
Freescale Semiconductor, Inc.
CodeWarrior™
Development Studio

mobileGT™ Processor
Edition, Version 8.1

Targeting Manual

 Revised 2004/06/23
For More Information: www.freescale.com

Freescale Semiconductor, Inc.
Metrowerks and the Metrowerks logo are registered trademarks of Metrowerks Corporation in the United States and/
or other countries. CodeWarrior is a trademark or registered trademark of Metrowerks Corporation in the United States
and/or other countries. All other trade names and trademarks are the property of their respective owners.

Copyright © 1999-2003 Metrowerks Corporation. ALL RIGHTS RESERVED.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Metrowerks. Use of this document and related materials is gov-
erned by the license agreement that accompanied the product to which this manual pertains. This document
may be printed for non-commercial personal use only in accordance with the aforementioned license agree-
ment. If you do not have a copy of the license agreement, contact your Metrowerks representative or call 1-800-
377-5416 (if outside the U.S., call +1-512-996-5300).

Metrowerks reserves the right to make changes to any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability. Metrowerks software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a simi-
lar degree of potential hazard.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales United States Voice: 800-377-5416
United States Fax: 512-996-4910
International Voice: +1-512-996-5300
Email: sales@metrowerks.com

Technical Support United States Voice: 800-377-5416
International Voice: +1-512-996-5300
Email: support@metrowerks.com
For More Information: www.freescale.com

http://www.metrowerks.com

Table of Contents

1 Introduction 9
Read the Release Notes. . 9

Related Documentation. . 9

CodeWarrior™ Information . 10

Embedded PowerPC Programming Information 10

PowerTAP® Pro and WireTAP Information 11

2 Getting Started 13
System Requirements . 13

Supported Evaluation Boards . 14

Installing Your CodeWarrior™ Product 14

Registering Your CodeWarrior™ Product 15

Overview: The CodeWarrior™ Software Development Tools 17

CodeWarrior™ IDE . 17

Project Manager . 18

C/C++ Compiler . 20

Standalone Assembler . 20

Linker . 21

Debugger . 21

Metrowerks Standard Libraries 22

Overview: The CodeWarrior™ Software Development Process 22

Project Files . 23

Editing Code. 23

Compiling. 23

Linking . 24

Debugging . 24

Viewing Preprocessor Output . 24

3 Tutorial 25
Creating a Project . 25

Building and Debugging a Project 31

Freescale Semiconductor, Inc.
3CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Table of Contents Freescale Semiconductor, Inc.
4 Creating a CodeWarrior™ Project 35
Types of Projects . 35

Using PowerPC EABI Templates . 36

Using the Makefile Importer Wizard 36

Project Targets . 38

5 Target Settings 39
Target Settings Overview . 39

Embedded PowerPC-Specific Target Settings Panels 40

Target Settings . 40

EPPC Target . 44

EPPC Assembler . 50

Global Optimizations . 52

EPPC Processor . 54

EPPC Disassembler . 63

EPPC Linker. 65

Debugger PIC Settings . 73

EPPC Debugger Settings . 74

Source Folder Mapping . 76

System Call Service Settings . 79

PC-lint Target Settings Panels . 81

PCLint Main Settings . 82

PCLint Options. 84

6 Embedded PowerPC Debugging 87
Supported Remote Connections . 87

Abatron Remote Connections . 89

MetroTRK . 91

MSI BDM Raven/MSI Wiggler 92

P&E BDM . 94

PowerTAP PRO CCS . 95

WireTAP 8xx . 97

WireTAP CCS . 98
4 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Table of ContentsFreescale Semiconductor, Inc.
Special Debugger Features . 100

Displaying Registers . 100

EPPC-Specific Debugger Features 101

Register Details . 106

Using MetroTRK . 108

MetroTRK Overview . 108

Connecting to the MetroTRK Debug Monitor. 109

MetroTRK Memory Configuration 110

Using MetroTRK for Debugging 111

Using MetroTRK with the Lite5200 Board 112

Debugging ELF Files . 120

Preparing to Debug an ELF File 120

Customizing the Default XML Project File 122

Debugging an ELF File . 123

ELF File Debugging: Additional Considerations. 124

7 C/C++ Compiler and Linker 125
Integer and Floating-Point Formats 126

Embedded PowerPC Integer Formats 126

Embedded PowerPC Floating-Point Formats 127

Data Addressing . 127

Register Variables . . 129

Register Coloring Optimization . 130

Pragmas. . 131

opt_full_unroll_limit . 132

opt_findoptimalunrollfactor . . 132

opt_unroll_count . 133

opt_unrollpostloop . 133

opt_unroll_instr_count . . 133

inline_max_auto_size . 133

ppc_no_fp_blockmove . . 133

force_active . 134

function_align . 134
5CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Table of Contents Freescale Semiconductor, Inc.
incompatible_return_small_structs 134

incompatible_sfpe_double_params 135

interrupt . 135

pack . 136

pooled_data . 137

section . 137

EPPC Linker Issues . 143

Additional Small Data Sections 143

Linker Generated Symbols . 147

Deadstripping Unused Code and Data 148

Link Order . 148

Linker Command Files. . 149

Using __attribute__ ((aligned(?))) 159

Variable Declaration Examples 159

Struct Definition Examples . 160

Typedef Declaration Examples 160

Struct Member Examples. . 161

8 Inline Assembler 163
Working With Assembly Language 163

Assembly Language Syntax. . 164

Special Embedded PowerPC Instructions 166

Creating Statement Labels . 167

Using Comments . 168

Using the Preprocessor in Embedded PowerPC Assembly 168

Using Local Variables and Arguments. 168

Creating a Stack Frame . 169

Specifying Operands . 170

Assembler Directives . 174

entry . . 174

fralloc . 175

frfree. . 175

machine . 175
6 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Table of ContentsFreescale Semiconductor, Inc.
nofralloc . 176

opword . . 176

Intrinsic Functions . 176

Low-Level Processor Synchronization. 177

Absolute Value Functions . 177

Byte-Reversing Functions . 178

Setting the Floating-Point Environment 178

Manipulating a Variable or Register. 178

Data Cache Manipulation. . 179

Math Functions. . 179

Buffer Manipulation. . 180

9 Support Libraries and Code 181
Metrowerks Standard Libraries. . 181

Using the Metrowerks Standard Libraries 181

Using Console I/O . 182

Allocating Memory and Heaps 183

Runtime Libraries . . 184

Library Naming Conventions . 184

Required Libraries and Source Code Files 185

Board Initialization Code . . 186

10 Hardware Tools 187
Flash Programmer. . 187

Hardware Diagnostics . 189

Logic Analyzer . . 189

Logic Analyzer Menu . 190

Logic Analyzer Tutorial . 191

A Debug Initialization Files 199
Using Debug Initialization Files . 199

Debug Initialization File Commands 200

Debug Initialization File Command Syntax. 200

Descriptions and Examples of Commands 200
7CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Table of Contents Freescale Semiconductor, Inc.
B Memory Configuration Files 205
Command Syntax . . 205

Memory Configuration File Commands 205

range. . 206

reserved . 206

reservedchar . . 206

C Command-Line Tool Options 207
Compiler/Linker Options . 207

Disassembler Options . 211

D Using the Dhrystone Benchmark Software with the Lite5200 215
Building the Dhrystone Example Project 215

Running the Dhrystone Program . 216

Index 221
8 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
1
Introduction

This manual explains how to install and use the CodeWarrior™ Development Studio,
mobileGT™ Processor Edition product.

The sections of this chapter are:

• Read the Release Notes

• Related Documentation

Read the Release Notes
The release notes contain information about new features, bug fixes, and
incompatibilities that is not in the documentation due to release deadlines.

The release notes are in this directory:

installDir\Release_Notes

where installDir is a placeholder for the path in which you installed your
CodeWarrior product.

Related Documentation
This section lists documentation related to the CodeWarrior IDE and Embedded
PowerPC development.

• CodeWarrior™ Information

• Embedded PowerPC Programming Information

• PowerTAP® Pro and WireTAP Information
9CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Introduction
Related Documentation

Freescale Semiconductor, Inc.
CodeWarrior™ Information
• Your CodeWarrior product includes example projects that show you how to do

such things as use MetroTRK and use the Dhrystone benchmark software.

The example projects are in subdirectories of this directory:

installDir\(CodeWarrior_Examples)

• For general information about the CodeWarrior IDE and the CodeWarrior
debugger, refer to the IDE User Guide. This manual is here:

installDir\Help\PDF

• For information specific to the CodeWarrior C/C++ compiler, see the
C Compilers Reference. This manual is here:

installDir\Help\PDF

• For information about Metrowerks’ standard C/C++ libraries, see the
MSL C Reference and the MSL C++ Reference in the installDir\Help\PDF
directory. These manuals are here:

installDir\Help\PDF

• For general information about MetroTRK and instructions that explain how to
customize MetroTRK to work with any target board, see the MetroTRK
Reference. This manual is here:

installDir\Help\PDF

Embedded PowerPC Programming
Information
To learn more about the Embedded PowerPC Application Binary Interface (PowerPC
EABI), refer to these documents:

• System V Application Binary Interface, Third Edition, published by UNIX
System Laboratories, 1994 (ISBN 0-13-100439-5).

• System V Application Binary Interface, PowerPC Processor Supplement,
published by Sun Microsystems and IBM (1995). This document is available at
this web address:

http://www.cloudcaptech.com/downloads.htm

• PowerPC Embedded Binary Interface, 32-Bit Implementation, published by
Motorola, Inc. This document is available at this web address:

http://e-www.motorola.com/
files/32bit/doc/app_note/PPCEABI.pdf

The PowerPC EABI specifies data structure alignment, calling conventions, and other
information about how high-level languages can be implemented for a Embedded
10 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

http://www.cloudcaptech.com/downloads.htm
http://e-www.motorola.com/files/32bit/doc/app_note/PPCEABI.pdf
http://e-www.motorola.com/files/32bit/doc/app_note/PPCEABI.pdf

Introduction
Related Documentation

Freescale Semiconductor, Inc.
PowerPC processor. The code generated by the CodeWarrior C/C++ compiler and the
CodeWarrior Assembler conforms to the PowerPC EABI.

The PowerPC EABI also specifies the required object and symbol file format. The
specification requires ELF (Executable and Linker Format) for the output file format
and DWARF (Debug With Arbitrary Record Format) for the symbol file format. For
more information about these file formats, refer to these documents:

• Executable and Linker Format, Version 1.1, published by UNIX System
Laboratories.

• DWARF Debugging Information Format, Revision: Version 1.1.0, published by
UNIX International, Programming Languages SIG, October 6, 1992.

This document is available at this web address:

http://www.nondot.org/
sabre/os/files/Executables/dwarf-v1.1.0.pdf

• DWARF Debugging Information Format, Industry Review Draft, published by
UNIX International, Programming Languages SIG, July 27, 1993.

This document is available at this web address:

http://www.nondot.org/sabre/os/files/Executables/Dwarf.pdf

PowerTAP® Pro and WireTAP Information
The manuals listed below provide information about the PowerTAP PRO and
WireTAP debug tools.

• Emulator installation guide for PowerTAP PRO JTAG

installDir\Help\PDF\
PowerTAP_PRO_ICE_JTAG_Emulator_Guide.pdf

• Quick Start guide for PowerTAP PRO JTAG

installDir\PowerTAP_PRO_ICE_JTAG_QuickStart.pdf

• Emulator installation guide for PowerTAP PRO DPI

installDir\Help\PDF\
PowerTAP_PRO_ICE_DPI_Emulator_Guide_cd.pdf

• Quick Start guide for PowerTAP PRO DPI

installDir\PowerTAP_PRO_ICE_DPI_Quick_Start.pdf

• Emulator installation guide for WireTAP

installDir\Help\PDF\
Wiretap_Installation_Guide.pdf
11CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf
http://www.nondot.org/sabre/os/files/Executables/Dwarf.pdf

Introduction
Related Documentation

Freescale Semiconductor, Inc.
12 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
2
Getting Started

This chapter shows you how to install the CodeWarrior™ Development Studio,
mobileGT™ Processor Edition tools. In addition, the chapter provides an overview of
the tools included in this CodeWarrior product and the development process you
follow as you use these tools.

The sections are:

• System Requirements

• Supported Evaluation Boards

• Installing Your CodeWarrior™ Product

• Registering Your CodeWarrior™ Product

• Overview: The CodeWarrior™ Software Development Tools

• Overview: The CodeWarrior™ Software Development Process

System Requirements
The system requirements for the CodeWarrior™ Development Studio, mobileGT
Edition product are:

• Hardware:

– PC with a 500 MHz Intel® Pentium® class processor (minimum)

– 128 MB RAM (minimum)

– 230 MB free hard disk space (minimum)

– CD-ROM drive

– Serial port, parallel port, and Ethernet port.

• Software: Microsoft® Windows 2000/XP® or Windows NT® Workstation 4.0.
13CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Supported Evaluation Boards

Freescale Semiconductor, Inc.
Supported Evaluation Boards
Table 2.1 lists the evaluation boards supported by the mobileGT Processor Edition.

Installing Your CodeWarrior™ Product
To install your CodeWarrior product, follow these steps:

1. Put the product installation CD in the CD drive.

The CodeWarrior installation menu appears.

NOTE If auto-install is disabled, run Launch.exe manually. This program
is in the root directory of the installation CD.

2. Click Launch the installer

The installation wizard starts and displays a welcome screen.

3. Follow the on-screen instructions to install the software.

4. When prompted to check for CodeWarrior software updates, click Yes

The CodeWarrior Updater window appears.

NOTE If the CodeWarrior updater already has the correct Internet
connection settings, proceed directly to step 8.

5. Click Settings

The Internet Properties dialog box appears.

6. Use this dialog box to modify your Internet connection settings (if necessary).

Table 2.1 Supported Evaluation Boards

Manufacturer Boards

Motorola Lite5200, rev. I

Lite5200, rev. G

823 FADS
14 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Registering Your CodeWarrior™ Product

Freescale Semiconductor, Inc.
7. Click OK

The Internet Properties dialog box closes.

8. In the CodeWarrior Updater window, click Next

The updater checks for newer versions of the CodeWarrior products installed on
your PC.

9. Follow the on-screen instructions to download CodeWarrior product updates to
your PC.

10. When the updater displays the message Update Check Complete!, click Finish.

The wizard displays a readme file in Notepad.

11. When finished with the readme file, press ALT-F4

Notepad exits, and the wizard displays its “installation complete” page.

12. Select Yes, I want to restart my computer now, and click Finish

Your PC restarts; CodeWarrior installation is complete.

Registering Your CodeWarrior™ Product
To register your CodeWarrior product, follow these steps:

1. Select Start > Programs > Metrowerks CodeWarrior >
CodeWarrior for mobileGT V8.1 > CodeWarrior IDE

The IDE starts and displays the registration dialog box. (See Figure 2.1.)

Figure 2.1 Registration Dialog Box
15CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Registering Your CodeWarrior™ Product

Freescale Semiconductor, Inc.
2. Click Register Now

The registration dialog box closes. Your web browser starts and displays the
Metrowerks registration web page.

3. Complete the registration form on the registration web page.

Metrowerks emails a license authorization code to you (typically within
15 minutes).

4. Open the email message containing the license registration code.

5. From the IDE’s menu bar, select Help > License Authorization

The License Authorization dialog box appears. (See Figure 2.2.)

Figure 2.2 License Authorization Dialog Box

6. Copy and paste the license authorization code from the email message to the Enter
License Authorization Code text box of the License Authorization dialog box.

7. Click OK

The License Authorization dialog box closes; Your CodeWarrior software is
ready to use.
16 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Overview: The CodeWarrior™ Software Development Tools

Freescale Semiconductor, Inc.
Overview: The CodeWarrior™ Software
Development Tools

Programming for mobileGT processor family is much like programming for any other
CodeWarrior target. If you have never used the CodeWarrior IDE before, the tools
with which you must become familiar are:

• CodeWarrior™ IDE

• Project Manager

• C/C++ Compiler

• Standalone Assembler

• Linker

• Debugger

• Metrowerks Standard Libraries

NOTE If you have used other CodeWarrior products, you already know how
to use the IDE and the debugger because they are the same for all
CodeWarrior versions.
However, the linker and the Metrowerks Standard Libraries (MSL)
differ significantly from one CodeWarrior product to another; as a
result, you must familiarize yourself with the mobileGT versions of
these tools before you start to write software.

CodeWarrior™ IDE
The CodeWarrior IDE (Integrated Development Environment) is a program that
provides a set of tools that you can use to develop software for the mobileGT
processor family.

The IDE has a graphical user interface (GUI). You use the GUI to control the tools
included in the mobileGT processor family product.

The most important development tools provided by the IDE are the project manager,
editor, compiler, assembler, linker, and debugger.

For complete documentation of the CodeWarrior IDE, refer to online help or the
CodeWarrior™ IDE User Guide.
17CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Overview: The CodeWarrior™ Software Development Tools

Freescale Semiconductor, Inc.
Project Manager
A CodeWarrior project is a collection of build targets. A build target is a set of related
files and configuration settings that the CodeWarrior IDE uses to generate a final
output file, such as an application or a library.

The project manager displays a project in a window called the project window. This
window displays the files in each build target in a project. (See Figure 2.3.)

NOTE Those who are more familiar with command-line development tools
than an IDE may find the project manager a new concept. The project
manager organizes all files related to your project. This lets you to
see your project at a glance and eases the organization of and
navigation between your source files.

Figure 2.3 Example Project Window

Table 2.2 defines several project-related terms.

Build Target
listbox
18 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Overview: The CodeWarrior™ Software Development Tools

Freescale Semiconductor, Inc.
The project manager keeps track of dependencies between files in your project. As a
result, when you change a file and then build your project, the IDE compiles:

• The file you changed.

• All files that are dependent on the file you changed.

The project manager lets you define one or more build targets for the same project. A
build target is a named set of project settings and files that the IDE uses to build a final
output file.

For example, you could create a build target named Debug. For this target, you might
choose settings that include information needed by the debugger.

Within the same project, you could also create a second build target, named Release.
For this build target, you could exclude all debugging information so the release
version of your program is smaller.

Figure 2.4 shows a project containing a debug build target and a release build target.

Table 2.2 Project-related Terms

Term Definition

Host The system on which you run the CodeWarrior IDE to develop
software for one or more platform targets.

Build Target A named collection of settings and files that the IDE uses to build a
final output file.
A build target defines all build-specific information, including:

• Information that identifies files that belong to the build target

• Compiler and linker settings for the build target

• Output information for the build target
A project can contain multiple build targets. This lets you define
different builds for different purposes.

Platform target The operating system or evaluation board for which you develop
software. The platform target can be different from the host.
19CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Overview: The CodeWarrior™ Software Development Tools

Freescale Semiconductor, Inc.
Figure 2.4 A Project with Multiple Build Targets

For complete documentation of the CodeWarrior project manager, refer to online help
or the CodeWarrior™ IDE User Guide.

C/C++ Compiler
The CodeWarrior EPPC compiler is an ANSI-compliant C/C++ compiler. This
compiler employs the same architecture as all other all other CodeWarrior C/C++
compilers. You can generate Embedded PowerPC applications and libraries that
conform to the PowerPC EABI by using the CodeWarrior C/C++ compiler in
conjunction with the CodeWarrior EPPC linker.

For information about the CodeWarrior compiler family’s C/C++ language
implementation, refer to the C Compilers Reference.

Standalone Assembler
The CodeWarrior EPPC assembler is a standalone, command-line assembler that
provides an easy-to-use assembly language syntax. The CodeWarrior assemblers for
other platform targets use the same syntax as the EPPC assembler.
20 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Overview: The CodeWarrior™ Software Development Tools

Freescale Semiconductor, Inc.
For more information about the standalone CodeWarrior assembler, refer to the
Assembler Guide.

Linker
The CodeWarrior EPPC linker generates output in Executable and Linkable (ELF)
format. Among other features, the linker, lets you:

• Assign absolute addresses to objects using linker command file directives.

• Define multiple user-defined sections.

• Generate S-Record files.

• Define additional small data sections.

• Use Position Independent Code/Position Independent Data (PIC/PID).

For more information about PIC/PID support, refer to this release notice:

installDir\Release_Notes\PowerPC_EABI\
CW_Tools\Compiler_Notes\CW Common PPC Notes 3.0.x.txt

where installDir is a placeholder for the path in which you installed your
CodeWarrior product.

Debugger
The CodeWarrior debugger controls the execution of your program and allows you to
see what is happening internally as your program runs. You use the debugger to find
problems in your program.

The debugger can execute your program one statement at a time, and suspend
execution when control reaches a specified point. When the debugger stops a program,
you can view the chain of function calls, examine and change the values of variables,
and inspect the contents of registers.

For general information about the debugger, including all of its common features and
its visual interface, you should read the IDE User Guide.

The CodeWarrior debugger for EPPC debugs software as it is running on the target
board. The debugger communicates with the target board through a monitor program,
such as MetroTRK, or through a hardware protocol, such as BDM or JTAG.

Hardware protocols require additional hardware to communicate with the target board,
such as Abatron, PowerTAP Pro, WireTAP, P&E BDM, or an MSI Wiggler.
21CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Overview: The CodeWarrior™ Software Development Process

Freescale Semiconductor, Inc.
Metrowerks Standard Libraries
The Metrowerks Standard Libraries (MSL) are ANSI compliant standard C and C++
libraries. These libraries are used to develop applications for Embedded PowerPC.
The CodeWarrior CD contains the source code of these libraries. These are the same
libraries that are used for all CodeWarrior build targets. However, the libraries have
been customized and the runtime has been adapted for use in Embedded PowerPC
development.

For more information about MSL, see MSL C Reference and MSL C++ Reference.

Overview: The CodeWarrior™ Software
Development Process

While working with the CodeWarrior IDE, you will proceed through the development
stages familiar to all programmers: writing code, compiling and linking, and
debugging. See the IDE User Guide for:

• Complete information on tasks such as editing, compiling, and linking

• Basic information on debugging

The difference between the CodeWarrior environment and traditional command-line
environments is how the software (in this case the IDE) helps you manage your work
more effectively.

If you are unfamiliar with an integrated environment in general, or with the
CodeWarrior IDE in particular, you may find the topics in this section helpful. Each
topic explains how one component of the CodeWarrior tools relates to a traditional
command-line environment.

• Project Files

• Editing Code

• Compiling

• Linking

• Debugging

• Viewing Preprocessor Output
22 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Overview: The CodeWarrior™ Software Development Process

Freescale Semiconductor, Inc.
Project Files
The CodeWarrior IDE is analogous to a set of makefiles because you can have
multiple build targets in a single project. For example, you can have one project that
has both a debug version and a release version of your project. You can build one or
the other, or both as you wish. In the CodeWarrior IDE, the different builds within a
single project are called build targets.

The IDE uses the project manager window to list all the files in the project. Among the
kinds of files in a project are source code files and libraries.

You can add or remove files easily. You can assign files to one or more different build
targets within the project, so files common to multiple targets can be managed simply.

The IDE manages all the interdependencies between files automatically and tracks
which files have been changed since the last build. When you rebuild, only those files
that have changed are recompiled.

The IDE also stores the settings for compiler and linker options for each build target.
You can modify these settings using the IDE, or with #pragma statements in your
source code.

Editing Code
The CodeWarrior IDE has an integrated text editor designed for programmers. It
handles text files in MS-DOS/Windows, UNIX, and Mac OS formats.

To edit a source code file, or any other editable file that is in a project, double-click the
file name in the project window to open the file.

The editor window has excellent navigational features that let you switch between
related files, find a specific function, mark any location within a file, go to a specific
line of code, and much more.

Compiling
To compile a source code file, it must be among the files that are part of the current
build target. If it is, select the source code file in the project window and select
Project > Compile.

To compile all the files in the current build target that have been modified since they
were last compiled, select Project > Bring Up To Date.
23CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Getting Started
Overview: The CodeWarrior™ Software Development Process

Freescale Semiconductor, Inc.
Linking
Select Project > Make to link object code into a final binary file. The Make
command brings the active project up-to-date, then links the resulting object code into
a final output file.

You control the linker through the IDE. There is no need to specify a list of object
files. The project manager tracks all the object files automatically. You can use the
project manager to specify link order as well.

Use the EPPC Target settings panel to set the name of the final output file.

Debugging
Select Project > Debug to debug your project. This tells the compiler and linker to
generate debugging information for all items in your project.

If you want to only generate debug information on a file-by-file basis, click in the
debug column for that file. The debug column is located in the project window, to the
right of the data column.

Viewing Preprocessor Output
To view preprocessor output, select the file in the project window and select
Project > Preprocess. A new window appears that shows you what your file looks
like after going through the preprocessor.

You can use this feature to track down bugs caused by macro expansion or other
subtleties of the preprocessor.

The preprocessor feature is also useful for submitting bug reports for compiler
problems. Instead of sending an entire source tree to technical support, you can
preprocess the file causing problems and send it along with the relevant project
settings through e-mail.
24 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
3
Tutorial

This chapter presents a tutorial that shows you how to use the CodeWarrior™
Development Studio, mobileGT™ Processor Edition software development tools.

The tutorial does not teach you have to program; instead, it shows you how to use the
CodeWarrior tools to create, build, and debug a project for the mobileGT™ processor
family.

The sections are:

• Creating a Project

• Building and Debugging a Project

Creating a Project
You can create a mobileGT project using any of these tools:

• EPPC New Project Wizard

• PowerPC Embedded Application Binary Interface (EABI) templates

• Makefile Importer Wizard

See the Creating a CodeWarrior™ Project chapter to learn how to create a project
using the Makefile Importer Wizard and PowerPC EABI templates.

This section explains how to create a mobileGT processor project using the EPPC
New Project Wizard.

NOTE You can change all choices you make while creating a project with
the EPPC New Project Wizard manually after the project creation.

1. Create the project.

a. Chose File > New

The New dialog box appears. (See Figure 3.1.)
25CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Creating a Project

Freescale Semiconductor, Inc.
Figure 3.1 New Dialog Box

b. From left pane of New dialog box, select EPPC New Project Wizard.

c. In the Project Name text box, type the name of your project.

 For example, type HelloWorld.

d. In the Location text box, type the directory in which to create the project.

e. Click OK

The wizard starts and displays the EPPC New Project Wizard — Linker
dialog box. (See Figure 3.3.)

Figure 3.2 EPPC New Project Wizard — Linker Dialog Box

f. From the Linkers list, select the linker for the new project.
26 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Creating a Project

Freescale Semiconductor, Inc.
g. Click Next

The wizard displays the EPPC New Project Wizard — Target dialog box.
(See Figure 3.3.)

Figure 3.3 EPPC New Project Wizard — Target Dialog Box

2. Select the target board and processor for the new project.

a. From the Boards listbox, select the evaluation board your are using.

b. From the Processors listbox, select the processor on the board you are using.

c. Check the Present detailed wizard checkbox.

d. Click Next

The EPPC New Project Wizard — Programming Language dialog box
appears. (See Figure 3.4.)

Figure 3.4 EPPC New Project Wizard — Programming Language Dialog Box
27CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Creating a Project

Freescale Semiconductor, Inc.
3. Select the programming language for the new project.

NOTE The programming language selected defines the libraries the wizard
includes in your project and the language used in the main source
code file. That said, if you select C++, you can still include C
language source files in your project and vice versa.

4. Optionally, check the Use size optimized libraries checkbox to use a compact
version of the runtime support library in the new project

5. Click Next

The wizard displays the EPPC New Project Wizard — Floating Point dialog
box. (See Figure 3.5.)

Figure 3.5 EPPC New Project Wizard — Floating Point Dialog Box

6. Select the floating-point support the new project requires.

7. Click Next

The wizard displays the EPPC New Project Wizard — Remote Connection
dialog box. (See Figure 3.6.)
28 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Creating a Project

Freescale Semiconductor, Inc.
Figure 3.6 EPPC New Project Wizard — Remote Connection Dialog Box

8. Select the remote connection for the debug interface you are using.

9. Click Finish

The wizard creates your project according to your specifications and displays the
results in a project window.

The project window is docked to the left side of the IDE. (See Figure 3.7.)

Figure 3.7 Project Window—HelloWorld Project

10. Specify your remote connection preferences.

a. Select Edit > Preferences

The IDE Preferences window appears.
29CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Creating a Project

Freescale Semiconductor, Inc.
b. From the IDE Preference Panel listbox, select Remote Connections.

The Remote Connections preference panel appears on the right side of the
IDE Preferences window. (See Figure 3.8.)

Figure 3.8 Remote Connections Preference Panel

c. From the Remote Connections panel, select the remote connection name you
selected when you created the project using the wizard.

For this tutorial, select WireTAP CCS.

d. Click Change

The WireTAP CCS dialog box appears. (See Figure 3.9.)

Figure 3.9 WireTAP CCS Dialog Box
30 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Building and Debugging a Project

Freescale Semiconductor, Inc.
e. From the Parallel Port dropdown list, select the parallel port of your PC to
which the WireTAP CCS run-control tool is connected.

f. Leave the default values for all other settings.

g. Click OK

The IDE saves your settings and closes the WireTAP CCS dialog box.

h. Click OK

The IDE close the IDE Preferences window.

Building and Debugging a Project
This section explains how to edit source code then build and debug a project.

1. Edit the source code.

a. In the project window, expand the Source control tree.

b. Double-click the file named main.c.

An editor window containing the contents of main.c appears.
(See Figure 3.10.)

You can edit main.c by typing in this window.

Figure 3.10 main.c
31CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Building and Debugging a Project

Freescale Semiconductor, Inc.
c. Press CTRL-F4

The editor window closes.

2. Select Project > Make

The IDE builds the project and stores the generated executable file in the project
directory. Note that the red check marks next to the filenames disappear. This
indicates that the files no longer need to be built.

NOTE Before starting to debug, ensure that your debug hardware is
connected to the target board. Also ensure that a serial cable
appropriate for the target board is connected between the COM A
port of the board and the serial port of your PC.

3. Start a terminal emulation program.

a. Select Start > Programs >
Accessories > Communications > HyperTerminal

The Connection Description dialog box appears.

b. In the Name text box, type a connection name.

c. Click OK

The Connection Description dialog box closes. The Connect To dialog box
appears.

d. From the Connect using listbox, select the serial port of your PC to which the
target board is connected.

e. Click OK

The Connect To dialog box closes. The COM1 Properties dialog box
appears.

f. Specify these serial port settings:

• Bits per second — 57600

• Data bits — 8

• Parity — None

• Stop bits — 1

• Flow control — None
32 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Building and Debugging a Project

Freescale Semiconductor, Inc.
g. Click OK

The COM1 Properties dialog box closes.

h. Select File > Properties

The Properties dialog box appears.

i. Click the Settings tab of the Properties dialog box.

The Settings page of the Properties dialog box appears.

j. Click ASCII Setup

The ASCII Setup dialog box appears.

k. Check the Send line ends with line feeds checkbox.

l. Click OK

The ASCII Setup dialog box closes.

m. Click OK

The Properties dialog box closes. Terminal emulation begins.

4. Debug the project.

a. Select Project > Debug

The IDE launches the debugger. The debugger window appears with the
program counter at the main function. (See Figure 3.11)

Figure 3.11 Debugger Window
33CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Tutorial
Building and Debugging a Project

Freescale Semiconductor, Inc.
b. Set a breakpoint by clicking in the gutter to the left of this statement:
printf("Welcome to CodeWarrior!\r\n")

c. Click the Run icon.

The program executes up to the breakpoint you set.

d. Click the Step Into icon.

The debugger displays the printf function and halts execution at the first
statement of this function.

e. Click the Step Over icon.

The debugger executes the first statement of the printf function and halts at
the next statement.

f. Click the Step Out icon.

The debugger executes the remaining statements of the printf function,
returns to the main function, and halts at the first statement after the
invocation of the printf function.

5. Click the Kill Thread icon

The debug session terminates, and the debugger window closes.
34 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
4
Creating a CodeWarrior™
Project

This chapter provides an overview of the steps required to generate code that runs on
mobileGT™ processors.

The sections are:

• Types of Projects

• Using PowerPC EABI Templates

• Using the Makefile Importer Wizard

• Project Targets

Types of Projects
The CodeWarrior IDE for Embedded PowerPC generates binary files in the ELF
format. You can create three different kinds of projects: application projects, library
projects, and partial linking projects.

The only difference between the application projects and library projects is that an
application project has associated stack and heap sizes; a library does not. A partial
linking project allows you to generate an output file that the linker can use as input.

You can create an Embedded PowerPC project by using the:

• EPPC New Project Wizard

• PowerPC EABI templates

• Makefile Importer Wizard

“Creating a Project” on page 25 explains how to create a project by using the EPPC
new project wizard.
35CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Creating a CodeWarrior™ Project
Using PowerPC EABI Templates

Freescale Semiconductor, Inc.
Using PowerPC EABI Templates
The CodeWarrior software includes PowerPC Embedded Application Binary Interface
(EABI) templates for Embedded PowerPC projects. Project templates help you get
started quickly: You must only create an empty project and add the template sources to
this project.

The EABI template source files are in this directory:

installDir\Templates\PowerPC_EABI\Sources

where installDir is a placeholder for the path in which you installed your
CodeWarrior product.

The PowerPC EABI template directories are organized according to target board
name.

Most template source files are placeholders only. You must replace them with your
own files.

Using the Makefile Importer Wizard
Use the Makefile Importer wizard to convert a GNU makefile into a CodeWarrior
project. The Makefile Importer wizard lets you:

• parse the makefile to determine source files and build targets.

• create a project.

• add the source files and build targets determined during parsing.

• match makefile information, such as output name, output directory, and access
paths, with the newly created build targets.

• select a project linker.

To convert makefiles to a CodeWarrior project:

1. Specify the project settings.

a. Select File > New

The New dialog box appears.

b. Select Makefile Importer Wizard

c. In the Project Name text box, type the project name (including the .mcp
extension).
36 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Creating a CodeWarrior™ Project
Using the Makefile Importer Wizard

Freescale Semiconductor, Inc.
d. Click OK

The Makefile Importer Wizard dialog box appears. (See Figure 4.1.)

Figure 4.1 Makefile Importer Wizard Dialog Box

2. Specify the path to the makefile.

Type the path to the makefile in the Makefile Location text box. Alternatively,
click Browse to display a dialog box you can use to find and select the makefile.

3. Select the makefile conversion tool and the linker.

a. Use the Tool Set Used In Makefile listbox to select the tool set that was used
to generate the selected make file.

Currently, just Metrowerks EPPC makefiles are supported.

b. Use the Metrowerks Tool Set listbox to select the Metrowerks tools to use in
the project created from the selected make file.

Currently, just the Embedded PPC Linker is supported.

4. Select the desired diagnostics:

– Check the Log Targets Bypassed box to generate a log file containing
information about make file build targets that the conversion tool fails to
convert to project build targets.

– Check the Log Build Rules Discarded box to generate a log file that contains
information about make file rules that the conversion tool discards during
conversion.
37CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Creating a CodeWarrior™ Project
Project Targets

Freescale Semiconductor, Inc.
– Check the Log All Statements Bypassed box to generate a log file containing
information about the targets bypassed, build rules discarded, and other
makefile items that the conversion tool fails to convert.

5. Click Finish

The Makefile Importer wizard creates a CodeWarrior project using the
information in the specified make file.

Project Targets
The CodeWarrior stationery includes multiple targets with different purposes. Using
the project stationery, you can add your own code to an existing stationery project,
quickly set up the code so that it is appropriate to place in ROM, and burn the code
into ROM.

The available targets are:

• Debug Version

This is the default target setting when you create the project. This target includes
only the user code and the standard and runtime libraries. This target does not
perform any hardware initialization or set up any exception vectors. You can
continue using only this target until you need ISRs or to flash your code to the
ROM.

• ROM Version

Select this target to generate an s-record final output file for programming your
code into the ROM. This target builds an image for ROM that includes all
exception vectors, a sample ISR, and the hardware initialization. You can use the
s-record that this target generates with any standard flash programmer to burn
your program into ROM, or you can use the third target (Flash to ROM version)
to burn your program into ROM.
38 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
5
Target Settings

Target settings control the behavior of the development tools used by a build target of
a CodeWarrior™ project.

This chapter defines the mobileGT™-specific target settings from which you can
select. See the CodeWarrior IDE User Guide for information about the target settings
available for all CodeWarrior products.

The sections are:

• Target Settings Overview

• Embedded PowerPC-Specific Target Settings Panels

• PC-lint Target Settings Panels

Target Settings Overview
Target settings are organized into panels you can display in the target settings window.
To display the Target Settings window (Figure 5.1), select Edit > Target Settings
(where Target is the name of the current build target of your CodeWarrior project).

Figure 5.1 Target Settings Window
39CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Select the panel you want to display from the list in the left pane of the Target
Settings window.

NOTE If you use the EPPC New Project Wizard to create a project, the
wizard assigns default values to all options of all settings panels.

Embedded PowerPC-Specific Target
Settings Panels

This section explains the purpose and effect of each setting in the panels specific to
Embedded PowerPC development.

The target settings panels covered in this section are:

• Target Settings

• EPPC Target

• EPPC Assembler

• Global Optimizations

• EPPC Processor

• EPPC Disassembler

• EPPC Linker

• Debugger PIC Settings

• EPPC Debugger Settings

• Source Folder Mapping

• System Call Service Settings

NOTE The Global Optimizations and EPPC Processor settings panels
each provide code optimization options. Use both panels to select the
best combination of optimization settings for your application.

Target Settings
The Target Settings panel (Figure 5.2) is the most important target settings panel
because it lets you select the linker a build target uses.
40 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Linker choice is most important because a linker generates a build target’s final output
file, thereby determining the operating system and/or microprocessor with which this
file can be used. Further, linker choice defines the other target settings panels available
in the Target Settings window.

Figure 5.2 Target Settings Panel

In addition to linker selection, use the Target Settings panel to define the name of the
current build target, to select pre- and post-linkers to execute during the build process,
and to specify the directory to which the linker writes its output.

NOTE The Target Settings panel is not the same as the EPPC Target
panel. You select a linker in the Target Settings panel; you select
other target-specific options in the EPPC Target panel.

Target Name
Type the name of the current project build target in the Target Name text box.

If you display the Targets view of a Project window, the name of each build target in
your project is displayed.

NOTE Target Name is not the name of your output file generated by a build
target; rather, Target Name is the name of your project’s current
41CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
build target. You define the name of a build target’s output file in the
EPPC Target target settings panel.

Linker
From the Linker listbox, select the linker for the current build target to use. Your
choices are:

• PowerPC EABI

Choose this option to configure a build target to generate a file in Executable and
Linkable (ELF) format.

• PCLint Linker

Choose this option to configure a build target to use PC-lint to check your
C/C++ source code for bugs, inconsistencies, and non-portable constructs.

PC-lint is a third-party software development tool created by Gimpel Software
(www.gimpel.com). As a result, you must obtain and install a copy of PC-lint
before a CodeWarrior build target can use this tool.

NOTE Depending on your linker choice, a different set of panel names
appears in the left pane of the Target Settings window. The sections
immediately below document the panels used by both linkers and
those specific to the PowerPC EABI linker. See PC-lint Target
Settings Panels for documentation of the panels specific to PC-lint.

Pre-linker
A pre-linker is a tool that performs its work immediately before the linker runs.

Use the Pre-linker listbox to select the pre-linker for the current build target to use.

CodeWarrior Development Studio, mobileGT Edition includes just one pre-linker, the
BatchRunner PreLinker.

If you select the BatchRunner PreLinker, a new panel, named BatchRunner PreLinker,
appears in the left panel of the Target Settings window. Use this panel to select the
Windows® batch file for the pre-linker to run.
42 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

http://www.gimpel.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Post-linker
A post-linker is a tool that performs its work immediately after the linker runs.

Use the Post-linker listbox to select the post-linker for the current build target to use.

CodeWarrior Development Studio, mobileGT Edition includes just one post-linker,
the BatchRunner PostLinker.

If you select the BatchRunner PostLinker, a new panel, named BatchRunner
PostLinker, appears in the left panel of the Target Settings window. Use this panel to
select the Windows batch file for the post-linker to run.

Output Directory
The output directory is the directory in which the linker places a build target’s final
output file (application or library file).

The project directory is the default output directory. Click Choose to display a dialog
box that lets you select the output directory for the current build target.

Save project entries using relative paths
Check the Save project entries using relative paths box to instruct the IDE to save the
relative path to each file in a project along with the root file name of the file.

If this box is checked, you can add two or more files that have the same name to a
project. This is so because, when searching for files, the IDE prepends the directory
names in the Access Paths target settings panel to the relative path of each project file,
thereby producing a unique filename.

If this box is unchecked, each file in a project must have a unique name. This is so
because, when searching for files, the IDE combines the directory names in the Access
Paths panel with just the root filename of each project file. As a result, the IDE cannot
discriminate between two files that have the same name but different relative paths.
43CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
EPPC Target
Use the EPPC Target settings panel (Figure 5.3) to specify the name of the final
output file (application or library file) generated by the linker for the current build
target. In addition, use this panel to tell the linker how to setup this file.

Figure 5.3 EPPC Target Settings Panel

Project Type
Use the Project Type listbox to define the kind of project that the build target creates.
The options are:

• Application

• Library

• Partial Link

The project type you choose determines which other items appear in this panel. If you
choose Library or Partial Link, the Heap Size (k), Stack Size (k), and Tune
Relocations items disappear because they are not relevant. The Partial Link item lets
you generate a relocatable output file that a dynamic linker or loader can use
as input. If you choose Partial Link, the items Optimize Partial Link, Deadstrip
Unused Symbols, and Require Resolved Symbols appear in the panel.
44 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
File Name
Use the File Name text box to define the name of the application or library a build
target creates.

By convention, application names should end with the extension .elf, and library
names should end with the extension .a.

If the name of an application ends in .elf or .ELF, the extension is stripped before the
.mot and .MAP extensions are added (if you have selected the appropriate switches
for generating S-Record and map files in the EPPC Linker panel).

Byte Ordering
Use the option buttons in the Byte Ordering area to select either little endian or big
endian format to store generated code and data. In big endian format, the most
significant byte comes first (B3, B2, B1, B0). In little endian format, the bytes are
organized with the least significant byte first (B0, B1, B2, B3). See documentation for
the PowerPC processor for details on setting the byte order mode.

Disable CW Extensions
If you are exporting code libraries from CodeWarrior software to other compilers/
linkers, check the Disable CW Extensions checkbox to disable CodeWarrior features
that may be incompatible.

The CodeWarrior IDE currently supports one extension: storing alignment
information in the st_other field of each symbol.

If the Disable CW Extensions checkbox is checked:

• The st_other field is always set to 0.

Certain non-CodeWarrior linkers require that this field have the value 0.

• The CodeWarrior linker cannot deadstrip files.

To deadstrip, the linker requires that alignment information be stored in each
st_other field.

Check the Disable CW Extensions checkbox to create a C-language library for use
with third-party linkers. However, not all third-party linkers require that you disable
CodeWarrior extensions; you may need to try both settings. When building a
CodeWarrior linked application, clear the Disable CW Extensions checkbox to avoid
generating a larger application. Assembly language files do not need this option; and
C++ libraries are not portable to other linkers.
45CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
DWARF
Use the DWARF listbox to select the version of the Debug With Arbitrary Record
Format (DWARF) debug format the linker generates. The linker ignores debug
information that is not in the format that you select from the DWARF listbox.

ABI
Use the ABI listbox to select the Application Binary Interface (ABI) the compiler uses
for function calls and structure layout.

Tune Relocations
The tune relocations option pertains to object relocation and is available for just these
application binary interfaces: EABI and SDA PIC/PID.

NOTE The Tune Relocations checkbox appears only if you select
Application from the Project Type listbox.

Checking the Tune Relocations checkbox has these effects:

• For the EABI application binary interface, a 14-bit branch relocations is
converted to 24-bit branch relocation only if the 14-bit relocation cannot reach
the calling site from the original relocation.

• For the SDA PIC/PID application binary interface, the absolute addressed
references of data from code are changed to use a small data register instead of
r0; absolute code is changed to code references to use the PC relative relocations

For more information about PIC/PID support, see this release notice:

installDir\Release_Notes\PowerPC_EABI\
CW_Tools\Compiler_Notes\CW Common PPC Notes 3.0.x.txt

where installDir is a placeholder for the path in which you installed your
CodeWarrior product.

Code Model
Use the Code Model listbox to select the Absolute Addressing or SDA PIC/PID
addressing mode for the generated application or library.
46 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Small Data
Use the Small Data text box to specify the threshold size (in bytes) for an item to be
considered small data by the linker. The linker stores small data items in the Small
Data address space.

Data in the Small Data address space can be accessed more quickly than data in the
“normal” address space.

Small Data2
Use the Small Data2 text box to specify the threshold size (in bytes) for an item to be
considered small data by the linker. The linker stores read-only small data items in the
Small Data2 address space.

Constant data in the Small Data2 address space can be accessed more quickly than
data in the “normal” address space.

Heap Size (k)
Use the Heap Size text box to specify the amount of memory (in kilobytes) allocated
for the heap. The heap is used when your program calls malloc or new.

NOTE Heap size does not to libraries; only applications have a heap.

Stack Size (k)
Use the Stack Size text box to specify the amount of memory (in kilobytes) allocated
for the stack.

NOTE Stack size does not to libraries; only applications have a stack.

NOTE Allocate stack and heap size based on the amount of memory on your
target board. If you allocate lots of memory for the heap and/or stack
compared to the total amount of memory available, your program
may not run correctly.
47CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Optimize Partial Link

NOTE The Optimize Partial Link checkbox is available only if you select
Partial Link from the Project Type listbox.

Check the Optimize Partial Link checkbox to instruct the linker to directly download
the output of your partial link. Enabling this option lets the linker:

• Use a linker command file (LCF).

The commands in an LCF let you merge the sections of your application into the
.text, .data or .bss segment. If you do not use an LCF to perform this merge,
the CodeWarrior debugger will probably not be able to display the application’s
source code correctly.

• Perform deadstripping.

Deadstripping is strongly recommended.

NOTE An application must have at least one entry point for the linker to be
able to deadstrip it.

• Collect all static constructors and destructors in a way similar to the tool munch.

NOTE It is very important that you do not use munch yourself because the
linker must put C++ exception handling initialization code in the first
constructor. If you see munch in your makefile, it is a clue that you
need an optimized build.

• Change common symbols to .bss symbols. This lets you examine the variable in
the debugger.

• Perform a special type of partial link that has no unresolved symbols. This link is
the same as that performed by the Diab linker when passed -r2 argument.

If the Optimize Partial Link checkbox is clear, the build target’s output file remains as
if you passed the linker the -r argument from the command-line.

Deadstrip Unused Symbols

NOTE The Deadstrip Unused Symbols checkbox is available only if you
select Partial Link from the Project Type listbox.
48 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Check the Deadstrip Unused Symbols checkbox to instruct the linker deadstrip any
symbols that are not used. Deadstripping makes your program smaller by removing
code and data not referenced by an application’s main entry point (or any entry points
specified in a force_active linker command file directive).

Require Resolved Symbols

NOTE The Require Resolved Symbols checkbox is available only if you
select Partial Link from the Project Type listbox.

Check the Require Resolved Symbols checkbox to instruct the linker to resolve all
symbols in a partial link. If checked, the linker emits an error message if any symbol
referenced by your program is not defined in any source code file or library in your
project.

NOTE Some real-time operating systems require that there be no unresolved
symbols in a partial link file. In this case, enable this option.
49CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
EPPC Assembler
Use the EPPC Assembler target settings panel (Figure 5.4) to define the syntax
allowed in assembly language source code files, whether the assembler generates a
listing file, and the name of the prefix file for the assembler to use (if any).

Figure 5.4 EPPC Assembler Target Settings Panel

Source Format
Use the checkboxes in the Source Format area to define certain syntax options for the
assembly language source files. For more information on the assembly language
syntax for the Embedded PowerPC assembler, read the manual Assembler Reference.

GNU Compatible Syntax
Check the GNU compatible syntax checkbox to indicate that your application uses
GNU-compatible assembly syntax.

GNU-compatibility allows:

• Redefining all equates regardless of whether they were defined using .equ or
.set

• Ignoring the .type directive

• Treating undefined symbols as imported
50 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
• Using GNU compatible arithmetic operators. The symbols < and > mean left-
shift and right-shift instead of less than and greater than. Additionally, the symbol
! means bitwise-or-not instead of logical not

• Using GNU compatible precedence rules for operators

• Implementing GNU compatible numeric local labels from 0 to 9

• Treating numeric constants beginning with 0 as octal

• Using semicolons as statement separators

• Using a single unbalanced quote for character constants. For example, .byte 'a.

Generate Listing File
A listing file contains source code statements along with line numbers, relocation
information, and macro expansions.

Check the Generate Listing File checkbox to direct the assembler to generate a listing
file when processing a build target.

Prefix File
The Prefix File text box specifies a prefix file that is automatically included in all
assembly files in the project. This text box lets you include common definitions
without including the file in every source file.
51CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Global Optimizations
Use the Global Optimizations settings panel (Figure 5.5) to instruct the compiler to
rearrange the object code to produce smaller or faster executing object code.

Figure 5.5 Global Optimizations Target Settings Panel

The type of optimization performed depends on the optimization level you select. For
example, the compiler may remove redundant operations in a program for a particular
optimization level. For other optimization levels, the compiler may analyze how an
item is used in a program and attempt to reduce the effect of that item on the
performance of the program.

In all cases, the compiler manipulates the instruction stream without affecting the
semantics of the program. In other words, an unoptimized program and its optimized
counterpart produce the same results.

Optimization may produce unexpected results in syntactically correct but semantically
ambiguous code. In the C/C++ Warnings target settings panel, check the Extended
Error Checking and Possible Errors checkboxes to detect such situations.

The optimization levels are:

• Optimizations Off (level 0)

The compiler performs global register allocation (register coloring) for compiler-
generated (temporary) variables only.
52 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
NOTE If creating an application for debugging, select Optimizations Off.
Other optimization levels prevent the debugger from showing you
the contents of registers accurately.

• Level 1

The compiler performs dead code elimination and global register allocation.

• Level 2

The compiler performs the optimizations of Level 1 plus common subexpression
elimination and copy propagation.

Level 2 is the best selection for most build targets.

• Level 3

The compiler performs the optimizations of Level 2. In addition, the compiler
moves invariant expressions out of loops (also called Code Motion) and performs
strength reduction of induction variables, copy propagation, and loop
transformation.

Level 3 is the best selection for a build target with many loops.

• Level 4

The compiler performs the optimizations of Level 3, including performing some
of them a second time for even greater code efficiency.

Level 4 can provide the greatest code optimization but requires takes more
compilation time than do the other levels.

This Global Optimizations target settings panel provides the same options as the
#pragma global_optimizer and #pragma optimization_level pragmas.

NOTE Use compiler optimizations only after debugging your software.
Using a debugger on an optimized code may affect the register
values, stack trace, and source code a debugger displays.
53CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
EPPC Processor
Use the EPPC Processor settings panel (Figure 5.6) to make processor-dependent
code generation settings.

Figure 5.6 EPPC Processor Target Settings Panel

Struct Alignment
Use the Struct Alignment listbox to define how the compiler aligns structures.

The default option for Struct Alignment is PowerPC.

If your code must conform to the PowerPC EABI specification and inter-operate with
third party object code, you must select PowerPC for the Struct Alignment option.
Other choices may lead to reduced performance or alignment violation exceptions. For
more information, refer to the explanation of pragma “pack” on page 136.

NOTE If you choose a Struct Alignment setting other than PowerPC, your
code may not work correctly.

Function Alignment
If your board has hardware capable of fetching multiple instructions at a time, you
may achieve slightly better performance by aligning functions to the width of the
fetch. Use the Function Alignment listbox to select alignments from 4 (the default) to
54 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
128 bytes. These selections correspond to #pragma function_align. For more
information, see “function_align” on page 134.

NOTE The st_other field of the .symtab (ELF) entries has been
overloaded to ensure that dead-stripping of functions does not
interfere with the alignment you have chosen. This may result in code
that is incompatible with some third-party linkers.

Processor
Use the Processor listbox to specify the target processor. Choose Generic if the
processor you are working with is not listed, or if you want to generate code that runs
on any Embedded PowerPC processor. Choosing Generic lets you use all optional
instructions and the core instructions of the 505, 509, 555, and 56x processors.

Selecting a particular target processor produces these results:

• Instruction scheduling

If the Instruction Scheduling checkbox (also in the EPPC Processor panel) is
selected, the processor selection helps define how scheduling optimizations are
made.

• Preprocessor symbol generation

A preprocessor symbol is defined based on your target processor. It is equivalent
to the following definition, where number is the three-digit number of the
Embedded PowerPC processor being targeted:

#define __PPCnumber__ 1

For example, for the 555 processor, the symbol would be __PPC555__. If you
select Generic, the macro __PPCGENERIC__ is defined to 1.

• Floating-point support

The None (no floating-point), Software, and Hardware options are available for
all processors, even those processors without a floating-point unit. If your target
system does not support handling a floating-point exception, you should select
the None or Software options. If the Hardware option is not selected, the Use
FMADD & FMSUB checkbox is not available.

Floating Point
Use the Floating Point listbox to define how the compiler handles floating-point
operations in your code. To specify how the compiler should handle floating-point
operations for your project, you need to:
55CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
• Choose an option from the Floating Point listbox.

• Include the corresponding runtime library in your project.

For example, if you select None, you must also include the library
Runtime.PPCEABI.N.a in your project.

A description of each option follows.

• None

Disables floating-point support.

• Software

Floating-point operations are performed by the runtime library.

NOTE The calls generated by using floating-point emulation are defined in
the C runtime library. As a result, selecting software emulation
without including the appropriate C runtime library results in link
errors. If you use floating-point emulation, you must include the
appropriate C runtime file in your project.

• Hardware

Floating-point operations are performed by the processor’s floating-point unit.

NOTE Do not select the Hardware option if the processor you are using has
no floating-point unit.

• SPE-EFPU

Performs single-precision floating-point operations using e500-EFPU hardware
instructions. Performs double-precision floating-point operations using the
runtime library.

Vector Support
Use the Vector Support listbox to select the type of vector execution unit your target
processor has. The CodeWarrior EPPC C/C++ compiler supports both AltiVec™ and
SPE vector execution units.

If your target processor includes a vector execution unit and you want the compiler to
generate instructions for this unit, select the vector type your processor supports from
the Vector Support listbox. If your processor does not have a vector execution unit or
you do not want the compiler to emit vector instructions, select None.
56 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
NOTE No member of the mobileGT family includes an AltiVec or SPE
vector execution unit. As a result, if you are targeting a member of
the mobileGT family, select None from the Vector Support listbox.

If you select Altivec from the Vector Support listbox, the checkboxes in the Altivec
Options area enable. These options let you select the type of AltiVec support required.

Relax HW IEEE

NOTE The Relax HW IEEE checkbox is available only if you select
Hardware from the Floating Point listbox.

Check the The Relax HW IEEE checkbox to instruct the compiler generate faster code
by ignoring some of the more strict requirements of the IEEE floating-point standard.
These requirements are controlled by the options Use Fused Multi-Add/Sub, Generate
FSEL Instruction, and Assume Ordered Compares.

Use Fused Multi-Add/Sub
Check this box to instruct the compiler to generate PowerPC Fused Multi-Add/Sub
instructions. If enabled, this option lets the compiler generate smaller and faster
floating-point code than it generates if it adheres to the IEEE floating-point
specification.

NOTE Enabling the Use Fused Multi-Add/Sub option may produce
unexpected results because of the greater precision of the
intermediate values these instructions produce. The results are
slightly more accurate than those produced by the IEEE floating-
point standard because of an extra rounding bit between the multiply
operation and the add/subtract operation.

Generate FSEL Instruction
Check this box to instruct the compiler to generate the FSEL instruction. This
instruction executes more quickly than corresponding instructions allowed by the
IEEE floating-point specification.
57CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Enabling Generate FSEL Instruction option lets the compiler optimize the pattern

x = (condition ? y : z)

where x and y are floating-point values.

NOTE The FSEL instruction is not accurate for denormalized numbers and
may cause problems related to unordered compares.

Assume Ordered Compares
Check this box to instruct the compiler to ignore issues associated with unordered
numbers (such as NAN) when comparing floating-point values. In strict IEEE mode,
any comparison with NAN except not-equal-to, returns false. The assume ordered
compares optimization ignores this requirement, thereby allowing this conversion:

if (a <= b)

to

if (a > b)

Altivec Options
Use the checkboxes of the Altivec Options group box to instruct the compiler to
generate specific kinds of instructions for an Altivec vector execution unit.

NOTE The options in the Altivec Options group are disabled unless you
select Altivec from the Vector Support listbox.

Altivec Structure Moves
Check the Altivec Structure Move checkbox to instruct the compiler to use AltiVec
instructions to copy structures.

Generate VRSAVE Instructions
The VRSAVE register indicates to the operating system which vector registers to save
and reload when a context switch happens. The bits of the VRSAVE register that
correspond to the number of each affected vector register are set to 1.
58 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
When a function call happens, the value of the VRSAVE register is saved as a part of
the stack frame called the vrsave word. In addition, the function saves the values of
any non-volatile vector registers in the stack frame in an area called the vector register
save area before changing the values in any of those registers.

Check the Generate VRSAVE Instructions box only if developing for a real-time
operating system that supports AltiVec. Checking the Generate VRSAVE Instructions
checkbox tells the compiler to generate instructions that save and restore these vector-
register-related values.

Make Strings Read Only
Check the Make Strings Read Only checkbox to instruct the compiler to store string
constants in the read-only .rodata section. Leave this checkbox clear to instruct the
compiler to store string constants in the ELF-file data section. The Make Strings Read
Only option corresponds to #pragma readonly_strings. The default setting of
this pragma is OFF.

If you check the Make Strings Read Only checkbox, the Linker Merges String
Constants checkbox becomes available. Check the Linker Merges String Constants
checkbox to have the compiler pool strings together from a given file. If this checkbox
is clear, the compiler treats each string as an individual string. The linker can deadstrip
unused individual strings.

Pool Data
Check the Pool Data checkbox to instruct the compiler to organize some of the data in
the large data sections (.data, .bss, and .rodata) so that a program can access the
data more quickly.

The Pool Data option affects only data that is defined in the current source file; the
option does not affect external declarations or any small data. The linker is aggressive
in stripping unused data and functions from your binaries; however, the linker cannot
strip any large data that has been pooled.

NOTE If your program uses tentative data, you get a warning that you need
to force the tentative data into the common section.
59CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Linker Merges FP Constants
Check the Linker Merges FP Constants checkbox to instruct the compiler to name
floating-point constants in such a way that the name contains the constant. This lets the
linker merge floating-point constants automatically.

Use Common Section
Check the Use Common Section checkbox to have the compiler place global
uninitialized data in the common section. This section is similar to a Fortran common
block. If the linker finds two or more variables with the same name and at least one of
them is in a common section, those variables share the same storage address. If this
checkbox is clear, two variables with the same name generate a link error. The
compiler never places small data, pooled data, or variables declared static in the
common section.

The section pragma provides fine control over which symbols the compiler includes
in the common section.

To have the desired effect, this checkbox must be checked during the definition of the
data, as well as during the declaration of the data. Common section data is converted
to use the .bss section at link time. The linker supports common section data in
libraries even if the switch is disabled at the project level.

NOTE You must initialize all common variables in each source file that uses
these variables; otherwise you get unexpected results.

NOTE It is recommended that you develop with the Use Common Section
box clear. Once you have debugged your program, look at the data
for especially large variables that are used in just one file. Change the
names of such variables so they are the same, and make sure that you
initialize them before you use them. Once you have completed this
process, you can enable the Use Common Section feature.

Use LMW & STMW
LMW (Load Multiple Word) is a single PowerPC instruction that loads a group of
registers; STMW (Store Multiple Word) is a single PowerPC instruction that stores a
group of registers. If the Use LMW & STMW box is checked, the compiler sometimes
60 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
uses these instructions in a function’s prologue and epilogue to save and restore
volatile registers.

A function that uses the LMW and STMW instructions is always smaller, but usually
slower, than a function that uses an equivalent series of LWZ and STW instructions.
Therefore, in general, check the Use LMW & STMW box if compact code is your
goal, and leave this box unchecked if execution speed is your objective.

That said, because a smaller function might fit better in the processor’s cache lines
than a larger function, it is possible that a function that uses LMW/STMW will execute
faster than one that uses multiple LWZ/STW instructions.

As a result, to determine which instructions produce faster code for a given function,
you must try the function with and without LMW/STMW instructions. To make this
determination, use these pragmas to control the instructions the compiler emits for the
function in question:

• #pragma no_register_save_helpers on|off|reset

If this pragma is on, the compiler always inlines instructions.

• #pragma use_lmw_stmw on|off|reset

This pragma has the same effect as the Use LMW & STMW checkbox, but
operates at the function level.

NOTE The compiler never uses the LMW and STMW instructions in little-
endian code, even if the Use LMW & STMW checkbox is checked.
This restriction is necessary because execution of an LMW or STMW
instruction while the processor is in little-endian mode causes an
alignment exception.

Consult the Programming Environments Manual For 32-Bit Implementations of the
PowerPC Architecture for more information about LMW and STMW efficiency issues.

Inlined Assembler is Volatile
Check the Inlined Assembler is Volatile checkbox to have the compiler treat all asm
blocks (including inline asm blocks) as if the volatile keyword was present. This
prevents the asm block from being optimized.

You can use the .nonvolatile directive to selectively enable optimization on asm
blocks, as required.
61CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Instruction Scheduling
If the Instruction Scheduling checkbox is checked, scheduling of instructions is
optimized for the specific processor you are targeting (determined by which processor
is selected in the Processor listbox).

NOTE Enabling the Instruction Scheduling checkbox can make source-level
debugging more difficult (because the source code may not
correspond to the execution order of the underlying instructions). It is
sometimes helpful to clear this checkbox when debugging, and then
check it again once you have finished the bulk of your debugging.

Peephole Optimization
Check the Peephole Optimization checkbox to have the compiler perform peephole
optimizations. Peephole optimizations are small, local optimizations that can reduce
several instructions to one target instruction, eliminate some compare instructions, and
improve branch sequences.

This checkbox corresponds to #pragma peephole.

Profiler Information
Check the Profiler Information checkbox to generate special object code during
runtime to collect information for a code profiler.

This checkbox corresponds to #pragma profile.

e500 Options
The e500 options do not apply to the CodeWarrior Development Studio, mobileGT
Processor Family product.
62 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
EPPC Disassembler
Use the EPPC Disassembler settings panel (Figure 5.7) to control the information
displayed by the CodeWarrior disassembler.

Figure 5.7 EPPC Disassembler Target Settings Panel

See the Compiling and Linking chapter of the IDE User Guide for general information
about the Disassemble command.

Show Headers
Check the Show Headers checkbox to have the disassembler list any ELF header
information in the disassembled output.

Show Symbol Table
Check the Show Symbol Table checkbox to have the disassembler list the symbol
table for the disassembled module.

Show Code Modules
Check the Show Code Modules checkbox to have the disassembler provide ELF code
sections in the disassembled output for a module.
63CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Checking the Show Code Modules makes these checkboxes available:

• Use Extended Mnemonics

Check this checkbox to have the disassembler list the extended mnemonics for
each instruction for the disassembled module.

• Only Show Operands and Mnemonics

Check this checkbox to have the disassembler list the offset for any functions in
the disassembled module.

Show Data Modules
Check the Show Data Modules checkbox to have the disassembler provide ELF data
sections (such as .rodata and .bss) in the disassembled output for a module.

Checking this checkbox makes the Disassemble Exception Tables checkbox available.
Check the Disassemble Exception Tables checkbox to have the disassembler include
C++ exception tables in the disassembled output for a module.

Show DWARF Info
Check the Show DWARF Info checkbox to have the disassembler include DWARF
symbol information in the disassembled output.

Checking this checkbox makes the Relocate DWARF Info checkbox available. The
Relocate DWARF Info checkbox lets you relocate object and function addresses in the
DWARF information.

Verbose Info
Check the Verbose Info checkbox to instruct the disassembler to show additional
information about certain types of information in the ELF file. For the .symtab
section, some of the descriptive constants are shown with their numeric equivalents.
The .line, .debug, extab and extabindex sections are also shown in an
unstructured hexadecimal dump form.
64 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
EPPC Linker
Use the EPPC Linker target settings panel (Figure 5.8) to select options related to
linking your object code into its final form: application or library.

Figure 5.8 EPPC Linker Target Settings Panel

Link Mode
The link mode lets you control how much memory the linker uses while it writes the
output file to the hard-disk. Linking requires enough RAM space to hold all of the
input files and the numerous structures that the linker uses for housekeeping. The
housekeeping allocations occur before the linker writes the output file to the disk.

Use the Link Mode listbox to select the link mode. The link mode options are:

• Use Less RAM

In this link mode, the linker writes the output file directly to disk without using a
buffer.

• Normal

In this link mode, the linker writes to a 512-byte buffer and then writes the buffer
to disk. For most projects, this link mode is the best choice.

• Use More RAM

In this link mode, the linker writes each segment to its own buffer. When all
segments have been written to their buffers, the buffers are flushed to the disk.
This link mode is best suited for small projects.
65CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Generate DWARF Info
Check the Generate DWARF Info checkbox to instruct the linker to generate
debugging information in Debug With Arbitrary Record Format (DWARF) format.
DWARF information is included within the linked ELF file. Checking this box does
not cause the linker to generate a separate file.

If you check the Generate DWARF Info checkbox, the Use Full Path Names checkbox
becomes available. Use the Use Full Path Names checkbox to define how the linker
includes path information for source files. If the Use Full Path Names checkbox is
checked, the linker includes full paths as well as root file names within the linked ELF
file (see the note that follows). If this checkbox is cleared, the linker saves just the root
file names.

NOTE If you build your programs on one machine and debug it on another,
clear the Use Full Path Names checkbox. Clearing this box enables
the debugger to more easily find the source code files associated with
an application or library.

Generate Link Map
Check the Generate Link Map checkbox to tell the linker to generate a link map.

The linker adds the extension .MAP to the file name specified in the File Name text
box of the EPPC Target settings panel. The file is saved in the same folder as the
output file.

The link map shows which file provided the definition for every object and function in
the output file. It also displays the address given to each object and function, a
memory map of where each section resides in memory, and the value of each linker
generated symbol. Although the linker aggressively strips unused code and data when
the relocatable file is compiled with the CodeWarrior compiler, it never deadstrips
assembler relocatables or relocatables built with other compilers. If a relocatable was
not built with the CodeWarrior C/C++ compiler, the link map lists all the unused but
unstripped symbols. You can use that information to remove the symbols from the
source and rebuild the relocatable in order to make your final process image smaller.

List Closure
This checkbox is available only if you check the Generate Link Map checkbox. Check
the List Closure checkbox to have all the functions called by the starting point of the
program listed in the link map. See “Entry Point” on page 73 for details.
66 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
List Unused Objects
This checkbox is available only if you check the Generate Link Map checkbox. Check
the List Unused Objects checkbox to tell the linker to include unused objects in the
link map. This setting is useful in cases where you may discover that an object you
expect to be used is not in use.

List DWARF Objects
This checkbox is available only if you check the Generate Link Map checkbox. Check
the List DWARF Objects checkbox to instruct the linker to list all DWARF debugging
objects in the section area of the link map. The DWARF debugging objects are also
listed in the closure area if you check the List Closure checkbox.

Suppress Warning Messages
Check the Suppress Warning Messages checkbox to tell the linker not to display
warnings in the CodeWarrior message window.

Heap Address
Use the Heap Address text box to define the memory location at which the linker
places the heap. The heap is used if your program calls malloc or new.

If you wish to specify a specific heap address, check the checkbox and type an address
in the Heap Address text box. You must specify the address in hexadecimal notation.
The address you specify is the bottom of the heap. The address is then aligned up to
the nearest 8-byte boundary, if necessary. The top of the heap is Heap Size (k)
kilobytes above the Heap Address (Heap Size (k) is found in the EPPC Target panel).
The possible addresses depend on your target hardware platform and how the memory
is mapped. The heap must reside in RAM.

If you clear the checkbox, the top of the heap is equal to the bottom of the stack. In
other words:

_stack_end = _stack_addr - (Stack Size (k) * 1024);
_heap_end = _stack_end;
_heap_addr = _heap_end - (Heap Size (k) * 1024);

The MSL allocation routines do not require that you have a heap below the stack. You
can set the heap address to any place in RAM that does not overlap with other sections.
The MSL also allows you to have multiple memory pools, which can increase the total
size of the heap.
67CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
You can clear the Heap Address checkbox if your code does not make use of a heap. If
you are using MSL, your program may implicitly use a heap.

NOTE If there is not enough free space available in your program, malloc
returns zero. If you do not call malloc or new, consider setting Heap
Size (k) to 0 to maximize the memory available for code, data, and
the stack.

Stack Address
Use the Stack Address text box to define the memory location at which the linker
places the stack.

If you want to specify a stack address, check the checkbox and type an address in the
Stack Address text box. You must specify the address in hexadecimal format. The
address you specify is the top of the stack. The stack extends downward from the
specified address the number of kilobytes you specify in the Stack Size (k) text box of
the EPPC Target panel. The stack address is aligned to the nearest 8-byte boundary, if
necessary. The possible addresses depend on your target board and the way its
memory is mapped. The stack must reside in RAM.

NOTE Alternatively, you can specify the stack address by entering a value
for the symbol _stack_addr in a linker command file.

If you clear this checkbox, the linker uses the address 0x003DFFF0. However, this
address may not be suitable for boards with a small amount of RAM. For such boards,
see the stationery projects for examples with suitable addresses.

NOTE Because the stack grows downward in memory, it is common to
place the stack as high in memory as possible. If you have a board
that has MetroTRK installed, this monitor puts its data in high
memory. The default (factory) stack address reflects the memory
requirements of MetroTRK and places the stack address at
0x003DFFF0. MetroTRK also uses memory from 0x00000100 to
0x00002000 for exception vectors.
68 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Generate ROM Image
Check the Generate ROM Image box to instruct the linker to create a ROM image. A
ROM image is a file that a flash programmer can write to flash ROM.

RAM Buffer Address
Use the RAM Buffer Address text box to enter the address of a RAM buffer for a flash
programmer to use.

Many flash programmers (such as the MPC8BUG programmer) use the RAM buffer
you specify to load all segments in your binary to consecutive addresses in flash ROM.
Note, however, that at runtime, these segments are loaded at the addresses you specify
in your linker command file or in the fields of the Segment Addresses group box.

For example, the MPC8BUG flash programmer requires a RAM Buffer Address of
0x02800000. This programmer makes a copy of your program starting at address
0xFFE00000. If 0xFFE00000 is where you want your .text section, then you must
enter 0xFFE00000 in the Code Address text box of the Segment Addresses group. If
you specify a different code address, you must copy the code to this address from
address 0xFFE00000.

NOTE To perform address calculations like that in the example above, you
may find the symbols the linker generates for ROM addresses and for
execution addresses helpful.
For more information about the linker-generated symbols created
these addresses, see this file:
installDir\PowerPC_EABI_Support\

Runtime\Include__ppc_eabi_linker.h

NOTE The CodeWarrior flash programmer does not use a separate RAM
buffer. As a result, if you use the CodeWarrior Flash Programmer (or
any other flash programmer that does not use a RAM buffer), the
RAM Buffer Address must be equal to the ROM Image Address.
69CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
ROM Image Address
Use the ROM Image Address text box to specify the address at which you want your
binary written to flash ROM.

Segment Addresses
Use the checkboxes in the Segment Addresses area to specify whether you want the
segment address specified in a linker command file or directly in this settings panel.

Use Linker Command File
Check the Use Linker Command File checkbox to have the segment addresses
specified in a linker command file. If the linker doesn't find the command file it
expects, it issues an error message.

Leave this checkbox clear if you want to specify the segment addresses directly in
segment address text boxes: Code Address, Data Address, Small Data, and Small
Data2.

NOTE If you have a linker command file in your project and the Use Linker
Command File checkbox is cleared, the linker ignores the file.

Code Address

Use the Code Address text box to define the location in memory at which the linker
places a build target’s executable code.

If you wish to specify a code address, check the checkbox and type an address in the
Code Address text box. You must specify the address in hexadecimal notation. The
possible addresses depend on your target hardware platform and how the memory is
mapped.

If you clear the checkbox, the default code address is 0x00010000. This default
address may not be suitable for boards with a small amount of RAM. For such boards,
see the stationery projects for examples with suitable addresses.

NOTE To enter a hexadecimal address, use the format 0x12345678, (where
the address is the 8 digits following the character “x”).
70 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Data Address
Use the Data Address text box to define the memory location at which the linker
places a build target’s global data.

If you wish to specify a data address, check the checkbox and type an address in the
Data Address text box. You must specify the address in hexadecimal notation. The
possible addresses depend on your target hardware platform and how the memory is
mapped. Data must reside in RAM.

If you clear the Data Address checkbox, the linker calculates the data address to begin
immediately following the read-only code and data (.text, .rodata, extab and
extabindex).

Small Data
The Small Data checkbox and related text box let you define the memory location at
which the linker places the first small data section mandated by the PowerPC EABI
specification.

If you uncheck the Small Data checkbox, the linker places the first small data section
immediately after the .data section.

If you check the Small Data checkbox, the related text box enables. In this text box,
type the address at which you want the linker place the first small data section. The
address entered must be in hexadecimal format (for example, 0xABCD1000). Further,
the address entered must be supported by your target board and must not conflict with
the memory map of this board. Finally, all types of data must reside in RAM.

Small Data2

The Small Data2 checkbox and related text box let you define the memory location at
which the linker places the second small data section mandated by the PowerPC EABI
specification.

If you uncheck the Small Data2 checkbox, the linker places the second small data
section immediately after the .sbss section.

If you check the Small Data2 checkbox, the related text box enables. In this text box,
type the address at which you want the linker place the second small data section. The
address entered must be in hexadecimal format (for example, 0x1000ABCD). Further,
the address entered must be supported by your target board and must not conflict with
the memory map of this board. Finally, all types of data must reside in RAM.
71CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
NOTE The CodeWarrior development tools create the three small data
sections required by the PowerPC EABI specification. Further, the
CodeWarrior tools let you define additional small data sections. See
Additional Small Data Sections for instructions.

Generate S-Record File
Check the Generate S-Record File checkbox to instruct the linker to generate an
S-Record file based on the application object image. This file has the same name as the
executable file, but with a .mot extension. The linker generates S3 type S-Records.

Sort S-Record

This checkbox is available only if you check the Generate S-Record File checkbox.
Check the Sort S-Record checkbox to have the generated S-Record file sorted in the
ascending order by address.

Max Length
The Max Length text box specifies the maximum length of the S-record generated by
the linker. This text box is available only if you check the Generate S-Record File
checkbox. The maximum value allowed for an S-Record length is 256 bytes.

NOTE Most programs that load applications onto embedded systems have a
maximum length allowed for the S-Records. The CodeWarrior
debugger can handle S-Records of 256 bytes long. If you are using
something other than the CodeWarrior debugger to load your
embedded application, you must find out what the maximum allowed
length is.

EOL Character
Use the EOL Character listbox to select the end-of-line character for the S-Record file.
This listbox is available only if the Generate S-Record File checkbox is checked. The
end of line character options are:

• <cr> <lf> for DOS

• <lf> for Unix

• <cr> for Mac
72 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Entry Point
Use the Entry Point text box to specify the function that the linker uses first when the
program launches. This is the starting point of the program.

The default __start function is bootstrap or glue code that sets up the PowerPC
EABI environment before your code executes. This function is in the __start.c file.
The final task performed by __start is to call your main() function.

Debugger PIC Settings
Use the Debugger PIC Settings panel (Figure 5.9) to specify an alternate address at
which you want your ELF image loaded on your target board.

Figure 5.9 Debugger PIC Target Settings Panel

Usually, Position Independent Code (PIC) is linked in such a way so that the entire
image starts at address 0x00000000. The Debugger PIC Settings panel lets you
specify the alternate address where you want to load the PIC module on the target.

To specify the alternate load address, check the Alternate Load Address checkbox and
enter the address in the associated text box. The debugger loads your ELF file on the
target at the new address.

The debugger does not verify whether your code can execute at the new address.
Instead, correctly setting any base registers and performing any needed relocations are
handled by the PIC generation settings of the compiler and linker and the startup
routines of your code.
73CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
EPPC Debugger Settings
Use the EPPC Debugger Settings panel (Figure 5.10) to supply information the
CodeWarrior debugger needs to debug programs running on your target device.

Figure 5.10 EPPC Debugger Target Settings Panel

Target Processor
Use the Target Processor listbox to select the processor of your emulator or board.

Target OS
Use the Target OS listbox to enable the type of debugging desired. The choices are:

• Bareboard

Enables bareboard debugging.

Select this option if you are not using an operating system.

• OSEK

Enables OSEK Aware debugging.

Select this option if your board is running an implementation of the OSEK
real-time operating system.

Selecting OSEK enables KOIL (Kernel Object Interface Language) support
which, in turn, lets the debugger interpret the information in the ORTI (OSEK
Run Time Interface) file generated when you built your OSEK image.
74 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Use Target Initialization File
Check this box if you want the build target to use a target initialization file. Click
Browse to display a dialog box you can use to find and select the appropriate target
initialization file. Prebuilt target initialization files are automatically selected for
supported boards.

Sample target initialization files are in the Jtag subdirectory of this path:

installDir\PowerPC_EABI_Support\Initialization_Files

Use Memory Configuration File
Check the Use Memory Configuration File checkbox if you want to use a memory
configuration file. This file defines the valid accessible areas of memory for your
specific board. Click Browse to display a dialog box you can use to find and select the
appropriate memory configuration file.

Sample memory configuration files are in this directory:

installDir\PowerPC_EABI_Support\Initialization_Files\memory

If you are using a memory configuration file and you try to read from an invalid
address, the debugger fills the memory buffer with a reserved character (defined in the
memory configuration file).

If you try to write to an invalid address, the write command is ignored and fails.

For details, see the appendix “Memory Configuration Files” on page 205.

Program Download Options
There are four section types listed in the Program Download Options section of the
EPPC Debugger Settings panel:

• Executable

The executable code and text sections of the program.

• Constant Data

The constant data sections of the program.

• Initialized Data

The initialized data sections of the program.

• Uninitialized Data
75CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
The uninitialized data sections of the program that are usually initialized by the
runtime code included your CodeWarrior product.

If one of these section types is selected, this means that it is to be downloaded when
the program is debugged.

NOTE You do not need to download uninitialized data if you are using
Metrowerks runtime code.

Verify Memory Writes
Check this checkbox to verify that any or all sections of the program are making it to
the target processor successfully, or that they have not been modified by runaway code
or the program stack. For example, once you download a text section you might never
need to download it again, but you may want to verify that it still exists.

Source Folder Mapping
Use the Source Folder Mapping target settings panel if you are debugging an
executable file that was built in one place, but which is being debugged from
another.

The mapping information you supply lets the CodeWarrior debugger find and display
your source code files even though they are not in the locations specified in the
executable file’s debug information.

NOTE If you create a CodeWarrior project by opening an ELF file in
the IDE, the IDE uses the debug information in this file to add
the source files used to build the file to the new project.
If the IDE cannot find a particular source file, the IDE displays
a dialog box that you use to tell the IDE where the missing file
is currently. The IDE uses the current location information in
conjunction with the debug information in the ELF file to
create entries in the Source Folder Mapping panel.

Figure 5.11 shows the Source Folder Mapping target settings panel.
76 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Figure 5.11 Source Folder Mapping Target Settings Panel

Build Folder
Use the Build Folder text box to enter the path that contained the executable’s source
files when this executable was originally built. Alternatively, click Browse to display
a dialog box that you can use to select the correct path.

The supplied path can be the root of a source code tree. For example, if your source
code files were in the directories

/vob/my_project/headers
/vob/my_project/source

you can enter /vob/my_project in the Build Folder text box.

When the debugger cannot find a file referenced in the executable’s debug
information, the debugger replaces the string /vob/my_project in the missing file’s
name with the associated Current Folder string and tries again. The debugger repeats
this process for each Build Folder/Current Folder pair until it finds the missing file or
no more folder pairs remain.

Current Folder
Use the Current Folder text box to enter the path that contains the executable’s source
files now, that is, at the time of the debug session. Alternatively, click Browse to
display a dialog box that you can use to select the correct path.
77CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
The supplied path can be the root of a source code tree. For example, if your source
code files are now in the directories

C:\my_project\headers
C:\my_project\source

you can enter C:\my_project in the Current Folder text box.

When the debugger cannot find a file referenced in the executable’s debug
information, the debugger replaces the Build Folder string in the missing file’s name
with the string C:\my_project and tries again. The debugger repeats this process for
each Build Folder/Current Folder pair until it finds the missing file or no more folder
pairs remain.

Add
Click the Add button to add the current Build Folder/Current Folder association to the
Source Folder Mapping list.

Change
Click the Change button to change the Build Folder/Current Folder mapping currently
selected in the Source Folder Mapping list.

Remove
Click the Remove button to remove the Build Folder/Current Folder mapping
currently selected in the Source Folder Mapping list.
78 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
System Call Service Settings
Use the System Call Service Setting panel (Figure 5.12) to activate support for
system services and to select options for handling requests for system services.

Figure 5.12 System Call Service Target Setting Panel

The CodeWarrior IDE provides system call support over JTAG. System call support
allows bare-board applications to use the functionality of host OS service routines.
This feature is useful if you do not have a board support package (BSP) for the target
board you are using.

The host debugger implements the services. Therefore, the host OS service routines
are available only when you are debugging code on the target.

NOTE The OS service routines provided must be compliant to an industry-
accepted standard. The definitions for the system service functions
provided are a subset of Single UNIX Specification (SUS).

Activate Support for System Services
Check the Activate Support for System Services checkbox to enable support for
system services. All the other options in the System Call Service Setting panel are
available only if you check this checkbox.
79CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
Embedded PowerPC-Specific Target Settings Panels

Freescale Semiconductor, Inc.
Redirect stdout/stderr to
The default location for displaying the console output is a separate CodeWarrior IDE
window. If you wish to redirect the console output to a file, check the Redirect stdout/
stderr to checkbox. Click Browse to display a dialog box you can use to find and select
the log file.

Use Shared Console Window
Check the Use shared console window checkbox if you wish to share the same console
window between different debug targets. This setting is useful in multi-core or multi-
target debugging.

Trace Level
Use the Trace level listbox to specify the system call trace level. The system call trace
level options available are:

• No Trace

System calls are not traced.

• Summary Trace

Requests for system services are displayed.

• Detailed Trace

Requests for system services are displayed along with the arguments/parameters
of the each request.

The Redirect trace to checkbox defines the place to which traced system service
requests are displayed.

Redirect Trace to
The default location for displaying traced system service requests is a separate
CodeWarrior IDE window. If you wish to log the traced system service requests in a
file, check the Redirect trace to checkbox. Click Browse to display a dialog box you
can us to find and select a log file.

Mount Root Folder to
The default root folder for file IO services is the parent folder for the loaded ELF file.
If you wish to specify the root folder for file IO services, check the Mount root folder
80 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
PC-lint Target Settings Panels

Freescale Semiconductor, Inc.
to checkbox. Click Browse to display a dialog box that you can use to find and select a
root folder.

PC-lint Target Settings Panels
PC-lint is a third-party software development tool that checks C/C++ source code for
bugs, inconsistencies, non-portable constructs, redundant code, and other problems.

CodeWarrior Development Studio, mobileGT Processor Edition includes target
settings panels and plug-ins that let you configure and use PC-lint from within the
CodeWarrior IDE. However, the PC-lint software itself is not included with your
CodeWarrior product. As a result, you must obtain and install a copy of PC-lint before
you can use it with the CodeWarrior IDE. Among other places, PC-lint is available
from its developers, Gimpel Software (www.gimpel.com).

NOTE The default CodeWarrior PC-lint configuration expects your PC-lint
installation to be in installDir\Lint (where installDir is the
path in which you installed your CodeWarrior product.) That said,
you can install PC-lint anywhere and then adjust the CodeWarrior
configuration to match.

Once you have installed PC-lint, you can configure any build target of any
CodeWarrior project to use this software. To do this, follow these steps:

1. Open a project and select the build target with which you want to use PC-lint.

2. Display the Target Settings window for this build target.

3. Display the Target Settings panel in the Target Settings window.

4. In the Target Settings panel, choose PCLint Linker from Linker listbox.

The PCLint Main Settings and PCLint Options target settings panels appear in the
panel list of the Target Settings window. In addition, the IDE removes panels that
pertain to ELF generation and debugging from the panel list.

5. Choose the PC-lint configuration options appropriate for your build target using
the PC-lint target settings panels.

The sections that follow explain how to use the PC-lint target settings panels.
81CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

http://www.gimpel.com

Target Settings
PC-lint Target Settings Panels

Freescale Semiconductor, Inc.
PCLint Main Settings
Use the PCLlint Main Settings panel (Figure 5.13) to provide the path to the PC-lint
executable and to define the compiler option files and prefix file that PC-lint will use.

NOTE The IDE displays the PC-lint target settings panels only if you first
select PCLint Linker in the Target Settings panel (Figure 5.2).

Figure 5.13 PCLint Main Settings Target Settings Panel

PC-lint Executable
Type the path to and name of the PC-lint executable file in this text box. Alternatively,
click Choose to display a dialog box that lets you navigate to and select this file.

NOTE The default PC-lint path is {Compiler}Lint\Lint-nt.exe. If
you installed PC-lint somewhere else, replace this default with the
correct PC-lint executable path.

Display generated command lines in message window
Check this box to instruct the IDE to display the command-line it passes to PC-lint in
the Errors & Warnings window.
82 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
PC-lint Target Settings Panels

Freescale Semiconductor, Inc.
No inter-modul checks
Check this box to instruct PC-lint to do no inter-module checking.

NOTE If you uncheck this box, PC-lint takes longer to process your build
target’s source files.

Additional Path to PC-lint Compiler Option Files
The IDE’s default behavior is to use any PC-lint compiler option files (*.lnt) it finds
in the directory {Compiler}\Lint\lnt.

To configure a build target to use a PC-lint compiler option file in addition to those in
the default directory, enter the path to the directory that contains this file in the
Additional Path to PC-lint Compiler Option Files text box. If the specified directory
contains any files that end with the suffix .lnt, the Compiler Option listbox (see
below) enables and displays these files.

The default CodeWarrior installation includes prewritten PC-lint compiler option files.
They are in this directory:

{CodeWarrior}Lint\lnt\CodeWarrior

Each file in this directory is designed to work with a particular Metrowerks compiler.
Many users enter this path in the Additional Path to PC-lint Compiler Option Files text
box and then choose the file for the Metrowerks compiler they are using from the
Compiler Option list.

You can leave this text box empty, if desired.

Compiler Option
Select the PC-lint compiler option file for the Metrowerks compiler the build target is
using from this listbox.

This listbox displays all .lnt files in the directory specified in the Additional Path to
PC-lint Compiler Option files text box. If this directory contains no .lnt files, the
Compiler Option listbox is disabled.
83CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
PC-lint Target Settings Panels

Freescale Semiconductor, Inc.
Display default PC-lint compiler option files too
Check this box to include the default .lnt files (the files in {Compiler}Lint\lnt)
in the Compiler Option listbox along with those in the directory specified in the
Additional Path to PC-lint Compiler Option Files text box.

Prefix File
Type the name of a prefix file to pass to PC-lint. Alternatively, click Choose to display
a dialog box that lets you navigate to and select this file.

Typically, you use this feature to define macros to required values for a particular
PC-lint run or to instruct PC-lint to check certain command-line commands. To do
this, define this information in a prefix file.

You can leave this text box empty, if desired.

PCLint Options
Figure 5.14 shows the PCLint Options target settings panel. Use this panel to define
the syntax rules PC-lint uses to validate your C/C++ source, to define the environment
(libraries, operating system, remote procedure call standard, etc.) with which PC-lint
must ensure your code conforms, and to pass command-line switches to PC-lint.

Figure 5.14 PC-lint Options Target Settings Panel
84 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
PC-lint Target Settings Panels

Freescale Semiconductor, Inc.
Author Options
This group of checkboxes lets you select the set of syntax rules that PC-lint uses as it
checks your code. The options are:

• Scott Meyers (Effective C++)

Check this box to instruct PC-lint to verify that your code adheres to the syntax
rules documented in Effective C++.

• Dan Saks

Check this box to instruct PC-lint to verify that your code adheres to the syntax
rules recommended by Dan Saks.

• MISRA

Check this box to instruct PC-lint to verify that your code adheres to the Motor
Industry Software Reliability Association (MISRA) C language guidelines for
safety-critical embedded software.

You can check none, some, or all boxes in this group.

Library Options
This group of checkboxes lets you define the environment with which PC-lint must
ensure your code conforms. The options are:

• Active Template Library

Check this box to instruct PC-lint to validate your Active X Template (ATL)
library code.

• Standard Template Library

Check this box to instruct PC-lint to validate your Standard Template Library
(STL) code.

• Open Inverter Library

Check this box to instruct PC-lint to validate your Open Inverter Library code.

• Windows 16-bit

Check this box to instruct PC-lint to validate your 16-bit Windows API calls.

• Windows 32-bit

Check this box to instruct PC-lint to validate your 32-bit Windows API calls.

• Windows NT

Check this box to instruct PC-lint to validate your Windows NT API calls.
85CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Target Settings
PC-lint Target Settings Panels

Freescale Semiconductor, Inc.
• MFC

Check this box to instruct PC-lint to validate your Microsoft Foundation Classes
(MFC) code.

• CORBA

Check this box to instruct PC-lint to validate your Common Object Request
Broker Architecture (CORBA) code.

Warnings
Use this listbox to control the warning and error messages that PC-lint emits.

The default setting displays error, warning and information messages.

Library Warnings
Use this listbox to control the warning and error messages that PC-lint emits for
libraries.

The default setting displays error, warning and information messages.

Additional Options
Type the PC-lint command-line switches for the IDE to pass to PC-lint in this text box.
Refer to your PC-lint manuals for documentation of these switches.
86 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
6
Embedded PowerPC
Debugging

This chapter explains how to use the CodeWarrior™ tools to debug programs for the
mobileGT™ processor family.

The chapter covers those aspects of debugging that are specific to the mobileGT™
platform. See the IDE User Guide for debugger information that applies to all
CodeWarrior products.

The sections are:

• Supported Remote Connections

• Special Debugger Features

• Using MetroTRK

• Debugging ELF Files

Supported Remote Connections
A remote connection is used for debugging an application on the remote target system.
The EPPC debugger uses a plug-in architecture for communicating to the target.

There are several remote connection types included in the default installation. Before
you debug a project, you need to specify the settings for the remote connection you
selected while creating the project.

NOTE If you want to debug via another connection, you must first write a
plug-in that converts the CodeWarrior API to the API of the new
connection that you are using.

To specify the settings for a remote connection:

1. Display the Remote Connections panel.
87CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
a. Select Edit > Preferences

The IDE Preferences window appears.

b. Select the Remote Connections item in the IDE Preference Panels list.

The Remote Connections panel (Figure 6.1) appears.

Figure 6.1 Remote Connections Panel

2. Select the remote connection name.

a. Click the remote connection name for which you want to specify settings.

b. Click Change

A dialog box in which you can specify connection settings appears.

The Name text box in the connection settings dialog box displays the remote
connection name. Additionally, the appropriate debugger interface and the remote
connection type are already selected in the Debugger and Connection Type listboxes,
respectively.

The other remote connection settings for each remote connection included in the
default installation are described in these sections:

• Abatron Remote Connections

• MetroTRK

• MSI BDM Raven/MSI Wiggler

• P&E BDM

• PowerTAP PRO CCS
88 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
• WireTAP 8xx

• WireTAP CCS

Abatron Remote Connections
Figure 6.2 shows the dialog box in which you specify the connection settings for a
serial Abatron remote connection.

Figure 6.2 Serial Type Abatron Remote Connection Dialog Box

Figure 6.3 shows the dialog box in which you specify the connection settings for a
TCP/IP Abatron remote connection.
89CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
Figure 6.3 TCP/IP Type Abatron Remote Connection Dialog Box

IP Address
The IP Address text box specifies the IP address of the Abatron device.

Port
Use the Port listbox to select the serial port on your computer that the debugger uses to
communicate with the target hardware.

The options are COM1, COM2, COM3, and COM4.

Rate
Use the Rate listbox to select the serial baud rate for communicating with the target
hardware.

Data Bits
Use the Data Bits listbox to select the number of data bits per character. The default
value is 8.
90 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
Parity
Use the Parity listbox to select whether you want an odd parity bit, an even parity bit,
or none. The default value is none.

Stop Bits
Use the Stop Bits listbox to select the number of stop bits per character. The default
value is 1.

Flow Control
Use the Flow Control listbox to select whether you want hardware flow control,
software flow control, or none. The default value is none.

MetroTRK
Figure 6.4 shows the dialog box in which you specify the connection settings for a
MetroTRK remote connection.

Figure 6.4 MetroTRK Remote Connection Dialog Box
91CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
Port
Use the Port listbox to select the serial port on your computer that the debugger uses to
communicate with the target hardware.

The options are COM1, COM2, COM3, and COM4.

Rate
Use the Rate listbox to select the serial baud rate for communicating with the target
hardware.

Data Bits
Use the Data Bits listbox to select the number of data bits per character. The default
value is 8.

Parity
Use the Parity listbox to select whether you want an odd parity bit, an even parity bit,
or none. The default value is none.

Stop Bits
Use the Stop Bits listbox to specify the number of stop bits per character. The default
value is 1.

Flow Control
Use the Flow Control listbox to select whether you want hardware flow control,
software flow control, or none. The default value is none.

MSI BDM Raven/MSI Wiggler
The remote connection settings for MSI BDM Raven and MSI Wiggler are the same.
Figure 6.5 shows the dialog box in which you specify the connection settings for the
remote connection settings for these debug devices.
92 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
Figure 6.5 MSI BDM Raven/MSI Wiggler Remote Connection Dialog Box

Parallel Port
From the Parallel Port listbox, select the parallel port of your PC to which your MSI
debug device is connected.

Speed
Use the default speed of 1.

FPU Buffer Address
Unused by the mobileGT processor family. Leave default value unchanged.
93CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
P&E BDM
Figure 6.6 shows the dialog box in which you specify the connection settings for a
P&E BDM remote connection.

Figure 6.6 P&E BDM Remote Connection Dialog Box

Parallel Port
From the Parallel Port listbox, select the parallel port of your PC to which the P&E
BDM is connected.

IO Delay Count
The value specified in the IO Delay Count text box controls the communication speed
between the host PC and the target board. The default value displayed in this text box
is 0. If the communication speed of the target board is slower than that of the host PC,
a higher value allows the shift clock out of the PC to be slowed down and reduce the
communication speed.

FPU Buffer Address
Unused by the mobileGT processor family. Leave default value unchanged.
94 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
PowerTAP PRO CCS
Figure 6.7 shows the dialog box in which you specify the settings for a
PowerTAP PRO CCS remote connection.

Figure 6.7 PowerTAP PRO CCS Remote Connection Dialog Box

Hostname
In the Hostname text box, type the host name or IP address that you assigned to the
PowerTAP PRO device during the emulator setup.

Network timeout
Use this text box to define the amount of time (in seconds) for the debugger to wait for
data from the PowerTAP Pro before issuing an error.

The default value is 10. Increase this value if you receive frequent timeout errors.

Interface Clock Frequency
Use the Interface Clock Frequency listbox to select the clock frequency for the JTAG
interface. The default clock frequency is 16 MHz.
95CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
Mem Read Delay
Specifies the number of additional processor cycles inserted as a delay for completion
of read memory operations. The range of values that can be entered is 0-65024 cycles.
Use the default delay of 350 cycles.

Mem Write Delay
Specifies the number of additional processor cycles inserted as a delay for memory
write operations. The range of values that can be entered is 0-65024 cycles. Use the
default delay of 350 cycles.

Reset Target on Launch
Check the Reset Target on Launch checkbox to send a reset signal to the target board
when you launch the debugger.

Force Shell Download
Check the Force Shell Download checkbox if you wish to reload the PowerTAP PRO
shell at each debugger connection.

32-Bit Data Bus
Check the 32-Bit Data Bus checkbox if you wish to use the 32-bit data bus.

Enable Logging
Check the Enable Logging checkbox to have the IDE display a log of all the debug
transactions. If this checkbox is checked, a Protocol logging window appears when the
debugger connects to the target.
96 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
WireTAP 8xx
Figure 6.8 shows the dialog box in which you specify the settings for a WireTAP 8xx
remote connection.

Figure 6.8 WireTAP 8xx Remote Connection Dialog Box

Parallel Port
From the Parallel Port listbox, select the parallel port of your PC to which the
WireTAP is connected.

Interface Clock Frequency
Use the Interface Clock Frequency list box to select the clock frequency for the JTAG.
The recommended clock frequency is 8 MHz.

Show Inst Cycles
Use the Show Inst Cycles list box to select which show cycles are performed (All,
Flow or Indirect, None).
97CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
Reset Target on Launch
Check the Reset Target on Launch checkbox to send a reset signal to the target board
when you launch the debugger.

Serialize Instruction Execution
Check the Serialize instruction execution checkbox if you wish to serialize instruction
execution.

Enable Logging
Check the Enable Logging checkbox to have the IDE display a log of all the debug
transactions. If this checkbox is checked, a Protocol logging window appears when the
debugger connects to the target.

WireTAP CCS
Figure 6.9 shows the dialog box in which you specify the connection settings for a
WireTAP CCS remote connection.

Figure 6.9 WireTAP CCS Remote Connection Dialog Box
98 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Supported Remote Connections

Freescale Semiconductor, Inc.
Parallel Port
From the Parallel Port listbox, select the parallel port of your PC to which the
WireTAP is connected.

Interface Clock Frequency
Use the Interface Clock Frequency listbox to select the clock frequency for the JTAG
interface. The default clock frequency is 16 MHz.

Mem Read Delay
Specifies the number of additional processor cycles inserted as a delay for completion
of read memory operations. The range of values that can be entered is 0-65024 cycles.
Use the default delay of 0 cycles.

Mem Write Delay
Specifies the number of additional processor cycles inserted as a delay for memory
write operations. The range of values that can be entered is 0-65024 cycles. Use the
default delay of 0 cycles.

Reset Target on Launch
Check the Reset Target on Launch checkbox to send a reset signal to the target board
when you launch the debugger.

32-Bit Data Bus
Check the 32-Bit Data Bus checkbox if you wish to use the 32-bit data bus.

Enable Logging
Check the Enable Logging checkbox to have the IDE display a log of all the debug
transactions. If this checkbox is checked, a Protocol logging window appears when the
debugger connects to the target.
99CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Special Debugger Features

Freescale Semiconductor, Inc.
Special Debugger Features
This section explains debugger features that are not found in the IDE User Guide.
These features are unique to this platform target and enhance the debugger especially
for Embedded PowerPC development.

• Displaying Registers

• EPPC-Specific Debugger Features

• Register Details

Displaying Registers
Use the Registers window to view and update the contents of the registers of the
processor on your evaluation board. To display this window, select View > Registers.

The Registers window displays categories of registers in a tree format. To display the
contents of a particular category of registers, expand the tree element of the register
category of interest.

Figure 6.10 shows the Registers window with the General Purpose Registers tree
element expanded.

Figure 6.10 Registers Window
100 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Special Debugger Features

Freescale Semiconductor, Inc.
EPPC-Specific Debugger Features
The debugger included with the CodeWarrior Development Studio, mobileGT
Processor Edition includes some Embedded PowerPC-specific features. The Debug >
EPPC menu makes these features available. The sections that follow explain how to
use each option of this menu.

• Set Stack Depth

• Change IMMR

• Change MBAR

• Soft Reset

• Hard Reset

• Load/Save Memory

• Fill Memory

• Save/Restore Registers

• Enable Address Translations

• Watchpoint Type

• Breakpoint Type

Set Stack Depth
Select the Set Stack Depth command to set the depth of the stack to read and display.
Showing all levels of calls when you are examining function calls several levels deep
can sometimes make stepping through code more time-consuming. Therefore, you can
use this menu option to reduce the depth of calls that the CodeWarrior IDE displays.
101CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Special Debugger Features

Freescale Semiconductor, Inc.
Change IMMR
Use the Change IMMR command to define the memory location of the IMMR
(Internal Memory Map) register. This information lets the CodeWarrior debugger find
the IMMR register at debug-time.

Change MBAR
Use the Change MBAR command to assign an address to the MBAR (Memory Base
Address) register of a member of the MGT5100 processor family.

NOTE The Change MBAR command is enabled only if you first select the
5100 in the EPPC Processor target settings panel.
For other EPPC processors, you change the memory base address by
writing a value to the MBAR SPR register (SPR 311).

Soft Reset
Use the Soft Reset command to send a soft reset signal to the target processor.

NOTE The Soft Reset command is enabled only if the debug hardware you
are using supports it.

Hard Reset
Use the Hard Reset command to send a hard reset signal to the target processor.

NOTE The Hard Reset command is enabled only if the debug hardware you
are using supports it.

Load/Save Memory
The Load/Save Memory command:

• Loads the specified amount of data from a binary file on the host and writes this
data to the target board’s memory starting at the specified address.
102 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Special Debugger Features

Freescale Semiconductor, Inc.
• Reads the specified amount of data from the specified address of the target
board’s memory and saves this data in a binary file on the host.

If you load an S-Record file, the loader behaves as follows:

• The loader uses the offset field to shift the address contained in each S-Record to
a lower or higher address. The sign of the offset field determines the direction of
the shift.

• The address produced by this shift is the memory address at which the loader
starts writing the S-Record data.

• The loader uses the address and size fields as a filter. The loader applies these
fields to the initial S-Record (not to its shifted version) to ensure that only the
zone defined by these fields is actually written to.

Fill Memory
Use the Fill Memory command to fill a particular memory location with data of
particular size and type. This command lets you write a set of characters to a particular
memory location on the target by repeatedly copying the characters until the specified
fill size has been reached.

Save/Restore Registers
Use the Save/Restore Registers command to save the values of registers to a text file
and set the values of registers from a text file. The command lets you specify the
particular group of registers to save or restore.

Enable Address Translations
Use the Enable Address Translations command to enable and disable the debugger’s
virtual-to-physical address translation feature. Typically, you enable this feature to
debug programs that use a memory management unit (MMU) that performs block
address translations.

If you enable address translations, the debugger uses the address translation
commands in your memory configuration file to perform virtual-to-physical address
translations. Refer to Address translation commands for a definition of the syntax and
effect of an address translation command.
103CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Special Debugger Features

Freescale Semiconductor, Inc.
To perform MMU debugging, follow these steps:

1. Add the required address translation commands to a memory configuration file.

NOTE To create the required address translation commands, you must know
how your application maps memory.

2. In the EPPC Debugger Settings target settings panel, check the Use Memory
Configuration File checkbox, and specify the memory configuration file created
above in the related text box.

3. Select Project > Debug

The debugger downloads your executable to the target device. The executable
enables the MMU of the target device.

4. Select Debug > EPPC > Enable Address Translations

The debugger performs address translations using the address translation
commands it finds in the your memory configuration file.

Address translation commands
The syntax of an address translation command is:

translate virtual_address physical_address address_range

virtual_address

Address of the first byte of the virtual address range to translate.

physical_address

Address of the first byte of the physical address range to which to translate
virtual addresses.

address_range

The size (in bytes) of the address range to translate.

For example, consider this translate command:

translate 0xC0000000 0x00000000 0x100000

This command:

• Defines a 1 MB address range (because 0x100000 bytes is 1 MB).
104 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Special Debugger Features

Freescale Semiconductor, Inc.
• Instructs the debugger to convert a virtual address in the range
0xC0000000 to 0xC0100000 to the corresponding physical address in the range
0x00000000 to 0x00100000.

Auto-enabling address translation
By default, address translations are disabled. However, if you linked your executable
with virtual addresses, you must enable address translation before downloading the
executable to the target device. To auto-enable address translations, add this statement
to your memory configuration file:

AutoEnableTranslations true

Watchpoint Type
Select the Watchpoint Type command to indicate the type of watchpoint to set from
among these options:

• Read

Program execution stops at the watchpoint when your program reads from
memory at the watch address.

• Write

Program execution stops at the watchpoint when your program writes to memory
at the watch address.

• Read/Write

Program execution stops at the watchpoint when your program accesses memory
at the watch address.

NOTE The Watchpoint Type command is available only if both the selected
processor and your debug hardware support it.

Breakpoint Type
Select the Breakpoint Type command to indicate the type of breakpoint to set from
among these options:

• Software

The CodeWarrior software sets the breakpoint to target memory. When program
execution reaches the breakpoint and stops, the breakpoint is removed. The
breakpoint can only be set in writable memory.
105CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Special Debugger Features

Freescale Semiconductor, Inc.
• Hardware

Selecting the Hardware menu option sets a processor-dependent breakpoint.
Hardware breakpoints use registers.

• Auto

Selecting the Auto menu option causes the CodeWarrior tools to try to set a
software breakpoint and, if that fails, to try to set a hardware breakpoint.

NOTE The Breakpoint Type command is available only if both the selected
processor and your debug hardware support it.

Setting Hardware Breakpoints
To set a hardware breakpoint:

1. Connect to the target board.

2. Select Debug > EPPC > Breakpoint Type > Hardware

3. Set a breakpoint.

Table 6.1 lists the number of breakpoints that can be set for various mobileGT
processors. All the processors listed in the table support software breakpoints.

Register Details
You can use the Register Details dialog box to view different mobileGT registers by
specifying the name of the register description file. Selecting View > Register
Details displays the Register Details dialog box (Figure 6.11).

Table 6.1 mobileGT™ Processors—Number of Hardware Breakpoints

Processor Number of Hardware Breakpoints

MGT5200 2

MPC823 4
106 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Special Debugger Features

Freescale Semiconductor, Inc.
Figure 6.11 Register Details Dialog Box

After the CodeWarrior software displays the Register Details dialog box, type the
name of the register description file in the Description File text box to display the
applicable register and its values. (Alternatively, click Browse to display a dialog box
you can use to find and select the required register description file.)

Figure 6.12 shows the Register Details dialog box displaying the MBAR (memory
base address) register.

Figure 6.12 Register Details Dialog Box Showing the MBAR Register

You can change the format in which the CodeWarrior software displays the register
using the Format listbox. In addition, when you click on different bit fields of the
displayed register, the CodeWarrior software displays an appropriate description,
depending on which bit or group of bits you choose. You also can change the text
information that the CodeWarrior software displays by using the Text View listbox.
107CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
NOTE For more information, see the CodeWarrior™ IDE User Guide.

Using MetroTRK
This section briefly describes MetroTRK and provides information related to using
MetroTRK with your CodeWarrior product. This section has these topics:

• MetroTRK Overview

• Connecting to the MetroTRK Debug Monitor

• MetroTRK Memory Configuration

• Using MetroTRK for Debugging

• Using MetroTRK with the Lite5200 Board

MetroTRK Overview
MetroTRK is a software debug monitor. MetroTRK resides on the target board with
the program you are debugging and provides debug services to the host debugger.
MetroTRK connects to the host computer through a serial port.

You use MetroTRK to download and debug applications built with CodeWarrior for
Embedded PowerPC.

The CodeWarrior software installs the source code for MetroTRK, as well as ROM
images and project files for several pre-configured builds of MetroTRK.

The board-specific directories that contain the MetroTRK source code are here:

installDir\PowerPC_EABI_Tools\
MetroTRK\Processor\ppc\Board\board_mfr_name\board_name

where board_mfr_name is a placeholder for the name of a manufacturer of a
supported evaluation board and board_name is a placeholder for the name of a
particular board.

If you are using a board other than a supported board, you may need to customize the
MetroTRK source code for your board configuration. For more information, see the
MetroTRK Reference.

To modify a version of MetroTRK, find an existing MetroTRK project for your
supported target board. You either can make a copy of the project (and its associated
source files) or you can directly edit the originals. If you edit the originals, you always
can revert back to the original version on your CodeWarrior CD.
108 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
Connecting to the MetroTRK Debug
Monitor
This section presents high-level steps for connecting to a debug monitor on the target
board by using a serial port.

The type of serial cable connection that you can use depends on your target board.
Table 6.2 lists the type of serial cable connection required for various embedded
PowerPC target boards.

To connect to the debug monitor on the target board:

1. Ensure that your target board has a debug monitor.

If your debug monitor has not been previously installed on the target board, burn
the debug monitor to ROM or use another method, such as the flash programmer,
to place MetroTRK or another debug monitor in flash memory.

2. Check whether the debug monitor is in flash memory or ROM.

a. Connect the serial cable to the target board.

b. Use a terminal emulation program to verify that the serial connection is
working. Set the baud rate in the terminal emulation program to the correct
baud rate and set the serial port to 8 data bits, one stop bit, and no parity.

c. Reset the target board. When you reset the target board, the terminal
emulation program displays a message that provides the version of the
program and several strings that describe MetroTRK.

3. If you plan to use console I/O, ensure that your project contains appropriate
libraries for console I/O.

Ensure that your project includes the MSL library and the UART driver library. If
needed, add the libraries and rebuild the project. In addition, you must have a free
serial port (besides the serial port that connects the target board with the host
machine) and be running a terminal emulation program.

Table 6.2 Serial Cable Connection Type for Target Boards

EPPC Board Serial Cable Connection Type

Motorola Lite5200, rev. I Null modem

Motorola Lite5200, rev. G Null modem

Motorola MPC 823 FADS Straight serial
109CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
NOTE See the project read me file regarding MetroTRK options.

MetroTRK Memory Configuration
This section explains the default memory locations of the MetroTRK code and data
sections and of your target application.

This section contains these topics:

• Locations of MetroTRK RAM Sections

• MetroTRK Memory Map

Locations of MetroTRK RAM Sections
Several MetroTRK RAM sections exist. You can reconfigure some of the MetroTRK
RAM sections.

This section contains these topics:

• Exception Vectors

• Data and Code Sections

• The Stack

Exception Vectors
For a ROM-based MetroTRK, the MetroTRK initialization process copies the
exception vectors from ROM to RAM.

The location of the exception vectors in RAM is a set characteristic of the processor.
For PowerPC, the exception vector must start at 0x000100 (which is in low memory)
and spans 7936 bytes to end at 0x002000.

NOTE Do not change the location of the exception vectors because the
processor expects the exception vectors to reside at the set location.

Data and Code Sections
The standard configuration for MetroTRK uses approximately 29 KB of code space as
well as 8 KB of data space.
110 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
In the default ROM-based implementation of MetroTRK used with most supported
target boards, no MetroTRK code section exists in RAM because the code executes
directly from ROM. However, for some PowerPC target boards, some MetroTRK
code does reside in RAM, usually for one of these reasons:

• Executing from ROM is slow enough to limit the MetroTRK data transmission
rate (baud rate)

• For some processors, the main exception handler must reside in cacheable
memory if the instruction cache is enabled. On some boards the ROM is not
cacheable; consequently, the main exception handler must reside in RAM if the
instruction cache is enabled

RAM does contain a MetroTRK data section.

You can change the location of the data and code sections in your MetroTRK project
using one of these methods:

• By modifying settings in the EPPC Linker settings panel.

• By modifying values in the linker command file (the file in your project that has
the extension .lcf).

NOTE To use a linker command file, you must check the Use Linker
Command File checkbox in the EPPC Linker settings panel.

The Stack
In the default implementation, the MetroTRK stack resides in high memory and grows
downward. The default implementation of MetroTRK requires a maximum of 8KB of
stack space.

You can change the location of the stack section by modifying settings of the EPPC
Linker settings panel and rebuilding the MetroTRK project.

MetroTRK Memory Map
For more information on the MetroTRK memory map, see the board specific
information provided with the MetroTRK source code.

Using MetroTRK for Debugging
To use MetroTRK for debugging, you must load it on your target board in ROM.
111CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
MetroTRK can communicate over serial port A or serial port B, depending on how the
software was built. Ensure that you connect your serial cable to the correct port for the
version of MetroTRK that you are using.

After you load MetroTRK on the target board, you can use the debugger to upload and
debug your application if the debugger is set to use MetroTRK.

NOTE Before using MetroTRK with hardware other than the supported
reference boards, see the MetroTRK Reference.

Using MetroTRK with the Lite5200 Board
The sections listed below explain how to build and use a MetroTRK image with the
Motorola Lite5200 evaluation board.

• Creating a MetroTRK Image for the Lite5200 Board

• Writing the MetroTRK Image to Flash Memory

• Starting MetroTRK on the Lite5200 Board

• Using MetroTRK to Debug on the Lite5200

Creating a MetroTRK Image for the Lite5200 Board
To create a MetroTRK image for the Lite5200 evaluation board, follow these steps:

1. Select Start > Programs > Metrowerks CodeWarrior >
CodeWarrior for mobileGT V8.1 > CodeWarrior IDE

The CodeWarrior IDE starts and displays its main window.

2. Open the CodeWarrior project file trk_Lite5200.mcp.

This file is here:
installDir\PowerPC_EABI_Tools\
MetroTRK\Processor\ppc\Board\motorola\Lite5200

where installDir is a placeholder for the path in which you installed your
CodeWarrior product.

3. Select the build target named Lite5200 ROM or Lite5200_revG ROM (depending
on the revision of the Lite5200 board you have).

See Figure 6.13.
112 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
Figure 6.13 The Lite5200 MetroTRK Project Window

4. Select Project > Make

The CodeWarrior IDE builds a MetroTRK S-Record image named
TRK_Lite5200_ROM.mot or TRK_Lite5200_revG_ROM.mot (depending on
the build target you selected) and puts it in this directory:

installDir\PowerPC_EABI_Tools\
MetroTRK\Processor\ppc\Board\motorola\Lite5200\Binary

NOTE The MetroTRK image built by the trk_Lite5200.mcp project
writes to the serial port at 115200 bits per second. To use a different
speed, you must change the value of the constant TRK_BAUD_RATE
in the file target.h from 115200 to the desired value. In addition,
you must select the same value in the Rate listbox of the MetroTRK
remote connection dialog box.

Writing the MetroTRK Image to Flash Memory
To write the Lite5200 MetroTRK S-Record file to the Lite5200 board’s flash memory,
follow these steps:

1. Connect your debug hardware to the Lite5200 board and to your PC.

2. Start the CodeWarrior IDE.

3. From the IDE’s menu bar, select Tools > Flash Programmer

The IDE displays the Flash Programmer window.
113CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
4. From the list on the left side of the Flash Programmer window, select Target
Configuration

The Target Configuration panel appears on the right side of the Flash
Programmer window. (See Figure 6.14.)

Figure 6.14 The Target Configuration Panel of the Flash Programmer Window

5. Click Load Settings

The Load Settings dialog box appears.

6. Use the Load Settings dialog box to select the flash programmer configuration
file for the Lite5200 board.

The configuration file for the Lite5200, rev. I (which has 8 MB of flash) is:

installDir\bin\Plugins\Support\
Flash_Programmer\EPPC\Lite5200_8MB_flash.xml

The configuration file for the Lite5200, rev. G (which has 16 MB of flash) is:

installDir\bin\Plugins\Support\
Flash_Programmer\EPPC\Lite5200_16MB_flash.xml

7. From the Connection listbox, select the debug hardware you are using.
114 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
8. From the list on the left side of the Flash Programmer window, select
Erase / Blank Check

The Erase / Blank Check panel appears on the right side of the Flash
Programmer window. (See Figure 6.15.)

Figure 6.15 The Erase / Blank Check Panel of the Flash Programmer Window

9. Select the first sector in the listbox on the left of the Erase / Blank Check panel.

10. Click Erase

The Flash Programmer erases the specified sector of flash memory on your
Lite5200 board.

11. Click Blank Check

The Flash Programmer verifies that the specified sector was erased.

12. From the list on the left side of the Flash Programmer window, select
Program / Verify

The Program / Verify panel appears on the right side of the Flash Programmer
window. (See Figure 6.16.)
115CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
Figure 6.16 The Program / Verify Panel of the Flash Programmer Window

13. Check the Use Selected File checkbox.

The Use Selected File text box enables.

14. Click the Browse button on the right side Use Selected File text box.

The Select File to Program dialog box appears.

15. Use this dialog box to select the MetroTRK S-Record file created previously
(TRK_Lite5200_ROM.mot or TRK_Lite5200_revG_ROM.mot).

These files are in this directory:

installDir\PowerPC_EABI_Tools\
MetroTRK\Processor\ppc\Board\motorola\Lite5200\Binary\

16. Click Program

The Flash Programmer writes the selected MetroTRK S-Record file to flash
memory of your Lite5200 board.

17. When the Flash Programmer completes the write operation, click Verify

The Flash Programmer verifies that the selected MetroTRK S-record file was
written to flash memory without error.

18. Click OK

The Flash Programmer window closes.
116 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
Starting MetroTRK on the Lite5200 Board

1. On your Lite5200 board, put the B H/L (boot high/low) jumper in the L (low)
position.

NOTE The B H/L jumper must be in the L (low) position or the MetroTRK
image will not execute.

2. Connect a null modem serial cable to the Lite5200 board and to your PC.

3. Disconnect the JTAG connector of your debug hardware from the Lite5200 board.

4. Start a terminal emulation program and configure it as follows:

• Bits per second — 115200

• Data bits — 8

• Parity — None

• Stop bits — 1

• Flow control — None

5. On the Lite5200, press the Reset button to reboot the board.

This message appears in the terminal emulator window:
Welcome to Metrowerks Target Resident Kernel for mot_Lite5200

Version 3.37 implementing MetroTRK API version 1.10

6. Exit the terminal emulator program.

MetroTRK is now ready for use with the CodeWarrior debugger.

NOTE MetroTRK is a debug monitor and therefore runs on a board. As a
result, you must ensure that your application does not overwrite the
memory areas (code, data, exception handlers) used by MetroTRK or
use the serial port used by MetroTRK.
These RAM locations are used by MetroTRK:
data: 0x03fe2000, length 0x3000
code: 0x00003000, length 0x5200
exception handlers: 0x00000000, length 0x2000
117CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
Using MetroTRK to Debug on the Lite5200
To debug an application on the Lite5200 board using MetroTRK, follow these steps:

1. Open the example debug example project MetroTRK_dbg_Lite5200.mcp.

This project file is here:
installDir\(CodeWarrior_Examples)\
PowerPC_EABI\MetroTRK_debug\5200

This project uses the MetroTRK debug protocol to write a welcome message to
the terminal I/O window of the CodeWarrior IDE.

Figure 6.17 shows the project window of the MetroTRK example debug project.

Figure 6.17 Project Window—MetroTRK Example Debug Project

2. Select Project > Make

The IDE builds the project and generates an executable named debug.elf.

3. Select Project > Debug

The CodeWarrior debugger downloads debug.elf to the Lite5200, halts
execution at the first instruction of main(), and displays the debugger window.
(See Figure 6.18.)
118 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Using MetroTRK

Freescale Semiconductor, Inc.
Figure 6.18 Debugger Window

4. In the debugger window, click the Step Over icon.

The debugger executes the current statement and halts at the next statement.

5. In the debugger window, click the Run icon.

The program writes a message to the Target I/O window (Figure 6.19) and
generates a system call exception.

Figure 6.19 Target I/O Window of Debugger

6. In the debugger window, click the Run icon again.

The program enters an infinite loop.
119CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Debugging ELF Files

Freescale Semiconductor, Inc.
7. In the debugger window, click the Break icon.

The debugger halts program execution at the next statement to execute.

8. In the debugger window, click the Kill Thread icon.

The debugger window closes; the debug session is complete.

Debugging ELF Files
You can use the CodeWarrior debugger to debug an ELF file that you previously
created and compiled in a different environment than the CodeWarrior IDE. Before
you open the ELF file for debugging, you must examine some IDE preferences and
change them if needed. In addition, you must customize the default XML project file
with appropriate target settings. The CodeWarrior IDE uses the XML file to create a
project with the same target settings for any ELF file that you open to debug.

This section contains these topics:

• Preparing to Debug an ELF File

• Customizing the Default XML Project File

• Debugging an ELF File

• ELF File Debugging: Additional Considerations

Preparing to Debug an ELF File
Before you debug an ELF file, you need to change certain IDE preferences and modify
them if needed.

1. Select Edit > Preferences.

The IDE Preferences window appears.

2. In the IDE Preference Panels list, click the Build Settings item.

The Build Settings panel (Figure 6.20) appears.
120 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Debugging ELF Files

Freescale Semiconductor, Inc.
Figure 6.20 Build Settings Panel

3. From the Build before running listbox, select Never.

NOTE Selecting Never prevents the IDE from building the newly created
project, which is useful if you prefer to use a different compiler.

4. In the IDE Preference Panels list, click the Global Settings item. The Global
Settings panel (Figure 6.21) appears.

Figure 6.21 Global Settings Panel

5. Clear the Cache Edited Files Between Debug Sessions checkbox.

6. Close the IDE Preferences window.

That’s it. You have successfully examined the relevant IDE preference settings and
modified them as required.
121CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Debugging ELF Files

Freescale Semiconductor, Inc.
Customizing the Default XML Project File
When you debug an ELF file, the CodeWarrior software uses the following default
XML project file to create a CodeWarrior project for the ELF file.

installDir\bin\Plugins\Support\
PowerPC_EABI\EPPC_Default_Project.XML

You must import the default XML project file, adjust the target settings of the new
project, and export the changed project back to the original default XML project file.
The CodeWarrior software then uses the changed XML file to create projects for any
ELF files that you open to debug.

NOTE The CodeWarrior software overwrites the existing
EPPC_Default_Project.XML file if you customize it again for a
different target board or debugging setup. If you want to preserve the
file that you originally customized for later use, rename it or save it in
another directory.

To customize the default XML project file:

1. Import the default XML project file.

a. Select File > Import Project.

b. Navigate to this location in the CodeWarrior installation directory:
bin\Plugins\Support\PowerPC_EABI\

c. Select the EPPC_Default_Project.XML file name.

d. Click OK

The CodeWarrior software displays a new project based on
EPPC_Default_Project.XML.

2. Change the target settings of the new project.

Select Edit > Target Settings to display the Target Settings window. In this
window, you can change the target settings of the new project as per the
requirements of your target board and debugging devices.

3. Export the new project with its changed target settings.

Export the new project back to the original default XML project file
(EPPC_Default_Project.XML) by selecting File > Export Project and saving
the new XML file over the old one.
122 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Debugging ELF Files

Freescale Semiconductor, Inc.
The new EPPC_Default_Project.XML file reflects any target settings changes
that you made. Any projects that the CodeWarrior software creates when you open
an ELF file to debug use those target settings.

Debugging an ELF File
This section explains how to prepare for debugging an ELF file for the first time.

To debug an ELF file:

1. Drag the ELF file icon (with symbolics) to the IDE.

The CodeWarrior software creates a new project using the previously customized
default XML project file. The CodeWarrior software bases the name of the new
project on the name of the ELF file. For example, an ELF file named cw.ELF
results in a project named cw.mcp.

The symbolics in the ELF file specify the files in the project and their paths.
Therefore, the ELF file must include the full path to the files.

The DWARF information in the ELF file does not contain full path names for
assembly (.s) files. Therefore, the CodeWarrior software cannot find them when
creating the project. However, when you debug the project, the CodeWarrior
software finds and uses the assembly files if the files reside in a directory that is an
access path in the project. If not, you can add the directory to the project, after
which the CodeWarrior software finds the directory whenever you open the
project. You can add access paths for any other missing files to the project as well.

2. (Optional) Check whether the target settings in the new project are satisfactory.

3. Begin debugging.

Select Project > Debug

NOTE For more information on debugging, see IDE User Guide.

After debugging, the ELF file you imported is unlocked. If you choose to build
your project in the CodeWarrior software (rather than using another compiler),
you can select Project > Make to build the project, and the CodeWarrior
software saves the new ELF file over the original one.
123CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Embedded PowerPC Debugging
Debugging ELF Files

Freescale Semiconductor, Inc.
ELF File Debugging: Additional
Considerations
This section, which explains information that is useful when debugging ELF files,
contains these topics:

• Deleting old access paths from an ELF-created project

• Removing files from an ELF-created project

• Recreating an ELF-created project

Deleting old access paths from an ELF-created project
After you create a project to allow debugging an ELF file, you can delete old access
paths that no longer apply to the ELF file by using these methods:

• Manually remove the access paths from the project in the Access Paths settings
panel

• Delete the existing project for the ELF file and recreate it by dragging the ELF
file icon to the IDE

Removing files from an ELF-created project
After you create a project to allow debugging an ELF file, you may later delete one or
more files from the ELF project. However, if you open the project again after
rebuilding the ELF file, the CodeWarrior software does not automatically remove the
deleted files from the corresponding project. For the project to include only the current
files, you must manually delete the files that no longer apply to the ELF file from the
project.

Recreating an ELF-created project
To recreate a project that you previously created from an ELF file:

1. Close the project if it is open.

2. Delete the project file. The project file has the file extension .mcp and resides in
the same directory as the ELF file.

3. Drag the ELF file icon to the IDE. The CodeWarrior IDE opens a new project
based on the ELF file.
124 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
7
C/C++ Compiler and Linker

This chapter explains how to use the CodeWarrior™ Embedded PowerPC C/C++
compiler and linker.

The back-end of the compiler refers to the module that generates code for the target
processor. Front-end refers to the module that parses and interprets source code.

The sections are:

• Integer and Floating-Point Formats

• Data Addressing

• Register Variables

• Register Coloring Optimization

• Pragmas

• EPPC Linker Issues

• Using __attribute__ ((aligned(?)))

NOTE This chapter contains references to Appendix A of the “Reference
Manual,” of The C Programming Language, Second Edition
(Prentice Hall) by Kernighan and Ritchie.
Table 7.1 lists other useful compiler and linker documentation.

Table 7.1 Other Compiler and Linker Documentation

For this topic... Refer to...

How the CodeWarrior IDE
implements the C/C++ language

C Compilers Reference

Using C/C++ Language and C/C++
Warnings settings panels

C Compilers Reference,
“Setting C/C++ Compiler Options” chapter

Controlling the size of C++ code C Compilers Reference,
“C++ and Embedded Systems” chapter

Using compiler pragmas C Compilers Reference,
“Pragmas and Symbols” chapter
125CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Integer and Floating-Point Formats

Freescale Semiconductor, Inc.
Integer and Floating-Point Formats
This section describes how the CodeWarrior C/C++ compilers implement integer and
floating-point types for Embedded PowerPC processors. You also can read limits.h
for more information on integer types, and float.h for more information on floating-
point types.

The topics in this section are:

• Embedded PowerPC Integer Formats

• Embedded PowerPC Floating-Point Formats

Embedded PowerPC Integer Formats
Table 7.2 shows the size and range of the integer types for the Embedded PowerPC
compiler.

Initiating a build, controlling which files
are compiled, handling error reports

IDE User Guide,
“Compiling and Linking” chapter

Information about a particular error Error Reference, which is available online

Embedded PowerPC assembler Assembler Guide

PowerPC EABI calling conventions System V Application Binary Interface, 3rd
Edition, published by UNIX System Laboratories,
1994 (ISBN 0-13-100439-5)

System V Application Binary Interface, PowerPC
Processor Supplement,
published by Sun Microsystems and IBM, 1995

Table 7.2 PowerPC Integer Types

For this type Option setting Size Range

bool n/a 8 bits true or false

char Use Unsigned Chars is off (see
language preferences panel in
the “C Compilers Guide.”)

8 bits -128 to 127

Use Unsigned Chars is on 8 bits 0 to 255

signed char n/a 8 bits -128 to 127

Table 7.1 Other Compiler and Linker Documentation (continued)
126 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Data Addressing

Freescale Semiconductor, Inc.
Embedded PowerPC Floating-Point
Formats
Table 7.3 shows the sizes and ranges of the floating-point types for the embedded
PowerPC compiler.

Data Addressing
You can increase the speed of your application by selecting different EPPC Processor
and EPPC Target settings that affect what the compiler does with data fetches.

In absolute addressing, the compiler generates two instructions to fetch the address of
a variable. For example:

int red;
int redsky;

unsigned char n/a 8 bits 0 to 255

short n/a 16 bits -32,768 to 32,767

unsigned short n/a 16 bits 0 to 65,535

int n/a 32 bits -2,147,483,648 to 2,147,483,647

unsigned int n/a 32 bits 0 to 4,294,967,295

long n/a 32 bits -2,147,483,648 to 2,147,483,647

unsigned long n/a 32 bits 0 to 4,294,967,295

long long n/a 64 bits -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long long n/a 64 bits 0 to 18,446,744,073,709,551,615

Table 7.3 PowerPC Floating-Point Data Types

Type Size Range

float 32 bits 1.17549e-38 to 3.40282e+38

double 64 bits 2.22507e-308 to 1.79769e+308

long double 64 bits 2.22507e-308 to 1.79769e+308

Table 7.2 PowerPC Integer Types

For this type Option setting Size Range
127CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Data Addressing

Freescale Semiconductor, Inc.
void sky()
{
 red = 1;
 redsky = 2;
}

becomes something similar to:

li r3,1
lis r4,red@ha
addi r4,r4,red@l
stw r3,0(r4)
li r5,2
lis r6,redsky@ha
addi r6,r6,redsky@l
stw r5,0(r6)

Each variable access takes two instructions and a total of four bytes to make a simple
assignment. If we set the small data threshold in the EPPC Target panel to be at least
the size of an int, we can fetch the variables with one instruction.

li r3,1
stw r3,red
li r4,2
stw r4,redsky

Because small data sections are limited in size you might not be able to put all of your
application data into the small data and small data2 sections. We recommend that you
make the threshold as high as possible until the linker reports that you have exceeded
the size of the section.

If you do exceed the available small data space, consider using pooled data.

Because the linker can not deadstrip unused pooled data, you should:

1. Check the Generate Link Map and List Unused Objects checkboxes in the EPPC
Linker panel.

2. Link and examine the map for data objects that are reported unused.

3. Delete or comment out those used definitions in your source.

4. Check the Pool Data checkbox.

The following example has a zero small data threshold.

lis r3,...bss.0@ha
addi r3,r3,...bss.0@l
li r0,1
128 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Register Variables

Freescale Semiconductor, Inc.
stw r0,0(r3)
li r0,2
stw r0,4(r3)

When pooled data is implemented, the first used variable of either the .data, .bss or
.rodata section gets a two-instruction fetch of the first variable in that section.
Subsequent fetches in that function use the register containing the already-loaded
section address with a calculated offset.

NOTE You can access small data in assembly files with the two-instruction
fetch used with large data, because any data on your board can be
accessed as if it were large data. The opposite is not true; large data
can never be accessed with small data relocations (the linker issues
an error if you try to do so). Extern declarations of empty arrays (for
example, extern int red [];) are always treated as if they were
large data. If you know that the size of the array fits into a small data
section, specify the size in the brackets.

Register Variables
 The PowerPC compiler back-end automatically allocates local variables and
parameters to registers based on to how frequently they are used and how many
registers are available. If you are optimizing for speed, the compiler gives preference
to variables used in loops.

The Embedded PowerPC back-end compiler also gives preference to variables
declared to be register, but does not automatically assign them to registers. For
example, the compiler is more likely to place a variable from an inner loop in a register
than a variable declared register. See also, K&R, §A4.1, §A8.1

For information on which registers the compiler can use for register variables, see
these documents:

• System V Application Binary Interface, Third Edition, published by UNIX
System Laboratories, 1994 (ISBN 0-13-100439-5)

• System V Application Binary Interface, PowerPC Processor Supplement,
published by Sun Microsystems and IBM, 1995

• PowerPC Embedded Binary Interface, 32-Bit Implementation. This document
can be obtained at:

ftp://ftp.linuxppc.org/linuxppc/docs/EABI_Version_1.0.ps
129CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Register Coloring Optimization

Freescale Semiconductor, Inc.
Register Coloring Optimization
The PowerPC back-end compiler can perform a register optimization called register
coloring. In this optimization, the compiler assigns different variables or parameters to
the same register if you do not use the variables at the same time. In Listing 7.1, the
compiler could place i and j in the same register:

Listing 7.1 Register coloring example

short i;
int j;
for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<1000; j++) { OurFunc(j); }

However, if a line, such as the one below, appears anywhere in the function, the
compiler recognizes that you are using i and j at the same time, so it places them in
different registers:

int k = i + j;

The default register optimization performed by PowerPC compiler is register coloring.

If the Global Optimizations settings panel specifies the optimization level of 1 or
greater, the compiler assigns all variables that fit into registers to virtual registers. The
compiler then maps the virtual registers into physical registers by using register
coloring. As previously stated, this method allows two virtual registers to exist in the
same physical register.

When you debug a project, the variables sharing a register may appear ambiguous. In
Listing 7.1, i and j would always have the same value. When i changes, j changes in
the same way. When j changes, i changes in the same way.

To avoid confusion while debugging, use the Global Optimizations settings panel to
set the optimization level to 0. This setting causes the compiler to allocate user-defined
variables only to physical registers or place them on the stack. The compiler still uses
register coloring to allocate compiler-generated variables.

Alternatively, you can declare the variables you want to watch as volatile.

NOTE The optimization level option in the Global Optimizations settings
panel corresponds to the global_optimizer pragma. For more
information, see the C Compilers Reference.
130 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
Pragmas
This section lists pragmas supported by all Metrowerks PowerPC compilers and those
supported by just Metrowerks PowerPC compilers for embedded PowerPC systems.

Table 7.4 lists the pragmas documented in the C Compilers Reference that are
supported by all Metrowerks PowerPC C/C++ compilers.

Table 7.4 Pragmas Supported by All PPC Compilers—See C Compilers Reference

align align_array_members

ANSI_strict ARM_conform

auto_inline bool

check_header_flags cplusplus

cpp_extensions dont_inline

dont_reuse_strings enumsalwaysints

exceptions extended_errorcheck

fp_contract global_optimizer

has8bytebitfields ignore_oldstyle

longlong longlong_enums

mark no_register_save_helpers

once only_std_keywords

optimize_for_size optimizewithasm

peephole pop

precompile_target push

readonly_strings require_prototypes

RTTI scheduling

static_inlines syspath_once

trigraphs unsigned_char

unused warning_errors

warn_emptydecl warn_extracomma

warn_hidevirtual warn_illpragma

warn_implicitconv warn_possunwant
131CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
Table 7.5 lists the pragmas documented in this manual that are supported by all
Metrowerks PowerPC C/C++ compilers.

opt_full_unroll_limit
#pragma opt_full_unroll_limit n|reset (n: 0..127, default: 8)

This pragma controls whether a loop is completely unrolled. A particular loop is
completely unrolled if its number of iterations is less than or equal to n.

This pragma is ignored if the unroll loops optimization is disabled. Further, this
pragma takes precedence over the pragmas opt_findoptimalunrollfactor and
opt_unroll_count.

opt_findoptimalunrollfactor
#pragma opt_findoptimalunrollfactor on|off|reset (default: on)

This pragma instructs the optimizer to calculate the optimal unroll factor. The optimal
unroll factor is the value that results in the fewest leftover iterations for the loops
within a compilation unit.

The optimal unroll factor is bound by the current default unroll count. In other words,
the optimal unroll factor calculated by the optimizer will be less than or equal to the
value defined using the opt_unroll_count pragma.

The opt_findoptimalunrollfactor pragma is ignored if the unroll loops
optimization is disabled. Further, this pragma takes precedence over the
opt_unroll_count pragma.

warn_unusedarg warn_unusedvar

wchar_type

Table 7.5 Pragmas Supported by All PPC Compilers—Documented in this Manual

opt_full_unroll_limit opt_findoptimalunrollfactor

opt_unroll_count opt_unrollpostloop

opt_unroll_instr_count inline_max_auto_size

ppc_no_fp_blockmove

Table 7.4 Pragmas Supported by All PPC Compilers—See C Compilers Reference
132 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
opt_unroll_count
#pragma opt_unroll_count n|reset (n: 0..127, default: 8)

This pragma defines the default loop unroll factor for the optimizer to use. If you turn
off the pragma opt_findoptimalunrollfactor, the optimizer uses the unroll
factor defined using the opt_unroll_count pragma.

This pragma is ignored if the unroll loops optimization is disabled.

opt_unrollpostloop
#pragma opt_unrollpostloop on|off|reset (default: on)

This pragma controls whether iterations that remain after a loop has been unrolled
should be linearized.

This pragma is ignored if the unroll loops optimization is disabled.

opt_unroll_instr_count
#pragma opt_unroll_instr_count n|reset (n: 0..127 default: 100)

This pragma defines the size of the loop that the optimizer will unroll. A loop with
with a number of nodes greater than n will not be unrolled.

This pragma is ignored if the unroll loops optimization is disabled.

inline_max_auto_size
#pragma inline_max_auto_size (n) (default: 800)

This pragma defines the maximum size of functions that are auto-inlined. The value of
n corresponds roughly to the number of instructions in a function—functions that
contain more than n instructions are not inlined.

This pragma is ignored if auto-inlining is disabled.

ppc_no_fp_blockmove
#pragma ppc_no_fp_blockmove on|off|reset (default: off)
133CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
The default compiler behavior is to try to use any available floating-point
registers to move data structures. Turn this pragma on to suppress this
behavior.

Table 7.6 lists the pragmas supported by just Metrowerks C/C++ compilers for
embedded PowerPC systems.

force_active
#pragma force_active on|off|reset

This pragma inhibits the linker from dead-stripping any variables or functions defined
while the dead-stripping option is in effect. It should be used for interrupt routines and
any other data structures which are not directly referenced from the program entry
point, but which must be linked into the executable program for correct operation.

NOTE You cannot use the force_active pragma with uninitialized
variables due to language restrictions related to tentative objects.

function_align
#pragma function_align 4 | 8 | 16 | 32 | 64 | 128

If your board has hardware capable of fetching multiple instructions at a time, you
may achieve better performance by aligning functions to the width of the fetch.

With the pragma function_align, you can select alignments from 4 (the default) to
128 bytes.

This pragma corresponds to Function Alignment listbox in the EPPC Processor
settings panel.

Table 7.6 Pragmas Supported by Just Embedded PowerPC Compilers

force_active function_align

incompatible_return_small_structs incompatible_sfpe_double_params

interrupt pack

pooled_data section
134 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
incompatible_return_small_structs
#pragma incompatible_return_small_structs on|off|reset

This pragma makes object files generated by CodeWarrior compilers more compatible
with object files generated by GNU Compiler Collection (GCC) compilers.

As per PowerPC EABI settings, structures that are up to 8 bytes in size must be
returned in registers R3 and R4,while larger structures are returned by accessing a
hidden argument in R3. GCC always uses the hidden argument method regardless of
structure size.

The CodeWarrior Linker checks to see if you are including objects in your project that
have incompatible EABI settings. If you do, a warning is issued.

NOTE Different versions of GCC may fix these incompatibilities, so you
should check your version if you will be mixing GCC and
CodeWarrior objects.

incompatible_sfpe_double_params
#pragma incompatible_sfpe_double_params on|off|reset

This pragma makes object files generated by CodeWarrior compilers more compatible
with object files generated by GNU Compiler Collection (GCC) compilers.

The PowerPC EABI states that software floating-point double parameters always
begin on an odd register. In other words, if you have a function

void red (long a, double b)

a is passed in register R3, and b is passed in registers R5 and R6 (effectively skipping
R4). GCC does not skip registers when doubles are passed (although it does skip them
for long longs).

The CodeWarrior Linker checks to see if you are including objects in your project that
have incompatible EABI settings. If you do, a warning is issued.

NOTE Different versions of GCC may fix these incompatibilities, so you
should check your version if you will be mixing GCC and
CodeWarrior objects.
135CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
interrupt
#pragma interrupt

[SRR DAR DSISR fprs vrs enable nowarn] on | off | reset

This pragma lets you write interrupt handlers in C and C++. For example:

#pragma interrupt on
void MyHandler(void)
{

my_real_handler();
}
#pragma interrupt off

The PowerPC architecture lets an interrupt service routine be up to 256 bytes long.
The compiler warns you if your routine exceeds 256 bytes. Use the nowarn option to
eliminate the warning.

If your routine must be larger than 256 bytes, add a #pragma interupt_routine
statement at the site of the interrupt vector. Your interrupt service routine can then be
any size.

#pragma interrupt saves all volatile general purpose registers that are used, as
well as the CTR, XER, LR and condition fields. These registers and condition fields are
restored before the RFI. Optionally, you can save certain special purpose registers
(such as SRR0 and SRR1, DAR, DSISR), floating-point registers (fprs), and re-enable
interrupts within your interrupt service routine.

pack
#pragma pack(n)

Where n is one of these integer values: 1,2,4,8,or 16. This pragma creates
data that is not aligned according to the EABI. The EABI alignment provides the best
alignment for performance.

Not all processors support misaligned accesses, which could cause a crash or incorrect
results. Even on processors which don't crash, your performance suffers since the
processor has code to handle the misalignments for you. You may have better
performance if you treat the packed structure as a byte stream and pack and unpack
them yourself a byte at a time.

If your structure has bit fields and the PowerPC alignment does not give you as small a
structure as you desire, double-check that you are specifying the smallest integer size
for your bit fields.
136 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
For example,

typedef struct red {
unsigned a: 1;
unsigned b: 1;
unsigned c: 1;

} red;

would be smaller if rewritten as:

typedef struct red {
unsigned char a: 1;
unsigned char b: 1;
unsigned char c: 1;

} red;

NOTE Pragma pack is implemented somewhat differently by most compiler
vendors, especially with bit fields. If you need portability, you are
probably better off using shifts and masks instead of bit fields.

pooled_data
#pragma pooled_data on | off | reset

This pragma changes the state of pooled data.

NOTE Pooled data is only saves code when more than two variables from
the same section are used in a specific function. If pooled data is
selected, the compiler only pools the data if it saves code. This
feature has the added benefit of typically reducing the data size and
allowing deadstripping of unpooled sections.

section
#pragma section [objecttype | permission] [iname] [uname]
[data_mode=datamode] [code_mode=codemode]

This sophisticated and powerful pragma lets you arrange compiled object code into
predefined sections and sections you define. This topic is organized into these parts:

• Parameters
137CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
• Section access permissions

• Predefined sections and default sections

• Forms for #pragma section

• Forcing individual objects into specific sections

• Using #pragma section with #pragma push and #pragma pop

Parameters
The optional objecttype parameter specifies where types of object data are stored. It
may be one or more of these values:

• code_type — executable object code

• data_type — non-constant data of a size greater than the size specified in the
small data threshold option in the EPPC Target settings panel

• sdata_type — non-constant data of a size less than or equal to the size
specified in the small data threshold option in the EPPC Target settings panel

• const_type — constant data of a size greater than the size specified in the
small const data threshold option in the EPPC Target settings panel

• sconst_type — constant data of a size less than or equal to the size specified in
the small const data threshold option in the EPPC Target settings panel

• all_types — all code and data

Specify one or more of these object types without quotes separated by spaces.

The CodeWarrior C/C++ compiler generates some of its own data, such as exception
and static initializer objects, which are not affected by #pragma section.

NOTE To classify character strings, the CodeWarrior C/C++ compiler uses
the setting of the Make Strings Read Only checkbox in the
EPPC Processor settings panel. If the checkbox is checked,
character strings are stored in the same section as data of type
const_type. If the checkbox is clear, strings are stored in the same
section as data for data_type.

The optional permission parameter specifies access permission. It may be one or more
of these values:

• R — read only permission

• W — write permission
138 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
• X — execute permission

For information on access permission, see “Section access permissions” on page 140.
Specify one or more of these permissions in any order, without quotes, and no spaces.

The optional iname parameter is a quoted name that specifies the name of the section
where the compiler stores initialized objects. Variables that are initialized at the time
they are defined, functions, and character strings are examples of initialized objects.
The iname parameter may be of the form .abs.xxxxxxxx where xxxxxxxx is an
8-digit hexadecimal number specifying the address of the section.

The optional uname parameter is a quoted name that specifies the name of the section
where the compiler stores uninitialized objects. This parameter is required for sections
that have data objects. The uname parameter value may be a unique name or it may be
the name of any previous iname or uname section. If the uname section is also an
iname section then uninitialized data is stored in the same section as initialized objects.

The special uname COMM specifies that uninitialized data will be stored in the common
section. The linker will put all common section data into the “.bss” section. When the
Use Common Section checkbox is checked in the EPPC Processor panel, COMM is the
default uname for the .data section. If the Use Common Section checkbox is clear,
.bss is the default name of .data section.

The uname parameter value may be changed. For example, you may want most
uninitialized data to go into the .bss section while specific variables be stored in the
COMM section.

Listing 7.2 shows an example where specific uninitialized variables are stored in the
COMM section.

Listing 7.2 Storing Uninitialized Data in the COMM Section

#pragma push // save the current state
#pragma section ".data" "COMM"

int red;
int sky;

#pragma pop // restore the previous state

You may not use any of the object types, data modes, or code modes as the names of
sections. Also, you may not use pre-defined section names by the PowerPC EABI for
your own section names.

The optional data_mode=datamode parameter tells the compiler what kind of
addressing mode to use for referring to data objects for a section.
139CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
The permissible addressing modes for datamode are:

• near_abs — objects must be within the range -65,536 bytes to 65,536 bytes (16
bits on each side)

• far_abs — objects must be within the first 32 bits of RAM

• sda_rel — objects must be within a 32K range of the linker-defined small data
base address

The sda_rel addressing mode may only be used with the “.sdata”, “.sbss”,
“.sdata2”, “.sbss2”, “.EMB.PPC.sdata0”, and “.EMB.PPC.sbss0”
sections.

The default addressing mode for large data sections is far_abs. The default
addressing mode for the predefined small data sections is sda_rel.

Specify one of these addressing modes without quotes.

The optional code_mode=codemode parameter tells the compiler what kind of
addressing mode to use for referring to executable routines of a section.

The permissible addressing modes for codemode are:

• pc_rel — routines must be within plus or minus 24 bits of where pc_rel is
called from

• near_abs — routines must be within the first 24 bits of RAM

• far_abs — routines must be within the first 32 bits of RAM

The default addressing mode for executable code sections is pc_rel.

Specify one of these addressing modes without quotes.

NOTE All sections have a data addressing mode (data_mode=datamode)
and a code addressing mode (code_mode=codemode). Although the
CodeWarrior C/C++ compiler for PowerPC embedded allows you to
store executable code in data sections and data in executable code
sections, this practice is not encouraged.

Section access permissions
When you define a section by using #pragma section, its default access permission
is read only. Changing the definition of the section by associating an object type with
it sets the appropriate access permissions for you. The compiler adjusts the access
permission to allow the storage of newly-associated object types while continuing to
allow objects of previously-allowed object types. For example, associating
140 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
code_type with a section adds execute permission to that section. Associating
data_type, sdata_type, or sconst_type with a section adds write permission to
that section.

Occasionally you might create a section without associating it with an object type.
You might do so to force an object into a section with the __declspec keyword. In
this case, the compiler automatically updates the access permission for that section to
allow the object to be stored in the section, then issue a warning. To avoid such a
warning, make sure to give the section the proper access permissions before storing
object code or data into it. As with associating an object type to a section, passing a
specific permission adds to the permissions that a section already has.

Predefined sections and default sections
When an object type is associated with the predefined sections, the sections are set as
default sections for that object type. After assigning an object type to a non-standard
section, you may revert to the default section with one of the forms in “Forms for
#pragma section” on page 142.

The compiler predefines the sections in Listing 7.3.

Listing 7.3 Predefined sections

#pragma section code_type ".text" data_mode=far_abs code_mode=pc_rel

#pragma section data_type ".data" ".bss" data_mode=far_abs
code_mode=pc_rel

#pragma section const_type ".rodata" ".rodata" data_mode=far_abs
code_mode=pc_rel

#pragma section sdata_type ".sdata" ".sbss" data_mode=sda_rel
code_mode=pc_rel

#pragma section sconst_type ".sdata2" ".sbss2" data_mode=sda_rel
code_mode=pc_rel

#pragma section ".EMB.PPC.sdata0" ".EMB.PPC.sbss0" data_mode=sda_rel
code_mode=pc_rel

#pragma section RX ".init" ".init" data_mode=far_abs code_mode=pc_rel
141CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Pragmas

Freescale Semiconductor, Inc.
NOTE The .EMB.PPC.sdata0 and .EMB.PPC.sbss0 sections are
predefined as an alternative to the sdata_type object type. The
.init section is also predefined, but it is not a default section. The
.init section is used for startup code.

Forms for #pragma section

#pragma section ".name1"

This form simply creates a section called .name1 if it does not already exist. With this
form, the compiler does not store objects in the section without an appropriate,
subsequent #pragma section statement or an item defined with the __declspec
keyword. If only one section name is specified, it is considered the name of the
initialized object section, iname. If the section is already declared, you may also
optionally specify the uninitialized object section, uname. If you know that the section
must have read and write permission, use #pragma section RW .name1 instead,
especially if you use the __declspec keyword.

#pragma section objecttype ".name2"

With the addition of one or more object types, the compiler stores objects of the types
specified in the section .name2. If .name2 does not exist, the compiler creates it with
the appropriate access permissions. If only one section name is specified, it is
considered the name of the initialized object section, iname. If the section is already
declared, you may also optionally specify the uninitialized object section, uname

#pragma section objecttype

When there is no iname parameter, the compiler resets the section for the object types
specified to the default section. Resetting the section for an object type does not reset
its addressing modes. You must reset them.

When declaring or setting sections, you also can add an uninitialized section to a
section that did not have one originally by specifying a uname parameter. The
corresponding uninitialized section of an initialized section may be the same.

Forcing individual objects into specific sections
You may store a specific object of an object type into a section other than the current
section for that type without changing the current section. Use the __declspec
keyword with the name of the target section and put it next to the extern declaration or
static definition of the item you want to store in the section.
142 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
Listing 7.4 shows examples.

Listing 7.4 Using __declspec to Force Objects into Specific Sections

__declspec(section ".data") extern int myVar;
#pragma section "constants"
__declspec(section "constants") const int myConst = 0x12345678;

Using #pragma section with #pragma push and
#pragma pop
You can use this pragma with #pragma push and #pragma pop to ease complex or
frequent changes to sections settings.

See Listing 7.2 for an example.

NOTE The pop pragma does not restore any changes to the access
permissions of sections that exist before or after the corresponding
push pragma.

EPPC Linker Issues
This section provides background information about the CodeWarrior Embedded
PowerPC linker and explains how it works.

The topics in this section are:

• Additional Small Data Sections

• Linker Generated Symbols

• Deadstripping Unused Code and Data

• Link Order

• Linker Command Files

Additional Small Data Sections
The PowerPC EABI specification mandates that compliant build tools predefine three
small data sections. The EPPC Linker target settings panel lets you specify the address
143CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
at which the CodeWarrior linker puts two of these sections (if the default locations are
unsatisfactory).

CodeWarrior Development Studio, mobileGT Edition lets you create small data
sections in addition to those mandated by the PowerPC EABI specification. The
CodeWarrior tools let you specify that the contents of a given user-defined section will
be accessed by the small data base register selected from the available non-volatile
registers. To do this, you use a combination of source code statements and linker
command file directives.

To create one additional small data area, follow these steps:

1. Open the CodeWarrior project in which you want to create an additional small
data section.

2. Select the build target in which you want to create an additional small data section.

3. Press ALT-F7

The IDE displays the Target Settings window.

4. In the left pane of the Target Settings window, select C/C++ Language.

The C/C++ Language target settings panel appears in the right side of the Target
Settings window.

5. Open the prefix file whose name appears in the Prefix File text box in an editor
window.

6. Add the statements that define a small data section to the top of the prefix file:

a. Add a statement that creates a global register variable.

For example, to create a global register variable for register 14, add this
statement to the prefix file:

// _dummy does not have to be defined
extern int _dummy asm(“r14”);

b. Turn off the “unsafe global register variables” warning using this pragma:

#pragma unsafe_global_reg_vars off

c. Create a user-defined section using the section pragma; include the clause
data_mode = sda_rel so the section can use small data area addressing.

For example:

// you do not have to use the names in this example
// .red is the initialized part of the section
144 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
// .blue is the uninitialized part of the section
#pragma section RW “.red” “.blue” data_mode = sda_rel

NOTE If you want your small data area to be the default section for all small
data, use this form of the section pragma instead of the one above:
#pragma section sdata_type “.red” “blue” data_mode = sda_rel

7. Save the prefix file and close the editor window.

8. In each header or source file that declares or defines a global variable that you
want to put in a small data section, put the storage-class modifier
__declspec(section "initialized_small_sect_nm") in front of the
definition or declaration.

For example, the statement:

__declspec(section ".red") int x = 5;

instructs the compiler to put the global variable x into the small data section
named .red

NOTE Use the name of your initialized small data section in the
__declspec(section, “nm”) storage-class modifier. The
compiler automatically puts a variable in the uninitialized small data
section if appropriate.

NOTE If you want a small data section to be the default section for all small
data, do not to add the storage-class modifier
__declspec(section "initialized_small_sect_nm")

to any header or source file.

9. In the left pane of the Target Settings window, select EPPC Linker.

The EPPC Linker target settings panel appears.

10. In the Segment Addresses group box, check the Use Linker Command File
checkbox.

The other checkboxes and text boxes in the group become disabled.

11. In the left pane of the Target Settings window, select EPPC Target.

The EPPC Target settings panel appears.
145CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
12. From the Code Model listbox, select Absolute Addressing

13. From the ABI listbox, select EABI.

14. Click OK

The IDE saves your settings and closes the Target Settings window.

15. Modify the linker command file such that it instructs the linker to use the global
register declared above as the base register for your new small data section.

To do this, follow these steps:

a. In the linker command file, add two REGISTER directives, one for the
initialized part of the small data section and one for uninitialized part.

For example, to make register 14 the base register, add statements like these:

.red REGISTER(14) : {} > ram

.blue REGISTER(14) : {} > ram

b. Add the linker command file to each build target in which you want to use the
new small data section.

16. Open the CodeWarrior project for the runtime library used by your project.

The runtime library project is in this directory:

installDir\PowerPC_EABI_Support\
Runtime\Project\Runtime.PPCEABI.mcp

17. In the build target listbox of the runtime library project window, select the build
target of the runtime library that your main project uses.

18. Open this build target’s prefix file in a CodeWarrior editor window.

19. Add the same statements to this prefix file that you added to the prefix file of the
main project.

20. Save the prefix file and close the editor window.

21. Open __start.c in a CodeWarrior editor window.

22. Find the string __init_registers(void) and add statements that initialize the
small data section base register you are using near the end of this function
(immediately above the terminating blr instruction).

For example, to initialize register 14, add these statements:

lis r14, _SDA14_BASE_@ha
addi r14, r14, _SDA14_BASE_@l

23. Save __start.c and close the editor window.
146 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
24. Open __ppc_eabi_linker.h in a CodeWarrior editor window.

25. Find the string _SDA_BASE_[] in this file and add this statement after the block
of statements that follow this string:

// SDAnn_BASE is defined by the linker if
// the REGISTER(nn) directive appears in the .lcf file
__declspec(section “.init”) extern char _SDA14_BASE_[];

26. Save __ppc_eabi_linker.h and close the editor window.

27. Press F7

The IDE builds a new runtime library.

28. Close the runtime library project.

29. Return to your main project.

30. Press F7

The IDE builds your project.

You can now use the new small data section in this project.

NOTE You can create more small data segments by following the procedure
above. Remember, however, that for each small data section created,
the compiler loses one non-volatile register to use for other purposes.

Linker Generated Symbols
You can find a complete list of the linker generated symbols in either the C include file
__ppc_eabi_linker.h or the assembly include file __ppc_eabi_linker.i. The
CodeWarrior linker automatically generates symbols for the start address, the end
address (the first byte after the last byte of the section), and the start address for the
section if it will be burned into ROM. With a few exceptions, all CodeWarrior linker-
generated symbols are immediate 32 bit values.

If addresses are declared in your source file as unsigned char _f_text[]; you
can treat _f_text just as a C variable even though it is a 32-bit immediate value.

unsigned int textsize = _e_text - _f_text;

If you do need linker symbols that are not addresses, you can access them from C.

unsigned int size = (unsigned int)&_text_size;

The linker generates four symbols:
147CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
• __ctors — an array of static constructors

• __dtors — an array of destructors

• __rom_copy_info — an array of a structure that contains all of the necessary
information about all initialized sections to copy them from ROM to RAM

• __bss_init_info — a similar array that contains all of the information
necessary to initialize all of the bss-type sections. Please see __init_data in
__start.c.

These four symbols are actually not 32-bit immediates but are variables with storage.
You access them just as C variables. The startup code now automatically handles
initializing all bss type sections and moves all necessary sections from ROM to RAM,
even for user defined sections.

Deadstripping Unused Code and Data
The Embedded PowerPC linker deadstrips unused code and data only from files
compiled by the CodeWarrior C/C++ compiler. Assembler relocatable files and C/
C++ object files built by other compilers are never deadstripped. Deadstripping is
particularly useful for C++ programs. Libraries (archives) built with the CodeWarrior
C/C++ compiler only contribute the used objects to the linked program. If a library has
assembly or other C/C++ compiler built files, only those files that have at least one
referenced object contribute to the linked program. Completely unreferenced object
files are always ignored.

If the Pool Data checkbox is checked in the EPPC Processor panel, the pooled data is
not stripped. However, all small data and code is still subject to deadstripping.

There are, however, situations where there are symbols that you don't want dead-
stripped even though they are never used. See “Linker Command Files” on page 149
for information on how to prevent dead-stripping of unused symbols.

Link Order
The Link Order tab of the project window lets you define the link order. For general
information on setting the link order, see the IDE User Guide.

Regardless of the link order you specify, the Embedded PowerPC linker always
processes C/C++ files, assembly language source files, and object files (.o) before it
processes archive files (.a), which are treated as libraries. Therefore, if a source file
defines a symbol, the linker uses that definition in preference to a definition in a
library.
148 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
One exception exists. The linker uses a global symbol defined in a library in
preference to a source file definition of a weak symbol. You can create a weak symbol
with #pragma overload. See __ppc_eabi_init.c or __ppc_eabi_init.cpp
for examples.

The Embedded PowerPC linker ignores executable files of the project. You may find it
convenient to keep the executable files in the project folder so that you can
disassemble it. If a build is successful, a check mark appears in the touch column on
the left side of the Project window. This indicates that the new file in the project is out
of date. If a build is unsuccessful, the IDE is not be able to find the executable file and
it stops the build with an appropriate message.

Linker Command Files
Linker command files are an alternative way of specifying segment addresses. The
other method of specifying segment addresses is by entering values manually in the
Segment Addresses area of the EPPC Linker settings panel.

Only one linker command file is supported per target in a project. The linker command
filename must end in the .lcf extension.

Setting up CodeWarrior IDE to accept LCF files
Projects created with the CodeWarrior IDE version 3 or earlier may not recognize the
.lcf extension. Therefore, you may not be able to add a filename with the .lcf
extension to the project. You need to create a file mapping to avoid this.

To add the .lcf file mapping to your project:

1. Select Edit > Target Settings, where Target is the name of the current build
target.

2. Select the File Mappings panel.

3. In the File Type text box, type TEXT

4. In the Extension text box, type .lcf

5. From the Compiler listbox, select None.

6. Click Add to save your settings.

Now, when you add an .lcf file to your project, the compiler recognizes the file as a
linker command file.
149CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
Linker Command File Directives
The CodeWarrior PPC EABI linker supports these directives:

• EXCLUDEFILES

• EXTERNAL_SYMBOL

• FORCEACTIVE

• FORCEFILES

• GROUP

• INCLUDEDWARF

• INTERNAL_SYMBOL

• MEMORY

• REGISTER

• SECTIONS

• SHORTEN_NAMES_FOR_TOR_101

NOTE You can only use one SECTIONS, MEMORY,
FORCEACTIVE, and FORCEFILES directive per linker command file.

NOTE If you want to mention a source file such as main.c in an .lcf file,
type main.o. The .lcf only recognizes object and architecture
extensions.

EXCLUDEFILES
The EXCLUDEFILES directive is for partial link projects only. It makes your partial
link file smaller. The directive has this form.

EXCLUDEFILES { executablename.extension }

In the example:

EXCLUDEFILES { kernel.elf }

kernel.elf is added to your project. The linker does not add any section from
kernel.elf to your project. However, it does delete any weak symbol from your
partial link that also exists in kernel.elf. Weak symbols can come from templates
or out-of-line inline functions.
150 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
EXCLUDEFILES can be used independently of INCLUDEDWARF. Unlike
INCLUDEDWARF, EXCLUDEFILES can take any number of executable files.

EXTERNAL_SYMBOL
Use the EXTERNAL_SYMBOL and INTERNAL_SYMBOL directives to force the
addressing of global symbols. This directive is of the form: XXXL_SYMBOL {sym1,
sym2, symN}, where symbols are the link time symbol names (mangled for C++).

FORCEACTIVE

The directives FORCEACTIVE and FORCEFILES give you more control over symbols
that you don't want dead-stripped. The FORCEACTIVE directive has this form:

FORCEACTIVE { symbol1 symbol2 ... }

Use FORCEACTIVE with a list of symbols that you do not want to be dead-stripped.

FORCEFILES
Use FORCEFILES to list source files, archives, or archive members that you don't want
dead-stripped. All objects in each of the files are included in the executable. The
FORCEFILES directive has this form:

FORCEFILES { source.o object.o archive.a(member.o) ... }

If you only have a few symbols that you do not want deadstripped, use
FORCEACTIVE.

GROUP
The GROUP directive lets you organize the linker command file. This directive has this
form:

GROUP <address_modifiers> :{ <section_spec> ... }

Please see the topic SECTIONS for the description of the components.

Listing 7.5 shows that each group starts at a specified address. If no address_modifiers
were present, it would start following the previous section or group. Although you
normally do not have an address_modifier for an output_spec within a group, all
sections in a group follow contiguously unless there is an address_modifier for that
output_spec.
151CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
Listing 7.5 Example 1

SECTIONS {
 GROUP BIND(0x00010000) : {
 .text : {}
 .rodata : {*(.rodata) *(extab) *(extabindex)}
 }

 GROUP BIND(0x2000) : {
 .data : {}
 .bss : {}
 .sdata BIND(0x3500) : {}
 .sbss : {}
 .sdata2 : {}
 .sbss2 : {}
 }

 GROUP BIND(0xffff8000) : {
 .PPC.EMB.sdata0 : {}
 .PPC.EMB.sbss0 : {}
 }
}

INCLUDEDWARF
The INCLUDEDDWARF directive allows you to debug source level code in the kernel
while debugging your application. This directive has the form:
INCLUDEDDWARF { executablename.extension }

In the example INCLUDEDDWARF { kernel.elf }, kernel.elf is added to your
project. The linker adds only the .debug and .line sections of kernel.elf to
your application. This allows you to debug source level code in the kernel
while debugging your application.

You are limited to one executable file when using this directive. If you need to
process more than one executable, add this directive to another file.

INTERNAL_SYMBOL
Use the INTERNAL_SYMBOL and EXTERNAL_SYMBOL directives to force the
addressing of global symbols. This directive is of the form: XXXL_SYMBOL {sym1,
sym2, symN}, where symbols are the link time symbol names (mangled for C++).
152 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
REGISTER
Use the REGISTER directive to assign one of the EPPC processor’s non-volatile
registers to a user-defined small data section.

This directive is of this form REGISTER(nn [, limit]) where:

• nn is one of the predefined small data base registers, a non-volative EPPC
register, or -1

– 0, 2, 13

These registers are for the predefined small data sections:
0 - .EMB.PPC.sdata0/.EMB.PPC.sbss0
2 - .sdata2/sbss2
13 - .sdata/sbss

You do not have to define these sections using REGISTER because they are
predefined.

– 14 - 31

Match any value in this range with the register reserved by your global
register variable declaration.

– -1

This “register” value instructs the linker to treat relocations that refer to
objects in your small data section as non-small data area relocations. These
objects are converted to near absolute relocations, which means that the
objects referenced must reside within the first 32 KB of memory. If they do
not, the linker emits a “relocation out of range” error. To fix this problem,
rewrite your code such that the offending objects use large data relocations.

• limit is the maximum size of the small data section to which register nn is
bound.

This value is the size of the initialized and uninitialized sections of the small data
section combined. If limit is not specified, 0x00008000 is used.

NOTE Each small data section you create makes one less register available
to the compiler; it is possible to starve the compiler of registers. As a
result, create only the number of small data sections you need.
153CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
MEMORY
A MEMORY directive is of the form MEMORY : { <memory_spec> ... }, where
memory_spec is:

<symbolic name> : origin = num, length = num

origin may be abbreviated as org or o. length may be abbreviated as len or l. If
you do not specify length, the memory_spec is allowed to be as big as necessary. In
all cases, the linker warns you if sections overlap. The length is useful if you want to
avoid overlapping an RTOS or exception vectors that might not be a part of your
image.

You specify that a output_spec or a GROUP goes into a memory_spec with the
“>” symbol.

Listing 7.6 shows the MEMORY directive added to the example code shown in
Listing 7.5. The results of both examples are identical.

Listing 7.6 Example 2

MEMORY {

 text : origin = 0x00010000

 data : org = 0x00002000 len = 0x3000
 page0 : o = 0xffff8000, l = 0x8000
}

SECTIONS {

GROUP : {
 .text : {}
 .rodata : {*(.rodata) *(extab) *(extabindex)}

 } > text

GROUP : {
 .data : {}
 .bss : {}
 .sdata BIND(0x3500) : {}
 .sbss : {}
 .sdata2 : {}
 .sbss2 : {}

 } > data
154 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
GROUP : {
 .PPC.EMB.sdata0 : {}
 .PPC.EMB.sbss0 : {}
 } > page0
}

SECTIONS
A SECTIONS directive has this form:

SECTIONS { <section_spec> ... }

where section_spec is

<output_spec> (<input_type>) <address_modifiers> :
{ <input_spec> ... }

output_spec is the section name for the output section.

input_type is one of TEXT, DATA, BSS, CONST and MIXED. CODE is also supported
as a synonym of TEXT. One input_type is permitted and must be enclosed in (). If
an input_type is present, only input sections of that type are added to the section.
MIXED means that the section contains code and data (RWX). The input_type
restricts the access permission that are acceptable for the output section, but they also
restrict whether initialized content or uninitialized content can go into the output
section. Table 7.7 shows the types of input for input_type.

address_modifiers are for specifying the address of an output section.

The pseudo functions ADDR(), SIZEOF(), NEXT(), BIND(), and ALIGN() are
supported.

Table 7.7 Types of Input for input_type

Name Access Permissions Status

TEXT RX Initialized

DATA RW Initialized

BSS RW Uninitialized

CONST R Initialized

MIXED RWX Initialized
155CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
NOTE Other compiler vendors also support ways that you can specify the
ROM Load address with the address_modifiers. With
CodeWarrior IDE, this information is specified in the EPPC Linker
settings panel. You may also simply specify an address with BIND.

ADDR() takes previously defined output_spec or memory_spec enclosed in () and
returns its address.

SIZEOF() takes previously defined output_spec or memory_spec enclosed in ()
and returns its size.

ALIGN() takes a number and aligns the output_spec to that alignment.

NEXT() is similar to ALIGN. It returns the next unallocated memory address.

BIND() can take a numerical address or a combination of the above pseudo functions.

input_spec can be empty or a file name, a file name with a section name, the
wildcard '*' with a section name singly or in combination.

When input_spec is empty, as in

.text : {}

all .text sections in all files in the project that aren't more specifically mentioned in
another input_spec are added to that output_spec.

A file name by itself means that all sections go into the output_spec.

A file name with a section name means that the specified section goes into the
output_spec.

A “*” with a section name means that the specified section in all files go into the
output_spec.

In all cases, the input_spec is subject to input_type. For example,

.text (TEXT) : { red.c }

means that only sections of type TEXT in file red.c is added.

In all cases, if there is more that one input_spec that fits an input file, the more
specific input_spec gets the file.

If an archive name is used instead of source file name, all referenced members of that
archive are searched. You can further specify a member with red.a(redsky.c).
The linker doesn't support grep. If listing just the source file name is ambiguous, enter
the full path.
156 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
Listing 7.7 shows how you might specify a SECTIONS directive without a MEMORY
directive. The .text section starts at 0x00010000 and contains all sections named
.text in all input files. The.rodata section starts just after the .text section, and is
aligned on the largest alignment found in the input files. The input files are the read
only sections (.rodata) found in all files. The .data section starting address is the
sum of the starting address of .rodata and the size of .rodata. The resulting
address is aligned on a 0x100 boundary. The address contains all sections of .data in
all files. The .bss section follows the .data through .sbss2 sections. The
.EMB.PPC.sdata0 starts at 0xffff8000 and the.EMB.PPC.sbss0 follows it.

Listing 7.7 Example 3

SECTIONS {

.init : {}
 .text BIND(0x00010000) : {}
 .rodata : {}
 extab : {}
 extabindex : {}

 .data BIND(ADDR(.rodata) + SIZEOF(.rodata)) ALIGN(0x100) : {}
 .sdata : {}
 .sbss : {}
 .sdata2 : {}
 .sbss2 : {}
 .bss : {}

 .PPC.EMB.sdata0 BIND(0xffff8000) : {}
 .PPC.EMB.sbss0 : {}

}

NOTE extab and extabindex must be in separate sections.

SHORTEN_NAMES_FOR_TOR_101

The directive SHORTEN_NAMES_FOR_TOR_101 instructs the linker to shorten long
template names for the benefit of the WindRiver® Systems Target Server. To use this
directive, simply add it to the linker command file on a line by itself.

SHORTEN_NAMES_FOR_TOR_101
157CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
EPPC Linker Issues

Freescale Semiconductor, Inc.
WindRiver Systems Tornado Version 1.0.1 (and earlier) does not support long
template names as generated for the MSL C++ library. Therefore, the template names
must be shortened if you want to use them with these versions of the WindRiver

Systems Target Server.

Miscellaneous features
• Memory Gaps

• Symbols

Memory Gaps
You can create gaps in memory by performing alignment calculations such as

. = (. + 0x20) & ~0x20;

This kind of calculation can occur between output_specs, between input_specs,
or even in address_modifiers. A “.” refers to the current address. You may assign
the . to a specific unallocated address or just do alignment as the example shows. The
gap is filled with 0, in the case of an alignment (but not with ALIGN()).

You can specify an alternate fill pattern with = <short_value>, as in

.text : { . = (. + 0x20) & ~0x20; *(.text) } = 0xAB > text

short_value is 2 bytes long. Note that the fill pattern comes before the
memory_spec. You can add a fill to a GROUP or to an individual output_spec
section. Fills cannot be added between .bss type sections. All calculations must end
in a “;”.

Symbols
You can create symbols that you can use in your program by assigning a symbol to
some value in your linker command file.

.text : { _red_start = .; *(.text) _red_end = .;} > text

In the example above, the linker generates the symbols _red_start and _red_end
as 32 bit values that you can access in your source files. _red_start is the address of
the first byte of the .text section and __red_end is the byte that follows the last
byte of the .text section.

You can use any of the pseudo functions in the address_modifiers in a
calculation.
158 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Using __attribute__ ((aligned(?)))

Freescale Semiconductor, Inc.
The CodeWarrior linker automatically generates symbols for the start address, the end
address, and the start address for the section if it is to be burned into ROM. For a
section .red, we create _f_red, _e_red, and _f_red_rom. In all cases, any “.”
in the name is replaced with a “_”. Addresses begin with an “_f”, addresses after the
last byte in section begin with an “_e”, and ROM addresses end in a “_rom”. See the
header file __ppc_eabi_linker.h for further details.

All user defined sections follow the preceding pattern. However, you can override one
or more of the symbols that the linker generates by defining the symbol in the linker
command file.

NOTE BSS sections do not have a ROM symbol.

Using __attribute__ ((aligned(?)))
You can use __attribute__ ((aligned(?))) in several situations:

• Variable declarations

• Struct, union, or class definitions

• Typedef declarations

• Struct, union, or class members

NOTE Substitute any power of 2 up to 4096 for the question mark (?).

This section contains these topics:

• Variable Declaration Examples

• Struct Definition Examples

• Typedef Declaration Examples

• Struct Member Examples

Variable Declaration Examples
This section shows variable declarations that use __attribute__
((aligned(?))).

The following variable declaration aligns V1 on a 16-byte boundary.

int V1[4] __attribute__ ((aligned (16)));
159CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Using __attribute__ ((aligned(?)))

Freescale Semiconductor, Inc.
The following variable declaration aligns V2 on a 2-byte boundary.

int V2[4] __attribute__ ((aligned (2)));

Struct Definition Examples
This section shows struct definitions that use __attribute__ ((aligned(?))).

The following struct definition aligns all definitions of struct S1 on an 8-byte
boundary.

struct S1 { short f[3]; }
 __attribute__ ((aligned (8)));
struct S1 s1;

The following struct definition aligns all definitions of struct S2 on a 4-byte
boundary.

struct S2 { short f[3]; }
 __attribute__ ((aligned (1)));
struct S2 s2;

NOTE You must specify a minimum alignment of at least 4 bytes for
structures. Specifying a lower number for the alignment of a structure
causes alignment exceptions.

Typedef Declaration Examples
This section shows typedef declarations that use __attribute__
((aligned(?))).

The following typedef declaration aligns all definitions of T1 on an 8-byte boundary.

typedef int T1 __attribute__ ((aligned (8)));
T1 t1;

The following typedef declaration aligns all definitions of T2 on an 1-byte boundary.

typedef int T2 __attribute__ ((aligned (1)));
T2 t2;
160 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Using __attribute__ ((aligned(?)))

Freescale Semiconductor, Inc.
Struct Member Examples
This section shows struct member definitions that use __attribute__
((aligned(?))).

The following struct member definition aligns all definitions of struct S3 on an 8-
byte boundary, where a is at offset 0 and b is at offset 8.

struct S3 {
 char a;
 int b __attribute__ ((aligned (8)));
};
struct S3 s3;

The following struct member definition aligns all definitions of struct S4 on a 4-
byte boundary, where a is at offset 0 and b is at offset 4.

struct S4 {
 char a;
 int b __attribute__ ((aligned (2)));
};
struct S4 s4;

NOTE Specifying __attribute__ ((aligned (2))) does not affect
the alignment of S4 because 2 is less than the natural alignment of
int.
161CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

C/C++ Compiler and Linker
Using __attribute__ ((aligned(?)))

Freescale Semiconductor, Inc.
162 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
8
Inline Assembler

This chapter explains how to use the inline assembler built into the CodeWarrior™
C/C++ compiler for the mobileGT™ processor family.

The chapter does not discuss the standalone CodeWarrior EPPC assembler. For
information about this tool, refer to the Assembler Guide.

Further, the chapter does not document all instructions in the EPPC instruction set. For
complete coverage of the instruction set, see PowerPC Microprocessor Family: The
Programming Environment for 32-Bit Microprocessors, published by Motorola.

Finally, refer to this web page for documentation of Motorola’s entire semiconductor
product line, including embedded versions of the PowerPC processor:

http://e-www.motorola.com/webapp/sps/library/tools_lib.jsp

The sections of this chapter are:

• Working With Assembly Language

• Assembler Directives

• Intrinsic Functions

Working With Assembly Language
This section explains how to use the built-in support for assembly language
programming included in the CodeWarrior compiler.

This section contains these topics:

• Assembly Language Syntax

• Special Embedded PowerPC Instructions

• Creating Statement Labels

• Using Comments

• Using the Preprocessor in Embedded PowerPC Assembly

• Using Local Variables and Arguments
163CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

http://e-www.motorola.com/webapp/sps/library/tools_lib.jsp

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
• Creating a Stack Frame

• Specifying Operands

Assembly Language Syntax
To specify that a block of code in your file should be interpreted as assembly
language, use the asm keyword.

NOTE To ensure that the C/C++ compiler recognizes the asm keyword, you
must clear the ANSI Keywords Only checkbox of the C/C++
Language target settings panel. This panel and its options are fully
described in the C Compilers Reference.

As an alternative, the keyword __asm is always recognized even if the ANSI
Keywords Only checkbox is checked.

The assembly instructions are the standard Embedded PowerPC instruction
mnemonics. For information on Embedded PowerPC assembly language instructions,
see PowerPC Microprocessor Family: The Programming Environment for 32-Bit
Microprocessors, published by Motorola (serial number MPCFPE32B/AD).

There are two ways to use assembly language with the CodeWarrior compilers.

First, you can write code to specify that an entire function is in assembly language.
This is called function-level assembly language. Alternatively, CodeWarrior
compilers also support assembly statement blocks within a function. In other words,
you can write code that is both in function-level assembly language and statement-
level assembly language.

NOTE To enter a few lines of assembly language code within a single
function, you can use the support for intrinsics included in the
compiler. Intrinsics are an alternative to using asm statements within
functions.

Function-level assembly code for PowerPC uses this syntax:

asm {function definition }

An assembly language function must end with blr instruction. For example:

asm long MyFunc(void)
{

... // assembly language instructions
164 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
blr
}

Statement-level assembly language has this syntax:

asm { one or more instructions }

Blocks of assembly language statements are supported. For example:

long MyFunc (void)
{

asm
{

... // assembly language statements
}

}

NOTE Assembly language functions are never optimized, regardless of
compiler settings.

You can use an asm statement wherever a code statement is allowed.

NOTE If you check the Inlined Assembler is Volatile checkbox in the EPPC
Processor panel, functions that contain an asm block are only
partially optimized, as the optimizer optimizes the function, but skips
any asm blocks of code. If the Inlined Assembler is Volatile
checkbox is clear, the optimizer treats asm blocks as compiler-
generated instructions.

The built-in assembler uses all the standard PowerPC assembler instructions. It
accepts some additional directives described in “Assembler Directives” on page 174.
If you use the machine directive, you can also use instructions that are available only
in certain versions of the PowerPC processors.

Keep these tips in mind as you write assembly functions:

• All statements must follow this syntax:

[LocalLabel:] (instruction | directive) [operands]

• Each instruction must end with a newline or a semicolon (;).

• Hex constants must be in C-style: li r3, 0xABCDEF

• Assembler directives, instructions, and registers are case-sensitive and must be in
lowercase. For example,
165CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
add r2,r3,r4

• Every assembly function must end in an blr statement. For example,

asm void g(void)
{
 add r2,r3,r4
 blr
}

Listing 8.1 shows an example of an assembly language function.

Listing 8.1 Example Assembly Language Function

asm void mystrcpy(char *tostr, char *fromstr)

{
 addi tostr,tostr,-1
 addi fromstr,fromstr,-1
@1 lbzu r5,1(fromstr)
 cmpwi r5,0
 stbu r5,1(tostr)
 bne @1
 blr
}

Special Embedded PowerPC Instructions
To set the branch prediction (y) bit for those branch instructions that can use it, use +
or -. For example:

@1 bne+ @2
@2 bne- @1

Most integer instructions have four forms:

• normal form — add r3,r4,r5

• record form — add. r3,r4,r5

This form ends in a period. This form sets register cr0 to whether the result is
less, than, equal to, or greater than zero.

• overflow — addo r3,r4,r5

This form ends in the letter (o). This form sets the SO and OV bits in the XER if the
result overflows.

• overflow and record — addo. r3,r4,r5
166 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
This form ends in (o.). This form sets both registers.

Some instructions only have a record form (with a period). Always make sure to
include the period. For example,

andi. r3,r4,7
andis. r3,r4,7
stwcx. r3,r4,r5

Creating Statement Labels
The name of an inline assembly language statement label must follow these rules:

• A label name cannot be the same as the identifier of any local variables of the
function in which the label name appears.

• A label name does not have to start in the first column of the function in which it
appears; a label name can be preceded by white space.

• A label name can begin with an “at-sign” character (@) unless the label
immediately follows a local variable declaration.

For example:

@red and red: are both valid label names.

asm void func1(){
int i;

@x: li r0,1 //Invalid !!!
}

asm void func2(){
int i;

x: li r0,1 //OK
@y: add r3, r4, r5 //OK

}

• A label name must end with a colon character (:) unless it begins with an at-sign
character (@).

For example, red: and @red are valid, but red is not valid.

• A label name can be the same as an assembly language statement mnemonic.

For example, this statement is valid:

add: add r3, r4, r5

This is an example of a complete inline assembly language function:

asm void red(void){
x1: add r3,r4,r5
167CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
@x2: add r6,r7,r8
}

Using Comments
You cannot begin comments with a pound sign (#) because the preprocessor uses the
pound sign. For example, this format is invalid:

add r3,r4,r5 # Comment

Use C and C++ comments in this format:

add r3,r4,r5 // Comment
add r3,r4,r5 /* Comment */

Using the Preprocessor in Embedded
PowerPC Assembly
You can use all preprocessor features, such as comments and macros, in the assembler.
In multi-line macros, you must end each assembly statement with a semicolon (;)
because the (\) operator removes newlines. For example:

#define remainder(x,y,z) \
divw z,x,y; \
mullw z,z,y; \
subf z,z,x

asm void newPointlessMath(void)
{
remainder(r3,r4,r5)
blr
}

Using Local Variables and Arguments
To refer to a memory location, you can use the name of a local variable or argument.

The rule for assigning arguments to registers or memory depends on whether the
function has a stack frame.

If function has a stack frame, the inline assembler assigns:

• scalar arguments declared as register to r14 — r31

• floating-point arguments declared as register to fp14 — fp31
168 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
• other arguments to memory locations

• scalar locals declared as register to r14 — r31

• floating-point locals declared as register to fp14 — fp31

• other locals to memory locations

If a function has no stack frame, the inline assembler assigns arguments that are
declared register and kept in registers. If you have variable or non-register
arguments, the compiler will warn you that you should use frfree

NOTE Some opcodes require registers, and others require objects. For
example, if you use nofralloc with function arguments, you may
run into difficulties.

Creating a Stack Frame
You need to create a stack frame for a function if the function:

• calls other functions.

• declares non-register arguments or local variables.

To create a stack frame, use the fralloc directive at the beginning of your function
and the frfree directive just before the blr statement. The directive fralloc
automatically allocates (while ffree automatically de-allocates) memory for local
variables, and saves and restores the register contents.

asm void red ()
{
 fralloc
 // Your code here
 frfree
 blr
}

The fralloc directive has an optional argument number that lets you specify the size
in bytes of the parameter area of the stack frame. The stack frame is an area for storing
parameters used by the assembly code. The compiler creates a 0 byte parameter area
for you to pass variables into your assembly language functions.

In Embedded PowerPC, function arguments are passed using registers. If your
assembly-language routine calls any function that requires more parameters than will
fit into r3 — r10 and fp1 — fp8, you need to pass that size to fralloc. In the case
169CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
of integer values, registers r3 — r10 are used. For floating-point values, registers fp1
through fp8 are used.

As an example, if you pass 12 long integer to your assembly function, this would
consume 16 bytes of the parameter area. Registers r3 through r10 will hold eight
integers, leaving four byte integers in the parameter area.

Specifying Operands
This section describes how to specify the operands for assembly language instructions.

Using Register Variables and Memory Variables
When you use variable names as operands, the syntax you use depends on whether the
variable is declared with or without the register keyword. For example, some
instructions, such as add, require register operands. You can use a register variable
wherever a register operand is used. The inline assembler allows a shortcut through
use of locals and arguments that are not declared register in certain instructions.

Listing 8.2 shows a block of code for specifying operands.

Listing 8.2 Using Register Variables and Memory Variables

asm void red(register int *a)

{
 int b;
 fralloc
 lwz r4,a
 lwz r4,0(a)
 lwz r4,b
 lwz r4, b(SP)
 frfree
 blr
}

In Listing 8.2:

• The code at line number five is incorrect because the operand of the operand of
register variable is not fully expressed.

• The code at line number six is correct because the operand is fully expressed.
170 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
• The code at line number seven is correct; the inline assembler allows use of locals
and arguments that are not declared as register.

• The code at line number eight is correct because b is a memory variable.

Using Registers
For a register operand, you must use one of the register names of the appropriate kind
for the instruction. The register names are case-sensitive. You also can use a symbolic
name for an argument or local variable that was assigned to a register.

The general registers are SP, r0 to r31, and gpr0 to gpr31. The floating-point
registers are fp0 to fp31 and f0 to f31. The condition registers are cr0 to cr7.

Using Labels
For a label operand, you can use the name of a label. For long branches (such as b and
bl instructions) you can also use function names. For bla and la instructions, use
absolute addresses.

For other branches, you must use the name of a label. For example,

• b @3 — correct syntax for branching to a local label

• b red — correct syntax for branching to external function red

• bl @3 — correct syntax for calling a local label

• bl red — correct syntax for calling external function red

• bne red — incorrect syntax; short branch outside function red

NOTE You cannot use local labels that have already been declared in other
functions.

Using Variable Names as Memory Locations
Whenever an instruction, such as a load instruction, a store instruction, or la, requires
a memory location, you can use a local or global variable name. You can modify local
variable names with struct member references, class member references, array
subscripts, or constant displacements. For example, all the local variable references in
the following block of code are valid.

asm void red(void){
long myVar;
long myArray[1];
171CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
Rect myRectArray[3];
fralloc
lwz r3,myVar(SP)
la r3,myVar(SP)
lwz r3,myRect.top
lwz r3,myArray[2](SP)
lwz r3,myRectArray[2].top
lbz r3,myRectArray[2].top+1(SP)
frfree
blr

}

You can also use a register variable that is a pointer to a struct or class to access a
member of the struct in this manner:

void red(void){
Rect q;
register Rect *p = &q;
asm {
lwz r3,p->top;
}

}

You can use the @hiword and @loword directives to access the high and low four
bytes of 8 byte long longs and software floating-point doubles.

long long gTheLongLong = 5;
asm void Red(void);
asm void Red(void)
{

fralloc
lwz r5, gTheLongLong@hiword
lwz r6, gTheLongLong@loword
frfree

blr
}

Using Immediate Operands
For an immediate operand, you can use an integer or enum constant, sizeof
expression, and any constant expression using any of the C dyadic and monadic
arithmetic operators.

These expressions follow the same precedence and associativity rules as normal C
expressions. The inline assembler carries out all arithmetic with 32-bit signed integers.
172 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Working With Assembly Language

Freescale Semiconductor, Inc.
An immediate operand can also be a reference to a member of a struct or class type.
You can use any struct or class name from a typedef statement, followed by any
number of member references. This evaluates to the offset of the member from the
start of the struct. For example:

lwz r4,Rect.top(r3)
addi r6,r6,Rect.left

As a side note, la rD,d(rA) is the same as addi rD,rA,d.

You also can use the top or bottom half-word of an immediate word value as an
immediate operand by using one of the @ modifiers.

long gTheLong;
asm void red(void)
{
fralloc
lis r6, gTheLong@ha
addi r6, r6, gTheLong@h
lis r7, gTheLong@h
ori r7, br7, gTheLong@l
frfree
blr
}

The access patterns are:

lis x,var@ha
la x,var@l(x)

or

lis x,var@h
ori x,x,var@l

In this example, la is the simplified form of addi to load an address. The instruction
las is similar to la but shifted. Refer to the Motorola PowerPC manuals for more
information.

Using @ha is preferred since you can write:

lis x,var@ha
lwz v,var@l(x)

You cannot do this with @h because it requires that you use the ori instruction.
173CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Assembler Directives

Freescale Semiconductor, Inc.
Assembler Directives
This section describes some special assembler directives that the Embedded PowerPC
built-in assembler accepts. These directives are:

• entry

• fralloc

• frfree

• machine

• nofralloc

• opword

entry
entry [extern | static] name

Embedded PowerPC assembler directive that defines an entry point into the current
function. Use the extern qualifier to declare a global entry point; use the static
qualifier to declare a local entry point. If you leave out the qualifier, extern is
assumed.

Listing 8.3 shows how to use the entry directive.

Listing 8.3 Using the entry directive

void __save_fpr_15(void);
void __save_fpr_16(void);
asm void __save_fpr_14(void)
{
 stfd fp14,-144(SP)
 entry __save_fpr_15
 stfd fp15,-136(SP)
 entry __save_fpr_16
 stfd fp16,-128(SP)
 // ...
}

174 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Assembler Directives

Freescale Semiconductor, Inc.
fralloc
fralloc [number]

Embedded PowerPC assembler directive that creates a stack frame for a function and
reserves registers for your local register variables. You need to create a stack frame for
a function if the function:

• calls other functions.

• uses more arguments than will fit in the designated parameters (r3 — r10, fp1
— fp8).

• declares local registers.

• declares non-registered parameters.

The fralloc directive has an optional argument number that lets you specify the size
in bytes of the parameter area of the stack frame. The compiler creates a 0-byte
parameter area. If your assembly-language routine calls any function that requires
more parameters than will fit in r3 — r10 and fp1 — fp8, you must specify a larger
amount.

frfree
frfree

Embedded PowerPC assembler directive that frees the stack frame and restores the
registers that fralloc reserved.

NOTE The frfree directive does not generate a blr instruction. You must
include one explicitly.

machine
machine number

Embedded PowerPC assembler directive that specifies which CPU the assembly
language code is for. The value of number must be one of those listed in Table 8.1.

Table 8.1 CPU Identifiers

5200 823 all generic
175CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Intrinsic Functions

Freescale Semiconductor, Inc.
If you use generic, the compiler supports the core instructions for the 603, 604, 740,
and 750 processors. In addition, the compiler supports all optional instructions.

If you use all, the compiler supports all core and optional instructions for all
Embedded PowerPC processors.

If you do not use the machine directive, the compiler uses the settings you selected
from the Processor listbox of the EPPC Processor settings panel.

nofralloc
You can use the nofralloc directive so that an inline assembly function does not
build a stack frame. When you use nofralloc, if you have local variables,
parameters or make function calls, you are responsible for creating and deleting your
own stack frame.

For an example code that shows how to use the nofralloc directive, see the file
__start.c. This file is in this directory:

installDir\PowerPC_EABI_Support\Runtime\Src

where installDir is a placeholder for the path in which you installed your
CodeWarrior product.

opword
The inline assembler supports the opword directive. For example, the line “opword
0x7C0802A6” is equivalent to “mflr r0”. No error checking is done on the value of
the opword; the instruction is simply copied into the executable file.

Intrinsic Functions
This section explains support for intrinsic functions in the CodeWarrior compilers.
Support for intrinsic functions is not part of the ANSI C or C++ standards. They are an
extension provided by the CodeWarrior compilers.

Intrinsic functions are a mechanism you can use to get assembly language into your
source code.

There is an intrinsic function for several common processor opcodes (instructions).
Rather than using inline assembly syntax and specifying the opcode in an asm block,
you call the intrinsic function that matches the opcode.
176 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Intrinsic Functions

Freescale Semiconductor, Inc.
When the compiler encounters the intrinsic function call in your source code, it does
not actually make a function call. The compiler substitutes the assembly instruction
that matches your function call. As a result, no function call occurs in the final object
code. The final code is the assembly language instructions that correspond to the
intrinsic functions.

NOTE You can use intrinsic functions or the asm keyword to add a few lines
of assembly code within a function. If you want to write an entire
function in assembly, you can use the inline assembler.

For information on Embedded PowerPC assembly language instructions, see
PowerPC Microprocessor Family: The Programming Environment for 32-Bit
Microprocessors, published by Motorola.

Low-Level Processor Synchronization
These functions perform low-level processor synchronization.

• void __eieio(void) — Enforce in-order execution of I/O

• void __sync(void) — Synchronize

• void __isync(void) — Instruction synchronize

For more information on these functions, see the instructions eieio, sync, and
isync in PowerPC Microprocessor Family: The Programming Environments by
Motorola.

Absolute Value Functions
These functions generate inline instructions that take the absolute value of a number.

• int __abs(int) — Absolute value of an integer

• float __fabs(float) — Absolute value of a float

• float __fnabs(float) — Negative absolute value of a float

• long __labs(long) — Absolute value of a long int

__fabs(float)and __fnabs(float) are not available unless the Hardware
floating-point option is selected in the EPPC Processor settings panel.
177CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Intrinsic Functions

Freescale Semiconductor, Inc.
Byte-Reversing Functions
These functions generate inline instructions that can dramatically speed up certain
code sequences, especially byte-reversal operations.

• int __lhbrx(void *, int) — Load halfword byte; reverse indexed

• int __lwbrx(void *, int) — Load word byte; reverse indexed

• void __sthbrx(unsigned short, void *, int) — Store halfword byte;
reverse indexed

• void __stwbrx(unsigned int, void *, int)— Store word byte;
reverse indexed

Setting the Floating-Point Environment
This function lets you change the Floating Point Status and Control Register (FPSCR).
It sets the FPSCR to its argument and returns the original value of the FPSCR.

This function is not available if you select None floating-point option in the EPPC
Processor settings panel.

float __setflm(float);

This example shows how to set and restore the FPSCR:

double old_fpscr;

oldfpscr = __setflm(0.0); /* Clears all flag/exception/mode
bits and save the original settings */

/* Peform some floating-point operations */

__setflm(old_fpscr); /* Restores the FPSCR */

Manipulating a Variable or Register
These functions rotate the contents of a variable to the left:

• int __rlwinm(int, int, int, int) — Rotate left word (immediate),
then AND with mask

• int __rlwnm(int, int, int, int) — Rotate left word, then AND with
mask

• int __rlwimi(int, int, int, int, int) — Rotate Left word
(immediate), then mask insert
178 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Intrinsic Functions

Freescale Semiconductor, Inc.
The first argument to __rlwimi is overwritten. However, if the first parameter is a
local variable allocated to a register, it is both an input and output parameter. For this
reason, this intrinsic should always be written to put the result in the same variable as
the first parameter as shown here:

ra = __rlwimi(ra, rs, sh, mb, me);

You can count the leading zeros in a register using this intrinsic:

int __cntlzw(int);

You can use inline assembly for a complete assembly language function, as well as
individual assembly language statements.

Data Cache Manipulation
The intrinsics shown in Table 8.2 map directly to PowerPC assembly instructions

Math Functions
The intrinsics shown in Table 8.3 map directly to PowerPC assembly instructions.

Table 8.2 Data Cache Intrinsics

Intrinsic Function Prototype PowerPC Instruction

void __dcbf(void *, int); dcbf

void __dcbt(void *, int); dcbt

void __dcbst(void *, int); dcbst

void __dcbtst(void *, int); dcbtst

void __dcbz(void *, int); dcbz

Table 8.3 Math Intrinsics

Intrinsic Function Prototype PowerPC Instruction

int __mulhw(int, int); mulhw

uint __mulhwu(uint, uint); mulhwu

double __fmadd(double, double, double); fmadd

double __fmsub(double, double, double); fmsub

double __fnmadd(double, double, double); fnmadd
179CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Inline Assembler
Intrinsic Functions

Freescale Semiconductor, Inc.
Buffer Manipulation
Some intrinsics allow control over areas of memory, so you can manipulate memory
blocks.

void *__alloca(ulong);
__alloca implements alloca() in the compiler.
char *__strcpy(char *, const char *);

__strcpy() detects copies of constant size and calls __memcpy(). This intrinsic
requires that a __strcpy function be implemented because if the string is not a
constant it will call __strcpy to do the copy.

void *__memcpy(void *, const void *, size_t);

__memcpy() provides access to the block move in the code generator to do the block
move inline.

double __fnmsub(double, double, double); fnmsub

float __fmadds(float, float, float); fmadds

float __fmsubs(float, float, float); fmsubs

float __fnmadds(float, float, float); fnmadds

float __fnmsubs(float, float, float); fnmsubs

double __mffs(void); mffs

float __fabsf(float); fabsf

float __fnabsf(float); fnabsf

Table 8.3 Math Intrinsics
180 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
9
Support Libraries and
Code

CodeWarrior™ Development Studio, mobileGT™ Processor Edition includes many
libraries and support files that you can use in your projects. For example, the product
includes ANSI-standard C and C++ libraries, runtime libraries, and other support code
(such as startup code). This chapter explains how to use these materials.

With respect to the Metrowerks Standard Libraries (MSL) for C and C++, this chapter
is an extension to the MSL C Reference and the MSL C++ Reference. Consult these
documents for additional information about the standard libraries and the functions
they implement.

The sections of this chapter are:

• Metrowerks Standard Libraries

• Runtime Libraries

• Board Initialization Code

Metrowerks Standard Libraries
These section explain how to use the Embedded PowerPC version of the Metrowerks
Standard Libraries (MSL).

• Using the Metrowerks Standard Libraries

• Using Console I/O

• Allocating Memory and Heaps

Using the Metrowerks Standard Libraries
Your CodeWarrior product includes the Metrowerks Standard Libraries (MSL). MSL
is a complete C and C++ library collection that you can use in your projects. All of the
181CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Support Libraries and Code
Metrowerks Standard Libraries

Freescale Semiconductor, Inc.
source files required to build MSL are included with your product, along with project
files for different MSL configurations.

To use MSL, you must use a version of the runtime libraries. You should not have to
modify any of the source files included with MSL. If you have to make changes
because of your board’s memory configuration, you should make the changes to the
runtime libraries.

MSL for Embedded PowerPC supports console I/O through the serial port on each
supported evaluation board. The standard C library I/O is supported including stdio,
stderr, and stdin. In addition, this version of MSL supports all functions that do
not require disk I/O. Further, the memory management functions malloc() and
free() are supported.

You may be able to use a third party standard C library with CodeWarrior product. To
tell, compare the file stdarg.h of the third party library and the CodeWarrior library.
The CodeWarrior EPPC C/C++ compiler can generate correct variable-length
argument functions by using the header file included with the MSL. You may find that
other implementations are also compatible. You may also need to modify the runtime
library to support a different standard C library. In any event, you must include
__va_arg.c.

You cannot use a third party standard C++ library with your CodeWarrior product.

Finally, if you are using an embedded operating system, you may need to customize
MSL to work properly with this operating system.

Using Console I/O
For the console I/O functions of the MSL C and C++ libraries to work, you must
include a special serial I/O library in your project. In addition, your hardware must be
initialized properly so it works with this library.

Including UART libraries
For the standard C and C++ libraries to handle console I/O, you must include a special
serial driver library in your project. The particular library to use depends on your
target board.

For each supported target board, there are two version of the serial driver library, one
for which char is unsigned by default and one for which char is signed by default. A
library’s name indicates which type it is. The naming convention is:

• UART_Brd_mfr_Brd_name.UC.a — unsigned char library

• UART_Brd_mfr_Brd_name.a — signed char library
182 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Support Libraries and Code
Metrowerks Standard Libraries

Freescale Semiconductor, Inc.
where Brd_mfr is a placeholder for the name of the board’s manufacturer and
Brd_name is a placeholder for the name of the board.

Table 9.1 lists the serial I/O library files for the supported evaluation boards. All files
listed are in this directory:

installDir\PowerPC_EABI_Tools\
MetroTRK\Transport\ppc\board_name\Bin

where board_name is a placeholder for the name of a particular board.

If your board is not running at the default processor speed, you must modify the
appropriate serial driver library so it works with your board. If you make such a
change, you must add a baud-rate divisor table tailored to your processor’s speed.

To modify a serial driver library, use the CodeWarrior projects included with your
product. These project files are in this directory:

installDir\PowerPC_EABI_Tools\
MetroTRK\Processor\ppc\Board\board_mfr_name\board_name

where board_mfr_name is a placeholder for the name of a manufacturer of a
supported evaluation board and board_name is a placeholder for the name of a
particular board.

Allocating Memory and Heaps
The heap you define using the Heap Address text box of the EPPC Linker panel is the
default heap. The default heap needs no initialization. The code responsible for
memory management is only linked into your code if you call malloc or new.

You may find that you do not have enough contiguous space available for your needs.
In this case, you can initialize multiple memory pools to form a large heap.

Table 9.1 Serial I/O Libraries

Board Library Filename

Motorola Lite5200, rev. I UART1_MOT_Lite5200.a
UART1_MOT_Lite5200.UC.a

Motorola Lite5200, rev. G UART1_MOT_Lite5200.a
UART1_MOT_Lite5200.UC.a

Motorola MPC 823 FADS UART1_MOT_8XX_ADS.a
UART1_MOT_8XX_ADS.UC.a
183CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Support Libraries and Code
Runtime Libraries

Freescale Semiconductor, Inc.
You create each memory pool by calling init_alloc(). You can find an example of
this call in __ppc_eabi_init.c and __ppc_eabi_init.cpp. You do not need to
initialize the memory pool for the default heap.

Runtime Libraries
Your CodeWarrior product includes many runtime libraries and support code files.
These files are in this directory:

installDir\PowerPC_EABI_Support\Runtime

where installDir is a placeholder for the path in which you installed your product.

For your projects to build and run, you must include the correct runtime library and
and startup code. These sections explain how to pick the correct files:

• Library Naming Conventions

• Required Libraries and Source Code Files

Library Naming Conventions
Substrings embedded in the name of a library indicate the type of support that library
provides. Table 9.2 lists and defines the meaning of each substring.

Table 9.2 Runtime Library Naming Conventions

Substring Meaning

Runtime The library is a C language library.

Run_EC++ The library is an embedded C++ library.

A The library provides AltiVec™ support.
Does not apply to the mobileGT processor product.

E The library is for e500/Zen targets.
Does not apply to the mobileGT processor product.

E.fast The library is for e500/Zen targets.
Does not apply to the mobileGT processor product.

H The library supports hardware floating-point operations.

HC The library supports hardware floating-point operations and code
compression.
Does not apply to the mobileGT processor product.
184 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Support Libraries and Code
Runtime Libraries

Freescale Semiconductor, Inc.
Required Libraries and Source Code Files
In any C or C++ project, you must include one of these runtime libraries:

• Runtime.PPCEABI.N.a or Run_EC++.PPCEABI.N.a

These libraries provide no floating-point support.

• Runtime.PPCEABI.H.a or Run_EC++.PPCEABI.H.a

These libraries support hardware floating-point operations.

• Runtime.PPCEABI.S.a or Run_EC++.PPCEABI.S.a

These libraries provide software emulation of floating-point operations.

These libraries are in the directory:

installDir\PowerPC_EABI_Support\Runtime\Lib\

where installDir is a placeholder for the path in which you installed your
CodeWarrior product.

In addition, you must include one of the startup files listed below in any C or C++
project. These files contain hooks from the runtime that you can customize if
necessary. One kind of customizing is special board initialization. See the actual
source file for other kinds of customizations possible.

• __ppc_eabi_init.c

For C language projects.

• __ppc_eabi_init.cpp

For C++ projects.

S The library provides software emulation of floating-point operations.

N The library provides no floating-point support.

NC The library provides no floating-point support, but supports code
compression.
Does not apply to the mobileGT processor product.

LE The library is for a processor running in little-endian mode.

UC The char parameters of library functions are unsigned char.
The linker issues a warning if the char “signed-ness” selected in the
C/C++ Language target settings panel conflicts with the library in a project.

Table 9.2 Runtime Library Naming Conventions

Substring Meaning
185CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Support Libraries and Code
Board Initialization Code

Freescale Semiconductor, Inc.
Your CodeWarrior product includes the source and project files for the runtime
libraries, so you can modify these libraries if necessary.

All runtime library source files are in this directory:

installDir\PowerPC_EABI_Support\Runtime\Src

The runtime library project files are in this directory:

installDir\PowerPC_EABI_Support\Runtime\Project

The project names are Runtime.PPCEABI.mcp and Run_EC++.PPCEABI.mcp.
Each project has a different build target for each configuration of the runtime library.

For more information about customizing the runtime library, read the comments in the
source files as well as any release notes for the runtime library.

NOTE The C and C++ runtime libraries do not initialize hardware. It is
assumed that you load and run the programs with the Metrowerks
debugger. When your program is ready to run as a standalone
application, you must add the required hardware initialization code.

Board Initialization Code
Your CodeWarrior product includes several basic assembly language hardware
initialization routines that you may want to use in your program. When you are
debugging, it is not necessary to include this code because the debugger or debug
kernel already performs the required board initialization.

If your code is running standalone (without the debugger), you may need to include a
board initialization file. These files have the extension .asm and are in this directory:

installDir\PowerPC_EABI_Support\Runtime\Src

These files are included in source form, so you can modify them to work with other
boards or hardware configurations.

Each board initialization file includes a function named usr_init(). This is the
function you call to run the hardware initialization code. In the normal case, this would
be put into the __init_hardware() function in either the ppc_eabi_init.c or
ppc_eabi_init.cpp file. In fact, the default __init_hardware() function has a
call into usr_init(), but it is commented out. Remove the comment tokens to have
your program perform the hardware initializations.
186 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
10
Hardware Tools

This chapter explains how to use the CodeWarrior IDE’s hardware tools. Use these
tools for board bring-up, testing, and analysis.

The sections are:

• Flash Programmer

• Hardware Diagnostics

• Logic Analyzer

Flash Programmer
The CodeWarrior flash programmer can program the flash memory of a target board
with code from any CodeWarrior IDE project or from any individual executable files.
The CodeWarrior flash programmer provides features such as:

• Program

• Erase

• BlankCheck

• Verify

• Checksum

NOTE Certain flash programming features (such as view/modify, memory/
register, and save memory content to a file) are provided by the
CodeWarrior debugger. As a result, the CodeWarrior flash
programmer does not include these features.

The CodeWarrior flash programmer uses the CodeWarrior Debugger Protocol API to
communicate with the target boards. The CodeWarrior flash programmer runs as a
CodeWarrior plug-in.

The CodeWarrior flash programmer lets you use the same IDE to program the flash of
any of the embedded target boards.
187CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Flash Programmer

Freescale Semiconductor, Inc.
Table 10.1 lists the target boards that have flash modules that you can program using
the CodeWarrior Flash Programmer.

The Flash Programmer window (Figure 10.1) lists global options for the flash
programmer hardware tool. These preferences apply to every open project file.

Figure 10.1 Flash Programmer Window

To display the Flash Programmer window, select Tools > Flash Programmer.

The left pane of the Flash Programmer window shows a tree structure of panel
names. Click a panel name to display that corresponding panel in the right pane of the
Flash Programmer window.

Refer to the IDE User Guide for information on each panel in the Flash Programmer
window.

Table 10.1 Supported Target Boards and Flash Modules

Target Board Flash Module

Motorola Lite5200, rev.I AM29LV065D

Motorola Lite5200, rev.G AM29LV652D
188 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Hardware Diagnostics

Freescale Semiconductor, Inc.
Hardware Diagnostics
The Hardware Diagnostics window (Figure 10.2) lists global options for the
hardware diagnostic tools. These preferences apply to every open project file.

Select Tools > Hardware Diagnostics to display the Hardware Diagnostics
window.

Figure 10.2 Hardware Diagnostics window

The left pane of the Hardware Diagnostics window shows a tree structure of panel
names. Click a panel name to display the corresponding panel in the right pane of the
Hardware Diagnostics window.

Refer to the IDE User Guide for information on each panel in the Hardware
Diagnostics window.

Logic Analyzer
This section explains how to use the logic analyzer feature of the CodeWarrior IDE.
The logic analyzer collects trace data from the target and the debugger correlates the
trace data with the currently running source code.

This section has these topics:

• Logic Analyzer Menu

• Logic Analyzer Tutorial
189CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
Logic Analyzer Menu
This topic explains how to use each command in the Logic Analyzer menu. The Logic
Analyzer menu is a sub-menu of the Tools menu.

NOTE The Logic Analyzer menu is not available unless a logic analyzer
connection has been established. See “Logic Analyzer Tutorial” on
page 191 for details on establishing a logic analyzer connection.

The Logic Analyzer menu has these commands:

• Connect

• Arm

• Disarm

• Update Data

• Disconnect

Connect
Select Tools > Logic Analyzer > Connect to have the IDE:

• Open a connection to the analyzer

• Load the configuration file (if specified)

NOTE If your configuration file contains data besides the configuration
information, the IDE may take a few minutes to load the
configuration file.

• Retrieve all the label data for the columns in the Trace Window

To connect to the logic analyzer, the IDE uses the preferences you specify for the
analyzer connection. See “Logic Analyzer Tutorial” on page 191 for details.

Arm
The Arm command is available only if the IDE is connected to the logic analyzer.

Select Tools > Logic Analyzer > Arm to instruct the logic analyzer to start collecting
target cycles.
190 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
Disarm
The Disarm command is not available if there is no connection between the IDE and
the logic analyzer.

Select Tools > Logic Analyzer > Disarm to instruct the logic analyzer to stop
collecting target cycles (disarm) if the analyzer is still running. You must disarm the
logic analyzer before you update the trace data by using the Update Data command.

Update Data
The Update Data command is only available when the analyzer is disarmed.

Select Tools > Logic Analyzer > Update Data to retrieve the most recent trace data
and display it in the Trace window. All previous data in the Trace window is replaced
by the recent data.

Selecting Update Data does not update the label data for the columns. The label data is
retrieved only when the IDE connects to the analyzer device. If the layout of the labels
in the Listing window (in the Agilent analyzer) or the Group Name window (in the
Tektronix analyzer) has changed, you must first disconnect and then re-connect to get
the latest column headings and formats.

The Trace window displays up to 100,000 states or trace frames, beginning with the
most recent frame.

Disconnect
Select Tools > Logic Analyzer > Disconnect to disconnect the system from the
analyzer device. The IDE clears all the data in the Trace window.

Logic Analyzer Tutorial
The tutorial that follows explains how to use the logic analyzer functionality of the
IDE to collect target cycles, retrieve trace data, and display trace data.

The tutorial refers to this hardware setup:

• Agilent logic analyzer

• Motorola MPC 8260 ADS board

• The Agilent 16700B modular frame with three 16717A boards
191CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
NOTE The 16717A boards in slot A and C are configured as slaves to the
master board in Slot B.

• A CodeWarrior IDE project configured to use a WireTAP JTAG remote
connection to the MPC8260 ADS target.

To use the IDE’s logic analyzer support, follow these steps:

1. Open your project.

a. Start the CodeWarrior IDE.

b. Select File > Open

The Open dialog box appears.

c. Navigate to the directory where you have stored your project.

d. Select the project file name.

e. Click Open

The project window appears.

2. Create a logic analyzer connection.

a. Click Edit > IDE Preferences.

The IDE Preferences window appears.

b. Select the Remote Connections item from the IDE Preference Panels list.

The Remote Connections preference panel appears.

c. In the Remote Connections preference panel, click Add

The New Connection dialog box (Figure 10.3) appears.
192 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
Figure 10.3 Logic Analyzer Connection Preferences

d. Type the connection name in the Name text box.

For example, type Agilent LA.

e. Select the Logic Analyzer item from the Debugger listbox.

f. Select the Logic Analyzer Config Panel item from the Connection Type
listbox.

g. Select the logic analyzer name from the Analyzer Type listbox.

For example, select Agilent.

h. Type the IP address of the host machine in the Host Name text box.

i. In the Analyzer Configuration File text box, enter the name of the analyzer
configuration file to be downloaded on the logic analyzer file system.

For example, type mpc8260test2.

To find out which configuration file to use for your target, refer to the
analyzer trace support package documentation.

NOTE If you only enter the analyzer configuration file name in the Analyzer
Configuration File text box, the system downloads the file at this
location on the analyzer file system: /logic/config. If you want
to download the configuration file somewhere else on the analyzer
file system, enter the full path from root. For example,
/logic/config/myconfig/myconfigfile. If you leave the
193CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
Analyzer Configuration File text box blank, you must load an
analyzer configuration file through the Analyzer GUI. In this case,
the logic analyzer connection will not load a configuration file.

j. In the Analyzer Slot text box, type the slot name that identifies the logic
analyzer location.

k. In the Trace Support File text box, type the name of the file that the logic
analyzer requires to support the collection of trace data.

l. Check the Analyzer Can Cause Target Breakpoint checkbox if you want to to
let the logic analyzer cause a hardware breakpoint.

m. Check the Target Breakpoint Can Cause Analyzer Trigger checkbox if you
want to let a hardware breakpoint trigger the logic analyzer.

n. Click OK

The system saves the connection settings.

o. In the IDE Preferences window, click OK

The IDE Preferences window closes.

3. Select the analyzer connection for your project.

a. While your project window is active, select Edit > Debug Version Settings.

The Target Settings window appears.

b. Select the Analyzer Connections item from the Target Setting Panels list.

The Analyzer Connections settings panel (Figure 10.4) appears.

Figure 10.4 Analyzer Connections Panel

c. Select the analyzer connection name from the Connection list.
194 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
NOTE Each build target supports just one connection to a logic analyzer. If
your project must have more logic analyzer connections, create a
separate build target for each additional connection.

4. Configure debugger settings of your project.

a. Select EPPC Debugger Settings from the target settings panel list.

The EPPC Debugger Settings panel (Figure 10.5) appears.

Figure 10.5 EPPC Debugger Panel

b. Check the Use Target Initialization File checkbox.

c. In the text box associated with the Use Target Initialization File checkbox,
type the name of the target initialization file required by your target board.
Alternatively, click Browse to display a dialog box you can use to select the
required file.

Table A.1 on page 200 lists the generic initialization file for each supported
target board. These file are on this path:

installDir\PowerPC_EABI_Support\
Initialization_Files\Jtag\

d. Click OK

 The system saves the target settings.

5. Connect the analyzer pods.

 Table 10.2 shows the Agilent analyzer pod connection scheme.
195CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
NOTE The pod connections are dependent on the trace support package
installed on your analyzer. This package is available from the
analyzer vendor. To know about the pod connection scheme for your
target board, refer to the package documentation of the analyzer.

6. While your project window is active, select Project > Debug.

The Debugger window appears.

7. Connect to the logic analyzer.

a. Select Tools > Logic Analyzer > Connect.

The IDE connects to the logic analyzer.

b. Select Tools > Logic Analyzer > Arm

The system instructs the logic analyzer to collect target cycles (arm). This is
equivalent to invoking the Run command on the logic analyzer.

c. In the debugger window, step through the code once.

Stepping through code may generate trace frames in the analyzer. The
analyzer's trigger mechanism affects if and when frames are collected.

NOTE While the analyzer is armed the debugger periodically queries the
analyzer for its Run status.

d. Select Tools > Logic Analyzer > Disarm

The system instructs the logic analyzer to stop collecting target cycles.

Table 10.2 Agilent Logic Analyzer Pods Connection Scheme

DS Connector Signals Analyzer Pod

P12 TS, AACK, etc. A1/A2

P14 (A0-A31) B1/B2

P15 SDCAS, SDRAS, etc. B3/B4

P17 (D0-D31) C3/C4

P18 (D32-C63) C1/C2

No Connect A3/A4
196 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
e. Select Tools > Logic Analyzer > Update Data

The system retrieves the trace data from the analyzer's buffer.

f. Select Data > Trace View

The trace window (Figure 10.6) appears. The trace window displays the data
collected.

Figure 10.6 Trace Window

g. Select Tools > Logic Analyzer > Disconnect

The system disconnects from the logic analyzer. The IDE erases the contents
of the Trace window.
197CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Hardware Tools
Logic Analyzer

Freescale Semiconductor, Inc.
198 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
A
Debug Initialization Files

A debug initialization file is used to initialize the target board before the debugger
downloads your program’s code. The primary purpose of an initialization file is to
ensure that the target memory is initialized properly before it is accessed.

The sections are:

• Using Debug Initialization Files

• Debug Initialization File Commands

Using Debug Initialization Files
A debug initialization file is a command file that is executed each time you invoke the
debugger. It is usually necessary to include an initialization file if debugging via BDM
or JTAG to ensure that the target memory is initialized correctly and that any register
values that must be set for debugging purposes are set correctly. You specify whether
to use an initialization file and which file to use in the EPPC target settings panel.

NOTE You do not need an initialization file if debugging with MetroTRK.

Example initialization files are provided for the supported evaluation boards. These
files are in this directory:

installDir\PowerPC_EABI_Support\Initialization_Files\Jtag\

where installDir is a placeholder for the path in which you installed your
CodeWarrior product.

Table A.1 lists the generic initialization file for each supported target board.
199CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Debug Initialization Files
Debug Initialization File Commands

Freescale Semiconductor, Inc.
Debug Initialization File Commands
This section explains debug initialization file commands, and has these sections:

• Debug Initialization File Command Syntax

• Descriptions and Examples of Commands

Debug Initialization File Command Syntax
The following list shows the rules for the syntax of debug initialization file commands.

• Any white spaces and tabs are ignored.

• Character case is ignored in all commands.

• You can enter a number in hexadecimal, octal, or decimal:

– Hexadecimal - preceded by 0x (0x00002222 0xA 0xCAfeBeaD)

– Octal - preceded by 0 (0123 0456)

– Decimal - starts with 1-9 (12 126 823643)

• Comments start with a “;” or “#”, and continue to the end of the line.

Descriptions and Examples of Commands
This section has the descriptions and examples of these commands:

• reset

• setMMRBaseAddr

• sleep

• writemem.b

• writemem.w

• writemem.l

Table A.1 Evaluation Board Initialization Files

Board Configuration File Location

Motorola Lite5200, rev. I Lite5200_init.cfg

Motorola Lite5200, rev. G Lite5200_init.cfg

Motorola MPC 823 FADS 8xx_FADS_init.cfg
200 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Debug Initialization Files
Debug Initialization File Commands

Freescale Semiconductor, Inc.
• writemmr

• writereg

• writespr

• writeupma

• writeupmb

Each subsection explains these individual command lists:

• The command name

• A brief description of the command

• Command usage (prototype)

• Command examples

• Any important notes about the command

reset
The reset command is specific to debugging through the CCS protocol.

setMMRBaseAddr
The setMMRBaseAddr command works only with target boards that use the 825x/
826x processors.

Description This command determines a target reset depending on its parameter.

Usage reset <value>, where <value> can be 0 or 1. Value 0 determines a reset to
user and value 1 determines a reset to debug.

Example reset 0

Description The debugger requires the base address of the memory mapped registers on the
825x/826x since this register is memory mapped itself. This command must be in all
debug initialization files for the 825x/826x processors. This command informs the
debugger plug-in of the base address, which allows you to send any writemmr
commands from the debug initialization file, as well as read the memory mapped
registers for the register views.

Usage setMMRBaseAddr<value>, where <value> is the base address for the
memory mapped registers.

Example setMMRBaseAddr 0x0f00000
201CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Debug Initialization Files
Debug Initialization File Commands

Freescale Semiconductor, Inc.
sleep

writemem.b

writemem.w

writemem.l

Description Causes the processor to wait the specified number of milliseconds before continuing
to the next command.

Usage sleep <value>

Example sleep 10 # sleep for 10 milliseconds

Description Writes data to a memory location using a byte as the size of the write.

Usage writemem.b <address> <value>, where:

• <address> — the hex, octal, or decimal address in memory to modify

• <value> — the hex, octal, or decimal value to write at the address

Example writemem.b 0x0001FF00 0xFF # Write 1 byte to memory

Description Writes data to a memory location using a word as the size of the write.

Usage writemem.w <address> <value>, where:

• <address> — the hex, octal, or decimal address in memory to modify

• <value> — the hex, octal, or decimal value to write at the address

Example writemem.w 0x0001FF00 0x1234 # Write 2 bytes to memory

Description Writes data to a memory location using a long as the size of the write.

Usage writemem.l <address> <value>, where:

• <address> — the hex, octal, or decimal address in memory to modify

• <value> — the hex, octal, or decimal value to write at the address

Example writemem.l 0x00010000 0x00000000 # Write 4 bytes to
memory
202 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Debug Initialization Files
Debug Initialization File Commands

Freescale Semiconductor, Inc.
writemmr

writereg

writespr

writeupma

Description Writes a value to the specified MMR (Memory Mapped Register). All memory
mapped register names for the supported processors should be accepted by this
command. If any registers are found to not be supported, writemem commands can
be used to accomplish the register modification.

Usage writemmr < register name> <value>

Example writemmr SYPCR 0xffffffc3
writemmr RMR 0x0001
writemmr MPTPR 0x3200

Description Writes data to the specified register on the target. All register names that are part of
the core processor are supported including GPRs and SPRs.

Usage writereg <registerName> <value>

Example writereg MSR 0x00001002

Description Writes the value to the SPR with number regNumber, which is the same as writereg
SPRxxxx but allows you to enter the SPR number in other bases (hex/octal/decimal).

Usage writespr <regNumber> <value>, where:

• <regNumber> — a hex/octal/decimal SPR number (0-1023)

• <value> — a hex/octal/decimal value to write to SPR

Example writespr 638 0x02200000

Description Maps the user-programmable machine (UPM) registers to define characteristics of
the memory array.
203CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Debug Initialization Files
Debug Initialization File Commands

Freescale Semiconductor, Inc.
writeupmb

Usage writeupma <offset> <ram_word>, where:

• <offset> — 0-3F, as defined in the UPM transaction type table in the
Memory Controller section of the Motorola manual

• <ram_word> — UPM RAM word for that offset

Example writeupma 0x08 0xffffcc24

Description Maps the user-programmable machine (UPM) registers to define characteristics of the
memory array.

Usage writeupma <offset> <ram_word>, where:

• <offset> — 0-3F, as defined in the UPM transaction type table in the
Memory Controller section of the Motorola manual

• <ram_word> — UPM RAM word for that offset

Example writeupma 0x08 0xffffcc24
204 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
B
Memory Configuration
Files

A memory configuration file contains commands that define the accessible areas of
memory for your specific board.

The sections are:

• Command Syntax

• Memory Configuration File Commands

Command Syntax
The syntax rules for configuration file commands are:

• All syntax is case insensitive.

• Any white spaces and tabs are ignored.

• Comments can be standard C or C++ style comments.

• A number may be entered in hexadecimal, octal, or decimal.

– Hexadecimal — preceded by 0x (0x00002222 0xA 0xCAfeBeaD)

– Octal — preceded by 0 (0123 0456)

– Decimal — starts with 1-9 (12 126 823643)

Memory Configuration File Commands
This section lists the command name, its usage, a brief explanation of the command,
examples of how the command may appear in configuration files, and any important
notes about the command.

Sample configuration files can be found at this location in CodeWarrior installation
directory: PowerPC_EABI_Support\Intialization_Files\Memory
205CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Memory Configuration Files
Memory Configuration File Commands

Freescale Semiconductor, Inc.
range

reserved

reservedchar

Description Allows you to specify a memory range for reading and/or writing, and its attributes.

Usage range <loAddr> <hiAddr> <sizeCode> <access>, where:

• <loAddr> — start of memory range to be defined
• <hiAddr> — ending address in the memory range to be defined

• <sizeCode> — specifies the size, in bytes, to be used for memory
accesses by the debug monitor or emulator.

• <access> — can be Read, Write, or ReadWrite.
This parameter allows you to make certain areas of your memory map read-
only, write-only, or read/write only to the debugger.

Example range 0xFF000000 0xFF0000FF 4 Read
range 0xFF000100 0xFF0001FF 2 Write
range 0xFF000200 0xFFFFFFFF 1 ReadWrite

Description Allows you to specify a reserved range of memory. Any time the debugger tries to
read from this location, the memory buffer is filled with the reservedchar. Any time the
debugger tries to write to any of the locations in this range, no write will take place.

Usage reserved <loAddr> <hiAddr>, where:

• <loAddr> — start of memory range to be defined
• <hiAddr> — ending address in memory range to be defined

Example reserved 0xFF000024 0xFF00002F

Description Allows you to specify a reserved character for the memory configuration file. This
character is seen when you try to read from an invalid address. When an invalid read
occurs, the debugger fills the memory buffer with this reserved character.

Usage reservedchar <char>, where <char> can be any character (one byte).

Example reservedchar 0xBA
206 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
C
Command-Line Tool
Options

This appendix lists and defines each option you can pass to the command-line versions
of the CodeWarrior software development tools.

The sections are:

• Compiler/Linker Options

• Disassembler Options

Compiler/Linker Options
Table C.1 lists the command-line options for the CodeWarrior EPPC C/C++ compiler
and the CodeWarrior EPPC linker.

Table C.1 Compiler/Linker Command-line Options

Option Description

-big Generates code and links for a big-endian target; this option is the
default.

-little Generates code and links for a little-endian target.

-proc[essor] keyword Specifies the processor for scheduling and inline assembler.

Parameter Description

5200, 823 These are the processor numbers.

generic This is the default option.
207CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Command-Line Tool Options
Compiler/Linker Options

Freescale Semiconductor, Inc.
-fp keyword Specifies floating-point code generation options.

Parameter Description

efpu | spfp e500 SPE-EFPU hardware FP plus
software double FP emulation.
This option is only applicable to e500
family of processors, which are not
supported by this product.

none | off Indicates not to use floating-point.

soft[ware] Indicates software floating-point
emulation; this option is the default.

hard[ware] Hardware floating-point codegen.

fmadd Same as the following items:
-fp hard
-fp_contract

-sdata[threshold] short Sets the maximum size in bytes for mutable data objects before
being spilled from a small data section into a data section; the
default is 8.

-sdata2[threshold] short Sets the maximum size in bytes for constant data objects before
being spilled from a constant section into a data section; the
default is 8.

-model keyword Specifies the code model.

Parameter Description

absolute Specifies absolute code and data
addressing; this is the default option.

sda_pic_pid SDA PIC/PID

Table C.1 Compiler/Linker Command-line Options

Option Description
208 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Command-Line Tool Options
Compiler/Linker Options

Freescale Semiconductor, Inc.
-abi keyword Specifies the ABI to use.

Parameter Description

eabi Specifies EABI; this is the default option.

SysV Specifies SysV ABI without gnu-isms

SuSE Specifies SuSE Linux with gnu-ism

YellowDog Specifies YellowDog Linux with gnu-isms

sda_pic_pid Specifies SDA PIC/PID

-g[dwarf] Generates DWARF 1.x debugging information.

-gdwarf-2 Generates DWARF 2.x debugging information.

-align keyword[,...] Specifies structure and array alignment options.

Parameter Description

power[pc] Specifies PowerPC alignment; this option
is the default.

mac68k Specifies Macintosh 680x0 alignment.

mac68k4byte Specifies Mac 680x0 4-byte alignment.

array[members] Specifies to align members of arrays.

-common on|off Specifies whether to move all uninitialized data into a common
section; the default is off.

-fp_contract | -maf
on|off

Specifies whether to generate fused multiply-add instructions; the
default is off.

Table C.1 Compiler/Linker Command-line Options

Option Description
209CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Command-Line Tool Options
Compiler/Linker Options

Freescale Semiconductor, Inc.
-func_align keyword Specifies function alignment.

Parameter Description

4 Specifies four-byte alignment; this is the
default.

8 Specifies eight-byte alignment.

16 Specifies 16-byte alignment.

32 Specifies 32-byte alignment.

64 Specifies 64-byte alignment.

128 Specifies 128-byte alignment.

-pool[data] on|off Specifies whether to pool like data objects; the default is on.

-profile on|off Specifies whether to generate calls at function entry and exit for
use with a profiler.

-rostr |
-readonlystrings

Specifies to make string constants read-only.

-schedule on|off Specifies whether to schedule instructions; the default is off.

-use_lmw_stmw on|off Specifies whether to use multiple-word load/store instructions for
structure copies; the default is on.

Table C.1 Compiler/Linker Command-line Options

Option Description
210 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Command-Line Tool Options
Disassembler Options

Freescale Semiconductor, Inc.
Disassembler Options
Table C.2 lists the command-line options for the CodeWarrior EPPC disassembler.

Table C.2 Disassembler Command-line Options

Option Description

-fmt | -format keyword Specifies formatting options; this option exists for
compatibility reasons.

Parameter Description

[no]x Specifies whether to show
extended mnemonics; the
default is to not show the
extended mnemonics.

-show keyword[,...] Specifies display options.

Parameter Description

only | none Examples:

-show none
-show only,code,data
211CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Command-Line Tool Options
Disassembler Options

Freescale Semiconductor, Inc.
all Specifies to show everything.

[no]binary Specifies whether to show
binary information, such as
addresses and opcodes, for
object code; the default is to
show the binary information.

[no]code |
[no]text

Specifies whether to show
.text sections; the default is to
show the .text sections.

[no]data Specifies whether to show data;
the default is to show data.

[no]detail Specifies whether to show
detailed dump information.

[no]extended Specifies whether to show
extended mnemonics; the
default is to show extended
mnemonics.

[no]exceptions |
[no]xtab[les]

Specifies whether to show
exception tables; these options
also imply the following item:

-show data

[no]headers Specifies whether to show object
headers; the default is to show
the object headers.

[no]debug |
[no]dwarf

Specifies whether to show
DWARF information.

[no]tables Specifies whether to show string
and symbol tables; the default is
to show the string and symbol
tables.

[no]xtables Specifies whether to show
exception tables.

Table C.2 Disassembler Command-line Options

Option Description
212 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Command-Line Tool Options
Disassembler Options

Freescale Semiconductor, Inc.
-[no]relocate For DWARF information, specifies whether to relocate
addends in .rela.text and .rela.debug.

-xtables on|off Specifies whether to show exception tables; the default is off.
This option exists for compatibility reasons.

Table C.2 Disassembler Command-line Options

Option Description
213CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Command-Line Tool Options
Disassembler Options

Freescale Semiconductor, Inc.
214 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
D
Using the Dhrystone
Benchmark Software with
the Lite5200

Dhrystone is a general-performance benchmark test originally developed in 1984. This
benchmark is used to measure and compare the performance of different computers or
the efficiency of the code generated for the same computer by different compilers. The
test reports general performance in Dhrystone-per-second.

Like most benchmark programs, Dhrystone consists of standard code and concentrates
on string handling. It uses no floating-point operations. It is heavily influenced by
hardware and software design, compiler and linker options, code optimization, cache
memory, wait states, and integer data types.

This appendix show you how to use the Dhrystone benchmark example program
included with your CodeWarrior™ software. This example works with a Motorola
Lite5200 evaluation board. You can use the example as the basis for your own
Dhrystone benchmark programs.

The sections are:

• Building the Dhrystone Example Project

• Running the Dhrystone Program

Building the Dhrystone Example Project
To build the Dhrystone example program, follow these steps:

1. Start the CodeWarrior IDE.
215CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Using the Dhrystone Benchmark Software with the Lite5200
Running the Dhrystone Program

Freescale Semiconductor, Inc.
2. Open the CodeWarrior project file named Dhrystone5200.mcp

This project file is here:
installDir\(CodeWarrior_Examples)\PowerPC_EABI\Dhrystone\

The Dhrystone project window appears. (See Figure D.1.)

Figure D.1 Dhrystone Example Project—Project Window

3. Select Project > Make

The IDE builds the project and generates an executable that you can run on a
Motorola Lite5200 evaluation board.

Running the Dhrystone Program
To run the Dhrystone example program on a Lite5200 board, follow these steps:

1. Start the CodeWarrior IDE.

2. Open the CodeWarrior project file named Dhrystone5200.mcp

This project file is here:
installDir\(CodeWarrior_Examples)\PowerPC_EABI\Dhrystone\
216 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Using the Dhrystone Benchmark Software with the Lite5200
Running the Dhrystone Program

Freescale Semiconductor, Inc.
3. Connect your debug hardware to the Lite5200 and to your PC.

For example, connect a WireTAP run-control tool to the JTAG port of the
Lite5200 and to a parallel port of your PC.

4. Press Alt-F7

The IDE displays the Target Settings window.

5. In the left pane of the Target Settings window, select Remote Debugging.

The Remote Debugging target settings panel appears in the right side of the
Target Settings window. (See Figure D.2.)

Figure D.2 The Remote Debugging Target Settings Panel

6. From the Connection listbox, select the remote connection appropriate for your
debug hardware.

7. Click Edit Connection

A “remote connection” dialog box appears. Use this dialog box to configure your
debug hardware.

See “Supported Remote Connections” on page 87 for a definition of each option
for each available remote connection.
217CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Using the Dhrystone Benchmark Software with the Lite5200
Running the Dhrystone Program

Freescale Semiconductor, Inc.
8. Click OK

The remote connection dialog box closes.

9. Click OK

The Target Settings window closes.

10. Connect a null modem serial cable between port COM1 of the Lite5200 and a free
serial port of your PC.

11. Start a terminal emulation program and configure it as follows:

• Bits per second — 57600

• Data bits — 8

• Parity — None

• Stop bits — 1

• Flow control — None

12. From the menu bar of the IDE, select Project > Run

The IDE downloads the example program to the Lite5200 board. The program
writes the “start” information shown in Figure D.3 to the terminal emulator
window and then executes 6,000,000 loops. (Depending on the speed of your
board’s processor clock, this test can take up to 15 minutes to finish.)

Figure D.3 Terminal Emulator Showing Test “Start” Information

13. Upon completion, the Dhrystone example program displays the results of its tests
in the terminal emulator window. (See Figure D.4.)
218 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Using the Dhrystone Benchmark Software with the Lite5200
Running the Dhrystone Program

Freescale Semiconductor, Inc.
Figure D.4 Terminal Emulator Showing Test Results

That’s it. If you want to write your own Dhrystone benchmark program, you can use
this example program as a starting point.
219CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Using the Dhrystone Benchmark Software with the Lite5200
Running the Dhrystone Program

Freescale Semiconductor, Inc.
220 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Index

Symbols
__abs() 177
__attribute__ ((aligned(?))) 159–161
__cntlzw() 179
__eieio() 177
__fabs() 177
__fnabs() 177
__isync() 177
__labs() 177
__lhbrx() 178
__lwbrx() 178
__rlwimi() 178
__rlwinm() 178
__rlwnm() 178
__setflm() 178
__sthbrx() 178
__stwbrx() 178
__sync() 177

A
Additional Options 86
Additional Path to PC-lint compiler options files 83
additional small data sections 143–147

how to create 144–147
asm blocks not supported 164
asm keyword 164
assembler

stand-alone described 20
See also inline assembler

Author Options 85

B
back-end compiler See compiler
BatchRunner

post-linker 43
pre-linker 42

benchmark software, Dhrystone, using with
Lite5200 215

binary files 35
board initialization code 186
bool size 126
build folder 77

build target, defined 19

C
char size 126
CodeWarrior

compared to command-line 22
compiler described 20
components 17
debugger described 21
development process 22–24
IDE described 17
installing 14–15
linker described 21
project manager described 18
registering 15–16
stand-alone assembler described 20
tools listed 17

command syntax
memory configuration files 205

command-line and CodeWarrior compared 22
command-line tool options

EPPC-specific compiler/linker options 207
EPPC-specific disassembler options 211

commands
memory configuration files syntax 205

comments in inline assembler 168
compiler

back-end for PowerPC 125
described 20
other documentation 125
support for inline assembly 163
See also C Compilers Reference

Compiler Option 83
compiling 23
configuration files 200
configuration files, memory, command syntax of 205
console I/O 182

UART libraries 182
converting, makefiles to CodeWarrior project 36–38
current folder 77

D
Data Addressing 127
data cache window 106

Freescale Semiconductor, Inc.
221CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
deadstripping unused code 148
debug initialization files

command syntax 200
commands

setMMRBaseAddr 201
sleep 202
writemem.b 202
writemem.l 202
writemem.w 202
writemmr 203
writereg 203
writespr 203
writeupma 203
writeupmb 204

using 199
debugger features, special

displaying registers 100
EPPC menu 101–106
register details 106

Debugger PIC Settings panel 73
debugger, described 21
debugging 24

ELF files 120–124
for PowerPC Embedded 87–112
supported remote connections 87–99
using MetroTRK 111
See also Debugger User Guide

development tools 17
project manager

project, defined 18
project, related terms 19

Dhrystone benchmark software
example project

building 215
running 216

using with Lite5200 215
directives, assembler

entry 174
fralloc 175
frfree 175
machine 175
nofralloc 176
opword 176

disassembly, Register Details window 106
Display default PC-lint compiler option files too 84
Display generated command lines in message

window 82
double size 127

E
EABI templates, for PowerPC projects 36
editing code 23

See also IDE User Guide
__eieio() 177
ELF files, debugging 120–124
entry assembly statement 174
entry directive 174
EPPC Assembler settings panel 50–51
EPPC Debugger Settings panel 74–76
EPPC Disassembler settings panel 63–64
EPPC Linker settings panel 65–72
EPPC menu, options explained 101–106
EPPC Processor settings panel 54–62
EPPC Target panel 44–49
EXCLUDEFILES 150

F
flash modules, supported 188
float size 127
floating-point formats 127
floating-point support 55
force_active 134
FORCEACTIVE 151
FORCEFILES 151
FPSCR 178
fralloc assembly statement 169
fralloc directive 175
frfree assembly statement 169
frfree directive 175
function level assembly 164
function_align 134

G
Global Optimizations settings panel 52–53
GROUP 151

H
Hardware tools

flash programmer 187–188
hardware diagnostics 189
logic analyzer 189–197

host, defined 19
222 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
I
IDE described 17
INCLUDEDDWARF 152
incompatible_return_small_structs 134
incompatible_sfpe_double_params 135
inline assembler

asm blocks not supported 164
comments 168
directives 174–176
for PowerPC 163
function level support 164
instructions 163, 164
local variables 168
operands 170
preprocessor use 168
special PowerPC instructions 166
stack frame 169
statement labels 167
syntax 164
using for PowerPC 163

inline_max_auto_size 133
installing CodeWarrior software 14–15
int size 127
integer formats 126
integer formats for PowerPC 126
interrupt 135
intrinsic functions

described 176
See also inline assembler 176

L
labels in inline assembly language 167
__labs() 177
libraries

console I/O 182
MSL for PowerPC Embedded 181
runtime 184
support for PowerPC Embedded 181–186
UART 182
using MSL 181–182

Library Options 85
Library Warnings 86
link order 148
linker

.a files 148

.o files 148
and executable files 149

described 21
for PowerPC 143–149
multiply defined symbols 148
other documentation 125

linker generated symbols 147
linking 24

See also IDE User Guide
local variables in inline assembler 168
L1 Data Cache window 106
long double size 127
long long size 127
long size 127

M
machine assembly statement 175
machine directive 175
Makefile Importer wizard, using 36–38
MEMORY 154
memory configuration, MetroTRK 110–111
MetroTRK

connecting 109
memory configuration 110–111
overview 108
using with Lite5200 for debugging 112
using, for debugging 111

Metrowerks Standard Libraries See MSL
MISRA 85
MSL

and runtime libraries 182
described 22
for PowerPC Embedded 181
using 181–182
using console I/O 182
See also MSL C Reference, MSL C++ Reference

multiple symbols and linker 148

N
No inter-modul 83
nofralloc directive 176
number formats

floating-point 127
for PowerPC 126–127
integers 126

O
operands in inline assembler 170
223CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
opt_findoptimalunrollfactor 132
opt_full_unroll_limit 132
opt_unroll_count 133
opt_unroll_instr_count 133
opt_unrollpostloop 133
optimizing

for PowerPC 130
inline assembly disables 165
register coloring 130

opword directive 176

P
pack 136
PC-lint Executable 82
platform target, defined 19
pooled_data 137
PowerPC EABI templates, using 36
PowerPC Embedded debugging See debugging
ppc_no_fp_blockmove 133
pragma

for PowerPC 131
overload 149

Prefix File 84
preprocessing 24

See also IDE User Guide
preprocessor, using in inline assembler 168
project

build target, defined 19
build target, example 19–20
defined 18
host, defined 19
platform target, defined 19
related terms 19
types of 35

project manager described 18
project targets

debug version 38
ROM version 38

R
REGISTER 153
Register 129
register coloring optimization 130
register details 106
Register Details window 106
register variables for PowerPC 129

registering CodeWarrior software 15–16
registers

Register Details window 106
variables 129

registers, displaying 100
requirements See system requirements
__rlwimi() 178
__rlwinm() 178
__rlwnm() 178
runtime libraries

and MSL 182
customizing 186
for PowerPC Embedded 184
in projects 185
initializing hardware 186

S
section 137
section pragma 137
SECTIONS 155
__setflm() 178
setMMRBaseAddr 201
settings panels

Debugger PIC Settings 73
EPPC Assembler 50–51
EPPC Debugger Settings 74–76
EPPC Disassembler 63–64
EPPC Linker 65–72
EPPC Processor 54–62
EPPC Target 44–49
Global Optimizations 52–53
Source Folder Mapping 76–78
System Call Service Settings 79
Target Settings 40

short size 127
SHORTEN_NAMES_FOR_TOR_101 157
signed char size 126
sleep 202
small data sections, additional 143–147
Source Folder Mapping panel 76–78
special debugger features 100–108
stack frame in inline assembler 169
Stack Size edit field 47
stand-alone assembler 20

See also Assembler Guide
statement labels, in inline assembly language 167
__sthbrx() 178
224 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
__stwbrx() 178
supported target boards 14
symbols

linker generated 147
multiple linker 148

__sync() 177
System Call Service Settings 79
system requirements 13

T
target boards supported 14
target initialization files 200
Target Settings panel 40

U
UART libraries

and console I/O 182
and processor speed 183

unsigned char size 127
unsigned int size 127
unsigned long long size 127
unsigned long size 127
unsigned short size 127

V
variables

register 129

W
Warnings 86
writemem.b 202
writemem.l 202
writemem.w 202
writemmr 203
writereg 203
writespr 203
writeupma 203
writeupmb 204
225CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

Freescale Semiconductor, Inc.
226 CodeWarrior™ Development Studio, mobileGT™ Processor Edition, Version 8.1

For More Information: www.freescale.com

	Table of Contents
	Introduction
	Read the Release Notes
	Related Documentation
	CodeWarrior™ Information
	Embedded PowerPC Programming Information
	PowerTAP® Pro and WireTAP Information

	Getting Started
	System Requirements
	Supported Evaluation Boards
	Installing Your CodeWarrior™ Product
	Registering Your CodeWarrior™ Product
	Overview: The CodeWarrior™ Software Development Tools
	CodeWarrior™ IDE
	Project Manager
	C/C++ Compiler
	Standalone Assembler
	Linker
	Debugger
	Metrowerks Standard Libraries

	Overview: The CodeWarrior™ Software Development Process
	Project Files
	Editing Code
	Compiling
	Linking
	Debugging
	Viewing Preprocessor Output

	Tutorial
	Creating a Project
	Building and Debugging a Project

	Creating a CodeWarrior™ Project
	Types of Projects
	Using PowerPC EABI Templates
	Using the Makefile Importer Wizard
	Project Targets

	Target Settings
	Target Settings Overview
	Embedded PowerPC-Specific Target Settings Panels
	Target Settings
	EPPC Target
	EPPC Assembler
	Global Optimizations
	EPPC Processor
	EPPC Disassembler
	EPPC Linker
	Debugger PIC Settings
	EPPC Debugger Settings
	Source Folder Mapping
	System Call Service Settings

	PC-lint Target Settings Panels
	PCLint Main Settings
	PCLint Options

	Embedded PowerPC Debugging
	Supported Remote Connections
	Abatron Remote Connections
	MetroTRK
	MSI BDM Raven/MSI Wiggler
	P&E BDM
	PowerTAP PRO CCS
	WireTAP 8xx
	WireTAP CCS

	Special Debugger Features
	Displaying Registers
	EPPC-Specific Debugger Features
	Register Details

	Using MetroTRK
	MetroTRK Overview
	Connecting to the MetroTRK Debug Monitor
	MetroTRK Memory Configuration
	Using MetroTRK for Debugging
	Using MetroTRK with the Lite5200 Board

	Debugging ELF Files
	Preparing to Debug an ELF File
	Customizing the Default XML Project File
	Debugging an ELF File
	ELF File Debugging: Additional Considerations

	C/C++ Compiler and Linker
	Integer and Floating-Point Formats
	Embedded PowerPC Integer Formats
	Embedded PowerPC Floating-Point Formats

	Data Addressing
	Register Variables
	Register Coloring Optimization
	Pragmas
	opt_full_unroll_limit
	opt_findoptimalunrollfactor
	opt_unroll_count
	opt_unrollpostloop
	opt_unroll_instr_count
	inline_max_auto_size
	ppc_no_fp_blockmove
	force_active
	function_align
	incompatible_return_small_structs
	incompatible_sfpe_double_params
	interrupt
	pack
	pooled_data
	section

	EPPC Linker Issues
	Additional Small Data Sections
	Linker Generated Symbols
	Deadstripping Unused Code and Data
	Link Order
	Linker Command Files

	Using __attribute__ ((aligned(?)))
	Variable Declaration Examples
	Struct Definition Examples
	Typedef Declaration Examples
	Struct Member Examples

	Inline Assembler
	Working With Assembly Language
	Assembly Language Syntax
	Special Embedded PowerPC Instructions
	Creating Statement Labels
	Using Comments
	Using the Preprocessor in Embedded PowerPC Assembly
	Using Local Variables and Arguments
	Creating a Stack Frame
	Specifying Operands

	Assembler Directives
	entry
	fralloc
	frfree
	machine
	nofralloc
	opword

	Intrinsic Functions
	Low-Level Processor Synchronization
	Absolute Value Functions
	Byte-Reversing Functions
	Setting the Floating-Point Environment
	Manipulating a Variable or Register
	Data Cache Manipulation
	Math Functions
	Buffer Manipulation

	Support Libraries and Code
	Metrowerks Standard Libraries
	Using the Metrowerks Standard Libraries
	Using Console I/O
	Allocating Memory and Heaps

	Runtime Libraries
	Library Naming Conventions
	Required Libraries and Source Code Files

	Board Initialization Code

	Hardware Tools
	Flash Programmer
	Hardware Diagnostics
	Logic Analyzer
	Logic Analyzer Menu
	Logic Analyzer Tutorial

	Debug Initialization Files
	Using Debug Initialization Files
	Debug Initialization File Commands
	Debug Initialization File Command Syntax
	Descriptions and Examples of Commands

	Memory Configuration Files
	Command Syntax
	Memory Configuration File Commands
	range
	reserved
	reservedchar

	Command-Line Tool Options
	Compiler/Linker Options
	Disassembler Options

	Using the Dhrystone Benchmark Software with the Lite5200
	Building the Dhrystone Example Project
	Running the Dhrystone Program

	Index

