SEU for MPEG4 encode

1.35 (eCPIA) / 0.15 (eCPI C) * 266 MHz = 2394 MHz (equivalence)

As can be seen from this more complex use case, the benefit of an architecture like Architecture C is that its
performance is equivalent to a 2.4 GHz CPU. Going to higher video encoding capabilities would further increase the
difference in eCPI, thus demonstrating a much more efficient architecture for this use case. In addition, steps to
increase the video quality that are optional for MPEG4 have been added to the hardware in the i.MX31 such as
deblocking and deringing along with the needed color space conversion. These would further increase the difference in
eCPI, resulting in a much higher equivalence rating. Using all the SEUs within each processor of the MXC and i.MX
family would greatly enhance the overall equivalence ratings when used in parallel.

In addition, it can be seen that even more generic, programmable SEUs can achieve a similar benefit. For this, a test
based on a floating point intensive routine run on the ARM11™ simulator was created [5]. The test used the Color

Smart Speed Technology: Driving the Mobile Future

6 Smart Speed™ Technology: Driving the Mobile Future Freescale Semiconductor

Space Conversion equations as defined in [6] to generate the needed C floating point routines. The input and output
was fairly minimal to concentrate more on the floating point routines. This allows for the output to be essentially generic.
Once you have a percentage of the code that would use the routine, you can get the overall benefit of the addition of
the floating point unit by multiplying the percentage of the code receiving the benefit by the inverse of the percentage
increase, and add back the percentage of the code which did not receive the benefit. From the example of data
obtained from this test case, it can be seen that the additional floating point hardware gave an 825 percent performance
improvement over floating point software. If 50 percent of the code in a test case is floating point-intensive, the benefit
can be obtained by using Equation 3 and the data of Table 3.

Table 3: Summary of improvements over software floating-point [5]

Improvements over floating-point software Floating-point hardware
improvement percentage

Fixed-point software
improvement percentage

 % 738 % 528 selcyc noitacilppA

 * % 397 % 5251 selcyc noitaluclac tniop gnitaolF

Instructions issued for floating- * % 329 % 3222 snoitaluclac tniop

 % 88 % 38 sgnivas ygrene noitacilppA

 *% 88 % 19 sgnivas ygrene noitaluclac tniop gnitaolF

 % 61 % 61 sgnivas tnirptoof yromem edoC

 .nim 021~ .nim 51 emit tnempoleved edoc citemhtirA

* Results are not just isolated arithmetic, but also contain I/O requirements for use of the data structures, as opposed to the

calculations used for floating-point arithmetic.

Equation 3: Use case improvement percentage calculation

)()1(
PercentCodeImproved

PercentCodeImproveddtCyclesUseCasePercen +–=

So, for a system that is 50 percent floating point-intensive, Equation 3 would show:

)
%1525

%50
(%)501(+–=dtCyclesUseCasePercen

%53%)3(%)50(=+=dtCyclesUseCasePercen

For this use case, the number of effective cycles is held constant to compute a relative CPI of this use case, which
would be 0.53. From the tests, it was shown that the test code used 24.3 million cycles to perform 19.8 million
instructions. This gives the CPU-only architecture an eCPI of 1.23. The CPU with floating point was based on 2.9
million cycles for an eCPI of 0.15, which equates to the ImprovementPercentage of 1525 percent as shown in the table.
So the use case from a 50 percent floating point-intensive algorithm would only use the 53 percent cycles, using either
measurement method. This allows for the eCPI to be calculated by multiple means.

From the examples shown, we see that SEUs can be either hardwired state machines or programmable engines to
achieve a benefit. Neither of the cases shown really took advantage of parallelism, but it can be deduced from the final
test that if the floating point unit is used in parallel to the CPU, the 50 percent CPU usage would be the dominating
factor, and could drive the CasePercentCyclesUsed to be 50 percent.

Smart Speed Technology: Driving the Mobile Future

ImprovementPercentage

Freescale Semiconductor, Inc. Smart Speed™ Technology: Driving the Mobile Future 7

4 System Parallelism: Effective Communication between
Execution Units

In looking at the eCPI, parallelism in the system was briefly discussed. In the previously defined architectures, there are
various levels of system parallelism that can be taken into account. In the case of architecture A, the GEU will most
likely be a pipelined architecture. For example, if it is a RISC processor, it may likely have fetch, decode, execute,
memory and write stages. Each stage performs its portion of the task while all the other stages perform their portion.
The processor can effectively perform five parallel functions, one for each stage. Other GEUs may have more pipeline
stages, further increasing the parallel capabilities. Once the pipeline is filled, the processor should be able to complete
an instruction each clock cycle. Of course, if the pipeline needs to be flushed, as may happen for a branch instruction,
the penalty of having to refill the pipeline will occur. This same kind of parallelism can also happen within an SEU. But
of course, parallelism within either the GEU or SEU is just scratching the surface.

A greater benefit of parallelism is that once multiple execution units (EU)—which can be either GEUs or SEUs—are put
in a system, tasks can be completed much more quickly and efficiently. Multiple pipeline stages are effective for
increasing system clock speed, since less of the computation is performed within the shorter amount of time, but the
best that can be hoped for is still one instruction per clock cycle. Multiple EUs takes us to the next level where it is
possible to complete more than one instruction per clock cycle, and thus achieve an eCPI of less than one as shown in
the eCPI calculation above. But having the execution units in the system alone is not enough to ensure that all the EUs
are functioning to full potential.

In order to achieve the full potential of the various EUs, a system structure must be created to support such a system. A
bus structure that only allows a single transaction at a time can cause the other EUs to sit idle in wait states, defeating
the point of having multiple EUs. To gain the benefits of parallelism, the bus architecture must be built to support
parallelism. There are a variety of methods to accomplish this goal, one of which is to add a crossbar switch, which
creates point-to-point access between bus masters and slaves. The crossbar switch allows all of the items connected
on one side (master side) to talk to all of the items connected on the other side (slave side). This allows for multiple
transactions to occur simultaneously—up to a number that matches the side with fewer connections. So, if the bus
speed is set to 133 MHz, and the crossbar switch supports up to five simultaneous transactions, the crossbar can
achieve the effective throughput of a 665 MHz bus. This in turn allows the EUs to consume more data, thus realizing
and optimizing the benefits of multiple execution units.

Other bus topologies can also be implemented to achieve parallelism. An easy, but in many ways less efficient method
is to introduce multiple buses within the system. The architect should take great care to ensure items that need to
transfer data to each other most often share the same bus. But that tends to be difficult, so to make it more efficient, the
multiple buses can be configured into a mesh network. This allows for multiple paths to be created among various EUs.
By necessity, this topology also adds overhead to ensure the best possible data path is chosen based on distance and
load. The maximum speed of the mesh network can be calculated by adding the total number of networks that make up
the mesh. This method of calculation is accurate only if the transactions are connected on the same network. It may be
invalid if a perpendicular network is also used to enable data to reach its destination, since this is now using more than
one network of the mesh to transmit the data. For instance, from Figure 2 b, transactions across W-A, Z-B, Y-C, and X-
D will allow four simultaneous transactions, but once a connection such as A-B, C-D W-X and Y-Z is used, only two
simultaneous transactions are possible. Using perpendicular networks decreases the total possible throughput and
makes the routing more complex.

Smart Speed Technology: Driving the Mobile Future

8 Smart Speed™ Technology: Driving the Mobile Future Freescale Semiconductor

Figure 2: Networking topologies supporting parallelism

2a. Star topology 2b. Mesh topology

0

1

2

3

4

0

1

2

3

4

5

A

B

D

C

W

Z

X

Y

Along with the single bus, these are just building blocks that can be used within a system. The system may contain
multiple instances of these depending on need and the ability to isolate the data between the various execution units.
Key to greater parallelism is to make sure the EUs that exchange data most have a clear path with as few interruptions
as possible.

Of course, the true potential of the bus topology depends upon limiting how many EUs are requesting the services of
the same EUs or other resources. This is especially true for the resource that is the interface to the memory subsystem.
Clearly, in a system that is using multiple I/O devices, a bus topology that supports parallelism greatly improves the
total system throughput, having the greatest effect on lowering the overall eCPI.

5 Extending Battery Life in Your Portable Design
Unlike other systems, portable designs need to take into account a limited energy source. Battery life is critical, and if it
is not being enhanced by the choice of EUs in the architecture, then adding certain EUs can be counterproductive. One
of the things to look at is the overall affect on the following power equation:

fcvP 2=

As we see from the power equation, the easiest way to lower the overall power requirements without having to change
the process technology which would change the capacitance (c) and voltage (v), is to lower the frequency (f) of the
system. This can also result in less heat being generated by the device, allowing the portable design to forgo heat sinks
and fans. As we have seen, this can be done as we add EUs to the system and gain parallelism. As this is being done,
it is necessary to find out what benefits are gained by adding the EUs with respect to the amount of energy that can be
saved. The problem faced is how one can estimate the benefits with respect to energy even before the various EUs are
available to put into conventional power measuring tools. This can be considered at the silicon level of the processor, or
at the board level when designing a portable solution. To obtain a good relative measurement, the following equation is
proposed to find the percentage of energy savings an EU can provide.

%100*)))1(*
1

(1(Y
X

rgySavingsPercentEne +–=

In this equation, X is a cycle reduction multiplier, and Y is the additional logic adder. The best way to see how this
works is to give an example. If we take a GEU and want to add an SEU to the system, we can run test cases to see
how much performance improvement can be obtained. By running the case in the GEU, just as we did to find the eCPI
of architecture A before, we can get a baseline. We can then run the case as we did for architecture C with the SEU
and find the performance improvement. Again, we can use the data from Table 3 for this use case. When this was done
for a test that had heavy floating point content, it was found that the GEU alone required about eight times the number
of clock cycles to process the given task than what was required when the SEU was added, making X equal to 8.
Assuming that adding the SEU to the system will add a logic block about a third the size of the GEU to perform the task,
Y will equal 0.33. The numbers can then be plugged into the equation.

Freescale Semiconductor, Inc. Smart Speed™ Technology: Driving the Mobile Future 9

%38.83%100*)))33.01(*
8
1

(1(=+–=rgySavingsPercentEne

So, by adding the SEU to the system and performing tasks that used the SEU, the overall energy saving estimate is
about 83 percent, even though the overall size of the silicon was increased. After building the system, it was found that
the computational savings of the SEU was closer to 11 times using the GEU, resulting in an even greater energy
savings. But with the SEUs not being used all the time, and the total amount of silicon being added, care must be taken
so that the benefits of multiple EUs in parallel are achieved without wasting energy. To do this, multiple power saving
modes can be implemented in the system to ensure peak performance is realized, with minimal energy consumption.

Since we have a limited energy source to consume in a portable design, we can use different power saving techniques to
extend the useful time of the portable design. Part of this is to use fast transistors in the critical speed path of the design,
but use low-power transistors wherever possible to achieve power savings. An active well-biasing technique can be
incorporated so that the transistors can achieve the best power for the performance needed. When the transistor is
needed for speed, it will usually incur a larger energy leakage; otherwise, it can be tuned to save leakage energy. Active
well-biasing is the technique that allows this to happen automatically, resulting in an efficient use of energy. Other
techniques include creating separate power domains within the design, so that the areas that are not being used at the
current time may be shut off. For example, when an SEU is added to the system, it may not be used all the time. When
not in use, the power to that portion may be shut down in order to achieve the desired energy savings.

Another option is to use less power to a subsystem. For example, since the GEU is not needed as much because of the
abilities of the SEUs that have been added to the system, the voltage and frequency of the GEU may be lowered, thus
requiring much less power. Of course, since the SEUs allow the system to complete the job more quickly and efficiently,
the processor may not be needed all the time, so the entire processor may be powered down.

These techniques have been implemented in various MXC and i.MX processors from Freescale. In [2,7], more data can
be found on the accompanying power management solutions that make up the full solution for energy-efficient solutions
for mobile devices. This includes the hardware to provide the power and switch between the voltages needed for the
various power states, including powering down the various domains and switching the frequency as needed. In
addition, Freescale’s eXtreme Energy Conservation [8] software enhances the overall efficiency of the system by
adding configuration and control of the energy management.

6 Smart Speed Technology: Tying it All Together
Now that the groundwork has been laid, we see what Smart Speed technology means. Instead of the old way of
thinking, of just building a processor with a faster clock to get speed, the speed is now determined by the set of tasks to
be performed. From the set of tasks, it can be determined which EUs are needed to make the system work more
efficiently. One principle of Smart Speed technology is to have a system that works smarter, not harder. By using
efficient (and possibly) multiple EUs in the system, we can achieve this principle. But even efficient EUs aren’t enough if
they are in a wait state.

The second principle of Smart Speed technology is to have the various EUs working in parallel. As we saw before,
pipelining is one method of parallelism. When using multiple EUs to perform a task, another level of parallelism is
invoked to make sure the various portions of the task are broken down. This is to ensure that the EUs can be used in a
parallel fashion, instead of them doing a task and shutting down while the next element is performing the next step of
the task. Otherwise, we are defeating the purpose of having the multiple EUs. Another key aspect is being able to feed
the multiple EUs in the system with an efficient bus structure. The common shared bus is not efficient, because multiple
EUs are trying to send the data between themselves. As we have seen, other bus structures such as the crossbar or
mesh allow for true system parallelism to happen.

The third principle of Smart Speed technology introduced here is efficient energy use. As we have seen, we can easily
show the performance gain in the system by measuring the eCPI of the solution, but in addition, we can estimate the
power savings that can be gained by adding the EUs. We can now make tradeoffs between power and performance at
early stages of system design to maximize the resources that the portable design can use. Once resources are
maximized we can apply other power saving techniques such as power gating, dynamic voltage and frequency scaling,

Smart Speed Technology: Driving the Mobile Future

10 Smart Speed™ Technology: Driving the Mobile Future Freescale Semiconductor

and active well-biasing to ensure efficient utilization of the limited energy source. This results in “performance with
stamina”—higher performance with longer usage time.

6.1 Smart Speed Technology in a Nutshell

The paradigm has forever shifted from running the clock faster to achieve performance. “Performance with stamina” is
now the mantra. Smart Speed technology is driving the industry toward processors that optimize mobile device
performance and maximize battery life.

Smart Speed can be summarized in these three principles:

• Work smarter, not harder.

• Use parallelism instead of brute force.

• Use the limited energy source efficiently.

By using these simple principles, Smart Speed technology can enable portable devices to run longer, retain smaller
form factors and support more innovative applications without substantial increases in battery power. A shift in thought
away from raw power and towards intelligent use of resources is critical to support the current and coming generations
of small, smart wireless devices.

Smart Speed Technology: Driving the Mobile Future

Freescale Semiconductor, Inc. Smart Speed™ Technology: Driving the Mobile Future 11

7 References
[1] C. Chakrabarti, “Low Power System Design: A High-Level Perspective”, Department of Electrical Engineering,
Arizona State University, 2006.

[2] C. Chun, A. Barth, “eXtreme Energy Conservation for Mobile Communications: The Key to Power Management,
AM105”, America’s Freescale Technology Forum, 2006.

[3] C. Chu, P. Kritzinger, “MPEG4 Decoder: ARM9 Benchmark Results and Analysis”, October 2001.

[4] “The Freescale Semiconductor i.MX21 Processor”, Synchromesh Computing, October 2004.

[5] M. Olivarez, “Benefits of Adding a Floating Point Co-Processor to the ARM11™ Platform Complex”, November
2002.

[6] V. Bhaskaran and K. Konstantinides, “Image and Video Compression Standards: Algorithms and Architectures,
Second Edition”, Kluwer Academic Publishers, 1997.

[7] M. Olivarez, “Improved Scalable Power-Management Solutions”, Spring Processor Forum, May 2006.

[8] “eXtreme Energy conservation: Advanced Power-Saving Software for Wireless Devices”, Freescale Semiconductor,
Inc., February 2006.

[9] M. Olivarez, B. Beasley, “Use Effective Cycles/Instruction as a True CPU Benchmark”, Portable Design, May 2005.

8 Further Reading
The authors suggest the following books for further reading.

System Design: A Practical Guide with SpecC, by Gerstlauer, Dömer, Peng, and Gajski, available from Kluwer
Academic Publishers.

SpecC: Specification Language and Methodology, by Gajski, Zhu, Dömer, Gerstlauer, and Zhao, available from Kluwer
Academic Publishers.

Computer Organization and Design: The Hardware/Software Interface, by Patterson and Hennessy, available from
Morgan Kaufmann Publishers, Inc.

Smart Speed Technology: Driving the Mobile Future

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009.

Document Number: SMRTSPDMFWP
REV 1

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers
to use Freescale Semiconductor products. There are no express or implied copyright
license granted hereunder to design or fabricate any integrated circuits or integrated circuits
based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor
the rights of others. Freescale Semiconductor products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or
other applications intended to support or sustain life, or for any other application in which
the failure of the Freescale Semiconductor product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Freescale Semiconductor
products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that
Freescale Semiconductor was negligent regarding the design or manufacture of the part.

