Freescale Semiconductor, Inc.

MCF5272 USB SW Developer Manual.
uClinux Device Driver for CBIl &
Isochronous Transfers.

M5272/USB/UCLD/CBII
Rev. 0.3 05/2002

:{‘Digitalﬂﬂﬂ e R

Trom Meirenla

mN—1 i
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

CONTENTS

Paragraph Title

R [21 4 00 Yo 18 o3 A 10] o FUU TR

1.1, Driver CapabilitiES.......ccceiieiieiiere e
2 L - 1= o i 1] =SSP
1.3, QUICK Start GUITE.eeeieeeciiectee ettt e s

2. Driver INStallatioN. ..o e

2.1. Compiling the Driver with uClinux Kernel.ccccoeevvieevneceneereens
2.2. Compiling the Driver asaModule............ccooeriereriiniinieeee e

3. DIVEI INTEITACE. .. e

3.1, TOCTL COMMANGS.....cceiiueerierieriierieeieseesteeneesseesseesseseesseeseesseesseessesneens
3.2. Read/Write OPEraliONS.......cccvccueieeeiieeiesieseesieseeseesseseeseeseeeeessaesseeneens
3.3, Asynchronous NOLITICAHON.cccoeeriirieiieie e
3.4. Exampleof using read()/write()/ioctl() callsby Client.c..cceeuenen.

4. Driver INitialiZation. ..o

4.1. Initialization of Descriptor Pointers and Variables.........ccccceecvvveiieennnne
4.2. Initialization of ENAPOINES........coooiiiiririineeseeie e
4.3. Initiaization of Configuration RAM.ccccoveiiiieieeieeeere e
4.4, Initialization of FIFO MOAUIE.........cooeiiiiieee e
45, Initialization Of INtEITUPLS. ...ccveeeieieerecie e

5. Control, Bulk, Interrupt Data Transfer..........cccooeeviiiiiniineinnnn.

5.1. Device-to-HOost Data TranSfer.ccovveeieeieiie e
5.1.1 Initiating a Data Transfer.ccoveeieeiireeee e
5.1.2. Continuation of aData Transfer........covevveveevee e
5.1.3. Completion of Data IN Transfer.cooevevereniineeseee e

5.2, HOSt-to-Device Data TranSferccceeicieeieeee e
5.2.1 Initiating a Data Transfer.ccoveeieeiiieeeeee e
5.2.2. Continuation of aData Transfer........covvvveveecee e
5.2.3. Completion of aData OUT Transfer.ccoccoveeienieenienienienenens

6. Isochronous Data TranSfer.....co.oui e,

N—1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Page

.............. 1-2
........... 2-1

.............. 2-1
.............. 2-2

.............. 3-4
.............. 3-5

........... 4-1

.............. 4-2
.............. 4-2
.............. 4-4

........... -1

.............. 5-1
.............. o-4

............ 5-10
............ 5-13
............ 5-15
............ 5-18
............ 5-20

Freescale Semiconductor, Inc.

6.1. Requests queue and buffer headers...........coevvree e 6-1
6.2. Device-to-HOSt Data Transfer.coceeiiriniereee e e 6-2
6.3. Monitoring the Host Software During IN Transfers.cccovvveveevencesecsiesene, 6-4
6.4. HOSt-tO-Device Data TranSfer.c.cieeierierieseeee et 6-9
6.5. Monitoring the Host Software During OUT Transfers.ccvevvveeveeneseeseeenne. 6-10
6.6. Monitoring the Device-side Application During OUT Transfers...........ccoueee.. 6-11
7. Vendor Request Handling.coouiiiiiiii e 7-1
7.1. Accepting arequest from the HOSE.cccoieeiiniiieeeee e 7-1
7.2. DataOUT request handling.ccoceeveeeineeseee e 7-2
7.3. DatalN request handling.cccooeriiiinineee e 7-3
7.4. Nodatastage request handling.cccooeeeerieerierie s 7-5
8. Miscellaneous OpPeratioNS. ciu i 8-1
8.1. Port Reset HandliNg.cccveouiiieiicie ettt 8-1
8.2. Change of Configuration Handling.cccocereriinieninie e 8-2
8.3. Example of events handling in Client application.cccccevieeveneeresinseeseenens 8-2
9. USB Device Driver Function Specification.cccovoviiiniiiiiiniineinnn. 9-1
9.1. uSh _DUS State CNO_ SEIVICE.ccieeieeieesieeiestee e eee e steeae e s e ae s e saeeaesreenneenaens o-1
(I U o o (=Y oi Fo S = AV ol USRS 9-2
LS G T 015 o = 0 [o o 1 (00 = PSR 9-3
LS S U1 o I = 0 [o 1 o | A USRS 9-4
9.5. usb_ep is busy, USB_EP BUSY ioctl command.c.cccceevvevvnierneinnieneenns 9-5
9.6. USB_EP _STALL ioCtl COMMANG.ccooiiiiiiiriiniesieeie e 9-6
9.7. usb_ep wait, USB_EP_WAIT ioctl command...........cccccerverimrirneereninseesennens 9-7
9.8. usb_fetch_command, USB_GET_COMMAND ioctl command.............ccccceeneee 9-8
9.9, USD FIfO NI oo s 9-9
9.10. USB_GET_CURRENT_CONFIG ioctl command...........cccocervvreeneriennennen. 9-10
9.11. USB_GET_FRAME_NUMBER ioctl command.c.cceeerveriennnenenennnn 9-11
9.12. 0 oI 0 = 0[S o3RS 9-12
9.13. 01 oI 0 (= A (=0 (1= PSS 9-13
9.14. usb_init, USB_INIT ioctl command.ccocoveeiiniininienereeesee e 9-14
9.15. U1 o T = Y/ (= OSSPSR 9-15
9.16. USh_iSOCNIONOUS _tranSfer _SEIVICE.c.eeoereerieeieniesiee et 9-16
9.17. 01 o= g 11 OSSPSR 9-17
9.18. USD_Make POWEN _Of tWO. ..ot 9-18
9.19. USD OUL SEIVICE.....uvietie e ctee ettt ettt sre e aeesbe e sae e s re e sae e snreenneeenns 9-19
9.20. 015 oI Qi o= - OSSO 9-20
9.21. USB SEND_ZLPioctl command.ccccevveeeiieeieeiie e 9-21
9.22. USB_SET_FINAL_FRAME ioctl command.ccceveneeneninneeniesieseenen 9-22
9.23. USB_SET_START_FRAME ioctl command.ccocerveririiniennniiesenenn 9-23
9.24. U oIS o g = oI 1 = Y/ SRR 9-24
9.25. U1 oI o o = = P RRORRP 9-25
~—1 i

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.26. U1 oY= 010 | (=0 [0 (0] = S 9-26
9.27. USD_ VENAIEO SEIVICE.....itieieeiee ettt sttt st ae e s 9-27
9.28. INterface FUNCLIONS........cveeiee e 9-28
10. Appendix 1: File Transfer Application..........ccooooviiiiiiiiiiiiniineeen. 10-1
10.1. 100 [¥Tex oo RSOSSN 10-1
10.2.1. IMPOILANE NOLES........eoiieeiieeiee ettt s e e sae e e e e sneesnneeas 10-1
10.1.2. Capabilitiesof File Transfer Application..........ccccveveveeiviieseeseeeeceenn 10-1
10.1.3. REAEU FIES......ccueeeeece ettt st 10-1
10.2. UFTP ProtoCol DESCIPLION.ccvveieceeerieeieeeesieeeesee s eee e ste e e sse e sseenes 10-2
1O0.2.1. USB USBOE. .. ittt s be e se e e e ne s s neenneesnneeas 10-2
10.2.2. SEAUS VAIUES.c.eeeceee ettt ettt sae e s eeebe e s neesneesnneens 10-2
10.2.3. UFTP Command DESCIPLIONS.cccuerueerierieriiesieeiesieesiee e see e seeseesseeeas 10-3
10.2.3.1. UFTP_READ COMMEANG: O1N......oorvrrrirreiresisscsssssssesssssssssssssssssssssssssssssssssssssnnses 10-3
10.2.3.2. UFTP_WRITE command: 02N,cccvuvuvurreriririrerirerisisesesesesesesesesesesesssssessssssssssssssssssssnes 10-3
10.2.3.3. UFTP_GET_FILE_INFO cOmMMand: 03N..........coocvvrmrrermesrmsssesssssssssessssssssesssssssssesees 10-4
10.2.3.4. UFTP_GET_DIR command: O4N........ccovrrrrririrrrississssesesesesesesesssssessssssssssssssssssnes 10-4
10.2.3.5. UFTP_SET_TRANSFER_LENGTH command: O5h........ccc..cooveurmreremsreensrressssenessennns 10-5
10.2.3.6. UFTP_DELETE COMMANG: OBN........oorvvreriresisscsisssissessssssssesssssssssesssssssssssssssssssesees 10-6
10.3. Implementation of File Transfer Application.cccoceverieninnenneseseene, 10-7
10.3.1. INiti@liZiNG the DIIVEN.....ccci et 10-7
10.3.2. Program EXECULION.cooeriereerieeiesieesieeie e st e ae et e see e sseensesseessesneas 10-8
10.3.2.1. UFTP_READ command EXECULION.ceevrereriererereriereesesessesesesessesenssesssssssessssesssesensens 10-9
10.3.2.2. UFTP_WRITE cOmMmMand EXECULION.covuverirerereririresisesisesesesesesesesesssssssssssssssssssssenes 10-11
10.3.2.3. UFTP_GET_FILE_INFO commMand EXECULION..............vvvemrvverrrssssssessssssssesssssssssanes 10-13
10.3.2.4. UFTP_GET_DIR command EXECULION.cocvururerererereririsesesesesesesesesesesesesesssssessssssnenes 10-13
10.3.2.5. UFTP_SET TRANSFER _LENGTH command eXeCution.c.cccvveveverererererererenenns 10-14
10.3.2.6. UFTP _DELETE command EXECULION.ccccvvererireririeireresiesenesesiesenssessesssesesessssenesensens 10-14
10.3.2.7. Request for string descriptor handling.coccvvvvvrrnnrrrsss s 10-14
10.4. USB File Transfer Application Function Specification.cccccoveeeveennnns 10-17
O I = oo o <.V | PSRRI 10-19
10.4.2. do_command delete.c.coeeiiiieiieiiecceceee s 10-20
10.4.3. do_command get dif.......ccccceeiiieiii i 10-21
10.4.4. do_command _get file INfO.cccvveeiiiie e 10-22
10.4.5. do_command read.ccooeieiiiiiiie i 10-23
10.4.6. do_command _set_transfer_length.cccccevveieviein s 10-24
10.4.7. dO_COMMEANG WIITE.......eiiieeciee et et neas 10-25
10.4.8. fEtCh COMMEANG.ooiiiiiiece e e 10-26
10.4.9. get_StHNG JESCIIPLON......ccviecieecieeciee ettt 10-27
10.4.10. 1= o [=S 10-28
0 I R Y | 1= PSR 10-29
11. Appendix 2: Audio Application.ccooeiiiiiiii 11-1
11.1. 100 (8 o1 o o O SPS 11-1
11.1. 1. IMPOITANE NOLES.......eiieieeiiieestie ettt s 11-1
11.1.2. Capabilities of the Audio ApPlICALION.cceeeveriiiiieiiee e 11-1
TG T (= = 1= o T S 11-1
~—1 v

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.2. Implementation of USB Audio AppliCationccccveeereevecceeseese e 11-2
1121, USB USAHE. c.ooiiiiiieierie ettt sttt sne st sreene s 11-2
11.2.2. INIitIAliZING the DIIVES.....ccoieeee et 11-2
11.2.3. Program EXeCUtiON FIOW.ccooiriiiiiniee s 11-3
11.2.4. USB_AUDIO _START command €XECULION.cccueeveerireeireesreeireesneens 11-4
11.25. USB_AUDIO_STOP command EXECULION.cccuereerueereereesieesieseesseenens 11-6
11.2.6. USB_AUDIO SET VOLUME command eXecution.cccceerreernens 11-6
11.2.7. START_TEST_OUT_TRANSFER command execution.c.ccccueene.. 11-7
11.2.8. START _TEST IN_TRANSFER command eXecution.c.ccceeeerunenns 11-7
11.2.9. START_TEST_INOUT_TRANSFER command execution. 11-8
11.2.10. Request for string descriptor handling.ccccevvvevevceveece e 11-9

11.2.10.1. Memory layout for String deSCriPLOrS.......cvvvvevrrrrrsrrssssses e 11-9
11.2.10.2. Sending the string descriptor to the HOStcccvvceevevnccre e 11-11

11.3. USB Audio Application Function SpecifiCation............ccocveeenerieneenennns 11-12
11.3. 1. GCCEPL BVENL.....cii ittt s sn e s nn e e sreeena 11-13
RS T 0§ = T o PP 11-14
11.3.3. Clear DUFEr ..o 11-15
RS o = S] o [0 (==="ol] o o) (PSR 11-16
11.35. init_audio hEAOErS.........cocve e s 11-17
11.3.6. init_buffer NEaders.........oo i 11-18
1137, MAIN_TBSK ottt b 11-19
11.3.8. print_buffer CONENLS.........cocoiiriinieeee e 11-20
11.3.9. print_transfer_SaUS.......ccoeveereeeseee e 11-21
11.3.10. [O10Te =SS o F= - VUSRS 11-22
11.3.11. test Casel handlerccceiiieiie e 11-23
11.3.12. test Case2 Nandler ..o e 11-24
11.3.13. test €ase3 handlercccceeieeiee et 11-25

N1 v

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ILLUSTRATIONS

Figure Title Page
Fig 5-1. Stages of datatransfer by the DIIVEr..........ccccoveviece s 5-3
Fig 5-2. Algorithm of usb_tx_data() fUNCLioN.ccooeiiriiie e 5-5
Fig 5-3. Algorithm of usb _in_service() funCtion.cccccvevevceeii e 5-9
Fig 5-4. The stages of receiving data by Driver ... 5-14
Fig 5-5. Algorithm of usb_rx_data() fUNCLioN.cceoveeeiieie e 5-16
Fig 5-6. Algorithm of usb_out_service() fuNCLioN.ccoveeiiiininieeee e 5-19
Fig 10-1. Memory layou for String deSCriptorsS.........ceieerveereereerieseeseeseesee e eee e 10-15
Fig 11-1. Memory layout for String deSCriptorsS.oveervereereerie e 11-10

N~—"11 vi

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

About this document.

This document describes initialization and functionality of uClinux USB Device Driver

(CBI & Isochronous transfer types), and how to use it in user applications.

Audience.
This document targets uClinux software developers using the MCF5272 processor.

Suggested reading.
[1] Universal Serial Bus 1.1 Specification.

[2] MCF5272 ColdFire Integrated Microprocessor. User’s manual. Chapter 12.

[3] Linux Device Drivers By Alessandro Rubini & Jonathan Corbet

Definitions, Acronyms, and Abbreviations.

The following list defines the acronyms and abbreviations used in this document.

CBI Control / Bulk / Interrupt
EOP End of Packet
EOT End of Transfer
FHFO Hardware on-chip First-In-First-Out buffer
IMR Interrupt Mask Register
RAM Random Access Memory
SOF Start of Frame
USB Universal Seria Bus
ZLP Zero Length Packet
N—1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Vil

Freescale Semiconductor, Inc.

1. Introduction.

This document describes a device-side uClinux USB Driver, developed for the MCF5272
processor. The document is divided logically into two parts. The first part describes the
functionality of the Driver. It covers data transferring to/from the Host, accepting vendor
specific commands, and describes how the Driver notifies the Client application about
such events as completion of transfer, reset, changing of configuration, etc. Each chapter
in the first part describes in full detail all routines, which perform some concrete
functionality, global structures and variables, explains how they work together as a
whole, and why it works in this way.

The second part (Chapter 9) is a specification of each function of the Driver. It gives a
short description of each function, it's arguments and returned values. Also, an example is
shown of the calling of each routine. Appendix 1 describes a File Transfer Application
example and Appendix 2 describes an Audio Application example.

1.1. Driver capabilities.

Compatible with uClinux kernels 2.0.x, 2.4.x. The Driver can be compiled for
2.0.x, 2.4.x kernel versions without any change in the Driver’ s source code.

Can be compiled with uClinux kernel or can operate like a loadable kernel
module for dynamic Driver ingtallation/removal.

Simultaneous data transfers on different endpoints. Thus, if transfers require
different endpoints, the Driver will handle these transfers independently and
simultaneously (the Driver does not wait until the transfer for some other endpoint
finishes; if required endpoint isfree, it starts anew transfer immediately).

Transfer data in both directions on endpoint number zero in the same way as
for other endpoints. The Driver ONLY dedicates an endpoint number zero in
order to accept commands from the Host. The usua data transfers from the Host
to the Device and from the Device to the Host are available on endpoint number
zero.

Notifies Client application about reset and changing of configuration events and
command arrival, using asynchronous notification mechanism. It alows the
Client application to process a new command at any time, even while executing
another command.

During Isochronous IN/OUT transfers the Driver can perform (if device-side
Client application needs it) per-frame monitoring of the Host-side software,
when it isworking in real-time.

If the Host S’w is not working in real-time i.e. misses frames (in some
frames does not send IN/OUT tokens), the Driver sustains the sample rate relative
to the device (it emulates sending of data to the Host) and notifies the device-side
Client application about missed frames by the Host s'w. Therefore, when the
Driver device-side s/w is still being synchronized with USB, and when sending of

nN—1 Introduction. 1-1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

tokens is resumed, the Device will send not the old data but the actual data (for IN
transfers).

1.2. Related files.

The following files are relevant to Driver:
usb. h — Driver's interface definition. This file must be used by the Client
application.
usb_def s. h — Driver’sfunctions, global constants and structures definitions.
usb. ¢ —implementation of Driver’s functions.
descriptors. h — types definition for device, configuration, interface, endpoint,
and string descriptors. This file must be used by Client application.

mcf 5272. h — definition of some basic data types, macros for work with MCF5272
Registers.

1.3. Quick start Guide.

To dart using the Driver by the Client application, the following steps must be
performed:
1) The Driver must beinstalled into uClinux (see Chapter 2).
2) Appropriate device file(s) must be opened (e.g. if the Client application uses
endpoints 0 and 1, it should open USB_EPO_FI LE_NAME and USB_EP1_FI LE_NAME
files (defined in usb. h)).

i nt usl.)“_dev_fi | e;
int usb_epl file;

usb_dev_file = open(USB_EPO_FI LE NAME, O RDWR);
if (usb_dev file < 0)

{

printf ("Can't open devi ce file: %\ n",
USB_EPO_FI LE_NAME) ;

exit(-1);

}
usb_epl file = open(USB_EP1_FI LE NAME, O WRONLY);
if (usb_epl file < 0)

{

printf ("Can't open devi ce file: %\ n",
USB_EP1_FI LE _NAME) ;

cl ose(usb_dev file);

exit(-1);

3) The Client application can then enable asynchronous notification and set up a
handler for the SIGIO signal (refer to section 3.3 for details):

nN—1 Introduction. 1-2

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

struct sigaction act;

4)

act.sa_handl er = &accept _event;
act.sa nmask = 0;

act.sa flags = 0;
sigaction(SIA O &act, NULL);

fcentl (usb_dev _file, F_SETOMNN, getpid());

oflags = fcntl (usb_dev _file, F_GETFL);
fcecntl (usb_dev _file, F_SETFL, oflags | FASYNO);

The Client application must initialize the Driver. It is accomplished by caling the
USB_I NI T ioctl (which initializes the Driver). The Client application needs to fill
the DESC_I NFOstructure (defined in usb. h file):

extern USB DEVI CE_DESC Descri ptors;

devi ce_desc. pDescriptor = (uint8 *) &Descriptors;
devi ce_desc. DescSi ze = usb_get _desc_si ze();

ioctl(usb _dev file, USB INT, &device_desc);

An example of Descri pt ors definition can be found in the cbi _desc. ¢ (ori so_desc. c¢)

file.
5) Now the Client application can use i/o functions (refer to section 3.4) and handle
commands to the device (refer to sections 7.1; 10.3.2).
N—"1 Introduction. 1-3

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

2. Driver Installation.

This chapter describes how to install the USB Device Driver for the uClinux system.
Depending on the task, the Driver can behave like a loadable kernel module or can be
compiled with the uClinux kernel. In order to make use of the first way, the uClinux
kernel must have loadable kernel modul es support.

The instalation process will be described for the uClinux-coldfire-2.0.38.1pre7-1
distribution from Lineo. For other uClinux distribution versions, the installation process
is very similar. It is assumed that a uClinux development environment is installed. All
directory names here are given relative to the uClinux top directory.

2.1. Compiling the Driver with uClinux kernel.

To compile the Driver with the uCLinux kernel and to startup with it, the following steps
must be accomplished:

1. Copy USB Device Driver's source files (usb.c, wusb.h, usb_defs.h,
descriptors.h, ncf5272. h)into the linux/Drivers/char directory.

2. Edit thefollowing files:

I i nux/arch/ m68knommu/ confi g.in

Add the following lines to the file in the appropriate menu section (i.e. in the
program group the USB Driver is to show up in during ‘'make config' (for
example in the section ‘character Devices after 'if ["$CONFIG_COLDFIRE" =
"y"]; then)):

bool ' MCF5272 USB support' CONFI G COLDFI RE_USB

i nux/Drivers/char/ Mikefile

Add the following lines to the file:

i feq ($(CONFI G_COLDFI RE_USB), y)
L _OBJS += usb.o
endi f

i nux/Drivers/char/nmemc

Add the following linesto the file (e.g. in chr_dev_init() function):

#i f def CONFI G_COLDFI RE_USB
init_usb();
#endi f

nN—1 Driver Ingtallation. 2-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3. Create Device files. Depending on the version of the uClinux distribution, either
create them in 'romfs/dev/'directory by going to this directory and typing:

nknod usb0 ¢ 127 0O
nknod usbl ¢ 127 1
nknod usb2 ¢ 127 2
nknod usb3 ¢ 127 3
nknod usb4 ¢ 127 4
nknod usb5 ¢ 127 5
nknod usb6 ¢ 127 6
nknod usb7 ¢ 127 7

or copy from 'Devices/' directory of Driver's distribution tree to 'romfs/dev/'.

4. When doing 'make config' answer 'Yes to the question about MCF5272 USB
support.

5. Do 'make dep'.

6. Do 'make.

The USB Device Driver will be compiled with the uClinux kernel and included in
"image. bin'.

The image can easily be run from the "dBUG" monitor of the M5272C3 evauation
board.

Load the image into the evaluation board. Network download may be used:
dn -i image.bin

To start running the image use the "go" command.
go 20000

Following this, uClinux will start and the USB Driver will be available for the Client
Application.

2.2. Compiling the Driver as a Module.

To compile the USB Device Driver as a module, the following steps must be
performed:

nN—1 Driver Ingtallation. 2-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

1. Copy 'Makefile' file from 'module/’ directory of Driver's distribution tree to
the location of the Driver's source files. Go to thislocation.

2. Edit 'Makefile'. Put the correct values for DEBUG, BASEDIR etc.
3. Type'make. Thiswill compile the Driver and create' usb. o' file.
4. Type'makeinstal'if ' usb. o' isto beplacedinronfs.

5. Go to the location of uClinux distribution. Type 'make image' to update the
"image. bi n' filewith newronfs (if ' usb. o' was placed there).

6. Start uClinux. Type 'insmod usb.o' if 'usb.o' is located in ronfs or
"insnod (some other place)/usb.o'" if 'usb.o is located is some
other place. Thiswill load the USB Device Driver in memory and register it.

Now the Client Application will be able to use the Driver.

N—1 Driver Ingtallation. 2-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3. Driver Interface.

This chapter describes the uClinux USB Device Driver’s interface and how to use the
Driver’ s functionality with the Client application.

The USB Device Driver represents a character Device Driver. Character Devices are
accessed through Device files (or nodes) in the file system. The USB Device Driver (and
USB Deuvice) is accessed through eight Device files (usbO — usb7), which represent each
endpoint. Thesefiles are located in the/ dev directory.

Each of the USB Device files has a mgjor number 127 (the mgor number identifies the
Driver associated with the Device file). The minor number of the Device file coincides
with the corresponding endpoint number (the minor number is used by the Driver and is
used to monitor which endpoint is accessed, e.g. usb3 file corresponds to endpoint 3 and
has major number 127, minor number 3).

As per the above, each endpoint is represented by a separate Device. The kernel uses the
file_operations structure to access the Driver's functions. Each field in the structure
points to the function in the Driver that implements a specific operation, or is NULL for
unsupported operations. Inthe USB Driver fi | e_oper at i ons looks like the following:

struct file_operations Fops = {
NULL, /* owner */
NULL, /[* seek */
usb_Device read, /* read */
usb_Device wite, /* wite */
NULL, [* readdir */
NULL, /* select */
usb_Device_ioctl, /* ioctl */
NULL, /[* mmap */
usb_Devi ce_open, [/* open */
NULL, [* flush */
usb_Devi ce_rel ease /* close */
usb_Devi ce_fasync /* fasync */

}s

Thus, the USB Driver supports the following operations:

reead — usb_Device_read isinvoked when Client application reads from Device;
write — usb_Devi ce_w it e iSinvoked when Client application writesto Device,
ioctl — usb_Devi ce_ioct| isinvoked to handle control 1/0 from Client application;
open — usb_Devi ce_open isinvoked when Client application opens the Device;
close —usb_Devi ce_rel ease isinvoked when Client application closes the Device.

Also it uses an asynchronous notification mechanism to notify the Client about different
events.

mN—1 Driver Interface. 31

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.1. IOCTL commands.

The i octl system call is used to control the USB Device Driver and to access it's
features, such asinitializing the Device, changing operating modes, etc.

In the USB Driver thefollowing i oct | commands are implemented:

USB_COWWAND_ACCEPTED — sends CMD_OVER as a response to vendor specific requests
to the Host.

USB_EP_BUSY — this command checks if the corresponding endpoint is busy. It takes one
parameter (endpoint number) and callsusb_ep_i s_busy() (see Chapter 9.6).

USB_EP_STALL —stallsagiven endpoint.

USB_EP_WAI T — this call does not return control while an endpoint is busy or while the
number of requests in the queue is more than specified in the parameter (for Isochronous
transfers anly). It calls usb_ep_wai t () (see Chapter 8.7). For CBI transfers, it returns
the number of bytes transferred during the last operation or a negative value in case of
error.

USB_GET_COWAND — this call returns the last command. It takes one argument (the pointer

to the structure where the Driver must place the command) and cdls
usb_fetch_conmmand().

USB_GET_CURRENT_CONFI G — this command returns current configuration and aternate
Setting number.

USB_GET_FRAME_NUMBER — returns the current frame number. Implemented for CBI &
Isochronous Driver only.

USB_I NI T — this command is intended for Driver initiaization. It takes one argument (the
pointer to the structure that holds the address and size of the Device descriptor and

address of array of string descriptors) and callsusb_i ni t () (see Chapter 4).

USB_NOT_SUPPORTED_COMMVAND — sends CMD_OVER and CMD_ERROR as a response
to a vendor specific request to the Host (indicating that the received command is not
supported by the Device).

USB_SET_FI NAL_FRAME — specifies the frame number from which Isochronous transfer
monitoring will be stopped. Implemented for CBI & Isochronous Driver only.

USB SET SEND ZLP — this command sets the sendzLP variable to TRUE for the
corresponding endpoint (for more information about sendzLP see 5.1.3).

mN—1 Driver Interface. 3-2

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

USB_SET_START_FRAME — specifies the frame number from which Isochronous transfer
monitoring will begin. Implemented for CBI & Isochronous Driver only.

Some of the i oct| commands (such as USB_EP_BUSY, USB EP_WAI T, USB _EP_STALL,
USB_SET_SEND ZLP) may be called on any endpoint and affect this specified endpoint.
Others (such a USB GET_CURRENT_CONFIG ~ USB_GET_COMMAND, USB INIT,
USB_COMMAND_ACCEPTED, USB_NOT_SUPPORTED COMVAND,) can be called only on
endpoint 0 and affect the whole USB Driver or Device.

3.2. Read/Write operations.

The USB Device Driver performs only asynchronous read/write operations. This means
that the Client application only initiates a transfer by calling read() or wite()
functions that return amost immediately, and only then can proceed with data processing.
To check if the transfer is finished, the Client application can call USB_EP_BUSY or
USB_EP_WAI T ioctl commands.

When the Client application cals the read() function, usb_rx_data() is invoked. It
returns only data that were located in the FIFO buffer. The next data transfer is performed
through the interrupt handler usb_out _service() (see Chapter 5.2 for details). The
interrupt handler writes data from the FIFO buffer directly to the application’s memory
space. This is the fastest way, but it will not work on systems using memory protection
(on the MCF5272 with uClinux it works correctly).

When the Client application calls the write() function, usb_t x_data() isinvoked. It
writes only the amount of data equal to the FIFO free space. The next data transfer is
performed through the interrupt handler usb_i n_servi ce() (see Chapter 5.1 for details).
The interrupt handler reads data directly from the application’s memory space. This is the
fastest way, but it will not work on systems usng memory protection (on the MCF5272
with uClinux it works correctly).

To determine the number of bytes transferred during the last operation (read or write), the
Client application needs to call usB_EP_WAI T ioctl. If the function read() or wite() Is
called on abusy endpoint, it returns the —EBUSY error.

mN—1 Driver Interface. 3-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.3. Asynchronous notification.

The Driver may use the asynchronous notification mechanism to notify the Client
application about the arrival of a new command, or other events (bus reset or
configuration change). This allows the Client application to process a new command (or
handle a configuration change event) at any time even while executing another command.
To use this feature, the Client application must first accomplish the following steps:

- Specify aprocess as the “owner” of thefile:
fentl (epO _file, F_SETOMNW, getpid());
- Setthe FASYNC flag in the Device:

flags = fcentl (epO_file, F_CETFL);
fecntl (epO_file, F_SETFL, flags | FASYNC);

- Set up SIGIO handler:

signal (SIA O &accept_event); [/* dummy sanple; sigaction()
is better */

In the signa handler USB_GET_COWAND , ioctl should be called to find out what
happened.

mN—1 Driver Interface. 34

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.4. Example of using read()/write()/ioctl() calls by
Client.

int usb_epil;
char * buffer;
int size;

/* Qpen Device file */
usb_epl = open(USB_EP1 FILE NAVE, O WRONLY); /* Bulk-in endpoint
(epl) */

if (usb_epl < 0)

{

printf ("Can't open Device file: %\n", USB EP1 FILE NAME);
exit(-1);

}

wite(usb_epl, buffer, 100); /* Wite 100 bytes of data
frombuffer to endpoint 1 */

size = ioctl(usb_epl, USB EP WAIT); /* Wiit (sleep) while transfer
is in progress */

mN—1 Driver Interface. 3-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

4. Driver Initialization.

This chapter describes step-by-step the initialization of the Driver. The initialization is
combined into one function — usb_init(), which is called from USB IN T ioctl
command handler. Different parts of this function are described in separate subsections.

4.1. Initialization of Descriptor Pointers and

Variables.

Initialization of the Driver starts from initiaization of it's global variable NewC (refer to
Chapter 6):

DEVI CE_COWAND * NewC = NULL;

To start work with the Driver, the Client application must cal the USB_|I NI T ioctl
command. The only argument this call has is the pointer to structure that holds an address
and size of device descriptor. usb_i nit () fetches the addresses from the structure and
initializes global pointer: usb_devi ce_descri pt or (pointer to device descriptor):

usb_devi ce_descriptor = descriptor_info -> pDescriptor;

Then, it initializes its local variables: PConfi gRam — pointer to hardware on-chip
Configuration memory, pDevDesc — pointer to device descriptor, and DescSi ze — Size of
device descriptor. The value of DescSi ze must be incremented by 3 (refer to Chapter
4.3).

4.2. Initialization of Endpoints.

Initialization of endpoints starts form initialization of endpoint number zero. The type of
transfer for that endpoint should be set to CONTROL (0). The size of packet is taken from
the device descriptor:

ep[0] . packet _si ze = ((UsSB_DEVI CE_DESC *) pDevDesc) -
>bMaxPacket Si zeO;

Length of the FIFO-buffer for this endpoint is equal to four maximum size packets
(FI FO_DEPTHIis equal to 4):

ep[0].fifo_length = (uintl16)(ep[0].packet _size * FI FO DEPTH);

No buffer is alocated for endpoint number zero yet, so fields start, Iength, and
posi ti on should be cleared. The state of the endpoint is USB_CONFI GURED (according to
USB 1.1 specification, any transfers can be performed with an unconfigured device via
endpoint zero). It is not the same as the state of the device such as default,

mN—1 Driver Initialization. 4-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

addr essed, or confi gured. Thisfield indicates whether the endpoint is able to transmit
/ receive data or not.
Therest of the endpoints must be disabled:

for (i = 1; i < NUMENDPQO NTS; i++)
ep[i].ttype = DI SABLED;

4.3. Initialization of Configuration RAM.

To access the configuration RAM of the USB module, that memory must first be
disabled, otherwise an access error results. The Driver clears the CFG_RAM VAL bit of USB
Endpoint 0 Control Register (EPOCTL) and disablesthe USB module:

MCF5272_WR_USB_EPOCTL(i mm 0);
Then, the configuration RAM isloaded with the descriptors:

for (i =0; i < (DescSizel/4); i++)
pConfigRanfi] = pDevDesc[i];

The configuration RAM is long-word accessible only. The compiler performs division by
4 as aright shift by 2. In order not to decrease the actual size of descriptors, 3 was added
to DescSi ze (refer to Chapter 4.1). Descriptors can be stored in configuration RAM in a
4 bytesformat.

4.4. Initialization of FIFO Module.

The initidization of the FIFO module is combined into one function -
usb_fifo_init(). Thisfunctionisalso caledfrom usb_devcfg_service() routine.

According the documentation for the MCF5272 USB Module, the following restrictions
apply:
- EPnCFG[FIFO_SIZE] must be a power of 2.

EPNCFG[FIFO_ADDR] must be adigned to a boundary defined by the
EPNCFG[FIFO_SIZE] field.

The FIFO space for an endpoint defined by FIFO_SIZE and FIFO_ADDR must
not overlap with the FIFO space for any other endpoint with the same direction.

In order to meet these restrictions, usb_fifo_init() alocates two arrays of pointers to
endpoints— one for | N endpoints, other —for OUT endpoints:

USB_EP_STATE *pl N[NUM_ENDPO NTS] ;
USB_EP_STATE *pOUT[NUM_ENDPO NTS] ;

mN—1 Driver Initialization. 4-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Endpoint number zero is always present and bi-directional. Thus its address should be
stored in both arrays:

pIN[O] = &ep[O0];
pQUT[O] = &ep[O];
nIN = nQUT = 1;

Then the function sorts the endpoints by direction and allocates them into two arrays:
for (i = 1; i < NUMENDPO NTS; i++)
if (ep[i].ttype != DI SABLED)

if (ep[i].dir == IN)

pI N[Nl N++] = &ep[i];
el se

pOUT[nOQUT++] = &epli];

}

For the first call of usb fifo_init() (from usb_init()), al these endpoints are
disabled. Thus arrays pl N and pOUT contain address of endpoint number zero only.

Then it calls usb_nake_power _of _two() passing the length of FIFO buffer for each
endpoint:

for (i =0; i <nIN i++)

usb_make_power _of _two(& pINi]->fifo_length));
for (i =0; i < nQUT; i++)

usb_make_power _of _two(& pOQUT[i]->fifo_l ength));

usb_make_power _of _two() finds nearest higher power of 2 and stores it into
fifo_length.

usb_fifo_init() then sorts endpoints (their addresses in arrays pl N and pQuT) by
fifo_l engt h in descending order:

usb_sort_ep_array(plN, nIN);
usb_sort _ep_array(pQUr, nQUT);

This must be done in order to eliminate fragmentation of the FIFO buffer when alocating
gpace for each active endpoint. Thus, addresses in the FIFO buffer for endpoints can be
calculated in asimple way:

| Npos = O;
QUTpos = O;
for (i =0; i <nIN i++)
pIN[i]->in_fifo _start = | Npos;
I Npos += pINi]->fifo_length;
N—1 Driver Initialization. 4-3

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

}
for (i =0; i < nQUT; i++)

pQUT[i]->out _fifo start = QUTpos;
QUTpos += pQUT[i]->fifo_l ength;
}

Finaly, the maximum length of the packet, the size of the FIFO buffer, and the address of
the FIFO buffer for each endpoint should be stored in the appropriate configuration
register. In thefirst instance, thisis done for endpoint number zero:

/* Initialize Endpoint O IN FIFO */
MCF5272_WR USB | EPOCFGi mm O

| (ep[O].packet_size << 22)

| (ep[O].fifo_length << 11)
| ep[O].in_fifo_start);

/* Initialize Endpoint 0 QUT FI FO */
MCF5272_WR _USB_CEPOCFEinmm O

| (ep[O0].packet_size << 22)

| (ep[O].fifo_length << 11)

| ep[O].out fifo_start);

then for the remaining endpoints:
for (i =1; i < NUMENDPO NTS; i++)
if (ep[i].ttype != DI SABLED)

if (epli]l.dir == 1IN
/* Initialize Endpoint i FIFO */
MCF5272_WR _USB_EPCFEimm i, O
| (ep[i].packet_size << 22)
| (ep[i].fifo_length << 11)
| ep[i].in_fifo_start);

el se
/* Initialize Endpoint i FIFO */
MCF5272_WR _USB_EPCFEimm i, O
| (ep[i].packet_size << 22)
| (ep[i].fifo_length << 11)
| ep[i].out_fifo_start);

4.5. Initialization of Interrupts.

The registration of interrupt handlers within uClinux is implemented in i ni t _modul e()
routine:

request _irq(77, usb_endpointO_isr, SA INTERRUPT, "ColdFire USB
(EPO) ", NULL);

request _irq(78, usb endpoint _isr, SA INTERRUPT, "ColdFire USB
(EP1)", NULL);

mN—1 Driver Initialization. 4-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

request _irq(79,

(EP2)",

request _irq(80,

(EP3)",

request _irq(81,

(EP4)",

request _irq(82,

(EP5)",

request _irq(83,

(EPB)",

request _irq(84,

(EPT)",

Freescale Semiconductor, Inc.

NULL) ;
NULL) ;
NULL) ;
NULL) ;
NULL) ;

NULL) ;

usb_endpoi nt _isr, SA | NTERRUPT,
usb_endpoi nt _i sr, SA_| NTERRUPT,
usb_endpoi nt _i sr, SA_| NTERRUPT,
usb_endpoi nt _isr, SA | NTERRUPT,
usb_endpoi nt _isr, SA | NTERRUPT,

usb_endpoi nt _isr, SA | NTERRUPT,

"ColdFire

"ColdFire

"ColdFire

"Col dFire

"Col dFire

"Col dFire

usB

usB

usB

USB

USB

USB

The rest of initialization of interrupts is combined into one function —usb_i sr_init().
First, it clears any pending interruptsin all endpoints:

MCF5272_WR_USB_EPOI SR(i nm O0x0001FFFF);
MCF5272_WR_USB_EP1I SR(i nm O0xO001F) ;
MCF5272_WR_USB_EP2I SR(i nm 0xO001F) ;
MCF5272_WR_USB_EP3I SR(i nm 0xO001F) ;
MCF5272_WR_USB_EP4I SR(i nm 0x001F) ;
MCF5272_WR_USB_EP5I SR(i nm 0xO001F) ;
MCF5272_WR_USB_EP6I SR(i nm 0xO001F) ;
MCF5272_WR_USB_EP7I SR(i nm O0xO001F) ;

Then, the function enables the desired interrupts for all endpoints:

MCF5272_WR_USB_EPOI MR(i nm O

MCF5272_USB_EPOI MR_DEV_CFG EN
MCF5272_USB_EPOI MR_VEND _REQ EN
MCF5272_USB_EPOI MR_WAKE_CHG_EN
MCF5272_USB_EPOI MR_RESUVE_EN
MCF5272_USB_EPOI MR_SUSPEND_EN
MCF5272_USB_EPOI MR_RESET_EN
MCF5272_USB_EPOI MR_OUT_EOT_EN
MCF5272_USB_EPOI MR_OUT_EOP_EN
MCF5272_USB_EPOI MR_| N_EOT_EN
MCF5272_USB_EPOI MR | N_EOP_EN
MCF5272_USB_EPOI MR_UNHALT_EN
MCF5272_USB_EPOI MR_HALT EN) :

MCF5272_WR _USB_EP1I MR(i nm OxO001F);
MCF5272_WR_USB_EP2I MR(i nm O0xO001F) ;

Finally, it sets up an interrupt priority level for each endpoint, by initializing the
corresponding Interrupt Control Registers:

MCF5272_WR SIM | CR2(imm O
(0x00008888)
(USB_EPO_LEVEL << 12)
(USB_EP1_LEVEL << 8)
(USB_EP2_LEVEL << 4)
(USB_EP3_LEVEL << 0));

MCF5272_WR_SI M | CR3(i mm 0

N—1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Driver Initidization.

For More Information On This Product,

Go to: www.freescale.com

Following this
RAM:

Freescale Semiconductor, Inc.

(0x88880000)
(USB_EP4 LEVEL << 28)
(USB_EP5_LEVEL << 24)
(USB_EP6_LEVEL << 20)
(USB_EP7_LEVEL << 16));

operation, usb_init() enables the USB controller and Configuration

MCF5272_WR_USB_EPOCTL(i nm O

MCF5272_USB_EPOCTL_USB_EN
MCF5272_USB_EPOCTL_CFG_RAM VAL) ;

Now, transfers are permitted for endpoint number zero only. To enable other endpoints,
the Host must first set up the configuration.

N—1

Driver Initidization.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

5. Control, Bulk, Interrupt Data Transfer.

This chapter describes how the Driver supports Control, Bulk, and Interrupt transfer
types, describing how to initiate atransfer and complete it correctly.

5.1. Device-to-Host Data Transfer.

To transfer data from the device to the Hogt, the wri t e() function shall be called by the
Client application. usb_devi ce_write() routine (which handles write() call to device
file) callsusb_t x_dat a(). It acceptsthree parameters:

epnum — number of endpoint, through which data will be transferred (obtained
from minor numbe);

start — pointer to data buffer, that will be transferred;
| engt h —number of bytesto transfer (transfer length).

Thisfunction initializes the fields of global structure ep. buf f er.

It sets the field ep[epnuni . buffer. start to the beginning of the data buffer to be sent,
ep[epnuni . buf fer. | engt h — to the length of buffer, and ep[epnuni . buf f er. posi ti on
to 0 (no data sent yet).

Then, it determines the number of bytes that can be placed into FIFO buffer, and copies
that amount of data from the source buffer to the FIFO. Then it modifies the
ep[epnuni . buf fer. posi tion field (ep[epnuni. buffer. position will be set to the
number of bytes written). usb_t x_dat a() then returns control.

For more detailed information about usb_t x_dat a() refer to Chapter 5.1.1.

The USB module sends this data to the Host in packets. If the Host successfully receives
a packet, it sends an acknowledge to the device. Following this, the USB module
generates EOP (end of packet) interrupt. Using this interrupt, a new portion of data can be
placed into the FIFO buffer. Theusb_i n_ser vi ce() handler isused for this purpose.

usb_in_service() checks if there ae daa to send (examines
ep[epnuni . buffer. position and ep[epnuni.buffer.length). If there are data to
send, it determines the amount of data that can be placed into the FIFO buffer.
usb_i n_service() copies that amount of data to the FIFO buffer and increments the
ep[epnuni . buf f er. posi ti on field by the number of written bytes.

For more detailed information about usb_i n_ser vi ce() refer to Chapter 5.1.2.

When writ e() returns control, the Client application may process another portion of data
or execute an agorithm. This activity will be interrupted from time-to-time by EOP/EOT
interrupts, and usb_i n_service() will then be called. When the Client application

N—1 Control, Bulk, Interrupt Data Transfer. o1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

completes execution of its agorithms and is ready to send another data buffer to USB, it
may call the USB_EP_BUSY ioctl command (to test if desired endpoint is free) or
USB_EP_WAI T (to wait while desired endpoint is busy). For more detailed information
about these functions refer to Chapter 9.

The stages of data transferring from Device to Host are shown in Fig 5-1.

N—1 Control, Bulk, Interrupt Data Transfer. 5-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Initial state: ep[epnum].buffer.start = 0
ep[epnum] .buffer.position = 0
ep[epnum].buffer.length =0

Call toush tx data():

ep[epnum].buffer.start ep[epnum].buffer.start +
ep[epnum)].buffer.position =0 ep[epnum)].buffer.length

Data Buffer (to be sent)

usb tx data() places datato FIFO buffer:

ep[epnum].buffer.start + ep[epnum].buffer.start +
ep[epnum].buffer.start ep[epnum].buffer.position ep[epnum] .bufferlength
Data already Data Buffer (to be sent)
placed to FIFO

EOP interrupt occurred,
usb in service() is called
and placesdatato FIFO:

ep[epnum].buffer.start + ep[epnum].buffer.start +
eplepnum] .buffer.start ep[epnum].buffer.position ep[epnum].buffer.length
Sent Data Data already Data Buffer (to be sent)
placed to FIFO

EOP interrupt occurred,
usb in service() is called
and places datato FIFO:

buffer.start ep[epnum].buffer.star'gfr ep[epnum].buffer.start +
epleprum] buffer.ster ep[epnum)].buffer.position ep[epnum].buffer.lengtt

Sent Data Data already Data Buffer
placed to FIFO (to be sent)

Fig 5-1. Stages of data transfer by the Driver.

N—1 Control, Bulk, Interrupt Data Transfer. 5-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

5.1.1. Initiating a Data Transfer.
The usb_tx_data() function is used to initiate each data transfer from Device to Host.
The agorithm of thisfunctionis shownin Fig 5-2.

Aretransfer
alowed for this
endpoint?

It

t

b

t

s there data no
to send?
Exit
Isthisan no
IN endpoint?
yes Exit
N—1 Control, Bulk, Interrupt Data Transfer. 5-4

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Is endpoint yes

halted?

Save the current
IMR

Disable EOP, EOT, RESET,
DEV_CFG interrupts

Set up EP buffer
structure

Determine number of bytesto
place into FIFO

Place datato FIFO
buffer

Modify position

Isit al the data yes

Exit

to be sent?

no

Finish transfer

Restore saved IMR

Exit

Fig 5-2. Algorithm of usb_tx_data() function.

Control, Bulk, Interrupt Data Transfer.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

usb_t x_data() accepts three parameters (see Chapter 5.1). Firstly it checks whether the
device has been reset for data transfers on a non-zero endpoint. Since endpoint number
zero transfers are permitted even if the device is not configured. For more detailed
information refer to Chapter 8 and Chapter 9. Then usb_t x_dat a() tests whether the
given endpoint is busy:

/* See if the EP is currently busy */
if (ep[epnuni.buffer.start || (epnum && MCF5272_RD USB EPDPR(i mm

epnum))

return 1;

It checks the ep[epnuni.buffer.start field (it should not point to any buffer) and
checks that the FIFO buffer is empty (for non-zero endpoints, because EPODPR monitors
OUT FIFO only).

Then it makes sure there is data to send (examines parameters start and | engt h).
Finally, it ensures that the desired endpoint is an IN endpoint and the endpoint is not
halted.

EOP/EOT interrupts should be disabled in order to prevent damage of the
ep[epnuni . buf f er structure by the usb_i n_servi ce() handler. RESET and DEV_CFG
interrupts must also be disabled in order to properly terminate the transfer.

usb_t x_data() setsup the ep buffer structure:

ep[epnun] . buffer.start = start;
ep[epnuni . buffer.length = | ength;
ep[epnuni . buffer. position = 0;

Then, the amount of data that can be placed into the FIFO buffer is determined:

free _space = ep[epnum .fifo_length;

| engt h parameter (amount of data to be sent) can be less than the size of the FIFO
buffer for epnum therefore additional modifications are needed:

/* If the amount of data to be sent less than free_space, nodify
free space */

if ((intl6) free_space > |ength)

{

free_space = |l ength;

}

Now, usb_t x_dat a() startsto write data to the FIFO buffer four bytes at a time (while it
ispossible) and the rest of data - by one byte.

If this is all the data that has to be sent, usb_t x_dat a() finishes the transfer (refer to
Chapter 5.1.3). It does not clear ep[epnuni. buffer structure. The usb_t x_dat a()

N—1 Control, Bulk, Interrupt Data Transfer. 5-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

function placed data for at least one packet, so the EOP interrupt will occur, and
usb_i n_service() will continue or finish the transfer properly. The saved interrupt
mask register must be restored. The function returns control.

5.1.2. Continuation of a Data Transfer.

If the Host successfully receives a data packet it sends acknowledge to device and the
USB module generates EOP interrupt. At this moment there is a free space in FIFO
buffer for at least one data packet. Thus, placing a new portion of data to FIFO module
will continue the transfer.

usb_i n_servi ce() isresponsble for continuation of the transfer. Its agorithm is shown
inFig 5-3.

This function accepts two parameters.

epnum— number of endpoint, for which interrupt has occurred;
event —thekind of interrupt(s) occurred.

First, usb_i n_service() tests event for EOP interrupt. If an interrupt occurred, the
function saves IMR and disables RESET and DEV_CFG interrupts. If there is data to
send, it determines the amount of data that can be placed into the FIFO buffer.

The data present register for endpoint number zero monitors only the OUT FIFO, so it
cannot be used to determine the free space in the FIFO buffer for that endpoint. Thus, if
epnumis zero, not more than one packet will be placed into the FIFO. Free space for the
rest of the endpoints can be calculated by subtracting the amount of data in the FIFO
buffer from the length of the FIFO buffer for that endpoint:

if (epnum == 0)
free_space = ep[0]. packet _si ze;
el se
free_space = (uint16) (ep[epnuni.fifo_length -
MCF5272_RD USB EPDPR(i mm epnum);

If the amount of data to be sent less than the free space in the FIFO buffer, the variable
free_space must be modified:

i f (free_space > (ep[epnuni. buffer.length -
ep[epnuny . buffer. position))
free_space = (ep[epnuni. buffer.length -

ep[epnuni . buf f er. posi tion);

Then usb_i n_service() writes data to FIFO using a four byte format (while it is
possible) and the rest of data—in lots of one byte.

N—1 Control, Bulk, Interrupt Data Transfer. =
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

If this was al the data to be sent, usb_i n_service() finishes the transfer. The saved
interrupt mask register must be restored.

Finally, usb_i n_service() tests event for EOT interrupt. If that interrupt occurred, the
function finishes the transfer (refer to Chapter 5.1.3).

N—1 Control, Bulk, Interrupt Data Transfer. 5-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Does EOP

interrupt occur?

Disable RESET and DEV_CFG interrupts
(save current IMR)

Isthere datato

send?

| Y&

Determine amount of data that
can be placed to FIFO

Place datato FIFO

<

Isit all the data yes

to be sent?

no

Finish transfer

Restore saved IMR

<

Isthere EOT
interrupt?

| Y&

Finish transfer

<

Exit

Fig 5-3. Algorithm of usb_in_service() function.

Control, Bulk, Interrupt Data Transfer.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

5.1.3. Completion of Data IN Transfer.

The Driver sends data to the Host in maximum size packets (while it is possible). The rest
of data are sent in one short packet. The Driver handles the end of transfer in different
ways depending upon the exact situation. Table 5-1 summarizes the conditions and the
device' s actions according those conditions.

Table 5-1. Conditions and device' s actionsto finish the transfer
N Condition Devicefinishesthetransfer in following
way
Driver clears EPNCTL[IN_DONE] bit to
1 | The length of transferred buffer | send one short length data packet. EOT
was not a multiple of the|interrupt will occur. Driver clears the

maximum size of packet. ep[epnuni . buf fer structure and sets up
EPNCTL[IN_DONE] bit in EOT interrupt
handler.

Host received all the data it| Clears the ep[epnuni.buffer structure
2 | expected. The length of transferred | after the last packet was successfully sent to
buffer was a multiple of the| theHost.

maximum size of packet.
Host did not receive all the data it | In this case, device sends zero length packet
3 | expected. The length of transferred | to Host to indicate the end of transfer.
buffer was a multiple of the| Driver clears EPNCTL[IN_DONE] bit.
maximum size of packet. EOT interrupt will occur. Driver clears the
ep[epnuni . buf fer structure and sets up
EPNCTL[IN_DONE] hit in EOT interrupt
handler.

If the length of a transferred buffer was less than or equal to the size of the FIFO buffer
for the used endpoint, the usb_t x_data() function completes the transfer. If the last
packet is maximum size, it will be sent by the USB module automatically. If the last
packet is short, the IN_DONE bit must be cleared and as a result, the USB module will
send to the bus al the data it has (will not wait to form a maximum size packet). In both
cases, usb_i n_servi ce() handler will be called and will complete the transfer.

if (i == ep[epnun.buffer.length)
{

/* This is all of the data to be sent */
if ((i %ep[epnun].packet_size) !'= 0)

/*Sent short packet - Clear the INBUSY bit */
MCF5272_WR _USB_EPCTL(i mm epnum MCF5272_RD USB_EPCTL(i mm

epnumn
& ~MCF5272_USB_EPNCTL_I N_BUSY) ;

N—1 Control, Bulk, Interrupt Data Transfer. 5-10
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

usb_i n_service() finishes the transfer in two different places. in the handler of the
EOP event and in the handler of the EOT event:

a) If al the data is placed in the FIFO buffer and the amount of that data was a
multiple of the maximum size of packet, an EOP interrupt will occur,
usb_i n_servi ce() completesthe transfer in the EOP event handler.

b) If al the data is placed in the FIFO buffer but the size of data was not a multiple
of the maximum size of packet, the last packet (short) may stay in the FIFO
buffer. In this case the EPNCTL[IN_DONE] bit must be cleared to send the short
packet. An EOT interrupt will occur; usb_i n_servi ce() completes the transfer
inthe EOT event handler.

usb_i n_service() checksin the EOP handler if al the data was written into the FIFO.
If it was, usb_in_service() tests if the length of the transfer is a multiple of the
maximum size of packet, and clears the EPNCTL[IN_DONE] bit to send the last short
packet if the length of the buffer is not amultiple of the maximum packet size:

if (i == ep[epnuni.buffer.Ilength)
{

remai nder = i % ep[epnuni. packet _si ze;

/* This all of the data to be sent */

i f ((remai nder = 0) |] ((remainder == 0) &&
ep[epnuni . sendZLP))
{
/* Al done -> Clear the | NNBUSY bit */
MCF5272 _WR _USB _EPCTL(i mm epnum
MCF5272_RD USB _EPCTL(i mm epnum
& ~MCF5272 USB EPNCTL_|I N DONE) ;
}
el se

if (MCF5272_RD USB EPDPR(i mm epnu == 0)
if ((epnum == 0) && (NewQ))
{
usb_vendr eq_done(SUCCESS) ;

free(NewC) ;
NewC = NULL;

ep[epnun] . bytes transferred = i;
ep[epnun] . buffer.start = O;

ep[epnun] . buffer.length = O;

ep[epnuni . buffer. position = 0;

/* Wake up usb _ep wait function if
it sleeps */

}

wake up_interruptibl e(&p_wait_ queue);

N—1 Control, Bulk, Interrupt Data Transfer. 5-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ep[epnuni . sendZLP = FALSE;

EOT will occur in such a case and its handler completes the transfer.

If the length of a transferred buffer was a multiple of the maximum size of packet, one of
two variants is possible: either the Host received al the data it expected or not. Field
sendZLP is used to distinguish these cases. The Client application knows the amount of
data requested by the Host. If that amount is larger than the Client application is going to
send, there is a possibility to send the last packet with the maximum size. To properly
handle the end of transfer in this case, the Client application must cal the
USB_SET_SEND ZLP ioct!| for the required endpoint. The function sets up the sendzLP
field to TRUE. The Driver tests this field and only if the last packet is maximum size,
does it send a zero length packet.

The Client application does not need to calculate the remainder of a division to find the
size of the last packet before calling write(), sincethe Driver makes the calculation by
itself. The only thing the Client application must do is to compare the size of the
requested data from the Host, with the amount of data that the Client application is going
to send before each transfer. If the last is smaller, sendzLP must be setup to TRUE.

If the Client application is able to send al the requested data, it does not need to call the
USB_SET_SEND ZLP ioctl (sendzLP field is cleared by the Driver after the last transfer).
The EOP handler completes the transfer in this case (see the source code above). For
more information refer to Chapter 8.17.

EOT interrupt occurs if a short length or zero length packet was sent. It completes the
transfer and sets the EPNCTL[IN_DONE] bit to send data for next transfers by maximum
size packets (previoudly that bit was cleared).

N—1 Control, Bulk, Interrupt Data Transfer. 5-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

5.2. Host-to-Device Data Transfer.

Assuming that the OUT trandfer starts from the moment when function read() is called,
if there is data in the FIFO buffer but the Client buffer is not allocated yet, the transfer
will not be started. The usb_devi ce_read() function handles the read() cal to the
device file and callsusb_r x_dat a() . EOP interrupts will occur (while the FIFO buffer is

able to accept data) and the usb_out _service() function will properly handle this
situation. But for the Client program, the transfer is not yet started.

usb_rx_dat a() acceptsthree parameters.

epnum — number of endpoint, through which data will be transferred (obtained
from minor numbe);

start — pointer to the buffer, where data will copied from FIFO buffer;

| engt h —number of bytesthat will be received.

This function initializes the fields of global structure ep. buffer. It sets the field
ep[epnuni . buf fer. start to the beginning of data buffer where it will place the data,
ep[epnuni.buffer.length — to the <sze of expected data, and
ep[epnuni . buf f er. posi ti on to O (no dataread yet).

Then, the function determines the number of bytes in the FIFO buffer, and copies that
amount of data from the FIFO to the destination buffer. Then it modifies the
ep[epnuni . buf fer. posi tion field (ep[epnuni. buffer. position will be set to the
number of copied bytes). usb_rx_dat a() returns control. For more detailed information
about usb_r x_dat a() refer to Chapter 5.2.1.

The Host sends data in packets. If the USB module successfully receives a packet, it
generates an EOP (end of packet) interrupt. Using this interrupt, a new portion of data can
be read from the FIFO buffer. The usb_out _servi ce() handler is used for this purpose.
It determines the amount of data in the FIFO buffer and copies the data to a destination
buffer (ep[epnuni.buffer.start points to it). For more detailed information about
usb_out _service() refer to Chapter 5.2.2.

When read() returns control, the Client application may process another portion of data
or execute some algorithm. This activity will be interrupted from time-to-time by EOP
interrupts, and usb_out _servi ce() will be called. When the Client application finishes
execution of its algorithms and is ready to receive other data from the Host, it may call
the USB_EP_BUSY ioctl command (to test if the desired endpoint is free) or USB_EP_WAI T
(to wait while the desired endpoint is busy). For more detailed information about these
functions refer to Chapter 9. The different stages of data transfer from Host to Device are
shownin Fig 5-4.

N—1 Control, Bulk, Interrupt Data Transfer. 5-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Initial state: ep[epnum].buffer.start = 0
ep[epnum].buffer.position = 0

ep[epnum].buffer.length = 0

Call tousb rx data():

ep[epnum].buffer.start
ep[epnum] .buffer.position = 0

ep[epnum].buffer.start +
ep[epnum].buffer.length

Destination Data Buffer (empty)

usb rx data() reads data
from FIFO buffer:

ep[epnum].buffer.start +
ep[epnum].buffer.start enfepnum].buffer.position

v Y

ep[epnum].buffer.start +
ep[epnum].buffer.length

Data aready Free space
placed from FIFO

EOP interrupt occurred,
usb out service() iscalled
and reads from FIFO:

ep[epnum].buffer.start

ep[epnum].buffer.start +
ep[epnum].buffer.position

ep[epnum].buffer.start +
ep[epnum].buffer.lengtt

read from FIFO

Received Data Data already Free space

EOP interrupt occurred,
usb out service() iscalled
and reads from FIFO:

ep[epnum].buffer.start

ep[epnum].buffer.start + ep[epnum].buffer.start +
ep[epnum].buffer.position ep[epnum].buffer.length

Received Data Data already Free space
read from FIFO
Fig 5-4. The stages of receiving data by Driver
5-14

N—1 Control, Bulk, Interrupt Data Transfer.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

5.2.1. Initiating a Data Transfer.

The usb_rx_dat a() function is called by usb_devi ce_read() (which handles read()
cal from the Client application) and is used to start receiving data from the Host. The

algorithm of thisfunction is shown in Fig 5-5.

Aretransfer
alowed for this
endpoint?

Does Client
know about new
configuration?

Exit

Is there buffer no

allocated?

Exit

Isthisan no

OUT endpoint?
yes Exit
5-15

N—1 Control, Bulk, Interrupt Data Transfer.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Is endpoint yes

halted?

Save the current
IMR

Disable EOP, EOT, RESET,
DEV_CFG interrupts

Set up EP buffer
structure

Determine number of bytes
in FIFO buffer

Read data
from FIFO buffer

Modify position

Isit al the data yes
to be received?

no Finish transfer

Restore saved IMR

Exit

Fig 5-5. Algorithm of usb_rx_data() function.

Control, Bulk, Interrupt Data Transfer. 5-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

usb_rx_data() accepts three parameters (see Chapter 5.2). Firgt, it checks whether the
device is reset for data transfers with a non-zero endpoint. For endpoint number zero
transfers are permitted even if the device is not configured. Following this procedure,
usb_rx_dat a() teststhat the given endpoint is not busy:

/* See if the EP is currently busy */
if (ep[epnun].buffer.start)
return 1,

It checks the ep[epnuni.buffer.start field - which should not point to any buffer.
Then it makes sure there is target data buffer (examines parameters start and | engt h).
Finally, the function ensures that the desired endpoint is an OUT endpoint and that the
endpoint is not halted.

EOP/EOT interrupts should be disabled in order to prevent damage to the
ep[epnuni . buffer dstructure by the usb_out_service() handler. RESET and
DEV_CFG interrupts must also be disabled in order to properly terminate the transfer.

usb_rx_dat a() setsup theep buffer structure:

ep[epnun] . buffer.start = start;
ep[epnuni . buffer.length = | ength;
ep[epnun] . buffer. position = 0;

Then, determines the amount of datain the FIFO buffer:

/* Read the Data Present register */
fifo data = MCF5272_RD USB EPDPR(i mm epnunj;

The | engt h parameter (the amount of data to be received) can be less than the amount of
datain the FIFO buffer for epnum thus additional modifications are needed:

if (fifo_data > I ength)
{

}

fifo_data = | ength;

Now, usb_rx_dat a() startsto read data from the FIFO buffer four bytes at a time (while
thisis possible) and the rest of data - one byte at atime.

If thisis all the data to be received, usb_r x_dat a() finishesthe transfer (refer to Chapter
3.2.3). The saved interrupt mask register must be restored. The function returns control.

N—1 Control, Bulk, Interrupt Data Transfer. S-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

5.2.2. Continuation of a Data Transfer.

If the USB module successfully receives a data packet it generates an EOP interrupt. At
this moment there is data in the FIFO buffer. Thus, reading a new portion of data from
the FIFO module will continue the transfer.

usb_out _servi ce() is responsible for the continuation of the transfer. Its algorithm is
shownin Fig 5-6.

This function accepts two parameters:

epnum— number of endpoint, for the interrupt that occurred;
event —thekind of interrupt(s) that occurred.

First, usb_out _service() tests event for an EOP interrupt. If this interrupt occurred,
the function saves IMR and disables RESET and DEV_CFG interrupts. Then it
determines the amount of datain the FIFO buffer:

/* Read the Data Present register */
fifo data = MCF5272_RD USB EPDPR(i mm epnun;

If data is received on the endpoint but no buffer is alocated, the USB module will be
accepting the data from the Host while there is free space in the FIFO buffer. Following
this occurrence, data transmission will be stopped, until such time as the Client
application allocates a target buffer.

If a buffer is allocated for a given endpoint, the Driver starts to read data from the FIFO
buffer four bytes at atime (while thisis possible) and the rest of data one byte at atime.

N—1 Control, Bulk, Interrupt Data Transfer. 5-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Start

Does EOP

interrupt occured?

Disable RESET and DEV_CFG interrupts
(save current IMR)

Determine the amount of data
in FIFO buffer

Terminate transfer if overflow
condition is occurred

Is buffer alocated fo
given endpoint?

Read data from FIFO buffer

yes

Isit dl the data
| to be received?
Finish transfer
| nNO

L g

<
Restore saved IMR

<

Exit

Fig 5-6. Algorithm of usb_out_service() function.

N—1 Control, Bulk, Interrupt Data Transfer. 5-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

5.2.3. Completion of a Data OUT Transfer.

For OUT transfers, both functions usb_rx_data() and usb_out_service() may
complete the transfer.

If usb_rx_data() reads al the required data from the FIFO buffer, it clears the
ep[epnuni . buf f er structure (because other OUT EOP interrupts may not occur).

If al the data are received in the EOP handler, usb_out service() checks if the
recelved datais a command:

if (ep[epnuni.buffer.position == ep[epnuni.buffer.I|ength)
{

if ((epnum == 0) && (NewQ))

{

/* W have got a new command and can wake up
fetch_command routine */

wake up_interruptibl e(& et ch_conmand_queue) ;

/* and notify Cient about it */

i f (usb_async_queue) kill _fasync(&usb_async_queue,
SIdQ POL_IN;

}

The Driver notifies the Client application about the reception of a vendor specific request
using asynchronous notification (ki | | _f async()).

N—1 Control, Bulk, Interrupt Data Transfer. 5-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

6. Isochronous Data Transfer.
(for CBI & Isochronous Driver only)

This chapter describes how the Driver controls Isochronous IN/OUT transfers. It
describes how to open Isochronous IN and OUT data streams and how to close them
correctly. Also, the chapter describes how the Driver performs per-frame monitoring of
Host-side software and device-side Client application when they are working in real-time.

6.1. Requests queue and buffer headers.

For Isochronous transfers the Driver can put I/O requests (ead() and wite()) inthe
gueue. This is used to ensure a continuous data transfer. When one data buffer is
transmitted, the Client application must provide the next one as soon as possible,
otherwise some frames will be skipped. Since uClinux is a multitasking OS, it is possible
that the Client application will not receive control in time. So queuing the requests by the
Driver alows the Client application to get some additiona time, to take control and
prepare the next buffer(s). Assuming that the request is a call to read() or write() Driver
function, the Client puts severa requests in the queue (for example wite() requests)
and then controls the size of the queue (using the USB_EP_WAI T ioctl). The following
fragment of code may be taken as an example:

wite(usb_epl file, &buffers[0], 5);
wite(usb _epl file, &uffers[1l], 5);

/* Wait until 1 request left in a queue */
ioctl (usb_epl file, USB EP WAIT, 1);

USB_EP_WAI T ioctl takes one parameter — the number of requests that should stay in the
gueue. This means that uSB_EP_WAI T will return control only if the number of requestsin
the queue is less than or equal to the number passed in this parameter.

When the Driver receives the first request, it initiates a transfer (fills the buffer structure)
and returns control. When it receives the second request and if the endpoint is still busy
(ep[n].buffer.start not NULL) it puts this request in the queue. The field
nunber _of _requests of the i so_ep structure contains the number of requests in the
queue, first_io_request containsthe index of the first request in an array of requests,
| ast _i o_request containsthe index of the last request.

if (ep[epnun].buffer.start)
{

if (++iso_ep[epnun].nunber_of _requests >= MAX | O REQUESTS)
{

i so_ep[epnunj . nunber _of requests--;
return - EBUSY;

}
if (++iso_ep[epnun].last_io_request >= MAX_| O REQUESTS)

mN—1 | sochronous Data Transfer. 6-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

i so_ep[epnun.last_io request = 0;

i so_ep[epnun . requests_queue[iso_ep[epnum .last_io request].start =
start;

i so_ep[epnuni . requests_queue[iso_ep[epnum .last_io request].length =
| engt h;

Request parameters are stored in two fields — start (address of buffer) and | ength
(length of buffer in packets), which were passed to the Driver during the read/write call.
When the Driver completes the transfer of the current buffer, it extracts the next request
from the queue (address and length of new buffer) and starts processing it immediately.
Theusb_get _request () function performs this operation.

Another important thing to note is that each buffer for an 1sochronous transfer must have
a header. The header contains the sizes of each packet that will be received or
transmitted. After completion of the transfer, the header contains the actua size of data
that were read or written for each packet. The definition of the buffer for an Isochronous
transfer may look like the following:

typedef struct ({

ui nt 32 packet | engt h[20];
ui nt 8 dat abuf[1800] ;

} audi o_buffer;

This buffer contains 20 packets of ninety bytes each. Before caling the read() or
write() function, the Client application must first fill the packet _I engt h field with the
appropriate length of packets.

6.2. Device-to-Host Data Transfer.

This subsection describes the concepts of Isochronous IN transfer, tells how the Driver
opens a data stream, continues it, etc. The following two sections describe how the Driver
monitors whether the Host software is working in real-time. It also describes how the
Driver sustains samplerate if the Host s/w misses frames.

Some remarks concerning terminology must be made. “lsochronous data IN stream”
implies an uninterruptible transmission of data to the Host. It includes an infinite (while
Device is powered) number of calsto the wite() function. Sending a buffer, passed to
each wite() isa“transfer”. Each transfer consists of limited number of packets (some
packets may be short — in order to setup the required sample rate). Data on isochronous
endpoints is generally streaming data. Therefore it can be assumed, that al transfers on
each isochronous endpoint belongs to the corresponding stream, that was started much
earlier on and never finishes.

mN—1 | sochronous Data Transfer. 6-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

To start write “to the stream”, the Client program must call the wri te() function every
time it wants to transfer a data buffer. This function initializes the ep[epnuni . buf f er
structure and places data to the FIFO buffer. When this function returns control to the
Client program, no datais sent yet — the earliest an IN token can be received is inthe next
frame, hence the first packet will only be sent in the next frame.

The mechanism of sending a data buffer with an isochronous endpoint is mostly similar
to CBI transfers, but there are some distinctions.

1. Datais sent in packets (which is also common with CBI). However isochronous
packets are guaranteed to be sent once per USB frame and they are never resent.

2. Isochronous endpoints support packet sizes of up to 1023 bytes. Which means that
the FIFO size can be less than twice the packet size. Therefore to send each
packet, a FIFO level interrupt must be used. However it is recommended to use a
FIFO buffer size greater than the packet size if possible.

3. When the Client program calls wite(), thelength parameter must contain the
number of packets that have to be written and not the size of buffer. The Driver
determines the size of buffer using the information from the buffer header.

In each frame the Driver places only one packet into the FIFO (or initia bytes of the
packet if it is larger than the FIFO buffer, and when FIFO-level interrupt occurs, the
Driver placesthe rest of the current packet into the FIFO).

When the last packet of a transfer is sent to the Host (Driver received EOP interrupt and
FIFO is empty), the Driver wakes up the usb_ep_wai t () function (if it was deeping) and
checks if there are any requests in the queue. If the queue is not empty, the Driver
extracts the next request and reinitializes ep[epnunj. buffer and iso_ep[epnuni
structures. Otherwise it frees the ep[epnuni . buf f er structure. The Client program may
track the end of transfer either by calling USB_EP_WAIT or USB_EP BUSY ioctl. Then
the Client program may call wri t e() with the next buffer.

In order to work in real-time, the Client program must add requests to the Driver’s queue
(by calling the write() function) or call wite() assoon as possible after the endpoint
becomes free, in every case before the next SOF interrupt occurs.

Two remarks are necessary in respect of sending data to the Host.

1. The Driver sends buffers to the Host in maximum size packets (while this is
possible). If some packets of the buffer are short, the Driver sends short packets —
it does not fill the FIFO with data from the next buffer.

2. Ifwite() iscaled in the current frame, data placed in FIFO buffer, can be sent
to the Host not earlier than in the next frame. This function can be caled only
after occurrences of the SOF interrupt. And delay between the SOF interrupt and
receipt of an IN token, is less than the time needed for caling wite() and
reaching the point in this function in which it starts placing data into the FIFO
buffer.

mN—1 | sochronous Data Transfer. 6-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

6.3. Monitoring the Host Software During IN

Transfers.

There is a wide class of audio devices, which steadily produce (source devices) a fixed
amount of data. Devices such as a microphone serve as an excellent example. The ADC
of a microphone produces a fixed amount of samples per some period of time. Hence, the
Device has to send al of this data during a given time period (or at least, the buffer must
be freed by the end of that period).

Assuming the example that the Device tries to send a buffer of 5 packets to the Host. The
buffer must be freed after 5 milliseconds since the ADC produces new data for the next 5
packets that must be sent during the next 5 milliseconds. If Host does not issue IN tokens
(because of problems with real-time which can arise sometimes, for example), the
transfer buffer will require more than the 5 ms allowed. Hence buffer overlapping may
occur in such cases.

The Driver is able to address this problem by moving the internal pointer in the buffer
(like it sends data to the Host), even if the Host does not issue an IN token. In effect the
Driver guarantees that the buffer will be freed in a given time, thus assuring deterministic
behavior of the system. Moreover, when the Host resumes sending the tokens, it will
receive not old data (that ought to have been sent in the previous frames), but actual data.

If the Client application wants the Driver to perform transfer monitoring, it must call the
usb_set _start_franme_nunber () function. The Driver starts analyzing transfer from a
given frame, the number of which was passed as a parameter to that function. It must be
the number of a frame in which the first data packet is to be sent to the Host. All the
transfers after this frame will then be monitored. When the last transfer is completed, data
monitoring must be stopped (in order to properly start new one, or properly continue data
transfer without monitoring).

To stop monitoring, the Client program must call the usb_set _fi nal _f rame_nunber ()
function, passing the number of the frame in which data monitoring must be stopped. It
must be in a frame following the frame in which the last data packet was sent to the Host
(or at least, not earlier) — the SOF interrupt handler of the next frame checks missed EOP
interrupts in previous frame. In such a case, the Driver can correctly handle the situation,
when the last packet was not sent to the Host.

The Driver monitors whether the Host s’w is working in real time while accepting data
from the Device, using the following mechanism. A data packet, i.e. EOP interrupt,
occurs once per USB frame. SOF interrupt also occurs once per frame (it is a start of
frame interrupt). If the Host S'w misses some frames (does not send IN tokens to Device),
EOP interrupt will not occur during those frames.

The Driver increments counter in usb_i sochr onous_t ransfer_servi ce() function:

mN—1 | sochronous Data Transfer. 6-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

i f (iso_ep[epnuni. transfer_nonitoring_started ==

{

TRUE)

i so_ep[epnuni.sent_packet watch ++;
/[* 1t nmust be 1, now */

andclear itin usb_i n_servi ce() handler, if EOP interrupt occurred:
i so_ep[epnuni.sent _packet _watch = 0;

When the next SOF interrupt occurs, usb_i sochronous_transfer_service() tests
i so_ep[epnunj. sent_packet_watch field to determine whether EOP interrupt
occurred during the previous frame:

if (iso_ep[epnun].sent_packet watch > 1)

/* Renove unsent packet from FI FO buffer */
MCF5272_WR_USB _EPCFQi mm epnum MCF5272 RD USB EPCFGi mm epnum));

/* Reset the counter */
i so_ep[epnuni.sent_packet _watch = 0;

/* Set up corresponding status for dient program*/
i so_ep[epnuny.status | = NOT_SENT_PACKET;

If a data packet was not sent to the Host, the FIFO buffer must be cleared in order to send
the next portion of data (not unsent packet!) in the next frame. In such a case, the Device
is still being synchronized with the USB clock. After that it assigns NOT_SENT_PACKET

status to the transfer, and this status will be passed to usb_t x_done() function after
completion of the buffer transfer.

As the next step, the Driver moves interna pointers on to the next packet. There are three

cases here, al of which must be handled differently. Assuming that the Client application
sends data to the Host in buffers using five packets.

Case 1. Any packet, except for the last and the next to last, was not sent to Host (assume,
it was packet 2).

ep[epnum].buffer.position iso_ep[epnum].packet_position

| Packetl | Packet2 Packet3 | Packet4 | Packet5 |
SOF1 EOP1 SOF2 - SOF3 EOP3 SOF4 EOP4 SOF5 EOP5
| | | | | | | | | |
mN—1 I sochronous Data Transfer. 6-5

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

When SOF3 interrupt occurs, usb_i sochronous_t ransfer_servi ce() determines that
packet 2 was not sent to the Host (EOP2 interrupt did not occur). It removes all data from
the FIFO buffer (there is data from packet 2 there only). In fact, packet 3 must now be
placed to the FIFO, however the token for the third packet is missed by this time by the
Device (similar situations are described in section 6.1, remark 2). Thus, data from packet
4 must be placed into the FIFO instead, and that packet will be sent to the Host in the
fourth frame.

So, the usb_i sochronous_transfer_service() function points
ep[epnuni . buf f er. posi ti on to the beginning of fourth packet:

ep[epnun] . buffer. position = iso_ep[epnun]. packet position +
i so_ep[epnuni . packet | ength[iso_ep[epnun].frame_counter];

and pointsi so_ep[epnunj . packet _posi ti on to the end of fourth packet:

i so_ep[epnunj . packet position = ep[epnuni.buffer.position +
i so_ep[epnuni. packet | ength[iso_ep[epnuni.franme_counter];

Following this, the function places packet 4 into the FIFO. If the packet is larger than the
FIFO, the copying will be continued by usb_i n_service() after raising a FIFO level
interrupt.

So, if the Host misses one frame, it does not receive the data that had to be sent in that
frame, and it does not receive data in the next frame (even if it issued IN token). In the
next frame Host may receive a few bytes of garbage — bytes that were sent before starting
to clear the FIFO. Thus, EOP3 interrupt may occur, but it is a spurious interrupt —
i so_ep[epnuni . packet _posi tion should not be modified in usb_in_service(). To
distinguish between spurious and norma EOP, the endpoint data present register must be
tested. In the case of a spurious interrupt the register contains non-zero value (the next

packet is already written to the FIFO by usb_i sochronous_t ransfer_service()), and
is otherwise cleared.

Case 2. Next to last packet was not sent to the Host (packet 4).

ep[epnum].buffer.position iso_ep[epnum].packet_position

\
| Packetl | Packet2 | Packet3 | Packet4 Packet5 |
SOF1 EOP1 SOF2 EOP2 SOF3 EOP3 SOF4 - SOF5 EOPS
| | | | | | | | | |
N—1 Isochronous Data Transfer. 6-6

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

When SOF5 interrupt occurs, usb_i sochronous_transfer_service() determines that
packet 4 was not sent to the Host (EOP4 interrupt did not occur). It removes all data from
the FIFO buffer (there is data from packet 4 there only). In fact, packet 5 must now be
placed into the FIFO, but the token for the fifth packet is missed by this time by the
Device (which is the situation like that one described in section 6.1, remark 2). Thus, the
transfer of this buffer must be completed.

The function assigns a DEFAULT vaue to the internal state field. It means, that
usb_t x_dat a() must start transferring the next buffer from the first packet.

i so_ep[epnuni.state = DEFAULT,;

If requests queue is not empty, usb_i sochr onous_t ransfer_servi ce() extracts request
from the queue and starts writing to the FIFO from the first packet of the next buffer.

Otherwise usb_i sochronous_t ransfer_servi ce() completesthe current transfer:

/* Extract next request fromthe queue */
i f (usb_get _request (epnunj)
i so_ep[epnunj . packet position =
i so_ep[epnuni . packet | ength[0];
el se

{
ep[epnun] . buffer.start = O;
ep[epnuni . buffer.length = 0;
ep[epnun] . buffer. position = 0;

i so_ep[epnuni.frame_counter = 0;

}

So, if the Host misses one frame, it does not receive data that had to be sent in that frame,
and it does not receive data in the next frame either (even if it issued IN token). Then in
the next frame the Host may receive a few bytes of garbage — bytes that were sent before
starting to clear the FIFO. Thus an EOP5 interrupt may occur, however this is a spurious
interrupt. If this interrupt occurs, it will occur immediately following the SOF5 interrupt.
Even if EOP5 occurs after the call to usb_tx_data() (wite()), thissituation will
also be handled (see case 1).

Case 3. Last packet was not sent to the Host (packet 5).

ep[epnum].buffer.position iso_ep[epnum].packet_position

v
| Packet3 | Packet4 | Packeth | Packetl | Packet2 |
SOF3 EOP3 SOF4 EOP4 SOF5 - SOF6 EOP1 SOF7 EOP2
I I I I I I I I I I
mN—1 I sochronous Data Transfer. 6-7

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

When SOF6 interrupt occurs, usb_i sochronous_t ransfer_servi ce() determines that
packet 5 of the previous buffer was not sent to the Host (EOP5 interrupt did not occur,
thus the transfer of that buffer was not completed yet). It removes all data from the FIFO
buffer (there is data from packet 5 there only).

If requests queue is not empty, usb_i sochronous_transfer_service() extracts the
request from the queue and starts writing to the FIFO from the second packet of the next
buffer. If the length of that next buffer is 1 packet only, it extracts one more request.

If requests queue is empty, usb_i sochronous_transfer_service() completes the
current transfer.

SOF6 occurred, therefore no data will be sent is this frame (similar situation to the one
described in section 6.1, remark 2). Thus, if there were no requests in a queue,
usb_t x_data() must step over the first packet in a new buffer and start placing second
packet into the FIFO. That second packet will be sent in a seventh frame.

usb_i sochronous_transfer_service() function sets appropriate status for the
usb_tx data():

i so_ep[epnun.state = SKI P_FI RST_PACKET;

So, if the Host misses severa frames, it does not receive data in these frames, and it does
not receive data in the next frame either (even if it issued IN token). In the next frame the
Host may receive a few bytes of garbage — bytes that were sent before starting to clear the
FIFO. Thus, EOP7 interrupt may occur, but it is a spurious interrupt. If this interrupt
occurs, it occurs immediately following the SOF6 interrupt. Even if EOP7 occurs after
thecal towite() (usb_tx data()), thisstuation will be handled properly as well
(seecasel).

If the Host misses only two frames and misses them one after the other, it does not
receive garbage bytes and the Device does not overstep the third packet (this takes place
in all cases).

mN—1 | sochronous Data Transfer. 6-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

6.4. Host-to-Device Data Transfer.

This subsection describes the concepts of isochronous OUT transfer. The following two
sections describe how the Driver monitors whether Host software and the device-side
Client application are working in real-time. It also describes how the Driver sustains
samplerateif the Host s/'w misses frames.

For OUT transfers, alike for IN, the following is true:

1. Isochronous packets are guaranteed to occur once per USB frame and they are
never resent.

2. lsochronous endpoints support packet sizes up to 1023 bytes. Which means that
the FIFO size can be less than twice the packet size. Thus, during packet
reception, a FIFO level interrupt can occur. Using this interrupt, the Driver reads
the initial bytes of a packet. Then (using the FIFO level interrupt again or EOP
interrupt), it reads the rest of the packet.

Data on isochronous endpoints is generally streaming data. So it can be assumed that all
such transfers on each isochronous endpoint belongs to a corresponding stream, that was
started much earlier and will never finish. When data arrives at a USB module, the FIFO
level or/and EOP interrupts occur. At this moment the Client program should allocate a
buffer for data, by calling theusb_r x_dat a() or usb_rx_frane() function.

The USB Driver operates using two different methods for isochronous OUT transfer.

1. The first is similar to CBI transfers. As for this method, the Client application
must call usb_rx_data(). The Driver does not return control until all the data is
received. But this method of reading is not synchronized with USB timing. Thus,
using this method (READ DATA), the Client program may have a problem to
determine the USB datarate.

2. The second method (READ FRAMES) is synchronized with the USB clock. In this
mode the Client program must cal the usb_r x_frame() function to get data from
a given number of frames (refer to Chapter 7 for detailed description of this
function). The Client program knows the time (it passes the frame number, i.e.
number of milliseconds, to the Driver), and the Driver fills the buffer with data
that it received from the Host during a given period. It frees up the
ep[epnuni . buf f er dructure, when a given number of frames (not an amount of
data!) is received. (the Client application must take care of buffer’s lengths — the
safest way is to anticipate al packets to be of maximum size). By means of this
the data rate can be easily determined. If the data rate does not suit the Client
program, the application may send feedback to the Host, asking for a desired
sample rate, or implement a sample rate conversion — Client dependant. The use
of this method of reading datais strongly recommended for isochronous transfers.

Regardless of the method chosen by the program, the Driver notifies the Client
application by calling it's usb_ep_rx_done() function, passing a status of reading (see
next section), and the number of read bytes to it. Following this the Driver frees up the
ep[epnuni . buf f er structure. In order to work in real-time, the Client program must call

mN—1 | sochronous Data Transfer. 6-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

usb_rx_frane() or usb_rx_data() before a FIFO level or EOP interrupt for the
following packet occurs.

If usb_rx_franme() or usb_rx_data() returns control, it does not mean that al
frames/data are received. To know when the transfer is completed, the Client application
must use the usb_rx_done() notification or the usb_ep_wait () (usb_ep_is_busy())
function.

6.5. Monitoring the Host Software During OUT

Transfers.
There is a wide class of audio devices, which steadily consume (sink devices) a fixed
amount of data (e.g. headphones). The DAC d a headphone supplies a fixed amount of
digital samples during some period of time. Therefore the Device has to receive al of this
data during a given time period (or at least, a buffer in which data is placed must be freed
by the end of that period).

Let’'s assume, that the Device must receive 5 packets of 16 bytes from the Host and then
output the received data to headphones during 5 ms. If the Host missed a frame (in some
frame did not send a packet), the Device needs more than 5 ms to receive the 5 packets,
but the data must be output to headphones exactly after a given period.

The Driver is able to address this problem. The Driver guarantees that the buffer will be
freed after a required time, even if the Host missed packets. If the Host did not send some
packets, the Client application will know about it from the buffer's header, and may
interpolate missed samples or mute the output. In any case, the program may synthesize
the required amount of samples and output them to the headphones in the required time.

If the Client application requests the Driver to perform transfer monitoring, it must call
the USB_SET_START_FRAME ioctl. The Driver starts analyzing the transfer from a given
frame, the number of which was passed as a parameter to that cal. It must be the number
of the frame in which the first data packet has to be received from the Host. All the
transfers after this frame will be monitored. When the last transfer is completed, data
monitoring must be stopped (in order to correctly start a new one, or to properly continue
data transfer without monitoring).

In order to stop monitoring, the Client program must call the USB_SET START_FRAME
ioctl, passing the number of the frame in which data monitoring must be stopped. This
must be done in the frame following the one, in which the last data packet has to be sent
by the Host (or at least, not earlier). The SOF interrupt handler of the next frame checks
missed EOP interrupt in the previous frame. In such a case, the Driver can properly
handle the situation, when last packet was not received by the Device.

mN—1 | sochronous Data Transfer. 6-1C
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The Driver monitors Host s/w activity by incrementing the counter in the
usb_i sochronous_transfer_service() function:

i f (iso_ep[epnuni. transfer_nonitoring_started ==

{

TRUE)

i so_ep[epnunj.sent _packet watch ++;
/* It must be 1, now */

The Driver clearsitintheusb_out _servi ce(), if EOP interrupt occurred:
i so_ep[epnuni.sent_packet _watch = 0;

If an EOP interrupt did not occur during the frame, the Driver sets corresponding bit in
the status (next call to usb_i sochr onous_t ransf er _servi ce() function):

if (iso_ep[epnun].sent_packet watch > 1)

/* Reset the counter */
i so_ep[epnuni.sent_packet _watch = 1;

ep[epnun] . buffer. position +=
i so_ep[epnuni . packet | ength[iso_ep[epnun].frame_counter];

i so_ep[epnunj . packet | ength[iso_ep[epnun].frame_counter] = O;

6.6. Monitoring the Device-side Application
During OUT Transfers.

The Driver aso handles the situation when the Client program isn't working in areal
time. If the FIFO level or EOP interrupt occurred but no buffer is alocated, the Driver
sets the appropriate status (in usb_out _ser vi ce() function):

if ((ep[epnuni.ttype == | SOCHRONQUS) &&
((ep[epnun].buffer.start == 0) || (iso_ep[epnuni.state
== M SS_PACKET)))
{

/* dear FIFO buffer */
MCF5272_WR _USB EPCFQE i mm epnum
MCF5272_RD USB _EPCFGi mm epnum));

if (event & MCF5272_USB EPN SR FI FO LVL)
i so_ep[epnun.state = M SS_PACKET;

if (event & MCF5272_USB EPN SR _EOP)
i so_ep[epnuni.state = DEFAULT,;

mN—1 | sochronous Data Transfer. 6-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

/* It is nothing to read anynore */
fifo data = 0;
}

If a FIFO leve interrupt occurs, the Driver clears the FIFO buffer and sets the state field
to M SS_PACKET. This done where the Client program may call the read() function
before FIFO level and EOP interrupts. Moreover, the first sample in the FIFO buffer can
be damaged after previous clearing. Thus, the whole packet must be read out and after
EOP has occurred, state field set to DEFAULT.

mN—1 I sochronous Data Transfer.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

6-12

Freescale Semiconductor, Inc.

7. Vendor Request Handling.

For most of the standard device requests, the MCF5272 USB module handles them
automatically. GET_DESCRI PTOR (string descriptors only) and SYNC_FRAME requests are
passed to the user (Driver) as a vendor specific request, and in those cases the Driver
handles them like any other vendor specific request. This chapter describes how the
Driver accepts different types of request (data I N, data oUT, and NO data stage) from the
Host and passes them to the Client application.

7.1. Accepting arequest from the Host.

The Driver responds to requests from the host on the device's Default Control Pipe.
These requests are made using control transfers. The request and the request’ s parameters
are sent to the device in the Setup packet.

VEND_REQ interrupt is used to notify the device about accepting a request. When the
Driver detects assertion of VEND_ REQ interrupt, it calls the usb_vendreq_servi ce()
function from the interrupt handler for endpoint number zero:

usb_vendreq_servi ce(
(ui nt 8) (MCF5272_RD_USB_DRR1(i nm) & OxFF),
ui nt 8) (MCF5272_RD _USB DRR1(i mm >> 8),
(ui nt 16) (MCF5272_RD_USB_DRR1(i nm) >> 16),
(ui nt 16) (MCF5272_RD_USB_DRR2(i mm) & OxFFFF),
(ui nt 16) (MCF5272_RD_USB_DRR2(i nm) >> 16));

Device request data registers are used to notify that a standard, class-specific, or vendor-
specific request has been received and to pass the request type and its parameters.
Interrupt handler for endpoint number zero reads bnRequest Type, bRequest, and
wval ue parameters from register DRR1, and wi ndex, wLengt h parameters from register
DRR2 and passesthem to usb_vendr eq_ser vi ce() .

The usb_vendreq_service() function determines the type of request (data | N
command, data OUT command, no data stage) and handles it appropriately.

The Driver notifies the Client application about the new request by sending SIGIO signal.
After that the Client shall call UsB_GET_COWAND ioctl and pass to the Driver the pointer
to DEVI CE_COMVAND structure. The definition of that structure is shown below:

/* Structure for Request */
typedef struct {
ui nt 8 bnRequest Type;
ui nt 8 bRequest ;
ui nt 16 wwval ue;
ui nt 16 w ndex;
ui nt 16 wiLengt h;
} REQUEST;

N1 Vendor Request Handling. 7-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

/* Structure for Command Buffer for dient*/

typedef struct ({

uint8 * cbuffer; /* Pointer to conmand bl ock buffer */
REQUEST request; /* Request from Host*/

} DEVI CE_COMVAND;

The REQUEST structure contains request parameters, the cbuf f er field points to the start
of the command block. The length of the command block is equa to the
request . wLengt h field. The cbuffer field is used only if a request has data stage and
the direction of data transfer is from Host to Device. Otherwise, cbuffer is not
initialized. A more detailed description of request handling is given in following
subsections.

7.2. Data OUT request handling.

The direction of data transfer is determined by bnRequest Type[D7] parameter [1]. If that
bit is cleared (bnRequest Type < 128) and thereisadata stage in arequest, it is acase of
Data out command:

i f ((bnmRequest Type < 128) && (wLength > 0))
{
/* Al'locate nenory for a new comrand */

/* There is a data stage in this request and direction of
data transfer is from Host to Device */

NewC = (DEVICE COMWAND *) kmal | oc(si zeof (DEVI CE_COMVAND) +
wLengt h,
GFP_ATOM O ;

/* Store the address where new command will be placed */
NewC -> cbuffer = (uint8 *) NewC + si zeof (DEVI CE_COWAND) ;
}

The Driver allocates memory for the request itself and for the command that will be
received in the data stage (the length of command is determined by wLengt h).

If the Driver is unable to allocate memory, it sends a STALL response to the Host by
calling the usb_vendr eq_done() function:

if (NewC == NULL)
{

usb_veHdr eq_done(MALLOC ERROR);

After alocating memory, the Driver stores request parameters into the structure NewC - >
reguest.

~—"1 Vendor Request Handling. 7-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Finaly, usb_vendreq_service() function initializes the ep[0] . buffer structure to
accept a command in the data stage. When data (command block) occurs on endpoint
number zero, theusb_out _servi ce() function will be called and receive a command.

When a command is received, the Driver sends SIGIO signal to notify the Client
application about a new command:

if ((epnum == 0) && (NewQ))
{

/* W have got a new command and can wake up fetch_command

routine */
wake up_interruptibl e(& et ch_conmand_queue) ;
/* and notify Cient about it */
if (usb_async_queue) kill _fasync(&usb _async_queue, SIAQ
POLL_IN);
}

To access a command, the Client application must call USB_GET_COVWWAND ioctl and use
cbuffer field (defined in DEVI CE_COWAND structure). The program may check if it
supports that command, it may execute it immediately or put it into the Queue for later
execution. In any case, Client shadl then call USB_COMWAND ACCEPTED oOf
USB_NOT_SUPPORTED_COMMVAND ioctl to indicate if it accepts a command or not. The
appropriate status will be sent in a status stage of the command transfer. The Client
program must return status as soon as possible — the time for sending status of accepting a
command in status stage is limited by USB 1.1 specification.

Having that satus, the Driver calls usb_vendreq_done() function to complete a
command transfer. If statusis bad, usb_vendr eq_done() sendsa STALL response.

7.3. Data IN request handling.
If the direction of data transfer is from Device to Host, the Driver allocates memory for
DEVI CE_COMVAND structure only:

/* Direction of data transfer is from Device to Host, or no data
stage */

NewC = (DEVI CE_COWAND *) kmal | oc(si zeof (DEVI CE_COMVAND) ,
GFP_ATOM O);

If the Driver is unable to alocate memory for any reason, it sends zero-length packet to
indicate end of transfer (no datawill be provided) and STALL handshake to the Host:

if (NewC == NULL)
{

if ((wiength != 0) && (bnRequest Type > 127))
/* The direction of data transfer is from Device to
Host ,

~—"1 Vendor Request Handling. 7-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

send zero-length packet to indicate no data wll be
provi ded */

MCF5272_WR_USB_EPOCTL(i nm MCF5272_RD_USB_EPOCTL(i mm)
& (~ MOF5272_USB_EPOCTL_I N DONE)) ;

usb_vendreq_done(MALLOC ERROR);

After alocating memory, the Driver stores request parameters into the structure NewC - >
request.

Then, the Driver sends SIGIO signal to notify the Client application about a new
command:

if (usb_async_queue) kill _fasync(&usb _async_queue, SIAQ
POLL_IN);

/* W have got a new command and can wake up fetch_command
routine */

wake up_interruptibl e(& et ch_conmand_queue) ;

To access acommand, the Client application must call the USB_GET_COVWAND ioctl.

The Client application must decide either it accepts a command or not. If it does not
accept a command, it must cal USB_NOT_SUPPORTED COWMVAND ioctl. As a result, the
Driver will send zero-length packet and a single STALL handshake to the Host indicating
that no datawill be provided and the command failed:

case USB_NOT_SUPPORTED COMVAND:
if (NewC

i f ((NewC- >r equest . bnRequest Type > 127) && (NewC
>request . wLength !'= 0))
MCF5272_WR_USB_EPOCTL(i nm MCF5272_RD USB_EPOCTL(i mm)
& (~ MCF5272_USB EPOCTL_I N_DONE)) ;

usb_vendr eq_done(NOT_SUPPORTED COMVAND) ;

kf ree(NewC) ;

NewC = NULL;

ret urn SUCCESS;
}

If the Client program accepts a command, it may answer with data immediately (call
write() function) from the SIGIO signa handler (endpoint number zero is free now), or
put it to the Queue for later execution. In any case, the Client application must call
write() function on endpoint O, to transfer data upon request. Also the Client program
must do it as soon as possible — the time for sending a command in data stage from
Device to Host is limited by USB 1.1 specification. Sending data will invoke the calling
theusb_i n_servi ce() function, which completes command transfer:

~—"1 Vendor Request Hardling. 7-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

it ((epnum == 0) && NewC)
{

usb_vendr eq_done(SUCCESS) ;

7.4. No data stage request handling.
If there is no data stage in a request, the Driver allocates memory for DEVI CE_COVVAND
structure only:

/* Direction of data transfer is from Device to Host, or no data
stage */

NewC = (DEVI CE_COWAND *) kmal | oc(si zeof (DEVI CE_COMVAND) ,
GFP_ATOM O ;

If the Driver is unable to alocate memory, it sends STALL response to the Host by
calling usb_vendr eq_done() function:

if (NewC == NULL)
{

usb_vendr eq_abne(MALLOC ERROR) ;

After alocating memory, the Driver stores request parameters into the structure NewC - >
request .

Then the Driver sends SIGIO signa to notify the Client application about a new
command. To access the command, the Client application must call USB_GET_COMVAND
ioctl. The Client application may accept (USB_COMMAND ACCEPTED ioctl) or reject
(USB_NOT_SUPPORTED_COVMAND ioctl) a command, execute it immediately or put it into
the Queue for later execution.

~—"1 Vendor Request Hardling. 7-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

8. Miscellaneous Operations.

This chapter describes how the Driver handles port-reset, change configuration events
and how it notifies the Client application.

8.1. Port Reset Handling.

When a reset event occurs, the Driver calls usb_bus_state _chg_service() function
from the interrupt handler for endpoint number zero, passing the RESET value as a
parameter into it. The reset event handler clears the ep[epnuni . buf f er structure for al
endpoints, sets the state of each endpoint to USB_DEVI CE_RESET, and deletes a
command if NewC variable pointsto it.

After that, the Driver sets SIGIO signa to notify the Client application about the reset
event. The Client application shall cal uUsSB GET_COWWAND ioctl, which will return
USB_DEVI CE_RESET.

A resst event may occur a any time — during execution of usb_tx_data(),
usb_rx _data(), usb_in_ service(), oOr usb out_service(). To ensure each
routine will be completed properly, RESET interrupt must be disabled before starting to
work with buffers, and restored after data copying is completed. Otherwise, the RESET
event handler may be called during data copying. In this case, it clears the pointer to an
intermediate buffer, and then the interrupted function will read/write from/to zero
address.

The reset event handler clearsthe ep[epnuni . buf f er structure:
for (i=0; i< NUMENDPA NTS; i++)

{
ep[i].buffer.start = 0;
ep[i].buffer.length = O;
ep[i].buffer.position = 0;

ep[i].state = USB_DEVI CE_RESET;

The global structure must be set up to its default value (no buffers allocated). This
prevents usb_i n_service() and usb_out_service() from copying data (a way to
terminate transfers that are in progress).

The reset event handler sets the st at e field of each endpoint to the USB_DEVI CE_RESET
value. This prevents the Client application from starting new transfers on an unconfigured
device. It does not extend to endpoint number zero — according to [1], transfers on
endpoint number zero are permitted for an unconfigured device.

N1 Miscellaneous Operations. 8-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Functionswrite() (usb_tx_ data()), read() (usb_rx_data()), usb_ep_wait(),
and usb_ep_is_busy() examine the state field if they are caled for a non zero
endpoint. If the device is reset but not yet configured, they return the USB_DEVI CE_RESET
value (read andwri t e return -1).

8.2. Change of Configuration Handling.

A DEV_CFG interrupt may occur a any time — during execution of usb_t x_dat a(),
usb_rx_data(), usb_in_service(), Or usb_out_service(). To ensure each routine
will be completed properly, that interrupt must be disabled before starting working with
buffers, and restored after data copying is finished. Otherwise the set configuration event
handler may be called during data copying, which clears the pointer to an intermediate
buffer, and then interrupted function will read/write from/to zero address.

To handle the set configuration event (dev_cfg interrupt), the Driver calls the
usb_devcfg_service() function. This function clears the ep[epnuni . buf f er structure
for al endpoints. This prevents usb_in_service() and usb_out_service() from
operating with data (a way to terminate current data transfers). Then, that function sets
ep[epnuni . st ate field to USB_CONFI GURED. S0, new transfers will be permitted for al
endpoints from then on.

Next, the Driver sets SIGIO signal to notify the Client application that the new
?2onfiguration / interface / alternate setting is set up. The Client application shall call
USB_GET_COWAND ioctl, which will return USB_CONFI GURATI ON_CHG Then
USB_GET_CURRENT_CONFI G ioctl may be called to get the number of new configuration
and aternate setting. This call takes the pointer to the following structure as parameter:

struct {

ui nt 32 cur_config_num
uint32 altsetting;

} CONFI G_STATUS;

8.3. Example of events handling in Client

application.
The following code example demonstrates how to handle the Change of Configuration,
Reset and new command receiving events in the Client application.

/* CGet event fromthe Driver */
event = ioctl (usb_dev file, USB GET_COWAND, &dc);

/* If new command has arrived - process it */
if (event & USB_NEW COVVAND)

{

/* Test if this command is a request for string descriptor
*/

~—"1 Miscellaneous Operations. 8-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

i f ((dc.request. bnRequest Type == 0x80) &&
(dc. request. bRequest == GET_DESCRI PTOR) &&

((dc.request.wWalue >> 8) == STRING)

get _string _descriptor(dc.request.wal ue & OxFF,
dc. request . W ndex,
dc. request . wLengt h);

return;

}

if (event & USB_CONFI GURATI ON_CHG
{

/* Host has changed configuration of device (or set new alt
setting nunber) */

}
if (event & USB DEVI CE_RESET)

{
/* Port RESET has occured */
/* Reset signal may be processed here */

}

~—"1 Miscellaneous Operations. 8-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9. USB Device Driver Function
Specification.

This chapter describes functions implemented in the USB device Driver.

Function arguments for each routine are described as in, inout. An in argument
means that the parameter value is an input only to the function. An i nout argument
means that a parameter is an input to the function, but the same parameter is aso an
output from the function. 1 nout parameters are typically input pointer variables in which
the caller passes the address of a pre-alocated data structure to a function. The function
stores its result within that data structure. The actual value of the i nout pointer parameter
is not changed.

9.1. usb_bus_state chg_service.

Call(s):
void usb_bus state chg_service(uint32 event);
Arguments:
Table 9-1. usb_bus_state _chg_service arguments
| event lin | Occurred event such as RESET, SUSPEND, etc.

Description: This function handles RESUME, SUSPEND, and RESET interrupts. It is
cdled from the interrupt handler for endpoint number zero
(usb_endpoi nt 0_i sr() function).

Returns No value returns.

Code example:

if (event & MCF5272_USB_EPOI SR_RESET)

{
usb_bus_state chg_servi ce(RESET) ;

N—1 USB Device Driver Function Specification. 91
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.2. usb_devcfg_service.

Call(s):
void usb_devcfg_service (void);

Arguments. No arguments.

Description: This function handles DEV_CFG interrupt. It is caled from the interrupt
handler for endpoint number zero (usb_endpoi nt 0_i sr() function) when
the Host sets or changes the configuration.

Returns No value returns.

Code example:

if (event & MCF5272_USB_EPOI SR DEV_CFG
{

usb_devcfg_service();

~—"1 USB Device Driver Function Specification. 9-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.3. usb_endpointO isr.

Call(s):
void usb_endpointO_isr (intirg, void *dev_id, struct pt_regs *regs);
Arguments:
Table 9-2. usb_endpoint0_isr arguments
irq in | Number of interrupt that occurred
dev_id in | Deviceid (not used)
regs in | Pointer to registers structure (not used)

Description: This function handles all interrupts that occur for endpoint number zero. It
is caled from the uClinux interrupt handler.

Returns No value returns.

~—"1 USB Device Driver Function Specification. 9-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.4. usb_endpoint_isr.

Call(s):
void usb_endpoint_isr (intirg, void *dev_id, struct pt_regs *regs);
Arguments:
Table 9-3. usb_endpoint_isr arguments
irq in | Number of interrupt that occurred
dev_id in | Deviceid (not used)
regs in | Pointer to registers structure (not used)

Description: This function handles all interrupts for al endpoints available in the
current configuration, except of endpoint number zero. It is called from the
uClinux interrupt handler.

Returns; No value returns.

N—1 USB Device Driver Function Specification. 9-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.5. usb_ep_is busy, USB_EP_BUSY ioctl
command.

Call(s):
uint32 usb_ep is busy(uint32 epnum);
uint32 ioctl(int fd, USB_EP BUSY)

Arguments:

Table 9-4. usb_ep_is_busy arguments

| Epnum lin | Number tested for busy endpoint.

Description: usb_ep_is_busy() is cdled from USB EP BUSY ioctl command
handler. It tests an endpoint for busy state. The endpoint remains busy
while anon-zero value is assigned to ep[epnuni . buf fer. st art field.

Returns:
Table 9-5. usb_ep_is_busy returned values
-USB DEVICE RESET Deviceisreset
-USB _EP IS BUSY Endpoint is busy
-USB EP IS FREE Endpoint isfree

Code example:

ui nt 32 ep_st at us;
int usb_ep2;

ep_status = ioctl (usb_ep2, USB EP BUSY);
if (ep_status == USB EP_ | S FREE)

/* Endpoint is free. New transfer can be started */

N—1 USB Device Driver Function Specification. 9-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.6. USB_EP_STALL ioctl command.

Call(s):
void ioctl(int fd, USB_EP_STALL)

Arguments:
No arguments.

Description: This call halts a non-zero endpoint. It causes the endpoint to return STALL
handshake when polled by either the IN or OUT token by the USB host
controller.

Returns; No value returns.

Code example:

ioctl (usb_ep2, USB EP STALL);

~—"1 USB Device Driver Function Specification. 9-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.7. usb_ep_ wait, USB_EP_WAIT ioctl command.

Call(s):
uint32 usb_ep wait (uint32 epnum);
uint32 ioctl(int fd, USB_EP_WAIT)

Arguments:

Table 9-6. usb_ep_wait arguments
| epnum lin | Number tested for busy endpoint. |

Description: this call does not return control while endpoint is busy or while the number
of requests in the queue is more than specified in the parameter (for
Isochronous transfers only). It callsusb_ep_wai t () (see Chapter 9.10).

Returns:

Table 9-7. usb_ep_wait returned values
-USB_DEVICE RESET Device is reset or was reset but Client
application was not notified about it
Positive value (CBI transfers| The number of bytestransferred

only)
-USB_EP IS FREE (ISO Endpoint isfree

transfer only)

Code example:

ui nt 16 st at us;
int usb_ep3;

i oct| (usb_ep3, USB EP WAIT, | NTERRUPT):
wite(usb ep3, (uint8 *)(&status), 2);

N—1 USB Device Driver Function Specification. 9-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.8. usb_fetch_command, USB_GET_COMMAND
loctl command.

Call(s):
uint32 usb_fetch_command(DEVICE_COMMAND * Client_item);
uint32 ioctl(int fd, USB_EP_BUSY, DEVICE_COMMAND * Client_item)

Arguments:

Table 9-8. usb_fetch_command arguments

Client_item | inout | Pointer to the DEVICE_ COMMAND structure alocated

by Client application. dient_item points to address
were Driver must place a command.

Description: usb_fetch_comand() is caled from the USB_GET_COMMAND ioctl
command handler. It copies the command to the address, contained in the
dient_item parameter. The only one field of the structure must be
initialized by the Client application before the address of that structure will
be passed to usb_f et ch_command() as aparameter — cbuf f er (pointer to
the command buffer). The Client application must alocate memory for the
DEVI CE_COWAND structure. Then dlocate memory for the command
buffer. Then, store the address of the command buffer to the cbuf f er field
of the DEVI CE_COMWAND structure. Finally, pass an address of the
DEVI CE_COMWAND structure to the usb_fet ch_command() function. This
function dleeps while there is no new command.

Returns: Return valueis amask of following bits:

Table 9-9. usb_fetch_command returned values
USB DEVICE RESET Deviceis not configured or was reset
USB NEW_COMMAND The New Command is received.
USB CONFIGURATION_CHG DEV_CFG event has occurred
(configuration changed)

Code example:

DEVI CE_COMVAND comrand;
ui nt 8 cb[COMVAND_BUFFER_LENGTH] ;

comrand...cbuffer = cb;
if (ioctl(usb_ep0, USB _GET_COMVAND, &command) & USB NEW COVIVAND)

/* Process new comrand */

~—"1 USB Device Driver Function Specification. 9-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.9. usb_fifo_init.

Call(s):
void usb_fifo_init(void);

Arguments. No arguments.

Description: This function initializes the FIFO for current configuration. It calculates
the dtart address and the length of the FIFO buffer for each endpoint and
stores these values into the corresponding configuration register.

Returns No value returns.

Code example:

ush_fifo_ init():

~—"1 USB Device Driver Function Specification. 9-¢
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.10. USB_GET CURRENT_CONFIG ioctl
command.
Call(s):

uint32 ioctl(int fd, USB_GET_CURRENT_CONFIG, CONFIG_STATUS *
cconfig);

Arguments. Pointer to CONFIG_STATUS structure

Returns: This function returns the number of the current configuration, number of
interface and number of aternate setting for every active interface.

Code example:

i octl (usb_de\'/”_fi le, USB GET_CURRENT_CONFI G ¤t_config);

~—"1 USB Device Driver Function Specification. 9-10
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.11. USB_GET FRAME_NUMBER ioctl

command.
Implemented for CBI & Isochronous Driver only.

call(s):
uint16 ioctl(int fd, USB_GET_FRAME_NUMBER):;

Arguments: no arguments.

Returns: Function returns the contents of FNR (Frame Number Register). This value is
in arange from O to 2047.

Code example:

fr_num=i oct”I' (usb_dev_file, USB _GET_FRAME NUMBER);

~—"1 USB Device Driver Function Specification. 9-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.12. usb_get desc.
Call(s):
uint8* usb_get desc(int8 config, int8 iface, int8 setting, int8 ep);
Arguments:
Table 9-10. usb_get _desc arguments
config in | Number of configuration
iface in | Number of interface
Setting in | Number of aternate settings
ep in | Endpoint number

Description: This function returns the pointer to the required descriptor. If config

Returns:

parameter is equal to —1, it returns pointer to the device descriptor. If
i face and setting are equal to —1 but confi g contains the rumber of
configuration, it returns the pointer to the configuration descriptor of the
configuration having number confi g. If ep is equal to —1, but al previous
parameters are properly initialized, the function returns a pointer to the
corresponding interface descriptor for a given configuration. If all
parameters are initialized by a non —1 value, usb_get _desc() returns a
pointer to the endpoint descriptor for the given configuration, interface and
aternate setting. The ep parameter is offset and not actually the physical
endpoint number.

Pointer to required descriptor.

Code example:

USB_CONFI G_DESC *pCf gDesc;

/* Get pointer to active Configuration descriptor */
pCf gDesc = (USB_CONFI G DESC *)usb_get desc(new config, -1, -1, -

1);

N—1

USB Device Driver Function Specification. 9-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.13. usb_get request.

call(s):

uint32 usb_get request (uint32 epnumy;

Arguments. epnum — the number of endpoint.

Description: This function extracts the request (new buffer’'s start address and length)
from the Driver’ s requests queue for the specified endpoint.

Returns:
Table 9-11. usb_get _request return values
TRUE in | Function successfully completed
FALSE in | Queueisempty

Code example:

usb_getm_r equest (epnun ;

N—1

USB Device Driver Function Specification. 9-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.14. usb_init, USB_INIT ioctl command.

Call(9):
void usb_init(DESC_INFO * descriptor_info);
void ioctl(int fd, USB_INIT, DESC_INFO * descriptor_info);

Arguments:

Table 9-12. usb_init arguments

descriptor_info | in | Pointer to the structure that contains pointer to device
descriptor and size of device descriptor

Description: usb_init() is caled from the USB INIT ioctl command handler. It
initializes the USB device Driver. It stores the initial values to global
variables, initializes interrupts, loads descriptors to configuration memory
and initializes the FIFO buffer.

Returns; No value returns.

Code example:

DESC | NFO devi ce_desc;

devi ce_desc. pDescriptor = (uint8 *) &Descriptors;
devi ce_desc. DescSi ze = usb_get desc_si ze();
devi ce_desc. pStrDescriptor = (uint8 *) &string_desc;

ioctl (usb_ep0, USB INIT, &device_desc);

~—"1 USB Device Driver Function Specification. 9-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.15. usb_in_service.

Call(s):
void usb_in_service(uint32 epnum, uint32 event);
Arguments:
Table 9-13. usb_in_service arguments
epnum in | Number of endpoint
event in | Events occurred for epnumendpoint

Description: This function handles FIFO_LVL, EOP and EOT interrupts for al IN

endpointsin the current configuration.

Returns; No value returns.

Code example:

if (event & (MCF5272_USB_EPNI SR_EOT
| MCOF5272_USB_EPNI SR_EOP
| MCOF5272_USB_EPNI SR_FI FO LVL))

/* I N Endpoi nt */
i f (MCF5272_RD _USB_EPI SR(i nm epnum
MCF5272_USB_EPNI SR DI R)
usb_in_service(epnum event);

N—1 USB Device Driver Function Specification.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

9-15

Freescale Semiconductor, Inc.

9.16. usb_isochronous_transfer_service.
Implemented for CBI & Isochronous Driver only.

Call(s):
void usb_isochronous transfer_service(void);

Arguments: No arguments.

Description: This function is used to properly start and stop an IN/OUT isochronous
data stream. It aso monitors the Host s’'w and device side Client
application, asto whether they are working in real time.

Returns; No value returns.

Code example:

if (event & MCF5272_USB_EPOI SR_SCOF)

/* Clear this interrupt bit */
MCF5272_WR USB EPOI SR(i nm MCF5272_USB EPOI SR_SOF) ;

usb_i sochronous_t ransfer_service();

~—"1 USB Device Driver Function Specification. 9-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.17. usb_isr_init.

Call(s):
void usb_isr_init(void);

Arguments: No arguments.
Description: Thisfunction initializes interrupts for the USB module.
Returns: No value returns,

Code example:

usb_i s?”_i nit();

~—"1 USB Device Driver Function Specification. 9-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.18. usb_make power_of two.

Call(s):
void usb_make power of_two(uint32 *size);
Arguments:
Table 9-14. usb_make _power_of_two arguments
| size | inout | Pointer to the value that must be power of two |

Description: This function makes a power of two of the value pointed by the size
parameter. If the pointed value is not a power of two, the function
increases it to the nearest power of two. If the result islarger than 256, 256
is assigned to the result value.

Returns: No value returns.

Code example:

/* Make sure FIFO size is a power of 2; if not, nmake it so */
for (i =0; i <nIN i++)
usb_make _power of two(& pINi]->fifo_length));

~—"1 USB Device Driver Function Specification. 9-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.19. usb_out_service.

Call(s):
void usb_out_service(uint32 epnum, uint32 event);
Arguments:
Table 9-15. usb_out_service arguments
epnum in | Number of endpoint
event in | Events occurred for epnumendpoint

Description: This function handles FIFO_LVL, EOP and EOT interrupts for all OUT

endpointsin the current configuration.

Returns; No value returns.

Code example:

if (event & (MCF5272_USB_EPNI SR_EOT
| MCOF5272_USB_EPNI SR_EOP
| MCOF5272_USB_EPNI SR_FI FO LVL))

/* I N Endpoi nt */
i f (MCF5272_RD _USB_EPI SR(i nm epnum
MCF5272_USB_EPNI SR DI R)
usb_in_servi ce(epnum event);

/* QUT Endpoint */
el se
usb_out _servi ce(epnum event);

N—1 USB Device Driver Function Specification.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

9-19

Freescale Semiconductor, Inc.

9.20. usb _rx_data.

Call(s):
uint32 usb_rx_data(uint32 epnum, uint8 * start, uint32 length);

Arguments:
Table 9-16. usb_rx_data arguments
epnum in Number of endpoint through which data will be received
from Host
start inout | Pointer to buffer where Driver will place received data
from Host
length in Number of bytesto receive

Description: This function is called from the usb_devi ce_read() (the handler of
read() call). It initializes ep[epnun].buffer structure with values st art
and | engt h. Copies the contents of the FIFO buffer for endpoint epnumto
the dedtination buffer pointed by start. If it was al expected data, it
clearsthe ep[epnuni . buf f er structure.

Returns:
Table 9-17. usb_rx_data returned values

-EIO Device is not configured or was reset but
Client application was not notified, or EP is
halted

-EASSEC Device was reconfigured but Client application
was hot notified about it

-EFAULT Parameters passed to function are not properly
initialized

-EBUSY Given endpoint is not ready to receive new
data

Number of bytes read The function completed successfully

Code example:

usb_rx_data(M NOR(GET_RDEV(file)), (uint8 *) buffer, (uint32) |ength)

~—"1 USB Device Driver Function Specification. 9-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.21. USB_SEND_ZLP ioctl command.

Call(9):
void ioctl(int fd, USB_SET _SEND_ZLP);
Arguments: No arguments.
Description: This command sets sendZLP variable to TRUE for the appropriate endpoint.

Returns No value returns.

Code example:

i oct| (ush_ep0, USB_SET SEND ZLP):

~—"1 USB Device Driver Function Specification. 9-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.22. USB_SET FINAL FRAME ioctl command.

Implemented for CBI & Isochronous Driver only.

Call(s):
voidioctl(int fd, USB_SET_FINAL_FRAME, uint32 frame_num);

Arguments. frame_num - Number of framein which stream will be closed.

Description:
This function sets a frame, in which a data stream will be closed. When the data
stream is closed, the Driver does not monitor the Host s/w activity and device-side
application. It also permits to properly start (synchronously with the Host) a new
data stream.

Returns; No value returns.

Code example:

i octl (usb_de\'/”_fi l e, USB SET_FI NAL_FRAME, st _frane);

~—"1 USB Device Driver Function Specification. 9-22
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.23. USB_SET START FRAME ioctl

command.
Implemented for CBI & Isochronous Driver only.

Call(s):
void ioctl(int fd, USB_SET _START_FRAME, uint32 frame_num);

Arguments:. frame_num - Number of frame in which stream will be started.

Description:
This function sets a frame, in which a data stream will be started. It permits data

transfer to start synchronoudy with the Host.

Returns
No value returns.

Code example:

i octl (usb_de\'/”_fi l e, USB SET_START FRAME, st _frane);

~—"1 USB Device Driver Function Specification. 9-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.24. usb_sort_ep_array.

Call(s):
void ush_sort_ep array(USB_EP _STATE *list[], int n);
Arguments:
Table 9-18. usb_sort_ep_array arguments
List inout | Pointer to the array of USB_EP_STATE elements
N in Number of elementsin the array pointed by 1 i st

Description: This function sorts element in the array pointed by Iist in descending
order.

Returns No value returns.

Code example:

/* Sort the endpoints by FIFO Il ength (decending) */
usb_sort_ep_array(plN, nIN);

~—"1 USB Device Driver Function Specification. 9-24
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.25. usb_tx data.

Call(s):
uint32 usb_tx_data(uint32 epnum, uint8 * start, uint32 length);

Arguments:
Table 9-19. usb_tx_data arguments
epnum in Number of endpoint through which data will be
transferred to Host
start inout | Pointer to buffer from where Driver will place data to
FIFO buffer
length in Number of bytes to send

Description: This function is called from the usb_device wite() (the handler of
wite() cal). It initializes ep[epnuni. buffer structure with values
start and | engt h. Copies the contents of the source buffer to the FIFO

buffer.
Returns:
Table 9-20. usb_tx_data returned values

-EIO Device is not configured or was reset but
Client application was not notified, or EP is
halted

-EASSEC Device was reconfigured but Client application
was not notified

-EFAULT Parameters passed to function are not properly
initialized

-EBUSY Given endpoint is not ready to send new data

Number of bytes written The function completed successfully

Code example:

usb_tx data(M NOR(GET_RDEV(file)), (uint8 *) buf f er, (uint32)
| engt h);

~—"1 USB Device Driver Function Specification. 9-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.26. usb_vendreq_done.

Call(s):
void usb_vendreq_done(uint32 error);
Arguments:
Table 9-21. usb_vendreq_done arguments
| error |in | Statusof command completion |

Description: This function sets EPOCTL[CMD_OVER] hit if error is zero and
EPOCTL[CMD_OVER], EPOCTL[CMD_ERR] bits if error contans a
non-zero value.

Returns No value returns.

Code example:

voi d
usb_ep _rx_done(ui nt 32 status)

{

usb_vendr eq_done(st at us);

~—"1 USB Device Driver Function Specification. 9-26
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.27. usb_vendreqg_service.

Call(s):
void usb vendreq service(uint8 bmRequestType, uint8 bRequest, uint16

wVaue,
uintl6 windex, uint16 wLength);

Arguments:

Table 9-22. usb_vendreq_service arguments

bmRequestType | in

bRequest in Standard request parameters.

wVaue in For more information refer to USB 1.1 specification
wlndex in (Chapter 9.3)

wL ength in

Description: This function receives a request from the Host and alocates memory for
the request.

Returns; No value returns.

Code example:

usb_vendreq_servi ce(
(ui nt8)(MCF5272_RD USB DRRL(i mm & OxFF),
(uint8)(MCF5272_RD USB DRR1(imm >> 8),
(uint16) (MCF5272_RD USB DRR1(imm >> 16),
(uint16) (MCF5272_RD _USB _DRR2(i mm & OxFFFF),
(uint16) (MCF5272_RD USB DRR2(im) >> 16));

~—"1 USB Device Driver Function Specification. 9-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

9.28. Interface functions.

init_usb / init_module

Description: The uClinux kernel invokes these functions when the Driver is loaded into
memory. These functions are the entry points of the Driver. Their task isto
register character device within uClinux and to setup interrupt handlers.
i ni t_nodul e() is used when the Driver acts like a module, i nit_usb()
is used when the Driver is compiled with the kernel [3].

cleanup_module
Description: uClinux kernel invokes this function just before the module is unloaded [3].

usb_device ioctl
Description: Thisfunction handlesi oct | () calls[3].

usb_device fasync
Description: Thisfunction handles changing status of asynchronous notification [3].

usb_device_open
Description: This function handles open() calls [3]. It alows to open each endpoint
only ones.

usb_device release
Description: Thisfunction handlescl ose() calls[3].

usb_device read
Description: This function handles read() calls [3]. It calls the usb_rx_data()
routine.

usb_device write
Description: This function handles wite() cals [3]. It calls the usb_tx_data()
routine.

~—"1 USB Device Driver Function Specification. 9-28
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10. Appendix 1: File Transfer Application.

10.1. Introduction.

This appendix describes a Device-side USB File Transfer Application to be used only for
demonstration purposes. The program illustrates some useful techniques (see section
10.2) and gives an example of working with the USB Device Driver.

10.1.1. Important Notes.
The Client application (descriptors and program) is designed to mostly support the CBI
Transport specification. From this the following isimplied:
a) Endpoints are used according the CBI Transport specification (see section 10.2.1).
b) Descriptors are defined according the CBI Transport specification.
¢) TheInterrupt data block is defined according the CBI Transport specification.
d) The Host uses 'Accept Device-Specific Command' (ADSC) request for a Control
endpoint (endpoint number 0), to send a command block to the Device, as defined
by the CBI Transport specification.

However the Client application does not support any standard command set (such as UFI,
RBC, etc.) and so a smple UFTP command set was designed and used to achieve this
goa. The UFTP command set represents a very close fit for the file transport task. It
works on afile level and not on a level of blocks of data. Hence, the Client application
does not need to construct a file from blocks (numbers of which it receives from the
Host) of data, as in the case with UFI, RBC and other standard command sets. The
program gets the name of a file using the UFTP protocol and requests the OS to do the
routine work (access required sector, block, etc.) to access the required data. In this way
the Client application is smplified, making for transparent communication with the
Driver.

10.1.2. Capabilities of File Transfer Application.

Some useful techniques are highlighted below, which the program uses during file
transfers:

Simultaneous data transfer and data processing. The Client application processes
data (reads/writes data from/to the file) during transfer (reception) of the previous
(next) portion of data. It uses two intermediate buffers — the first to transfer
(receive) the data, and the second — to read/write the next portion of data. When
the first buffer becomes empty (full), the buffers switch over.

10.1.3. Related Files.
The following files are relevant to the Client Program:
cbi . h — Client application types and global constant definitions;
cbi . ¢ —main program, executes commands from the Host, hold files;

N—1 Appendix 1: File Transfer Application. 10-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

cbi _desc.c — contains Device, configuration, interface, endpoint, and string
descriptors.

uf t p_def . h — operation code and status values definitions for UFTP protocol.

The Client application requires the following files:
usb. h — Driver’ sinterface definition (the same as USB Driver uses).

descriptors. h — types definition for device, configuration, interface, endpoint,
and string descriptors (the same as USB Driver uses).

10.2. UFTP Protocol Description.

This section describes USB usage by the UFTP protocol and specifies the structure of
commands that the Host sends to the Device.

10.2.1. USB Usage.

The UFTP Device and Host, support USB requests and use the USB for the transport of
command blocks, data, and status information, as defined by the CBI Transport
specification, but including the following restrictions:

A UFTP Device implements an Interrupt endpoint and uses that interrupt endpoint
to indicate a possibility of command execution.

The Hogt uses a Control endpoint (endpoint number 0) to send a command block
to the Device.

A UFTP Device implements a Bulk In endpoint, to transfer data to the Host; and a
Bulk Out endpoint to receive data from the Host.

10.2.2. Status Values.
The following status values are defined by the UFTP protocol:

Table 10.1 Status values defined by UFTP protocol.

Status Value Description
UFTP_SUCCESS 0000h | The command can be completed
successfully
UFTP_FILE DOES NOT_EXIST 0011h | Required file does not exist on Device
UFTP_MEMORY_ALLOCATION_FAIL 0021h | Not enough memory for intermediate
buffers allocation
UFTP_NOT_ENOUGH_SPACE FOR FILE | 0041h | Not enough memory for anew file

~—"1 Appendix 1: File Transfer Application. 10-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.2.3. UFTP Command Descriptions.

Commands that are used in the UFTP protocol do not have a fixed-length structure. Only
the first field is common for all commands — Operation Code. The rest of the fields
depend upon the command.

10.2.3.1. UFTP_READ command: 01h.
The Host sends the UFTP_READ command to get arequired file from the Device.

Table 10.2 UFTP_READ command.

Byte Description of value
0 Operation code (01h)
Length of file name

1
2
3 Name of file

(not NULL-terminated string)

[ength_of file nane - 1

The command specifies a file, which the Device must send to the Host. It has two
parameters — length of file name and name of file. The length of file name field is used to
properly fetch the name of the file from the command. The name of the file is not a
NULL-terminated string.

UFTP_READ datac Upon receiving this command, the Device sends status to the Host,
and if that status is UFTP_SUCCESS, it sends the contents of the given file to the Host
(on Bulk In endpoint).

10.2.3.2. UFTP_WRITE command: 02h.
The Host sends the UFTP_READ command to send arequired file to the Device.

Table 10.3 UFTP_WRITE command

Byte Description of value
Operation code (02h)

(LSB)

Length of file

(MSB)

Length of file name

OO AW NF O

Name of file
length_of file nane - 1 (not NULL-terminated string)

~—"1 Appendix 1: File Transfer Application. 10-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The command specifies a file, which the Device must receive from the Host. It has three
parameters — length of file, length of file name and name of file. The length of file name
field is used to properly fetch the name of the file from the command. The name of the
fileisnot aNULL-terminated string.

UFTP_WRITE data: Upon receiving this command, the Device sends status to the Host,

and if that status is UFTP_SUCCESS, it receives the data from the
Host (on Bulk Out endpoint).

10.2.3.3. UFTP_GET_FILE_INFO command: 03h.
The Host sendsthe UFTP_GET_FILE _INFO command to get the size of agivenfile.

Table 10.4 UFTP_GET_FILE_INFO command.

Byte Description of value
0 Operation code (03h)
1 Length of file name
2
3 Name of file
(not NULL-terminated string)
length_of file name - 1

The command specifies a file, the size of which the Device must send to the Host. It has
two parameters — length of file name and name of file. The length of the file name field is
used to properly fetch the name of the file from the command. The name of the file is not
aNULL-terminated string.

UFTP_GET_FILE INFO data Upon receiving this command, the Device sends
datus to the Host and if that datus is
UFTP_SUCCESS, the Device sends the length of
the given file to the Host (L SB first).

10.2.3.4. UFTP_GET_DIR command: 04h.
The Host sends the UFTP_GET_DIR command to receive the names of all files held on a
given Device.

Table 10.5 UFTP_GET_DIR command.

Byte Description of value
0 Operation code (04h)

The command has no parameters.

~—"11 Appendix 1: File Transfer Application. 10-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

UFTP_GET_DIR data Upon receiving this command, the Device sends status to
the Host and if that status is UFTP_SUCCESS, it sends two
buffers to the Host.

The first buffer contains information about the directory — the length of the buffer that
holds the list of files (length of second buffer), and the number of files.

Table 10.6 Buffer containing information about directory.

Byte Description of value
0 (LSB)
1 Length of buffer that contains list of files
2
3 (MSB)
4 (LSB)
5 Number of files
6
7 (MSB)

The second buffer contains alist of files.

Table 10.7 Buffer containing list of files

Byte Description of value
0 Length of filel name
1 Name of filel

(not NULL-terminated string)

length of filel nane - 1
length of filel nane Length of file2 name
length_of filel name + 1 Name of file2

(not NULL-terminated string)

length_of file2 nane - 1

10.2.3.5. UFTP_SET TRANSFER_LENGTH command: 05h.
The Host sends the UFTP_SET_TRANSFER LENGTH command to set the length of
transfer.

Table 10.8 UFTP_SET_TRANSFER_LENGTH command.

Byte Description of value
0 Operation code (05h)
1 (LSB)
2 Length of transfer
3
4 (MSB)
~—"11 Appendix 1: File Transfer Application. 10-5

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Upon receiving this command, the Device sends UFTP_SUCCESS status to the Host.

The length of the transfer is used during execution of UFTP_READ and UFTP_WRITE
commands. Files are sent between the Host and the Device by blocks. The length of each
block is equa to the length of transfer. Hence, a given command sets up the length of the
block over which the transferred file will be divided up.

10.2.3.6. UFTP_DELETE command: 06h.
The Host sends the UFTP_DEL ETE command to delete arequired file on the Device.

Table 10.9 UFTP_DELETE command

Byte Description of value
0 Operation code (06h)
1 Length of file name
2
3 Name of file
- (not NULL-terminated string)
length_of _file_nanme - 1

Upon receiving this command, the Device sends either
UFTP_FILE DOES NOT_EXIST or UFTP_SUCCESS status to the Host.

The command specifies a file, which must be deleted by the Device. It has two
parameters — length of file name and name of file. The length of file name field is used to
properly fetch the name of the file from the command. The name of the file is not a
NULL-terminated string.

~—"1 Appendix 1: File Transfer Application. 10-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.3. Implementation of File Transfer
Application.

This section explains how the Client application executes commands from the Host.

The Client Application works with files that are located in /var (defined in cbi . h file)
directory of the uClinux file system.

10.3.1. Initializing the Driver.

To start working with the Driver, the Client application must first initialize it. Before
caling the USB_I NI T ioctl (which initializes the Driver), the Client application needs to
fill the DESC_I NFO structure (defined in usb. h file):

extern USB DEVI CE_DESC Descri ptors;
extern USB_STRI NG DESC string_desc;

i nt usl.)“_dev_fi | e;
int usb_epl file;

DESC | NFO devi ce_desc;

usb_dev file = open(USB_EPO FI LE NAME, O RDWR);
if (usb_dev file < Q)

{

printf ("Can't open devi ce file: o%s\n",
USB_EPO_FI LE_NAME) ;

exit(-1);

}
usb_epl file = open(USB_EP1_FI LE NAME, O WRONLY);
if (usb_epl file < 0)

{

printf ("Can't open devi ce file: o%s\n",
USB_EP1_FI LE_NAME) ;

cl ose(usb_dev_file);

exit(-1);

Thevariable Descri pt or s isallocated in thecbi _desc. c file.

Then the Client enables asynchronous notification and sets up a handler for the SIGIO
signal (accept _event () function):

act.sa handl er = &accept _event;
act.sa_mask = 0;

act.sa flags = 0;
sigaction(SIA O &act, NULL);

~—"11 Appendix 1: File Transfer Application. 10-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

fentl (usb_dev file, F SETOMN, getpid());
oflags = fcntl (usb_dev_file, F_GETFL);
fcntl (usb_dev_file, F_SETFL, oflags | FASYNO);

The Client application then initializes the Driver:

devi ce_desc. pDescriptor = (uint8 *) &Descriptors;
devi ce_desc. DescSi ze = usb_get _desc_si ze();

ioctl(usb _dev file, USB INIT, (&device desc);

Thevariable Descri pt or s isdefined inthecbi _desc. c file.

10.3.2. Program Execution.
The Client program consists of two important parts. usb_accept _command() function
and the mai n() function.

accept _event () is caled every time the Driver receives a command from the Host or
when some event occurs (reset, configuration change etc.). If it is a request for a string
descriptor, the Client executes that request immediately (refer to Chapter 3.3.7). If the
Client program does not support the received command, it returns the cal
USB_NOT_SUPPORTED COMMVAND ioctl. Otherwise, the Client application puts a command
into the Queue and returns the call USB_COWAND ACCEPTED ioctl. After initializing the
Driver, mai n() initiaizes its command buffer (the buffer where the command will be
placed):

ui nt 8 cb[COMVAND_BUFFER LENGTH] ;
DEVI CE_COMVAND comrand;

[* Initiali zé”com*rand buffer */
conmand. cbuffer = cb;

It then enters an infinite loop which fetches the next command from the queue by calling
thef et ch_conmand() function:

if (usb_fetch_conmmand(&omrand) == USB_COMVAND SUCCESS)

swi tch (command_bl ock[0])

{

Finally, the mai n() function finds the appropriate handler for the received command and
calsit, passing the address of the buffer that contains the command:

switch (conmand. cbuffer[0])

{
case UFTP_READ:

~—"1 Appendix 1: File Transfer Application. 10-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

#i f def DEBUG
printf("Comand UFTP_READ has been recogni zed by
dient\n");
#endi f
do_command_r ead(conmmand. bl ock) ;
br eak;

case UFTP_WR TE:

The execution of each command is described in a separate subsection.

10.3.2.1. UFTP_READ command execution.

In the first ingtance, the UFTP_READ command handler tries to find a given file. If the
file does not exigt, it reports an error to the Host on an interrupt endpoint. Otherwise, it
allocates intermediate buffers.

To transfer a file from Device to Host, two intermediate buffers are used (detailed
description of their purpose is described below). In order to increase the execution speed
of the program during file transfers, these buffers must both be 4-byte aligned. The first
buffer is always 4byte aligned, regardiess of whether it was dynamically alocated (in
this case mal | oc() will return a 4-byte aligned address) or allocated in SRAM (a start
address of SRAM module is always 4byte aligned). To find the nearest 4-byte aligned
address for the second buffer, some calculations are necessary.

The handler calculates the remainder from the division of the transfer length (the length
of each intermediate buffer) by 4. Then the function finds the number of bytes which
need to be padded:

padded_bytes = (transfer_|length & 0x3);

i f (padded_bytes != 0)
padded bytes = 4 - padded_byt es;

Thus, the address of the second intermediate buffer will be equa to the sum of the
transfer length and the number of padded bytes added to the start address of the first
buffer:

buffer2 = bufferl + transfer_ | ength + padded_byt es;

However, at first the first intermediate buffer (pointed by buf f er 1) must be allocated:

bufferl = (uint8 *) nmalloc(2*transfer_| ength + padded _bytes);

~—"1 Appendix 1: File Transfer Application. 10-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

As the next step, the handler sends the status to the Host on an interrupt endpoint. If there
is enough memory for the buffers, the function starts to send data to the Host.

The buf ptr variable is used to point to the current intermediate buffer. The si ze
variable contains the number of bytes that were copied from the file to the current
intermediate buffer (fread() function returns this amount). It is set then up to
transfer_| engt h in order to enter the loop.

A fileis sent to the Host according the following a gorithm:

The handler reads the required portion of the data from the file, into the current
temporary buffer, then waits while the required endpoint is busy. Then it starts
transferring data to the Host by calling the wri t e() function. This function places in the
FIFO buffer only the initia 256 bytes and then returns control. The rest of the data (from
this transfer, not the file) will be sent using an EOP interrupt handler [4]. When wri t e()
returns control, a new portion of data can be copied from the file, but now into the second
intermediate buffer, thus data processing (copying of the next portion of data) and
transferring data from the first buffer is occurring in paralel. A more detailed description
of thisis provided below.

The handler attempts to read transfer_| engt h bytes from the file into the intermediate
buffer pointed to by the buf pt r variable:

size = fread(bufptr, 1, transfer _length, file_desc);

The function returns the number of bytes read from the file. If the number of bytes read is

lessthan transfer | ength it indicates that the end of file is reached, and the function
must complete the operation.

Before transferring the data to the Host, the program must wait until the required
endpoint (BULK IN) becomes free:

if (usb_ep wait(usb_epl file) < 0)

free(bufferl);
fclose(file_desc);
return;

}

usb_ep_wai t () isamacro as defined below:
#define usb_ep wait(ep_file) (ioctl(ep_file, USB EP WAIT, 0))

which returns the number of bytes transferred during the last transfer or —1 in case of
error.

~—"1 Appendix 1: File Transfer Application. 10-1C
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The program then initiates a transfer:
if (wite(usb_epl file, bufptr, size) < 0)

free(bufferl);
fclose(file_desc);
return;

Finally, the buffers switch over,

if (bufptr == bufferl)
buf ptr = buffer2;
el se
buf ptr = bufferl,

The same operations but with new buffers will be performed on a new iteration of the
loop (if the end of file was not reached).

The values returned from some functions are tested for negative values. If a port reset
occurs on a device or if there was an error, the Driver informs the Client application in
this manner. It aso sends a SIGIO signa, invoking execution of accept _comand() .
The program finishes all operations and returns control to the mai n() function in this
case.

10.3.2.2. UFTP_WRITE command execution.

In the first instance, the UFTP_WRITE command handler tries to find a given file. If the
file does not exist it finds the first free position in the array of pointers to the file. If there
is no free position in the array, it reports an error to the Host, on an interrupt endpoint. It
then begins to allocate intermediate buffers.

To transfer a file from Host to Device, two intermediate buffers are used (a detailed
description of their purpose is given below). In order to improve the execution speed of
the program during file transfers, these buffers must both be 4-byte aligned. The first
buffer is always 4-byte aligned regardless of whether it was dynamically allocated (in this
case mal | oc() will return a4-byte aligned address) or allocated in SRAM (astart address
of an SRAM module is aways 4-byte aligned). To find the nearest 4-byte aligned address
for the second buffer, some calculations are necessary.

The handler calculates the remainder from the division of the transfer length (the length
of each intermediate buffer) by 4. Then the function finds the number of bytes to be
padded:

padded bytes = (transfer length & 0x3);

~—"11 Appendix 1: File Transfer Application. 10-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

i f (padded_bytes != 0)
padded bytes = 4 - padded_byt es;

Thus, the address of the second intermediate buffer will be equa to the sum of the
transfer length and the number of padded bytes added to the start address of the first
buffer:

buffer2 = bufferl + transfer_|ength + padded_byt es;

However the first intermediate buffer (pointed by buf f er 1) must first be alocated. If the
length of file is less than or equal to the length of the transfer, only one write operation
from temporary buffer to file will be performed and the second buffer will not be used. In
this case, memory must be alocated for the first intermediate buffer only:

if ((int32) (flength <= transfer_length))
bufferl = (uint8 *) malloc(fl ength);
el se
bufferl = (uint8 *) malloc(2 * transfer_length +
padded_byt es);

The function sends status to the Hogt. If the status is UFTP_SUCCESS the Host can start
to transfer thefile.

If afilewith the given name aready exists on the Device, it will be overwritten.
A fileisreceived from the Host according the following algorithm:

The program waits while the required endpoint is busy, it then starts receiving data from
the Host by calling the read() function. This function reads data from the FIFO buffer
into the current buffer. If al the expected data for this transfer (not file) was not received,
the rest of the data will be recelved usng EOP interrupt [4]. When read() returns
control, the writing of data from the second buffer (previously received data) to the file
can be started. Thus, receiving the data into the current buffer and writing data from the
previous buffer into the file is occurring simultaneously. A more detailed description of
thisis provided below.

The function enters the loop, waiting until the required (BULK OUT) endpoint becomes
free. It then callsthe r ead() function to start receiving the file:

if ((int32)(flength - pos - size) >= transfer_| ength)
size = transfer_|ength;

el se
size = flength - pos - size;

if (read(usb_ep2 file, bufptr, size) < 0)

free(bufferl);

~—"1 Appendix 1: File Transfer Application. 10-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

fclose(file_desc);
unl i nk(t npnane) ;
return;

}

buf pt r points to the current intermediate buffer, si ze contains the amount of bytes to be
received.

Then, the buffers swap over:

/* Change pointer to previous buffer. */
if (bufptr == bufferl)

buf ptr = buffer?2;
el se

buf ptr = bufferl;

Now, the EOP interrupt handler copies data to the first buffer, and data from the second
buffer (pointed now by buf pt r) can be written to file:

/* Wite data fromprevious buffer into the file. */
fwite(bufptr, 1, buf_size, file_desc);

The buf _si ze variable contains the number of bytes written to the previous buffer, while
si ze —isthe number of bytesto be written into the current buffer.

The same operations but with new buffers will be performed on a new iteration of the
loop (if al the expected data was not received).

Vaues from some functions are tested for negative values. If a port reset occurs on a
Device or if there was an error, the Driver informs the Client application about it in this
manner. It also sends a SIGIO signal, invoking the execution of accept _command(). The
program finishes all operations and returns control to the mai n() functionin this case.

10.3.2.3. UFTP_GET_FILE_INFO command execution.

To begin with, the UFTP_GET_FILE_INFO command handler tries to find a given file,
following which it sends status to the Host. If the status sent was UFTP_SUCCESS, the
program sorts bytes of file length in reversed order (PC Host will read it as DWORD). It
then sends the value obtained to the Host on aBULK IN endpoint.

10.3.2.4. UFTP_GET_DIR command execution.

Execution of the UFTP_GET_DIR command handler starts from counting the length of
the buffer (t ot al _f name_| en variable is used), needed to hold the name of files and size
of name of files. In addition, it counts the number of files(fi | es_count variable).

~—"1 Appendix 1: File Transfer Application. 10-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

After this is completed, the function reorders the values with reversed byte order (each
value independently) for the PC Host (it reads them as DWORD), and stores them into
thei nf o_buf f er . Having the size, memory can be alocated dynamically for the buffer:

/* Alocate buffer to store length of file name and file nane for each
fileinit */
dir _buffer = (uint8 *) malloc(total fname_len);

The program then sends status to the Host on an interrupt endpoint. If the status was
UFTP_SUCCESS, the handler starts to fill the directory buffer with the length of file
name and name of file for each file. It then sends i nf o_buf f er to the Host on a BULK
IN endpoint.

If the buffer that contains the list of filesis not empty, the program sends it to the Host on
aBULK IN endpoint.

As a further remark concerning the execution of the UFTP_GET_DIR command: the
Host has ro way to obtain the list of files from the Device, if the Device is not able to
alocate the buffer. Changing the length of transfer has no affect upon this. The situation
may be considered as a limitation, but it is done consciously in order not to over
complicate the Client application. The main purpose is after all, demonstration only.

10.3.2.5. UFTP_SET_TRANSFER_LENGTH command

execution.
The UFTP_SET TRANSFER LENGTH command handler sends UFTP_SUCCESS
status to the Host indicating that it started to process the command. Then it fetches a new
length of transfer from the command buffer and assigns it to the transfer_I ength
variable. Thisvariable is used while transferring a file between Host and Device.

10.3.2.6. UFTP_DELETE command execution.

Once execution of this command starts, the UFTP_DELETE command handler tries to
find a given file. If the file exigts, the program deletes it. Then, the function sends status
to the Host.

10.3.2.7. Request for string descriptor handling.
This section provides a memory layout for string descriptors and describes how the Client
application sends a given descriptor to the Host.

10.3.2.7.1. Memory layout for string descriptors.

According to the documentation of the USB module, the request processor does not
handle requests for string descriptors automatically. GET_DESCRI PTOR requests for string
descriptors are passed as a vendor specific request. The string descriptors must be stored

~—"11 Appendix 1: File Transfer Application. 10-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

in externa memory and not in the configuration RAM. The memory layout for string
descriptorsis shown in Fig 10-1 below.

String descriptors are stored in an array of descriptors. An element of the array is a
structure (defined in cbi . h and descri pt or s. h files):

/* Definitions for USB String Descriptors */
#defi ne NUM_STRI NG_DESC 4
#defi ne NUM_LANGUAGES 2

typedef struct {
ui nt 8 bLengt h;
ui nt 8 bDescri pt or Type;
uint8 bString[256];
} STR_DESC;

typedef STR DESC USB_STRI NG DESC [NUM STRI NG DESC * NUM LANGUAGES + 1];

String_desC \UM_STRING DESC ~ NUM_STRING_DESC

¢ / —~ N —~ N
6 18 54 | 26 | 88 18 | 54 | 26 88 | bLength
3 3 3 3 3 3 3 3 3 | bDescriptorType
Ox09 | s S S S S S S S
AVlangueage® 551 ¢ | v | ot |t |t |t | ot | ot
407 language 1D | OXO7 | T r r r r r r r
0ox04 | | | | | | | | bStri ng[256]
n n n n n n n n
g g g g g g g g
1 2 3 4 1 2 3 4
Strings V_/ritten onlanguage Strings written on language
having 0x409 1D having 0x407 1D
- _/
~

NUM_LANGUAGES

Fig 10-1. Memory layout for string descriptors

The Client application alocates the USB _STRING DESC [NUM STRI NG DESC*
NUM LANGUAGES + 1] array. The first element in the array (an element with index zero)
is a string descriptor that contains an array of two-byte LANGID codes supported by the
device (0x409 and 0x407 IDs). The next NUM STRI NG DESC descriptors are string
descriptors written using a language with 0x409 ID; the following are NUM STRI NG_DESC
descriptors - with 0x407 language I1D. The position of string descriptors must correspond
to the ader of language IDs that are contained in a string descriptor, having index zero.

~—"11 Appendix 1: File Transfer Application. 10-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Thus, if the first language ID is 0x409 then the first four (NUM_STRI NG _DESC) descriptors
(having indices 1, 2, 3, and 4 in the array) must be written using a language having ID
0x409. The next four descriptors must be written using a language having ID 0x407.
Language | Ds do not need to be sorted. Bytes in each Language ID are reverse ordered.

Thevariable st ri ng_desc pointsto the array containing string descriptors.

10.3.2.7.2. Sending the string descriptor to the Host.
When the usb_accept _conmand() function is called, it tests the request. If it is a request
for astring descriptor, the function callstheget _stri ng_descri ptor () routine:

status = get_string_descriptor(dc -> request.wal ue & OxFF,
dc -> request.w ndex,
dc ->request.wLength);

Theget _string_descriptor () function accepts three parameters.

desc_i ndex - index of string descriptor;
| anguagel D—language ID;
| engt h — number of bytesto send.

According to the USB 1.1 specification, the Driver must send a short or zero length
packet to indicate the end of transfer if the descriptor is shorter than the I ength
parameter, or only theinitial bytes of the descriptor, if it islonger.

This function finds the array index (variable i is used) of the desired language ID for a
non-zero indexed string (language 1D 0x409 has index zero in a string with index zero,
language ID 0x407 has index 1 in that string). It reorders bytes in the | anguagel D
parameter, to prepare it for comparison, since IDs in the array are stored with reversed
byte order.

If the string descriptor with the required index or given language ID is not supported, the
function calls the NOT_SUPPORTED COWMVAND ioctl.

Otherwise it starts to prepare data for the Host. If the desc_i ndex parameter is zero, the
Driver returns a string descriptor that contains an array of two-byte LANGID codes,
supported by the Device regardless of the | anguagel D parameter. This string descriptor
has index zero in the array. Otherwise, the string with the appropriate index and language
ID will be found.

The get _string_descriptor() function points the stdesc variable to the required
descriptor:

i f (desc_index)

{

~—"1 Appendix 1: File Transfer Application. 10-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

i *= NUM_STRI NG_DESC,
i += desc_i ndex;
st desc = (uint8 *)
& (*usb_string descriptor)[i]);
}

el se
st desc = (uint8 *)
& (*usb_string_descriptor)[0]);

and gets the size of that descriptor:

size = *stdesc;

If the descriptor islonger than the number of requested bytes, it modifiesthe si ze:

if (size >= length)
size = length;
el se
ioctl (usb _dev file, USB SET_SEND ZLP);

If the Host requested more bytes than the length of the descriptor, the situation may arise
where the Driver must indicate an end of transfer by sending a zero length packet (this
happens when the length of the descriptor is a multiple of the maximum size of packet,
for endpoint number zero). Thus, the USB_SET_SEND ZLP ioctl must be caled in such a
case on a EPO device file (a string will be sent on endpoint number zero). It does not
mean that a zero length packet will necessarily be sent. If the last packet is short (but not
zero length), a zero length packet will not be sent.

Then, the get _string_descriptor() function initiates the transfer of the descriptor to
the Hogt:

wite(usb_dev file, stdesc, size);

10.4. USB File Transfer Application Function

Specification.
This section describes the functions implemented in the USB Client application.

Function arguments for each routine are described as in, inout. An in argument
implies that the parameter value is an input only to the function. An i nout argument
implies that a parameter is an input to the function, but the same parameter is also an
output from the function. | nout parameters are typically input pointer variables in which
the caller passes the address of a pre-allocated data structure to a function. The function
stores the result within that data structure. The actua value of the inout pointer
parameter is not changed.

~—"11 Appendix 1: File Transfer Application. 10-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

~—"1 Appendix 1: File Transfer Application. 10-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.1. accept_event

Call(s):
void ush_accept_command(int sig);

Arguments:
sig — the number of the raised signal (always SIGIO).

Returns
No value returns.

Description:

The function tests each command to see if the program supports it, and processes
USB events (reset signal, change_configuration). If the received command is supported,
the function puts this command into the Queue. If it is arequest for a string descriptor,
thefunction callsget _string_descriptor().

N—1 Appendix 1: File Transfer Application.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

10-19

Freescale Semiconductor, Inc.

10.4.2. do_command_delete.

Call(s):
void do_command_delete(uint8 * combuf);

Arguments:

Table 10-10. do_command_delete arguments.
| Combuf | in | Pointer to the buffer that contains a command |

Description: This function is a UFTP_DELETE command handler. It deletes a given
file.

Returns No value returns.

Code example:

case UFTP_DELETE:
#i f def DEBUG
printf("Comand UFTP_DELETE has been recognized by
dient\n");
#endi f

do_comrand_del et e(conmand. bl ock) ;

br eak;

~—"1 Appendix 1: File Transfer Application. 10-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.3. do_command_get_dir.

Call(s):
void do_command_get_dir(void);

Arguments. No arguments.

Description: This function is a UFTP_GET_DIR command handler. It sends a list of
filesto the Host.

Returns: No value returns.

Code example:

case UFTP_CGET D R
#i f def DEBUG
printf("Command UFTP_CGET DIR has been recognized by
dient\n");
#endi f

do_command_get _dir();

br eak;

~—"1 Appendix 1: File Transfer Application. 10-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.4. do_command_get_file_info.

Call(s):
void do_command get file info(uint8 * combuf);

Arguments:

Table 10-11. do_command_get_file_info arguments.
| Combuf | in | Pointer to the buffer that contains a command |

Description: This function is a UFTP_GET_FILE INFO command handler. It sends
size of given fileto the Host.

Returns No value returns.

Code example:

case UFTP_GET_FI LE | NFO

#i f def DEBUG

printf("Command UFTP_CGET _FILE INFO has been recognized by
dient\n");

#endi f

do_command_get _file_i nfo(conmand. bl ock) ;

br eak;

~—"1 Appendix 1: File Transfer Application. 10-22
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.5. do_command_read.

Call(s):
void do_command_read(uint8 * combuf);
Arguments:
Table 10-12. do_command_read arguments.
| combuf | in | Pointer to the buffer that contains a command |

Description: This function is a UFTP_READ command handler. It sends a given file to
the Host.

Returns; No value returns.

Code example:

case UFTP_READ:
#i f def DEBUG
printf("Conmand UFTP_READ has been recognized by

Cient\n");
#endi f
do_command_r ead(conmand. bl ock) ;
br eak;
~—"1 Appendix 1: File Transfer Application. 10-23

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.6. do_command_set_transfer_length.

Call(s):
void do_command_set_transfer_length(uint8 * combuf);

Arguments:

Table 10-13. do_command_set_transfer_length arguments.
| combuf | in | Pointer to the buffer that contains a command |

Description: This function is a UFTP_SET_TRANSFER_LENGTH command handler.
It sets alength of transfer given by the Host.

Returns; No value returns.

Code example:

case UFTP_READ:
#i f def DEBUG
printf("Conmand UFTP_READ has been recognized by

Cient\n");
#endi f
do_command_r ead(conmand. bl ock) ;
br eak;
~—"1 Appendix 1: File Transfer Application. 10-24

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.7. do_command_write.

Call(s):
void do_command_write(uint8 * combuf);
Arguments:
Table 10-14. do_command_write arguments.
| combuf | in | Pointer to the buffer that contains a command |

Description: This function is a UFTP_WRITE command handler. It receives a file from
the Host.

Returns No value returns.

Code example:

case UFTP_VWR TE:
#i f def DEBUG
printf("Command UFTP_WRITE has been recognized by

dient\n");
#endi f
do_command_writ e(conmand. bl ock) ;
br eak;
~—"1 Appendix 1: File Transfer Application. 10-25

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.8. fetch_command.

Call(s):
uint32 fetch_command(uint8 * dcb);
Arguments:
Table 10-15. fetch_command arguments.
| dcb | inout | Pointer to the buffer where to place command |

Description: This function copies a command into the given buffer and deletes the
request with a command from the Queue.

Returns: Function returns status.
Status NO_NEwW COMWVAND means that command queue is empty, so the
buffer pointed by dcb is not initialized with a command.
Status COMVAND_SUCCESS indicates, that buffer pointed by dcb contains a
new command.

Code example:

i f (fetch_conmmand(conmand_bl ock) == COVMAND_ SUCCESS)
{

switch (conmand_bl ock[0])

~—"1 Appendix 1: File Transfer Application. 10-26
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.9. get_string_descriptor.

Call(s):
uint32 get_string_descriptor(uint8 desc_index, uint16 languagel D, uint16 length);

Arguments:

Table 10-16. get_string_descriptor arguments.
desc_index in Index of required descriptor
languagel D in Language ID
Length in Number of bytes to send

Description: This function sends a string descriptor to the Host having a given index
and written with alanguage having agiven ID.

Returns: Function returns status.
Status NOT_SUPPORTED_COVMAND means that program does not support the
required descriptor.
Status SUCCESS indicates, that required descriptor was sent to the Host.

Code example:

if ((dc -> request. bnRequest Type == 0x80) &&
(dc -> request. bRequest == CGET_DESCRI PTOR) &&
((dc -> request.wal ue >> 8) == STRING)

status = get_string _descriptor(dc -> request.wal ue & OxFF,
dc -> request.w ndex,
dc ->request.wLength);

return status;

~—"1 Appendix 1: File Transfer Application. 10-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.10. read _file.

Call(s):
uint32 read_file(uint32 fnum, uint8* dest, int32 length, int32 position);
Arguments:
Table 10-17. read_file arguments.

Fnum in Index of file from which data must be read

Dest inout | Pointer to buffer where to place read data

Length in Number of bytesto be read

position in Offset in agiven file. It is a position in afile from which

function must start copying the data.

Description: This function copies | engt h bytes from a file having index f numto the
buffer pointed by the dest parameter. A reading from file starts from the
posi ti on offset.

Assembler version is also provided.

Returns: Number of read bytes.

Code example:

/* Copy next portion of data fromfile into the buffer */
size = read_file(fpos, bufptr, transfer_length, pos);

~—"1 Appendix 1: File Transfer Application. 10-28
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

10.4.11. write_file.

Call(s):
uint32 write_file(uint32 fnum, uint8* dest, int32 length, int32 position);
Arguments:
Table 10-18. write_file arguments.

fnum in Index of filein which data must be written

dest inout | Pointer to buffer from where data must be read

length in Number of bytesto be written

position in Offset in a given file. This is a position in a file from

where afunction must start placing the data.

Description: This function copies | ength bytes from the buffer pointed by dest
parameter to a file having index fnum A writing to file starts from

posi ti on offset.

Assembler version is also provided.
Returns: Number of written bytes.

Code example:

/* Wite data fromprevious buffer into the file. */
wite file(fpos, bufptr, buf_size, pos);

N—1 Appendix 1: File Transfer Application.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

10-29

Freescale Semiconductor, Inc.

11. Appendix 2: Audio Application.

11.1. Introduction.

This appendix describes a Device-side USB Audio Application. This program is used
only for demonstration purposes. It illustrates some useful techniques (see section 11.2)
and gives an example of working with the USB Device Driver.

11.1.1. Important Notes.

The Client application does not support any standard class (i.e. USB Audio class, €tc.). A
simple vendor specific command set was designed and used to demonstrate |sochronous
IN/OUT data transfer together with acceptance/execution of commands from the Host
simultaneoudly with transfers. Also, the program demonstrates the behavior of the
Device-side USB Driver, when the Host s/w does not work in real time (while performing
the test transfers, misses frames).

11.1.2. Capabilities of the Audio Application.

The Audio application receives 16 bit mono PCM samples from the Host with 8 kHz and
44.1 kHz rates, reduces their amplitude (the multiplication factor is set by the Host using
a command), and sends processed data back to the Host.

In addition, the Client program performs test transfers (IN, OUT, and smultaneoudy IN
and OUT) both when the Host software works in normal mode, and when the Host
emulates real-time failure.

Some useful techniques are highlighted below, which the program utilizes during file
transfers:

Simultaneous data transfer on IN and OUT endpoints with data processing. The
Client application processes data (reduces the amplitude of each sample) while
performing IN and OUT data transfers.

Using the SRAM module for alocating intermediate buffers, which makes for a
faster execution speed of the program during IN/OUT data transfers.

11.1.3. Related Files.

The following files are relevant to the Client Program:

i so. h —Client application types and constant definitions;
i s0. ¢ —mMmain program, executes commands from Host, performs data transfers;

i so_desc.c — contains device, configuration, interface, endpoint, and string
descriptors.

N1 Appendix 2: Audio Application. 11-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The Client application needs following files:

usb. h — Driver interface definition (the same as USB Driver uses).

descri ptors. h — types definition for device, configuration, interface, endpoint,
and string descriptors (the same as USB Driver uses).

11.2. Implementation of USB Audio Application

The following section explains how the Client application performs isochronous transfers
and executes commands from the Host.

11.2.1. USB Usage.

The Host uses a Control endpoint (endpoint number 0) to send commands to the Device.
The USB Audio Device implements an Isochronous In endpoint to transfer data to the
Host, and an Isochronous Out endpoint to receive data from the Host.

The USB Audio Device implements four aternate settings:

Alternate setting 0: no bandwidth.

Alternate setting 1: packet size of Isochronous IN/OUT endpointsis 16 bytes.
Alternate setting 2: packet size of 1sochronous IN/OUT endpointsis 90 bytes.
Alternate setting 3: packet size of 1sochronous IN/OUT endpointsis 160 bytes.

11.2.2. Initializing the Driver.

To start working with the Driver, the Client application must first initialize it. Before
caling the USB_I NI T ioctl command (which initializes the Driver), the Client application
needs to open the necessary device files and fill up the DESC | NFO structure (defined in
the usb. hfile):

extern USB _DEVI CE DESC Descri ptors;
extern USB _STRI NG DESC string_desc;

i nt usl.an_dev_fi | e;
int usb_epl file;
int usb_ep2 file;

DESC | NFO devi ce_desc;

usb_dev_file = open(USB_EPO_FI LE_NAME, O RDWR);
if (usb_dev file < Q)
{
printf ("Can't open device file: %\n", USB EPO_FI LE NAME);
exit(-1);

}
usb_epl file = open(USB_EP1_FI LE NAME, O WRONLY);
if (usb_epl file < 0)

~—"1 Appendix 2: Audio Application. 11-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

printf ("Can't open device file: %\n", USB EP1 FILE NAME);
cl ose(usb_dev _file);
exit(-1);

The Client then enables asynchronous notification and sets up a handler for the SIGIO
signal (accept_event() function):

act.sa_handl er = &accept _event;
act.sa nmask = 0;

act.sa_flags = 0;
sigaction(SIA O &act, NULL);

fentl (usb_dev file, F SETOM, getpid());
oflags = fcntl (usb_dev_file, F_GETFL);
fcntl (usb_dev_file, F_SETFL, oflags | FASYNO);

Following this, the Client application initializes the Driver:

devi ce_desc. pDescriptor = (uint8 *) &Descriptors;
devi ce_desc. DescSi ze = usb_get desc_si ze();

Thevariable Descri pt or s isdefined inthei so_desc. c file.

ioctl (usb_dev file, USB INT, (&device _desc);

11.2.3. Program Execution Flow.
The Client program consists of two important parts. accept _event () function and
mai n() function.

accept _event () is caled every time the Driver receives a command from the Host or
some event occurs (reset, configuration change etc). This function sets
start_main_task, start_isotest out_stream start_isotest_in stream and
start _isotest _inout_streamVvariables, determines the number of the frame in which
data transfers must be started, sends that number to the Host and asks the Driver to start
monitoring transfers from that frame. However it does not execute a command directly.
The Client application only handles arequest for a string descriptor immediately.

The mai n() function polls these variables in an infinite loop. If one of the variables is set,
the program finds and executes the appropriate function to perform the corresponding
task. Thisis one of the best ways to recognize a new command from the Host and execute
it. The main advantage of this method (in comparison with executing the command
directly inthe accept _event () function) is described below.

~—"1 Appendix 2: Audio Application. 11-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The program may permanently execute some task, such as process and transfer data
During the execution of this task by the Device, the Host manipulates the Device: for
example gets/sets attributes of bass control, mixer control, volume control etc. This
method permits the handling of these request in real-time (by interrupting the main
process). Moreover this is achieved without the need for any additional code in the main
task handler, to see whether the Device received a new command from the Host or not.
(Handling the request for a string descriptor may serve as an example. The Client
program sends a string to the Host simultaneously with the execution of the main task -
data processing and transferring in both directions. However the mai n_t ask() function
knows nothing about this — no extra code is written in the mai n_t ask() function to
recognize arequest for a string descriptor.)

Another case is when the execution of some tasks takes long time. The time needed to
reply with status in a status stage of command transfer, is limited by the USB 1.1
specification (this is the case while the execution of a previous command is in progress
when a new command is recelved). The Driver invokes the execution of
accept _event () by sending a SGIO signal to the application from the interrupt handler
for endpoint number zero. This function must send status in a status stage of command
transfer to the Host, as soon as possible (using USB_COMMAND ACCEPTED or
USB_NOT_SUPPORTED_COMVAND ioctl call).

11.2.4. USB_AUDIO_START command execution.

When the Device accepts a USB_AUDI O_START command, it must start a loop-back task.
The program determines the number of the start frame and sends that number to the Host.
Also, the USB_SET_START_FRAME ioctl is called for isochronous IN and OUT endpoints,
to inform the Driver from which frame it must start the data stream. accept _event ()
then sets the start_mai n_task variable and calls the mai n_task() function, if this
variableis set.

To implement a loop-back task with data processing, the program uses four buffers,
allowing requests to be queued. The buffer contains a header (sizes of each packet) and
20 packets of data. The program performs the loop-back task with 8 kHz and 44.1 kHz
sample rates. For the 8 kHz rate the size of each buffer must be 400 bytes (80 bytes
header + 320 bytes data (20 packets in a buffer * 16 bytes packet size (16 bit, mono))),
for the 44.1 kHz rate the buffer size must be 1844 bytes (80 bytes header + 1764 bytes
data (18 packets * 90 bytes packet size + 2 packets * 72 bytes packet size)). For the 44.1
kHz sample rate the size of every 10" packet is 72.

The buffer definition looks like the following:

typedef struct ({
ui nt 32 packet | engt h[20];
ui nt 8 dat abuf [1800] ;

} audio_buffer;

~—"11 Appendix 2: Audio Application. 11-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

audi o_buffer * rx_data;
audi o_buffer * tx_data;

rx_data = (audi o_buffer *) databuf;
tx_data = (audi o_buffer*)((uint8*)rx_data +
si zeof (audi o_buffer)*2);

rx_dat a andt x_dat a point to the array of two audio_buffers.

To send/receive data with a required rate, the Device uses different packet sizes (the same
configuration, the same interface, but different alternate settings). The Host chooses the
desired rate by setting an appropriate alternate setting. The Driver catches it on DEV_CFG
interrupt and notifies the Client by sending SIGIO and invoking accept _event (). This
function reads the current configuration from the Driver by cdling the
USB_GET_CURRENT_CONFI Gioctl. Then the Client program sets the packet _si ze variable
in the function, depending on the required rate (alternate setting):

if (current_config.altsetting == 1)
packet size = 16;
if (current_config.altsetting == 2)

packet size = 90;

The Client program initializes the buffer headers and puts four requests into a queue (two
for IN transfer and two for OUT transfer):

for (i=0; i<2; i++)
{

/* Init buffer headers */
init_audio _headers(&x_data[i]);
init_audi o_headers(& x_datali]);

/* Start IN and QUT data stream Enqueue I/O requests */
wite(usb_epl file, (uint8*)(& x_data[i]), 20);
read(usb_ep2 file, (uint8*)(&x data[i]), 20);

}

The header of the buffer contains the size of each packet that must be sent/received. Also,
after transfer completion, it contains the actua size of the data that were transferred. Each
read() request, asks the Driver to read 20 packets of data into the corresponding buffer.
Each wite() request asksthe Driver to write 20 packets of data from the corresponding
buffer.

When read() or wite() returns control, no transmission/reception is started. Driver
has initialized internal structures, placed a first packet into the FIFO buffer (for IN
transfer), added requests to its internal queue and returned control. Moreover, it did not
even start data monitoring. When the Driver receives a frame, having a number that was
passed to itr viathe USB_SET_START_FRAME ioctl call, it starts monitoring of transfers and
actual data transmission/reception must be started by the Host (if it starts sending earlier,
itisafault of the Host).

~—"11 Appendix 2: Audio Application. 11-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Then the application enters aloop and waits until data transfers are be completed, at least
for one request (i.e. one of the buffers was sent/received and the second is in progress),
by calling the usB_EP_WAI T ioctl.

/* VWit until there is only 1 request left in the Driver’'s

gqueue */

ioctl (usb_ep2 file, USB EP WAIT, 1);

ioctl(usb epl file, USB EP WAIT, 1);
When one buffer is transferred, i oct| returns control. Now the program may change
buffers and process the received data. Then it adds new read/write requests to Driver's
gueue. The program performs this task iteratively, while the st op_mai n_t ask variableis
cleared (see the following section).

11.2.5. USB_AUDIO_STOP command execution.

On receiving the USB_AUDI O STOP command from the Host, the Device must stop the
loop-back task. accept _event () setsthe st op_mai n_t ask variable to stop the loop in
the mai n_t ask() function and calls the USB_SET_FI NAL_FRAME ioctl, passing the current
frame number + 40 as a parameter into it:

final _frame_nunber = (uint32)ioctl (usb _dev file, USB CGET FRAME NUMBER) +
40;
if (final _frame_nunber > 2047)
final _frane_nunber -= 2048;

/* Tell to Driver from what nunber of frane data |IN OQUT streans
stop. */

ioctl (usb _epl file, USB SET FI NAL FRAME, final _frame_nunber);

ioctl (usb_ep2 file, USB SET_FI NAL_FRAME, final _frame_nunber);

When the Host sends a command, it will still be sending data for the next 60 frames. But
the mai n_t ask() function completes current IN and OUT transfers (which will take not
more than 40 frames).

The Host continues sending data in following 60 frames but Driver clears the FIFO on
receiving a packet and no Client notification is provided — transfer monitoring is aready
stopped and no buffer is allocated. The Device, in turn, does not send data to Host. All
interna structures of the Driver are then in the default state. Control returns to the nmai n()
function.

11.2.6. USB_AUDIO_SET_VOLUME command

execution.
When the Client program receives the USB_AUDI O SET_VOLUME command, it sets the
vol une variable. The value was sent by the Host in the data stage of the command
transfer:

~—"1 Appendix 2: Audio Application. 11-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

volunme = *(uintl6 *)dc. cbuffer;
/* Swap the bytes in nultiplication factor */
volume = (volune << 8) | (volune >> 8);

/* Notify Host that the command is accepted */
ioctl (usb _dev file, USB_COWAND ACCEPTED);

The Host sends this value with reversed byte order, so bytes must be swapped. The
vol ume variable is used in the process_dat a() function while modifying the amplitude
of samples.

11.2.7. START_TEST_OUT_TRANSFER command

execution.
Upon reception of this command, the program determines the number of the frame, in
which a test data OUT transfer will be started, and of the frame in which it will be
completed. The Device sends the number of the start frame to the Host. The Client
application calls USB_SET_START_FRAME and USB_SET_FI NAL_FRAME ioctls to check the
test transfer for missed packets. accept _event () then setSstart _i sot est_out _stream
variable. The mai n() function callst est _casel_handl er ().

For this test case five buffers are used. Each of them contains 20 bytes of header and 800
bytes of data (160 bytes packet size x 5 packets). t est _casel handl er () initializes
headers for each of the 5 buffers:

/* Init headers of each buffer */
for (i =0; i <5; i ++4)
init_buffer headers(&uffers[i]);

The Driver is then requested to read 25 packets into 5 different buffers (5 packets in each
buffer). The Driver puts al requestsinto a queue and processes them one after the other:

for (i =0; i <5; i ++4)
read(usb_ep2 file, (uint8*)(&uffers[i]), 5);

Following this action, the program calls the UsB_EP_WAI T ioctl to wait for all transfers to
complete and then prints the results.

11.2.8. START_TEST_IN_TRANSFER command

execution.
Upon receiving this command, the program determines the number of the frame, in which
test data IN transfers will be started, and the frame in which it will be completed. The
Device sends to the Host the number of the start frame. The Client application calls
USB_SET_START_FRAME and USB_SET_FI NAL_FRAME ioctls to check the test transfer for

~—"11 Appendix 2: Audio Application. 11-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

missed packets. accept _event () then sets the start_i sotest _in_stream variable.
Themai n() functioncallst est _case2_handl er ().

For this test case, five buffers are used. Each of them contains 20 bytes of header and 800
bytes of data (160 bytes packet size x 5 packets). t est _case2_handl er () initializesthe
datain buffersby calling buf f er _i ni t () and headersfor each of the 5 buffers:

/* Initialize source data buffer */
buffer_init(buffers);

/* Init headers of each buffer */
for (i =0; i <5; i ++4)
init_buffer headers(&uffers[i]);

The Driver is then requested to write the 25 packets from 5 different buffers (5 packets in
each buffer) to the Host. The Driver puts al the requests into a queue and processes them
one after the other:

for (i =0; i <5 i +4+)
wite(usb_epl file, (uint8*)(&uffers[i]), 5);

The program then calls the USB_EP_WAI T ioctl to wait for al transfers to be completed.
The results can be seen in TestSuite (Host side s/w).

11.2.9. START_TEST_INOUT_TRANSFER command

execution.
Upon receiving this command, the program determines the number of the frame in which
test data IN and data OUT transfers will be started, and of the frame in which these
transfers will be completed. The Device sends to the Host the number of the start frame.
The Client application calls USB_SET_START_FRAME and USB_SET_FI NAL_FRAME ioctls
for both endpoints to check the test transfer for missed packets. accept _event () then sets

the start_isotest _inout_stream Vvariablee The min() function cals
test _case3_handl er ().

test _case3_handl er () uses 4 buffers of 5 packets. It initializes headers for them and
callsread() andwite() to start transfers:

for (i=0; i<2; i++)

{
/* Init buffer headers */
init _buffer headers(&x data[i]);
init_buffer_headers(& x_datal[i]);

/* Start IN and QUT data stream Enqueue I/O requests */
wite(usb_epl file, (uint8*)(&x_data[i]), 5);
read(usb_ep2 file, (uint8*)(&x data[i]), 5);

~—"1 Appendix 2: Audio Application. 11-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

The Driver starts processing the first request (in each direction) and puts the second in the
queue. The program waits for the completion of the first transfer and then switches
buffers:

/* VWait until there is only 1 request left in each queue */
ioctl (usb_epl file, USB EP WAIT, 1);
ioctl(usb ep2 file, USB EP WVAIT, 1);
if (swtch)
{
/* Change buffers */

rx_data = t x_dat a;

tx _data = tnp;
swch = 0;

}

el se
swch = 1;

The following requests are then added:

/* Add requests (send/receive next buffers) */
wite(usb_epl file, (uint8*)(& x_data[swtch]), 5);
read(usb_ep2 file, (uint8*)(& x _data[swch]), 5);

The Client program executes 5 OUT transfers of 5 packets (frames) from the Host and
sends 5 buffers of 5 packets to the Host ssimultaneously. The program then calls the
USB_EP_WAI T ioctl for each endpoint to wait for all transfers to be completed. The results
can be seen in TestSuite (Host side sw).

11.2.10. Request for string descriptor handling.

When the Client program receives a request for a string descriptor, accept _event ()
starts handling it immediately by caling the get _string_descriptor () function. This
section gives the memory layout for string descriptors and describes how the Client
application sends a given descriptor to the Host.

11.2.10.1. Memory layout for string descriptors

According to the documentation of the USB module, the request processor does not
handle requests for string descriptors automatically. GET_DESCRI PTOR requests for string
descriptors are passed as a vendor specific request. The string descriptors must be stored
in external memory and not in the configuration RAM.

The memory layout for string descriptorsis shown on the Fig 11-1.

String descriptors are stored in the array of descriptors. An element of this array is a
structure (definedini so. h and descri pt or s. h files):

typedef struct ({

~—"1 Appendix 2: Audio Application. 11-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ui nt 8 bLengt h;
ui nt 8 bDescri pt or Type;
uint8 bString[256];
} STR _DESC;

/* Definitions for USB String Descriptors */
#defi ne NUM STRI NG _DESC 4
#defi ne NUM_LANGUAGES 2

typedef STR DESC USB_STRI NG DESC [NUM STRI NG DESC * NUM LANGUAGES + 1];

The Client application allocates the USB _STRING DESC [NUM STRI NG DESC*
NUM LANGUAGES + 1] array. The first element in the array (an element with index zero)
IS a string descriptor that contains an array of two-byte LANGID codes supported by the
device (0x409 and 0x407 IDs). The next NUM STRI NG DESC descriptors are string
descriptors written using a language with 0x409 ID, the following NUM STRI NG DESC
descriptors - are with 0x407 language ID. The position of string descriptors must
correspond to the order of language IDs that are contained in the string descriptor, having
index zero. Thus, if the first language ID is 0x409 then the first four (N\UM_STRI NG_DESC)
descriptors (having indices 1, 2, 3, and 4 in the array) must be written using a language
having ID 0x409. The next four descriptors must be written using a language having 1D
O0x407. It is not necessary to sort Language. Bytes in each Language ID are reverse
ordered.

Sring_dest i\ STRING. DESC NUM_STRING_DESC
‘ A A
a8 N Y
6 18 54 | 26 88 18 54 | 26 88 | bLength
3 3 3 3 3 3 3 3 3 | bDescriptorType
0x09 S S S S S S S S
A0language Dol ¢ |t |t |t |t |t |t | ot
407 language ID | OXO7 | T r r r r r r r
ox04 I I I I I I I I bString[256]
n n n n n n n n
g g g g g g g g
1 2 3 4 1 2 3 4
Strings written on language Strings written on language
having 0x409 1D having 0x407 1D
- _
~

NUM_LANGUAGES

Fig 11-1. Memory layout for string descriptors.

~—"1 Appendix 2: Audio Application. 11-1C
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Thestring_desc variable points to the array that contains string descriptors.

11.2.10.2. Sending the string descriptor to the Host
When the accept _event () function is called, it tests the request. If it is a request for a
string descriptor, the function callsthe get _string_descri ptor () routine:

get _string_descriptor (dc.request.wal ue & OxFF,
dc. request . W ndex,
dc. request . wLengt h);

Theget _string_descriptor () function accepts three parameters.

desc_i ndex - index of string descriptor;

| anguagel D—language ID;

| engt h — number of bytes to send.
According to the USB 1.1 specification, the Driver must send a short or zero length
packet to indicate the end of a transfer if the descriptor is shorter than the | ength
parameter, or only the initial bytes of the descriptor, if the descriptor islonger.

The function finds the index in an array (variable i is used) of the desired language ID for
a non-zero indexed string (language 1D 0x409 has index zero in a string with index zero,
language 1D 0x407 has index 1 in the same string). It reorders bytes in the | anguagel D
parameter to prepare it for comparison, since IDs in the array are stored with reversed
byte order.

If the string descriptor with the required index or given language ID is not supported, the
function calls NOT_SUPPORTED_COWMMAND ioctl. Otherwise it starts to prepare data for the
Hogt. If the desc_i ndex parameter is zero, the Driver returns a string descriptor that
contains an array of two-byte LANGID codes supported by the device regardless of the
| anguagel D parameter. This string descriptor has index zero in the array. Otherwise, the
string with the appropriate index and language 1D will be found.

get _string_descriptor() function pointsst desc variable to the required descriptor:

i f (desc_index)

{

i *= NUM STRI NG DESC,

i += desc_i ndex;

stdesc = (uint8 *) &((*usb_string_descriptor)[i]);
}
el se

stdesc = (uint8 *) & (*usb_string descriptor)[0]);

and gets the size of that descriptor:

~—"11 Appendix 2: Audio Application. 11-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

size = *stdesc;

If the descriptor islonger than the number of requested bytes, it modifiesthe si ze:

if (size >= length)
size = |l ength;
el se
ioctl (usb dev file, USB SET SEND ZLP);

If the Host requested more bytes than the length of the descriptor, a Situation may arise
where the Driver must indicate an end of transfer, by sending a zero length packet (this
happens when the length of a descriptor is a multiple of the maximum size of packet for
endpoint number zero). Hence the USB_SET_SEND zLP ioctl must be called in such a case
on EPO device file (a string will be sent on endpoint number zero). This does not mean
that a zero length packet will necessarily be sent. If the last packet is short (but not zero
length), a zero length packet will not be sent.

Then, the get _string_descri ptor () function initiates a transfer of the descriptor to the

Host:
wite(usb_dev file, stdesc, size);

11.3. USB Audio Application Function

Specification
This section describes the functions implemented in the USB Client program.

Function arguments for each routine are described as in, inout. An in argument
implies that the parameter value is an input only to the function. An i nout argument
implies that a parameter is an input to the function, but the same parameter is also an
output from the function. 1 nout parameters are typically input pointer variables in which
the caller passes the address of a pre-alocated data structure to a function. The function
stores the result within that data structure. The actua value of the inout pointer
parameter is not changed.

~—"1 Appendix 2: Audio Application. 11-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.1. accept_event

Call(s):
void usb_accept_command(int sig);

Arguments:
sig — the number of the raised signal (always SIGIO).

Returns
No value returns.

Description:

Function tests each command to seeif the program supports it and processes USB
events (reset signal, change_configuration). If the recelved command is supported, the
function sets the appropriate variable to perform the corresponding task. If it is arequest
for a string descriptor, the function callsget _string_descriptor ().

N—1 Appendix 2: Audio Application.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

11-13

Freescale Semiconductor, Inc.

11.3.2. buffer_init

Call(s):
void buffer_initl (iso_test buffer * buffer);

Arguments:

Table 11-1. buffer_init arguments
| buffer | inout | Pointer to array of 5iso_test_buffers

Returns
No value returns.

Description:
This function initializes the first 160 bytes of buffer[i].databuf memory with
“100” , next 160 bytes - with*101” value, etc, processing all 5 buffers,

Code example:

buffer_init(buffers);

~—"11 Appendix 2: Audio Application. 11-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.3. clear_buffer

Call(s):
void clear buffer(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
Thisfunction fillsal memory allocated for buffers with zeroes.

Code example:

clear _buffer();

~—"11 Appendix 2: Audio Application. 11-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.4. get_string_descriptor

Call(s):
uint32 get_string_descriptor(uint8 desc_index, uint16 languagel D, uint16 length);
Arguments:
Table 11-2. get_string_descriptor arguments
desc_index in Index of required descriptor
languagel D in Language ID
length in Number of bytes to send

Description: This function sends a string descriptor to the Host, having a given index
and written using alanguage having agiven ID.

Returns: Function returns status.
Status NOT_SUPPORTED _COMVAND indicates that program does not support
requested descriptor.
Status SUCCESS indicates, that required descriptor was sent to Host.

Code example:

i f ((dc.request.bnRequest Type == 0x80) &&
(dc. request . bRequest == GET_DESCRI PTOR) &&
((dc. request.wal ue >> 8) == STRING)

status = get_string _descriptor(dc.request.wal ue & OxFF,
dc. request . W ndex,
dc. request . wLengt h);

~—"1 Appendix 2: Audio Application. 11-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.5. init_audio_headers

Call(s):

void init_audio_headers(audio_buffer* buffer);

Arguments:

Table 11-3. init_audio_headers arguments

buffer

inout

Pointer to audio buffer for which packet length field
must be initialized.

Returns:

No value returns.

Description:

This function initiadlizes packet | ength fields of the audio buffer with
appropriate length of packets (16 bytes for 8 KHz sample rate and 90 and 72 bytes for
44.1 KHz sample rate).

Code example:

i nit_audi o_headers();

N—1

Appendix 2: Audio Application. 11-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.6. init_buffer_headers

Call(s):

void init_audio_headers((iso_test buffer* buffer);

Arguments:

Table 11-4. init_buffer_headers arguments

buffer

inout

Pointer to test buffer for which packet | ength field
must be initialized.

Returns

No vaue returns.

Description:

This function initializes packet _| ength fields of test buffer with appropriate
length of packets (160 bytes).

Code example:

init_buffer _headers();

N—1

Appendix 2: Audio Application. 11-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.7. main_task

Call(s):
void main_task(void);

Arguments:
No arguments.

Returns
No value returns.

Description:

This function performs loop-back task.

Code example:

mai n_t ask();

N—1

Appendix 2: Audio Application.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

11-19

Freescale Semiconductor, Inc.

11.3.8. print_buffer_contents

Call(s):
void print_buffer _contents(iso_test_buffer* buffer);

Arguments:

Table 11-5. print_buffer_contents arguments
| buffer |in | Pointer to array of 5 test buffers which should be printed |

Returns
No value returns.

Description:
This function prints the contents of received buffers.

Code example:

print_buffer_contents(buffers);

~—"1 Appendix 2: Audio Application. 11-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.9. print_transfer_status

Call(s):
void print_transfer_status(ui nt 32 in_print, uint32 out_print);

Arguments:

Table 11-6. print_transfer_status arguments
| buffer | in | Pointer to array of 5 test buffers

Returns:
No value returns.

Description:
This function prints the contents of headers of each buffer. Header holds
information of test transfer completion.

Code example:

print_transfer_status(buffers);

~—"1 Appendix 2: Audio Application. 11-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.10. process_data

Call(s):
void process_data(audi o_buffer * buffer);
Arguments:
Table 11-7. process_data arguments
| buffer | inout | Pointer to the buffer to be processed
Returns:
No value returns,
Description:
This function reduces amplitude of each sample in the buffer by multiplying it by
volume value.

Code example:

process_data(& x_data[swtch]);

~—"1 Appendix 2: Audio Application. 11-22
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

11.3.11. test _casel handler

Call(s):
void test_casel handler(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function performs 5 test OUT transfers, each takes 5 frames; prints out the
received data and transfers status information.

Code example:

test _casel_handl er();

~—"1 Appendix 2: Audio Application. 11-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

11.3.12.

Call(s):

Freescale Semiconductor, Inc.

test_case2 handler

void test_case2 handler(void);

Arguments:

No arguments.

Returns

No value returns.

Description:

This function performs 5 test IN transfers of 5 packets.

Code example:

test _case2_handl er();

N—1

Appendix 2: Audio Application.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

11-24

Freescale Semiconductor, Inc.

11.3.13. test_case3 handler

Call(s):
void test_case3 handler(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function performs 5 test IN transfers of 5 packets and smultaneoudy 5 test
OUT transfer, each takes 5 frames.

Code example:

test _case3_handl er();

~—"1 Appendix 2: Audio Application. 11-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

For More Information On This Product,
Go to: www.freescale.com

