
 

 

 

 

 

 

 

S12ZVM-EFP RDB Software User Manual 

by: NXP Semiconductors 

1.   Introduction 

S12ZVM-EFP is designed for sensorless PMSM 

automotive fuel pump application. This user guide 

mainly focus on the software usage, including the 

software environment setup, software architecture 

introduction, motor control implementation and how to 

use the demo. The user guide also covers system test 

performance.  

2. Before you start 

Before you start, you need download and install the 

following tools first. You also should have basic 

knowledge about the tools, like how to use these tools 

setup a new project, how to configure and so on. 

2.1. Codewarrior IDE introduction 

CodeWarrior® for Microcontrollers v11.0 integrates the 

development tools for the ColdFire®, ColdFire+, DSC, 

Kinetis®, MPC5xxx, RS08, S08 and S12Z architectures 

into a single product based on the Eclipse open 

development platform. The modular installer provided 

with the tools, allows you to select and install only the 

architecture support you need for your application 

development. 
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NOTE 

It is recommend to download the latest version from official site.(The 

latest version available currently is CodeWarrior for MCU 11.1) 

2.2. FreeMASTER introduction 

FreeMASTER is a user-friendly real-time debug monitor and data visualization tool, which enables 

runtime configuration and tuning of embedded software applications. Both automotive OEMs and 

industry-leading appliance manufacturers widely adopted FreeMASTER as it is suitable for use in a 

broad range of applications. 

FreeMASTER supports non-intrusive monitoring of variables on a running system and can display 

multiple variables on oscilloscope, like displays as standard widgets (gauges, sliders, and more) or as 

data in text form, offering simple-to-use data recorders. FreeMASTER can link with custom HTML, 

MATLAB®, or migrate it to other scriptable frameworks (using Excel) to add MCU hardware into 

control loops. Connection to the target system from a host running FreeMASTER may be made directly 

over a broad range of communication peripherals or debug channels. FreeMASTER 3.0 embeds graphs, 

tabular grids, and web views directly in the desktop application. FreeMASTER connections are made 

via a network connection using JSON RPC calls, with client implementations available for Python, 

C/C++/C#, and other languages. 

FreeMASTER 3.0 offers a new component, FreeMASTER Lite. It is a lightweight service leveraging the 

JSON RPC protocol that can run on Windows or Linux host PC and enables the implementation of 

custom UI applications on a web browser application (running on a local or remote host computer or 

mobile device). 

Features: 

• Real Time Data Monitoring 

• Control Panels 

• Host Communication Options 

• Demonstration Platforms Integration 

In order to debug the motor conveniently, a customized motor debugging GUI tool based on 

FreeMASTER, named MCAT (Motor Control Application Tuning Tool) is available, you can 

download it from the link. 

2.3. Abbreviation 

Abbreviation Description 

RD Reference Design 

HW Hardware 

https://www.nxp.com/design/software/development-software/codewarrior-development-tools/codewarrior-legacy/codewarrior-for-mcus-eclipse-ide-coldfire-56800-e-dsc-qorivva-56xx-rs08-s08-s12z-11.1:CW-MCU10
https://www.nxp.com/design/software/development-software/freemaster-run-time-debugging-tool:FREEMASTER?&tid=vanFREEMASTER


Before you start 

S12ZVM RD Software User Gide, Rev. 0, 04/2020 

NXP Semiconductors  3 

 

SW Software 

SDK Software Development Kit 

BSP Board Support Package 

LLD  Low-Level Driver 

API Application Interface 

POR Power-On Reset 

BLDC Brushless Direct Current 

PMSM Permanent-Magnet Synchronous Motor 

FOC Field-Oriented Control 

IPD Initial Position Detection 
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3. System Features 

Most of automotive Electrical Fuel Pumps (EFP) are based on DC motor, but BLDC based EFPs have 

become more and more popular, especially in high-end car brands for both diesel pump and gasoline 

pump. NXP has developed the S12ZVM-EFP RD to meet this growing market. 

The software package has the following features: 

• Out-of-box motor control and tuning via FreeMASTER MCAT. 

• Support PMSM sensorless FOC control, both dual shunt and single shunt. 

• Dedicated optimized for fuel pump application to achieve robust and fast start up. It meets the 

strict start up condition < 150 ms from standstill to the rated speed. 

• Smooth cross-over I-F start up and Initial position detection algorithm make sure the startup 

successful. 

• Support multiple diagnose and protection covering UV, OV, OT, OC, Short, Stall Detection, etc. 

• Not only support fuel pump, but also for other automotive PMSM applications. 

 

4. Software Architecture Overview  

The S12ZVM-EFP RD software package is developed on NXP MTRCKTSPNZVM128 Software 

V1.3 and AMMCLIB 1.1.15.  

The software architecture is shown in AMMCLIB components structure. The bottom layer is the 

hardware and the second layer is the peripheral low level driver and middleware, which includes 

AMMCLIB, FreeMASTER, LIN and PWM. The top layer is “User APP” and “Motor Control” module.  

The S12ZVM has no SDK drivers for peripherals. There are two solutions for S12ZVM peripherals 

drivers, one is using PE (Processor Expert), another is using the peripheral example code. The S12ZVM-

EFP uses peripheral example code as low level drivers as it is more efficient.  

CPMU module is used to configure the system clock. ADC module is used to sample motor phase 

currents, bus voltage and silicon temperature. PMF is used to generate six channel PWM signals and 
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PTU is used to trigger the ADC in specific PMF point. These low level modules are the basic modules 

for PMSM control. GDU is the gate driver unit and it can amplify the PMF signals to turn the MOSFETs 

on or off, it can also achieve the charge pump management, fault mechanism configuration and etc. 

 

Figure 1. The RD software architecture 

4.1. S12ZVM peripheral driver introduction 

4.1.1. CPMU 

For proper operation the CPMU needs to have a stable power supply. The power supply is stable when 

the GDUF_GLVLSF is cleared. The application uses Internal Reference which provides a 1 MHz 

internal clock (CPMUOSC_OSCE = 1). Out of the 1 MHz internal clock bus and the core clock is 

derived by the following settings: 

CPMUREFDIV_REFDIV = CPMU_REFDIV;      // CPMU_REFDIV=0 

CPMUREFDIV_REFFRQ = CPMU_REFFRQ;      // CPMU_REFFRQ=0 

CPMUSYNR_SYNDIV = CPMU_SYNDIV;        // CPMU_SYNDIV=49 

CPMUSYNR_VCOFRQ = CPMU_VCOFRQ;        // CPMU_VCOFRQ=3 

CPMUPOSTDIV_POSTDIV = CPMU_POSTDIV;   // CPMU_POSTDIV=0 

Set the bus and core clock to 50 MHz and 100 MHz respectively. The SW needs to wait until the PLL 

lock (CPMUIFLG_LOCK set to 1). 

The CPMU module setting provide also possibility to enable the High Temperature Sensor which is 

routed to ADC internal channel. 

4.1.2. PMF 

The Pulse Width Modulator with Fault Protection (PMF) module is configured to generate a center-

aligned (PMFCFG0_EDGEx = 0) PWM with a frequency of 20 kHz (PMFMODA = 2500). In order to 

protect the MOSFET devices in the same leg of the inverter, deadtime is set to approximately 0.25 us 
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(PMFDTMA = 25). PWM generator A runs as the master and generates the Reload Signal as a 

synchronization signal for the other submodules (PMFCFG2_REV[0:1] = 1). For dual shunt, the reload 

signal is generated at every fourth PWM opportunity (PMFFQCA = 3). Pair A, Pair B and Pair C PWMs 

are synchronized to PWM generator A (PMFCFG0_MTG = 0).  A PWM pulse width PMFVAL 

registers are double buffered and are swapped when GLDOK is set and the PWM reload signal occurs. 

The GLDOK is an external signal generated by the PTU module. The GLDOK is enabled at the PWM 

module (PMFENCA_GLDOKA = 1).  

4.1.3. PTU 

Programmable Trigger Unit (PTU) is intended to completely avoid CPU involvement in the time 

acquisitions of state variables during the control cycle. The PTU module consists of two trigger 

generators (TG). For each TG, a separate enable bit is available, so that both TGs can be enabled 

independently. Trigger generator zero is connected to ADC0, and trigger generator one is connected to 

ADC1. The trigger generation of the PTU module is synchronized to the incoming reload event. This 

reload event resets and restarts the internal time base counter and makes sure that the first trigger value 

from the actual trigger list is loaded. Furthermore, the corresponding ADC is informed that a new 

control cycle has started. If the counter value matches the current trigger value, then a trigger event is 

generated. In this way, the reload event is delayed by the number of bus clock cycles defined by the 

current trigger value. All acquisition time values are stored inside the global memory map, basically, 

inside the system memory as a three dimensional array of integers (PTUTriggerEventList). The exact 

location of the acquisition time values (PTUTriggerEventList) in the system memory is given by the 

linker command file and linked to the PTU module during the initialization phase.  

PTUPTR = ptuTriggerEventList; 

Each trigger generator uses only one list to load the trigger values from the memory. The pointers for the 

primary (TG0L0IDX/ TG1L0IDX) and alternate (TG0L1IDX/ TG1L1IDX) lists are equal.  

TG0L1IDX = (unsigned char)(((long)&ptuTriggerEventList[0][0][0] - 

(long)ptuTriggerEventList) >> 1); // same as TG0L0IDX 

TG1L0IDX = (unsigned char)(((long)&ptuTriggerEventList[1][0][0] - 

(long)ptuTriggerEventList) >> 1); 

TG1L1IDX = (unsigned char)(((long)&ptuTriggerEventList[1][0][0] - 

(long)ptuTriggerEventList) >> 1); // same as TG1L0IDX 

The trigger generator is using only one physical list of trigger events, even if the trigger generator logic 

is switching between both pointers. The PTU module generates the LDOK signal used to inform other 

modules that the double buffered registers were updated by software. 

4.1.4. GDU 

The Gate Drive Unit (GDU) is a Field Effect Transistor (FET) pre-driver designed for three-phase motor 

control applications. The following GDU features are used in PMSM FOC sensorless control. 

• Charge Pump: The charge pump is used to maintain the high-side driver gate source voltage 

VGS when PWM is running at a 100% duty cycle. The clock for the charge pump is set to be 

fbus/64 (GDUCLK2_GCPCD = 4) . 

• Desaturation Error: The GDU integrates three desaturation comparators for the low-side FET 

pre-drivers and three desaturation comparators for the high-side FET pre-drivers. The 
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desaturation level is set to be 1.35 V (GDUDSLVL = 0x77) for both low-side and high-side 

FET. A blanking time during the FET transients needs to be employed. The blanking time is set 

to be approximately 8 us (GDUCTR = 0x13).    

• Current Sense Amplifiers: Internal current sense amplifier 0 and 1 (GDUE_GCSE0 = 1 and 

GDUE_GCSE1 = 1) is used to measure motor phase currents in phase A and phase B. The 

output of the current sense amplifier 0 is routed internally to ADC0 channel 0. The output of the 

current sense amplifier 1 is routed internally to ADC1 channel 1. 

4.1.5. ADC 

The MC9S12ZVML128 uses two independent Analogue-to-Digital Converters (ADC). Both ADCs are 

n-channel multiplexed input successive approximation analogue-to-digital converters. The List Based 

Architecture (LBA) provides a flexible conversion sequence definition, as well as flexible oversampling. 

Both ADC conversion command lists are stored inside the global memory map, basically, inside the 

system memory as two dimensional arrays of bytes (ADC0CommandList, ADC1CommandList). The 

exact location of the ADC conversion commands in the system memory is given by the linker command 

file and linked to the respective ADC module during the initialization phase.  The same strategy is used 

for the ADC Results. The Conversion results are stored in an array of shorts (ADC0ResultList, 

ADC1ResultList) located in system memory. 

  ADC0CBP = ADC0CommandList; // ADC0 Command Base Pointer 

  ADC0RBP = ADC0ResultList; // ADC0 Result Base Pointer 

 

  ADC1CBP = ADC1CommandList; // ADC1 Command Base Pointer 

  ADC1RBP = ADC1ResultList; // ADC1 Result Base Pointer 

The ADC conversion clocks are set to be 8.33 MHz (ADC0TIM = 2; ADC1TIM = 2). The results are 

stored in memory as 12-bit (ADC0FMT_SRES = 4; ADC1FMT_SRES = 4) left-justified data 

(ADC0FMT_DJM = 0; ADC1FMT_DJM = 0).  

Conversion flow of both ADCs is controlled by internal signals (generated by the PTU) and by the 

DataBus (ADC0CTL_0_ACC_CFG = 3; ADC1CTL_0_ACC_CFG = 3). The results are stored in 

system memory even if commutation occurs when conversion is ongoing ( ADC0CTL_0_STR_SEQA = 

1;  ADC1CTL_0_STR_SEQA = 1).   

The ADC1 schedules the end of list interrupt (ADC1CONIE_1_EOL_IE = 1) to perform application 

logic and calculate the PMSM FOC Sensorless algorithm.  

The PMSM sensorless FOC algorithm uses ADC0 to measure the motor phase A current and DC-Bus 

voltage. The ADC1 is used to measure the motor phase B current and temperature.    

4.2. Application data flow overview 

The application software is interrupt driven running in real time. There is one periodic interrupt service 

routine associated with the ADC end of sequence interrupt, executing all motor control tasks. These 

include both fast current and slow speed loop control. All tasks are performed in an order described by 

the application state machine shown in Figure 2. State Machine of S12ZVM-EFP .  
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Figure 2. State Machine of S12ZVM-EFP 

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor 

control calculations, the state machine functions are called within a periodic interrupt service routine. 

Hence in order to actually call state machine functions the periphery causing this periodic interrupt must 

be properly configured and interrupt enabled. As described in section MCS12ZVM Device initialization, 

all peripherals are initially configured and all interrupts are enabled after a RESET of the device. As 

soon as interrupts are enabled and all peripheries are correctly configured, the state machine functions 

are called from the ADC end of sequence interrupt service routine. The background loop handles non-

critical timing tasks, such as the FreeMASTER communication polling. 

For more details, refer to AN5135 (dual shunt FOC) and AN5327 (single shunt FOC). 

The main application flowcharts and the key interrupt flowcharts are shown in Figure 3. Application 

Flowcharts of Main and Figure 4. Key Interrupt Flowcharts. 
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Figure 3. Application flowcharts of main 
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Figure 4. Key interrupt flowcharts 

 

4.3. NXP AMMCLIB introduction 

The AMMCLIB (Automotive Math and Motor Control Library) Set for NXP S12ZVMx devices 

consists of several sub-libraries, functionally connected as depicted in AMMCLIB components structure. 

The Automotive Math and Motor Control Library Set for NXP S12ZVMx devices sub libraries are as 

follows: 

• Mathematical Function Library (MLIB):  comprising basic mathematical operations such as 

addition, multiplication, etc. 

• General Function Library (GFLIB):  comprising basic trigonometric and general math 

functions such as sine, cosine, tan, hysteresis, limit, etc. 

• General Digital Filters Library (GDFLIB): comprising digital IIR and FIR filters designed to 
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be used in a motor control application. 

• General Motor Control Library (GMCLIB): comprising standard algorithms used for motor 

control such as Clarke/Park transformations, Space Vector Modulation, etc. 

• Advanced Motor Control Function Library (AMCLIB): comprising advanced algorithms used 

for motor control purposes. 

The Automotive Math and Motor Control Library Set for NXP S12ZVMx devices is developed to 

support these major implementations: 

• Fixed-point 32-bit fractional 

• Fixed-point 16-bit fractional 

 

Figure 5. AMMCLIB components structure 

More details about S12ZVM AMMCLIB refer to user guide S12ZVMMCLUG Rev.20. 

4.3.1. Using AMMCLIB in CodeWarrior IDE 

Actually, the AMMCLIB version 1.1.15 of S12ZVM is added in the S12ZVM-EFP RD example project. 

So no need to set the AMMCLIB path.  But if you want to experience the latest version of AMMCLIB 

or create some new functions in the newer version of AMMLIB, you can add the path to your project 

and rebuild it.  

First step is to set the include file path. Both of “Assembly Source File” and “GNU C”, just as shown in 

Figure 6. Second step is to set the library file “MC9S12ZVM_AMMCLIB.UC.a” path, as shown in 

Figure 7. If you just want to use version 1.1.15, you do not need do anything due to its default setting.  
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Figure 6. Set AMMCLIB path in project 

 

 

Figure 7. Set AMMCLIB lib file path in project 
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4.4. Project files tree and function briefing 

The software project files tree is shown in the following figure. 

 

Figure 8. Project files tree 

AMMCLIB_V1.1.15 is included in the project to avoid the compiling error if the path is not set 

correctly. In the “Config” folder, motor parameters header file configured by MCAT, device config and 

user macro define file are included.  

LIN folder contains the NXP MagniV LIN stack. Low level driver (LLD) module is located in 

“S12ZVM_system” folder.  

5. Motor Control Implementation 

5.1. Fundamental principle of PMSM FOC 

High-performance motor control is characterized by smooth rotation over the entire speed range of the 

motor, full torque control at zero speed, and fast acceleration/ deceleration. To achieve such control, 

Field Oriented Control is used for PM synchronous motors.  

The FOC concept is based on an efficient torque control requirement, which is essential for achieving a 

high control dynamic. Analogous to standard DC machines, AC machines develop maximal torque 



Motor Control Implementation 

S12ZVM RD Software User Gide, Rev. 0, 04/2020 

14  NXP Semiconductors 

  

  

when the armature current vector is perpendicular to the flux linkage vector. Thus, if only the 

fundamental harmonic of stator magnetomotive force is considered, the torque Te developed by an AC 

machine, in vector notation, is given by the following equation: 

 
 

• pp: The number of motor pole-pairs 

• : Stator current vector 

• : Represents vector of the stator flux 

• 3/2: Indicates a non-power invariant transformation form 

In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator 

current vector is satisfied by the mechanical commutator. There is no such mechanical commutator in 

AC Permanent Magnet Synchronous Machines (PMSM), the functionality of the commutator has to be 

substituted electrically by enhanced current control. This reveal that stator current vector should be 

oriented in such a way that component necessary for magnetizing of the machine (flux component) is 

isolated from the torque producing component.  

This can be accomplished by decomposing the current vector into two components projected in the 

reference frame, often called the dq frame that rotates synchronously with the rotor. It has become a 

standard to position the dq reference frame such that the d-axis is aligned with the position of the rotor 

flux vector, so that the current in the d-axis will alter the amplitude of the rotor flux linkage vector. The 

reference frame position must be updated so that the d-axis should be always aligned with the rotor flux 

axis.  

The rotor flux axis is locked to the rotor position, when using PMSM machines. A mechanical position 

transducer or position observer can be utilized to measure the rotor position and the position of the rotor 

flux axis. When the reference frame phase is set such that the d-axis is aligned with the rotor flux axis, 

the current in the q-axis represents solely the torque producing current component.  

What further resulted from setting the reference frame speed to be synchronous with the rotor flux axis 

speed is that both d and q axis current components are DC values. This implies utilization of simple 

current controllers to control the demanded torque and magnetizing flux of the machine, thus 

simplifying the control structure design.  

To perform vector control, it is necessary to perform the following four steps: 

1. Measure the motor quantities (DC link voltage and currents, rotor position/speed).  

2. Transform measured currents into the two-phase orthogonal system (α, β) using a Clarke 

transformation. After that transform the currents in α, β coordinates into the d, q reference frame 

using a Park transformation.  

3. The stator current torque (isq) and flux (isd) producing components are separately controlled in 

d, q rotating frame.  

4. The output of the control is stator voltage space vector and it is transformed by an inverse Park 

transformation back from the d, q reference frame into the two-phase orthogonal system fixed 

with the stator. The output three-phase voltage is generated using a space vector modulation.  
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Clarke/Park transformations discussed above are part of the Automotive Math and Motor Control 

Library set (see section References).  

The following two figures show the basic structure of the vector control algorithm for the PM 

synchronous motor. 

 

Figure 9. Field oriented control structure 

 

 

Figure 10. Field oriented control transformations 

5.2. Sensorless control 

To be able to decompose currents into torque and flux producing components (isd, isq), position of the 

motor-magnetizing flux has to be known. This requires knowledge of accurate rotor position as being 

strictly fixed with magnetic flux. This demo system deals with the sensorless FOC control where the 

position and velocity are obtained by either a position/velocity estimator or incremental Encoder sensor. 

The estimate method is using back-EMF observer, but back-EMF observer as well as incremental 

Encoder sensor provide only relative position. It is necessary to force alignment or initial position 

detection (IPD) algorithm for sensorless control system. 

Alignment algorithm is the first stage of control system, the alignment algorithm applies DC voltage to 

d-axis resulting full DC voltage applied to phase A and negative half of the DC voltage applied to phase 

B and C for a certain period. This will cause the rotor to move to "align" position, where stator and rotor 
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fluxes are aligned. The rotor position in which the rotor stabilizes after applying DC voltage is set as 

zero position. Motor is ready to produce full startup torque once the rotor is properly aligned. 

In the second stage, the field-oriented control is in open-loop mode (Application in sensorless mode 

must start with open loop), in order to move the motor up to a speed value where the observer provides 

sufficiently accurate speed and position estimations. As soon as the observer provides appropriate 

estimates, the rotor speed and position calculation are based on the estimation of a BEMF in the 

stationary reference frame using a Luenberger type of observer. 

When the PMSM reaches a minimum operating speed, a minimum measurable level of BEMF is 

generated by the rotor’s permanent magnets. The BEMF observer then transitions into the closed-loop 

mode. The feedback loops are then controlled by the estimated angle and estimated speed signals from 

the BEMF observer. 

BEMF observer is as a part of the NXP’s Automotive Math and Motor Control library. Following figure 

shows the BEMF structure. 

 

Figure 11. BEMF observer structure 

5.3. Initial position detection implementation 

If the salient polarity of a PMSM is obvious, the inductance and resistance of the PMSM will vary with 

the rotor position. In particular, if the reluctance of the winding changes in sinusoidal law, the 

inductance will also change in sinusoidal. As shown in Figure 12, the change period of inductance is 

twice than that of rotor. For example, when the voltage direction applied to the motor is V -> W, W -> 

U, U -> V, the inductance of the floating phase will be changed with the rotor position, so the voltage on 

that will also be changed. For example, when the phase voltage of U is equal to half of the bus voltage, 

the phase voltage of V is less than half of the bus voltage, and the W phase is greater than half of the bus 

voltage, it can be considered that the rotor is in the position of - 180 ° or 0 °, so that the position of the 

rotor is located within the range of 180 °. 
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Figure 12. Change of inductance according to rotor position 

In order to get the accurate rotor position, it is necessary to determine the direction of rotor N pole, 

which means to determine whether the rotor orientation is - 180 ° or 0 ° position. Generally speaking, 

for an inductance, the smaller the magnetic resistance is, the larger the inductance is, and they are 

inversely proportional. If it is an air-core inductor, then its magnetoresistance is certain, and the 

inductance is also a certain value. Therefore, an appropriate voltage vector can be applied to the motor 

to distinguish the polarity of the rotor by using the magnetic saturation effect. As shown in Figure 13, at 

the moment, the magnetic field generated by the rotor permanent magnet strengthens the magnetic field 

generated by the stator coil. Before reaching the magnetic saturation, the inductance of stator winding 

change rate is negative, and the magnetic resistance increases. If the rotor permanent magnet is rotated 

180 °, the inductance change rate of the stator winding will be positive. 

 

 
 

Figure 13. Relation between magnet and inductor 

For the PMSM motor, the relationship between the rotor position and the three-phase winding is shown 

in Figure 14. The U-phase stator winding is closer to the d-axis of the rotor and the V-phase winding is 

closer to q-axis. Therefore, the magnetization effect of U and V phases is different, and the 

magnetization effect of U phase is higher than that of V phase. When a voltage vector is applied to the 

motor (U-phase connected to VDC, V-phase connected to GND), the inductance of phase U is less than 

that of phase V at the beginning, but the gap between them is gradually narrowing, and finally tends to 

be equal. That is to say, the direction of the N-pole of the rotor can be distinguished by the change law 

of the phase W voltage. 
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Figure 14. Relation between the rotor and each phase 

5.4. Smooth Cross-Over I-F start-uP implementation 

5.4.1. Principle 

To improve alignment between current controllers and the reference frame, d-axis start-up with cross-

over transition to q-axis is proposed. The start-up algorithm works with the current limit as required by 

the application. This limit is then passed to a cross-over block, which commands the Id and Iq currents 

with respect to the actual speed and open-loop to sensorless transition. Two set points are used: the first 

one is used to initiate transition of the current vector from the d-axis to the q-axis and the second set 

point is used as a hard switch to the sensorless closed-loop mode, as shown in the Figure 15. 

 

Figure 15. Current Smooth Cross-over Transition Profile 

During the first phase (until the reference frame speed or frequency passes the first set point), the entire 

current limit Is is directed to the Idreq and the Iqreq is set to zero. Once 

the expected rotor speed (or the stator frequency ) passes the first set point, the current vector Is starts to 

move from d-axis towards q-axis by increasing the angle between the virtual frame and the current 

vector. This way, the virtual reference frame speed is de facto increased together with acceleration, thus 

more torque is put on the rotor and the torque angle is extended. Simulation result of this method is 

shown on Figure 16. The first set point speed is 4.5 rad/s, the second set point is 5 rad/s (the target 

speed). Currents in d and q axes are calculated as follows.  
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referenced to the virtual stator frame, which is originally aligned with the d-axis. Following equations 1 

– 3 describe the cross-over calculation. The weight is changed between the set point #1 (  ) and set 

point #2 (  ) linearly, while limited to fit the interval of<0;1>. The required currents  and 

are calculated to keep the  vector size constant. 

 

                                

                                

                                      

 
 

 

Figure 16. Current smooth cross-over transition simulation 

5.4.2. Implementation 

The implementation of this algorithm is not difficult. Firstly, the  and  are derived from speed 

loop calculation. So the algorithm is implemented in focSlowLoop() function. 

In focSlowLoop(), the SpeedLoop is running all the time, but the output is not linked to  and  

directly, it is linked to the temple variable temIDQReq.  

The project uses “switch, case” to set the  and  value accordingly. Just as shown below. 

switch(pos_mode) 

{ 

case force:  

current = drvFOC.pospeOpenLoop.iQUpperLimit; 

weight = 0; 

drvFOC.currentLoop.pIDQReq->f16Arg1 = current; 

drvFOC.currentLoop.pIDQReq->f16Arg2 = 0; 

drvFOC.speedLoop.pPIpAWQ.f16UpperLimit= drvFOC.pospeOpenLoop.iQUpperLimit; 

drvFOC.speedLoop.pPIpAWQ.f16LowerLimit= 

MLIB_Neg_F16(drvFOC.speedLoop.pPIpAWQ.f16UpperLimit); 

break; 

   

case tracking: 
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current = drvFOC.pospeOpenLoop.iQUpperLimit; 

weight=MLIB_SubSat_F16(MLIB_Abs_F16(drvFOC.pospeOpenLoop.wRotEl),drvFOC.pospeSensorless.wRo

tElMatch_1); 

weight=MLIB_DivSat_F16(weight, 

MLIB_SubSat_F16(drvFOC.pospeSensorless.wRotElMatch_2,drvFOC.pospeSensorless.wRotElMatch_1)); 

drvFOC.currentLoop.pIDQReq->f16Arg1= 

MLIB_Mul_F16(GFLIB_Sqrt_F16(MLIB_SubSat_F16(FRAC16(1.0),weight)),current); 

drvFOC.currentLoop.pIDQReq->f16Arg2= MLIB_Mul_F16(GFLIB_Sqrt_F16(weight),current);  

  

break; 

case sensorless1: 

current = tempIDQReq.f16Arg2; 

weight = FRAC16(1.0); 

drvFOC.currentLoop.pIDQReq->f16Arg1 = 0; 

drvFOC.currentLoop.pIDQReq->f16Arg2 = current; 

drvFOC.speedLoop.pPIpAWQ.f16UpperLimit = drvFOC.pospeSensorless.iQUpperLimit; 

drvFOC.speedLoop.pPIpAWQ.f16LowerLimit = drvFOC.pospeSensorless.iQLowerLimit; 

break; 

} 

5.5. Stall detection implementation 

In PMSM sensor-less application, motor stalls when the load become very large or rotor is stuck by 

something or the load changes dramatically. Usually it will trigger overcurrent protection, but sometime 

the motor phase current is not very big when motor is in stall condition. Meanwhile, sensor-less 

algorithm may still work, it can generate speed and angel regularly. This "fake running" should be 

detected to avoid the harm to system. So, the stall detection method should adopt to achieve the task. 

5.5.1. Stall detection principle 

There are several methods which can do stall detection, NXP uses BEMF consistency checking method 

to detect the stall case. 

The BEMF of PMSM are linear with motor speed. BEMF of observer output should be consistent with 

motor KE multiply motor speed and plus the offset. The following equation shows the same. 

 
• : BEMF output of observer; 

• : BEMF coefficiency of the motor; 

• : Motor speed; 

• : BEMF offset; 

So principle of the method is to check the consistency of two BEMFs. If observer output Eq is not linear 

with motor speed, it means observer is not working correctly and indicate the motor is in stall. 

The following diagram can show the principle also. 
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Figure 17. Stall detect principle 

5.5.2. Implementation 

The method is based on module design, so it is easy to implement in your own project. 

• Copy the stallDetection.c and .h file in your project; 

• Define the variable of structure, for example, stallDetection_T stallDetectionPsrams; 

• Initial the stall detection function, stallDetectionInit (&stallDetectionPsrams); 

• Add the stall detection function in StateRun function. 

• if (TRUE == stallDetection(&stallDetectionPsrams)) 

{ 

       permFaults.motor.B.StallError = 1; 

} 

Stall detection parameters: The parameters should be correctly configuredy to make sure the stall 

detection function can work correctly. 

There are some macros to configure the function. The following screenshot below shows all the macros. 

#define   STALLDETECTION_BLANKCNT         20000                                               

#define   STALLDETECTION_CHKCNT             30 

#define   STALLDETECTION_CHKERRCNT       

STALLDETECTION_CHKCNT-5 

#define   STALLDETECTION_COEFF               FRAC16(0.25) 

#define   STALLDETECTION_COEFFKE           FRAC16(0.2655) 

#define   STALLDETECTION_COEFFKEOFT   FRAC16(0.01) 

#define   BEMFOBSFILTER_NSAMPLES          2 

#define   ROTELFILTER_NSAMPLES                2  

"STALLDETECTION_BLANKCNT " is used to set a blank time slot, in this slot, system will not do 

BEMF checking. The method is based on BEMF checking, so it is not applicable in startup stage.  

"STALLDETECTION_CHKCNT " and "STALLDETECTION_CHKERRCNT " is used the check 

time and the error time. The allowable error check time is check time minus five. In the default setting, 
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check time is 30, if the error time is greater than 25, it will trigger the stall fault. You can change the 

checking time and the error checking time according to your application. 

"STALLDETECTION_COEFF" is the threshold of allowable different range between observer Eq 

and calculated BEMF. In default setting, if the calculated BEMF is in range of 0.75*Eq and 1.25*Eq, it 

indicates the motor is not in stall status, but if the calculated BEMF is out of the range, meanwhile, the 

error checking time bigger than the setting, it will trigger the stall fault. 

"STALLDETECTION_COEFFKE" and "STALLDETECTION_COEFFKEOFT " is the slope and 

the offset for the calculation equation. These parameters are very important and need manual offline 

calculation. Different type of motors may have different parameters. 

Take 45ZWN24-90-B for example, if Eq = 1.725 V @1000rpm and 3.2 V@2000rpm.  

Then there are two equations FRAC16(1000/4500) *a + b = FRAC16(1.725/25)， that is 0.2222*a + b 

=0.069 and FRAC16(2000/4500) *a + b = FRAC16(3.2/25)， that is 0.4444*a + b =0.098.  After the 

calculation, a = FRAC16(0.2655) and b = FRAC16(0.01).   

"BEMFOBSFILTER_NSAMPLES" is BEMF observer output MA filter smoothing factor. The range 

is from 0 to 15. Smaller, filter less. so 0 means no filter influence. 

"ROTELFILTER_NSAMPLES" is the speed  MA Filters. smoothing factor. Smaller, fitler less. So 

0 means no filter influence. 

5.5.3. Stall detection summary and enable 

The BEMF consistency checking method is based on NXP patent US20170126153A1. The developer 

can check the original patent for more information. 

In the demo project, this function disabled in default, if you want to enable it, just change the macro: 

STALL_DETECTION value from STD_OFF to STD_ON in “userdef.h”. 

5.6. Current sampling method 

5.6.1. Overview 

There are three current sampling methods which uses shunts in inverter legs as current sensors, tri-shunt, 

dual-shunt and single-shunt. S12ZVM-EFP supports dual-shunt and single-shunt.  

There are two demo projects, one is for dual-shunt and another one is for single-shunt. 

5.6.2. Dual-shunt current sampling 

Dual-shunt current sampling is the most popular method due to the best performance vs cost. S12ZVM 

microcontrollers have 2 OPAMP and 2 ADC modules and it's perfect to get two current sampling at one 

shot. The topology is shown as following. 
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Figure 18. Shunt resistors topology 

When all the bottom MOSFETs are ON, the motor phase current continues to flow due to the inductance 

effect. In this period, the voltage of shunts indicates the motor phase current which flow through the 

shunts. 

 
Figure 19. Sampling theory diagram 

 

For dual-shunt sampling, the sampling point is no need change, the method is much easy to achieve. The 

phase currents obtained in the same time, so reconstruct phase current THD is low.  

But if SVPWM waveform is shown as following phase II, there is a concept "minimal pulse width" 

which rely on hardware design. If the available duty is too short, the current sampling for Phase A would 

be bad quality. To avoid this case, the duty cycle limitation should be applied. 0.9 is the default value, 

for higher quality hardware, it can be set higher, for instance, 0.95 or more.  
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Figure 20. PWM diagram when sampling 

5.6.3.  Single-shunt current sampling 

Single-shunt current sampling is low cost solution, but it is enough for most of the low dynamic 

application.  It uses phase current reconstruction to capture the phase currents in different time slot.  

Phase current reconstruction: The phase current sampling technique is a critical issue for detection of 

phase current differences and for acquiring full three phase information of stator current by its 

reconstruction. Phase current flowing through a shunt resistor produces a voltage drop which needs to be 

appropriately sampled by the AD converter when the DC bus voltage is connected to the motor, thus in 

six of eight (non-zero) voltage vectors (see the following figure). 

 
Figure 21. Voltage vector states in terms of transistor states 

Figure 22 shows an example of a current measurement during vector 101, in which   sample can be 

taken. Considering a symmetrical 3-phase system, Kirchhoff law can be used at any time, thus          

 

Based on the above equation, at least two currents in a single PWM period are needed to have all the 

three currents available for the vector control. Thanks to the modulation of the voltage vector, two 

different combinations of non-zero voltage vectors are available during a single PWM period. Thus, two 

currents can be sensed as shown in Figure 23. The third current is then calculated based on Kirchhoff 

law. 
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Figure 22. Single-shunt three-phase current reconstruction 

Single-shunt 3-phase current reconstruction is available only if two voltage vectors are active for a 

sufficient time period to capture the current. As two PWM edges come close to each other, phase current 

signal pulse on the DC-link becomes too short to be captured or “disappears” at all, as shown in Figure 

24. This makes that portion of 3-phase current information invisible for sensing circuit and can 

eventually disturb the phase current feedback. If all three phases come close enough, no phase current 

information can be recovered from the DC-link current sensor. 

There are two main techniques to make the 3-phase current reconstruction available at any time. The 

first one, so called “phase shifting PWM” shifts one of the overlapping phases from another to make the 

DC-link current visible for a sufficient period of time. This method is described e.g. in Design reference 

manual DRM102 available at www.nxp.com.   

Another option is to split one of the overlapped signals in two parts, thus insert a zero pulse in the 

middle of the pulse (see Figure 25, blue signal on the left, blue and brown signals on the right), so called 

“double switching PWM”. Instead of shifting one signal from another, one of the overlapped signals is 

split in two symmetrical signals and these two parts are shifted apart (Figure 25 on the left, the blue 

signal) so the total length of the signal is the same (in comparison to phase A). 
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Figure 23. DC-link current and phase currents connection 

 

 
Figure 24. Single-shunt current sensing limits during two phase edges overlapping 

However, there is a different number of switching operations in phase B. Considering a different number 

of dead-times inserted, the output voltage of the double-switched phase is lower. Another impact of such 

double switching is a different voltage vector being injected into the motor. These disturbances may 

cause a harmonic distortion to the flux and a sound noise. 
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Figure 25. Double switching PWM and 3-phase sensing opportunities 

To lower the noise and losses during double switching, all three signals are split in two parts, whilst one 

of the signals has the two parts shifted apart by a longer time span (see the above figure on the right, the 

brown signal is shifted from the blue signal). The unnecessary voltage vector (110) is switched for two 

short periods of time including a zero-voltage vector and the negative impact of double switching is 

reduced. The main disadvantage of such concept is the duty cycle is limited to approximately 93%. 

thanks to double switching, two samples for each current are available, an average value can be 

calculated. 

Output voltage actuation: Generated phase signals based on duty cycles (phase A, phase B, phase C) of 

two PWM periods are shown in the following figure. These phase voltage waveforms correspond to a 

center-aligned double switched PWM with a space vector modulation input. 

 

 

Figure 26. Double-switching PWM and phase currents visibility 

The above figure shows two periods of PWM. In period I, phase B and phase C are of the same duty 

cycle, but shifted to enable three phase current reconstruction from a single shunt current signal. The 

width of the space between two pulses of phase C impacts the minimal sampling pulse width for current 

B sensing. Period II. introduces similar situation with phase A and B. 
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To benefit from the double switching feature of the PMF module, timings of the PWM signals edges are 

calculated. The algorithm (SetDutyCycle (SWLIBS_3Syst_F16 *f16pwm, tU16 sector) function 

in“actuate_s12zvm.c” module) calculates the edges based on 3-phase SVM generated reference voltage 

(f16pwm) and current sector within the voltage hexagon (shown in the following figure, SVM duty 

cycles are black dashed lines, double switched signals are blue, orange and green). 

 

Figure 27. Double switching edges calculation 

For more details of NXP patented double switch single-shunt solution, refer to AN5327. 

5.6.4. Summary 

There is no strict rule for selection of dual-shunt or single-shunt current sampling. But usually, if the 

motor inductance is very low or the application needs high dynamic performance, it strongly 

recommend dual-shunt method to avoid the big current THD.   
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6. Using the Demo Project 

In the SW package, a demo project is provided for user to test the board with a real PMSM fuel pump 

application. In the following chapter, how to use the demo project will be introduced. Off course, the 

demo project also can be changed to be compatible with other automotive motor control applications, 

such as cooling fan, HVAC blower, oil pump and etc.  

6.1. Motor parameters measurement 

If do not have the specified motor type and want to use your own motor to replace, most time, it will not 

work normally due to parameters difference. So you need to change the configuration before running 

your own motor. You must know these parameters, you can get these parameters from datasheet or you 

can measure it by yourself. 

To measure motor parameters, you need to prepare some common equipment like Multimeter, 

oscilloscope, LCR meter, power supply. 

Refer to AN4680 for more insight on how to measure parameters. You need to prepare a project or other 

method that can keep motor running stably. Sometime, this may have limitations. So this section gives 

you another simple method to measure some basic parameters. 

6.1.1. Measure Ld and Lq 

Equipment needed: LCR meter 

Steps: 

1. Set the LCR meter to “L” measure mode, frequency to 10kHz. 

2. Connect phase A and phase B to the measure probe. 

3. Manually turn the motor rotor to run very slowly, make sure the induction value shown in LCR 

meter not changing so much. 

4. Read the maximum and minimum value of the LCR meter.  

5. Ld = Lmin/2, and Lq = Lmax/2. 

6. If you cannot access the motor rotor axis, then you can use the “alignment” operation to align the 

motor rotor to the electrical angle 0, after the rotor stable, turn off the power supply and do the 

first test by using LCR meter. To do the second test set the “alignment” operation of the rotor to 

the electrical angle 90 degree. 

7. The first test value is 2*Ld and the second test value is 2*Lq. 

8. Please do the above steps again for phase B and phase C, phase A and phase C, then average the 

result to get the final value of Ld and Lq.  

9. Notice, sometimes the Ld and Lq are very similar, it means the PMSM is surface mounted. 

S12ZVMRDSWUG.docx
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Figure 28. MSM inductance variation with rotor position 

6.1.2. Measure pole pairs 

Equipment needed: oscilloscope 

Steps: 

Disconnect power supply. 

Connect any two phases port with oscilloscope probes. 

First make a mark on the motor, then turn the motor by one hand cycle, observe and record the number 

of waveforms displayed on the oscilloscope, that is, the polar logarithm. 

6.2. FreeMASTER configuration 

After finishing the measurement of motor’s parameter, you need to use FreeMASTERto regenerate and 

configure profile with the new parameter. 

Go into FreeMASTER_control folder which is under project’s root path. Double click S12ZVM-

EFP_Sensorless.pmp file, it will open FreeMASTER as following shown in the following figure. 
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Figure 29. FreeMASTER main window 

Switch to “Parameters” sheet as following picture and replace the parameters which in red rectangular 

box using your new values shown in the following figure. 

 

Figure 30. Motor parameter configure window in FreeMASTER 

Switch to “Current Loop” sheet as shown in the following figure. Set the current loop parameters,  

controller limits and DC-bus voltage IIR filter settings. 
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Figure 31. Current Loop Configuration in FreeMASTER 

Switch to the “Speed Loop” sheet as shown in the following figure. Set the speed loop parameters, it 

include not only loop parameters, but also the speed ramp, speed PI controller limits and actual speed 

filter parameters. 

 

 

Figure 32. Speed Loop Configuration in FreeMASTER 

To achieve the fast start up, the speed ramp value needs to be set as high as possible. In S12ZVM-EFP 

example project, it is set to 100000 rpm/s.  

Switch to “Sensorless” sheet. It is used to configure the BEMF observer parameters, tracking observer 

parameters and the open loop start-up parameters which as shown in the following figure. To speed up 

the start-up process, the start-up ramp is set to 10000 which is bigger than usual application. 
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Figure 33. Sensorless configuration in FreeMASTER 

Once all the parameters setting are complete, go to “Output File” sheet, click “Generate 

Configuration File” button. It will generate a new configuration file “PMSM_appconfig.h”. Rebuild the 

firmware and the FreeMASTER configuration is successful completed.  

6.3. Demo project work mode introduction 

There are three methods to control the fuel pump running, FRM_CONTROL_MODE, 

LIN_CONTROL_MODE and PWM_CONTROL_MODE. It can be selected in “userdef.h”. 

FRM_CONTROL_MODE means the fuel pump is controlled by FreeMASTER, it can be used in tuning 

stage. LIN_CONTROL_MODE means the fuel pump is controlled by LIN bus and the S12ZVM-EFP is 

used as slave. For PWM_CONTROL_MODE, it is a traditional control mode, it uses PWM duty cycle 

to control the fuel pump to start and stop and also controls the speed. 

6.3.1. FreeMASTER control mode 

FreeMASTER control mode is the default setting. In this mode, the motor is controlled by 

FreeMASTER MCAT GUI. It can control the ON/OFF, the running speed. It is very convenient to tune 

the control parameters, including the start-up parameters, current loop, speed loop and etc. It can update 

the parameters dynamic and very efficiency to tune the motor running performance. 

If the performance reaches the desired goal, then other controls may be used. LIN or PWM which is 

decided by the system requirement. 

6.3.2. LIN Control Mode 

For LIN control mode, the example project of S12ZVM-EFP is running as slave. The S12ZVL32 in 

another hardware is work as master. The master send the “reqspeed” command to slave, the salve checks 
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the “reqspeed”, if the “reqspeed” is bigger than 500rpm, the motor will start to run and run to the target 

speed. If the “reqspeed” equal to 0, the motor will stop and enter idle state. 

S12ZVM-EFP will feedback the motor real speed and the error information if triggered. More 

information can be found in LDF_LIN.ldf file. 

6.3.3. PWM control mode 

PWM control mode is the very traditional control method which using PWM duty cycle to control the 

target speed. Usually PWM control mode uses a linear to control the motor speed according to the PWM 

duty cycle. The following figure shows the speed vs duty cycle in PWM Control Mode. 

 

Figure 34. Speed vs duty cycle in PWM control mode  

6.4. Build and Debug the demo project 

6.4.1. Import the project with CodeWarrior 

From menu File → Import…, open the Import window. 

 

Figure 35. Menu of File to open Import window 

 

Select General → Existing Projects into Workspace → Next. 
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Figure 36. Select “Existing Projects into Workspace” 

 

Copy the directory of the project and then push the “Enter” Key. The project name is shown in 

“Projects” and then Click “Finish” to complete the import. 

 

Figure 37. Select the Target Project 

6.4.2. Rebuild and debug the project with CodeWarrior 

After importing the existing example project, the first thing is to “clean” the project, the “clean” 

operation triggers “rebuild” event. 
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Figure 38. Clean and build project 

If project is built successfully, following message is displayed on the Console window, the message is 

shown in the following figure. 

 

 

Figure 39. The compile result in console window 

 

After the successful compilation, the next step is enter the debug step. Click the debug configurations, as 

shown in the following figure.  

 

 

Figure 40. Access the Debug Configurations 
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Figure 41. Debug Configurations Details 

Double click the MTRCKTPNZVM128_CW10_FLASH and then enter the debug process and it stops 

during the “main” function if the hardware has no issue.  

7. Fuel Pump System Test Performance 

This chapter gives out the performance of S12ZVM-EFP RD SW from the following two aspects, fuel 

pump system test performance and used MCU resource. The fuel pump system test is based on a 

simplified fuel pump system which shown in the following figure. The fuel pump model is 3Q0919050. 

The main system test is as follows: 

• Fast start up and ON/OFF test 

• Fluctuation of load 

• Fluctuation of power supply 

• Velocity adjust by PWM change 

• Temperature rise test 

 

Source supply

Oscilloscope

Waveform 
generator

Electric fuel Pump 
Controller

Electric fuel Pump 
testbench

 

Figure 42. Simplified Fuel Pump test platform 
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7.1. Fast start up and ON/OFF test 

Frequently turn the fuel pump ON and OFF. Try 100 counts and record the successful counts. One of the 

start-up current waveform is shown as shown in the following figure. The result is 100% percent 

successful start-up. 

IPD and the crossing smooth I/F start up method make the start up fast and robust. As per the following 

figure, the start is up to 8000 rpm and the time is 107.6 ms and it is less than 150 ms. 

 

Figure 43. A successful start-up phase current scope 

7.1.1. Fluctuation of load 

S12ZVM-EFP work at 13 V, 8000rpm, then change the load of the pump. Check the speed variation for 

the load changing. From the following figure, even from light load to heavy load, or from heavy load to 

light load, the speed are still stable and does not change.  

Heavy Load

Light Load

 

Figure 44. Phase current scope for load changing test 
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7.1.2. Fluctuation of power supply 

Test the S12ZVM-EFP work state in 8 V, 13 V and 16 V, change the supply voltage dynamic and check 

the speed variation.  

The test result is good and the speed does not change much in different voltage supply. But please note 

in 8 V, the speed may not achieve the rated speed. 

7.1.3. Velocity adjust by PWM change 

Test the fuel pump to check if the following speed command and the dynamic performance by using 

PWM input mode for speed command sending. The ramp down time is bigger due to the speed ramp 

setting for speed down is not as high as ramp up. The following figure shows the speed adjustment 

according to the PWM capture. 

88%-7800rpm 20%-1800rpm 50%-4500rpm 88%-7800rpm 90%-8000rpm 30%-2700rpm

867ms 79.6ms 833ms83.2ms

 

Figure 45. Phase current scope for PWM vs speed 

 

 

Figure 46. PWM Input Capture Shown in FreeMASTER 

The PWM capture value in FreeMASTER is shown in the above figure.  
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7.1.4. Temperature rise test 

Running the S12ZVM-EFP board at rated power 250 W at 13 V. The temperature of MOSFET rises 

from 18° to 52°. At 5 min the temperature is stable and almost at 52°. The temperature change is 34° for 

long time. Please check the following figure for more information. The temperature rise result for 

S12ZVM-EFP is 34° 

 

 

Figure 47. S12ZVM-EFP temperature rising test result  

7.2. Used MCU resource 

Set the optimization level “2” and “Speed” first as shown in the following figure. 

 

Figure 48. Compiler optimization setting 
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The memory usage result is shown as following by setting the control mode to 

“FRM_CONTROL_MODE” 

Summary of section sizes per section type: 

READ_ONLY (R):        4056 (dec:    16470) 

READ_WRITE (R/W):      E91 (dec:     3729) 

NO_INIT (N/I):         1E3 (dec:      483) 

The S12ZVM-EFP is based on S12ZVML128. So for memory usage, it has lots of available memory 

which can be used. 

8. Summary 

The S12ZVM-EFP SW package provides an out-of-box runtime software based on NXP S12ZVM 

PMSM example project V1.3 and AMMCLIB v1.1.15.  

The SW is dedicated optimized for fuel pump application, especially for fast and robust start up. The 

crossing smooth I/F start up and Initial Position Detection method are the key know-how for this project. 

SW has three work mode, including FreeMASTER control, LIN control and PWM control. It can 

support dual shunt and single shunt, but this user guide is mainly for dual shunt. 

Meanwhile, the SW is not only suitable for BLDC/PMSM fuel pump application, but also is a good 

reference for automotive small node motor control application, such as oil pump, water pump, cooling 

fan and HVAC blower.  
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