
GMCLIB User's Guide
DSP56800EX

Document Number: DSP56800EXGMCLIBUG
Rev. 4, 04/2019

GMCLIB User's Guide, Rev. 4, 04/2019

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Library

1.1 Introduction.. 5

1.2 Library integration into project (CodeWarrior™ Development Studio) ...7

Chapter 2
Algorithms in detail

2.1 GMCLIB_Clark..17

2.2 GMCLIB_ClarkInv.. 18

2.3 GMCLIB_Park... 20

2.4 GMCLIB_ParkInv..21

2.5 GMCLIB_DecouplingPMSM.. 23

2.6 GMCLIB_ElimDcBusRipFOC.. 27

2.7 GMCLIB_ElimDcBusRip.. 32

2.8 GMCLIB_SvmStd..36

2.9 GMCLIB_SvmIct... 51

2.10 GMCLIB_SvmU0n.. 55

2.11 GMCLIB_SvmU7n.. 59

2.12 GMCLIB_SvmDpwm.. 63

2.13 GMCLIB_SvmExDpwm..66

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 3

GMCLIB User's Guide, Rev. 4, 04/2019

4 NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Motor Control Library (GMCLIB) for the family
of DSP56800EX core-based digital signal controllers. This library contains optimized
functions.

1.1.2 Data types

GMCLIB supports several data types: (un)signed integer, fractional, and accumulator.
The integer data types are useful for general-purpose computation; they are familiar to
the MPU and MCU programmers. The fractional data types enable powerful numeric and
digital-signal-processing algorithms to be implemented. The accumulator data type is a
combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

• Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1
• Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1
• Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1
• Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution

of 1

The following list shows the fractional types defined in the libraries:

• Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 2-15

• Fixed-point 32-bit fractional —<-1 ; 1 - 2-31> with the minimum resolution of 2-31

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 5

The following list shows the accumulator types defined in the libraries:

• Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 2-7> with the minimum
resolution of 2-7

• Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2-15> with the minimum
resolution of 2-15

1.1.3 API definition

GMCLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);

where the function is compiled from four parts:

• MLIB—this is the library prefix
• Mac—the function name—Multiply-Accumulate
• F32—the function output type
• lss—the types of the function inputs; if all the inputs have the same type as the

output, the inputs are not marked

The input and output types are described in the following table:

Table 1-1. Input/output types

Type Output Input

frac16_t F16 s

frac32_t F32 l

acc32_t A32 a

1.1.4 Supported compilers
GMCLIB for the DSP56800EX core is written in assembly language with C-callable
interface. The library is built and tested using the following compilers:

• CodeWarrior™ Development Studio

For the CodeWarrior™ Development Studio, the library is delivered in the gmclib.lib
file.

Introduction

GMCLIB User's Guide, Rev. 4, 04/2019

6 NXP Semiconductors

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gmclib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

1.1.6 Special issues
1. The equations describing the algorithms are symbolic. If there is positive 1, the

number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions require the core saturation mode to be turned off, otherwise the
results can be incorrect. Several specific library functions are immune to the setting
of the saturation mode.

3. The library functions round the result (the API contains Rnd) to the nearest (two's
complement rounding) or to the nearest even number (convergent round). The mode
used depends on the core option mode register (OMR) setting. See the core manual
for details.

4. All non-inline functions are implemented without storing any of the volatile registers
(refer to the compiler manual) used by the respective routine. Only the non-volatile
registers (C10, D10, R5) are saved by pushing the registers on the stack. Therefore, if
the particular registers initialized before the library function call are to be used after
the function call, it is necessary to save them manually.

1.2 Library integration into project (CodeWarrior™
Development Studio)

This section provides a step-by-step guide to quickly and easily integrate the GMCLIB
into an empty project using CodeWarrior™ Development Studio. This example uses the
MC56F84789 part, and the default installation path (C:\NXP\RTCESL
\DSP56800EX_RTCESL_4.5) is supposed. If you have a different installation path, you
must use that path instead.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 7

1.2.1 New project
To start working on an application, create a new project. If the project already exists and
is open, skip to the next section. Follow the steps given below to create a new project.

1. Launch CodeWarrior™ Development Studio.
2. Choose File > New > Bareboard Project, so that the "New Bareboard Project" dialog

appears.
3. Type a name of the project, for example, MyProject01.
4. If you don't use the default location, untick the “Use default location” checkbox, and

type the path where you want to create the project folder; for example, C:
\CWProjects\MyProject01, and click Next. See Figure 1-1.

Figure 1-1. Project name and location
5. Expand the tree by clicking the 56800/E (DSC) and MC56F84789. Select the

Application option and click Next. See Figure 1-2.

Library integration into project (CodeWarrior™ Development Studio)

GMCLIB User's Guide, Rev. 4, 04/2019

8 NXP Semiconductors

Figure 1-2. Processor selection
6. Now select the connection that will be used to download and debug the application.

In this case, select the option P&E USB MultiLink Universal[FX] / USB MultiLink
and Freescale USB TAP, and click Next. See Figure 1-3.

Figure 1-3. Connection selection
7. From the options given, select the Simple Mixed Assembly and C language, and

click Finish. See Figure 1-4.

Figure 1-4. Language choice

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 9

The new project is now visible in the left-hand part of CodeWarrior™ Development
Studio. See Figure 1-5.

Figure 1-5. Project folder

1.2.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 node in the left-hand part and click Properties, or select
Project > Properties from the menu. The project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-6.

Library integration into project (CodeWarrior™ Development Studio)

GMCLIB User's Guide, Rev. 4, 04/2019

10 NXP Semiconductors

Figure 1-6. Project properties
3. Click the 'New…' button on the right-hand side.
4. In the dialog that appears (see Figure 1-7), type this variable name into the Name

box: RTCESL_LOC
5. Select the library parent folder by clicking 'Folder…' or just typing the following

path into the Location box: C:\NXP\RTCESL\DSP56800EX_RTCESL_4.5_CW and
click OK.

6. Click OK in the previous dialog.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 11

Figure 1-7. New variable

1.2.3 Library folder addition

To use the library, add it into the CodeWarrior Project tree dialog.

1. Right-click the MyProject01 node in the left-hand part and click New > Folder, or
select File > New > Folder from the menu. A dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the third option—Link to alternate location (Linked

Folder).
4. Click Variables…, and select the RTCESL_LOC variable in the dialog that appears,

click OK, and/or type the variable name into the box. See Figure 1-8.
5. Click Finish, and you will see the library folder linked in the project. See Figure 1-9

Library integration into project (CodeWarrior™ Development Studio)

GMCLIB User's Guide, Rev. 4, 04/2019

12 NXP Semiconductors

Figure 1-8. Folder link

Figure 1-9. Projects libraries paths

1.2.4 Library path setup

GMCLIB requires MLIB and GFLIB to be included too. Therefore, the following steps
show the inclusion of all dependent modules.

1. Right-click the MyProject01 node in the left-hand part and click Properties, or select
Project > Properties from the menu. A dialog with the project properties appears.

2. Expand the C/C++ Build node, and click Settings.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 13

3. In the right-hand tree, expand the DSC Linker node, and click Input. See Figure 1-11.
4. In the third dialog Additional Libraries, click the 'Add…' icon, and a dialog appears.
5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding one of the following:
• ${RTCESL_LOC}\MLIB\mlib_SDM.lib—for small data model projects
• ${RTCESL_LOC}\MLIB\mlib_LDM.lib—for large data model projects

6. Tick the box Relative To, and select RTCESL_LOC next to the box. See Figure 1-9.
Click OK.

7. Click the 'Add…' icon in the third dialog Additional Libraries.
8. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding one of the following:
• ${RTCESL_LOC}\GFLIB\gflib_SDM.lib—for small data model projects
• ${RTCESL_LOC}\GFLIB\gflib_LDM.lib—for large data model projects

9. Tick the box Relative To, and select RTCESL_LOC next to the box. Click OK.
10. Click the 'Add…' icon in the Additional Libraries dialog.
11. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding one of the following:
• ${RTCESL_LOC}\GMCLIB\gmclib_SDM.lib—for small data model projects
• ${RTCESL_LOC}\GMCLIB\gmclib_LDM.lib—for large data model projects

12. Tick the box Relative To, and select RTCESL_LOC next to the box. Click OK.
13. Now, you will see the libraries added in the box. See Figure 1-11.

Figure 1-10. Library file inclusion

Library integration into project (CodeWarrior™ Development Studio)

GMCLIB User's Guide, Rev. 4, 04/2019

14 NXP Semiconductors

Figure 1-11. Linker setting
14. In the tree under the DSC Compiler node, click Access Paths.
15. In the Search User Paths dialog (#include “…”), click the 'Add…' icon, and a dialog

will appear.
16. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\MLIB\include.
17. Tick the box Relative To, and select RTCESL_LOC next to the box. See Figure

1-12. Click OK.
18. Click the 'Add…' icon in the Search User Paths dialog (#include “…”).
19. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GFLIB\include.
20. Tick the box Relative To, and select RTCESL_LOC next to the box. Click OK.
21. Click the 'Add…' icon in the Search User Paths dialog (#include “…”).
22. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GMCLIB\include.
23. Tick the box Relative To, and select RTCESL_LOC next to the box. Click OK.
24. Now you will see the paths added in the box. See Figure 1-13. Click OK.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 15

Figure 1-12. Library include path addition

Figure 1-13. Compiler setting

The final step is typing the #include syntax into the code. Include the library into the
main.c file. In the left-hand dialog, open the Sources folder of the project, and double-
click the main.c file. After the main.c file opens up, include the following lines into the
#include section:

#include "mlib.h"
#include "gflib.h"
#include "gmclib.h"

When you click the Build icon (hammer), the project will be compiled without errors.

Library integration into project (CodeWarrior™ Development Studio)

GMCLIB User's Guide, Rev. 4, 04/2019

16 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GMCLIB_Clark

The GMCLIB_Clark function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the three-phase coordinate system to the
two-phase (α-β) orthogonal coordinate system, according to the following equations:

Equation 1

Equation 2

2.1.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_Clark function are shown in the following table:

Table 2-1. Function versions

Function name Input type Output type Result type

GMCLIB_Clark_F16 GMCLIB_3COOR_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

Clarke transformation of a 16-bit fractional three-phase system input to a 16-bit fractional two-
phase system. The input and output are within the fractional range <-1 ; 1).

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 17

2.1.2 Declaration

The available GMCLIB_Clark functions have the following declarations:

void GMCLIB_Clark_F16(const GMCLIB_3COOR_T_F16 *psIn, GMCLIB_2COOR_ALBE_T_F16 *psOut)

2.1.3 Function use

The use of the GMCLIB_Clark function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* ABC structure initialization */
 sAbc.f16A = FRAC16(0.0);
 sAbc.f16B = FRAC16(0.0);
 sAbc.f16C = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Clarke Transformation calculation */
 GMCLIB_Clark_F16(&sAbc, &sAlphaBeta);
}

2.2 GMCLIB_ClarkInv

The GMCLIB_ClarkInv function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the two-phase (α-β) orthogonal coordinate
system to the three-phase coordinate system, according to the following equations:

Equation 3

Equation 4

GMCLIB_ClarkInv

GMCLIB User's Guide, Rev. 4, 04/2019

18 NXP Semiconductors

Equation 5

2.2.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ClarkInv function are shown in the following
table:

Table 2-2. Function versions

Function name Input type Output type Result type

GMCLIB_ClarkInv_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * void

Inverse Clarke transformation with a 16-bit fractional two-phase system input and a 16-bit
fractional three-phase output. The input and output are within the fractional range <-1 ; 1).

2.2.2 Declaration

The available GMCLIB_ClarkInv functions have the following declarations:

void GMCLIB_ClarkInv_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.2.3 Function use

The use of the GMCLIB_ClarkInv function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 19

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Clarke Transformation calculation */
 GMCLIB_ClarkInv_F16(&sAlphaBeta, &sAbc);
}

2.3 GMCLIB_Park

The GMCLIB_Park function calculates the Park transformation, which transforms values
(flux, voltage, current) from the stationary two-phase (α-β) orthogonal coordinate system
to the rotating two-phase (d-q) orthogonal coordinate system, according to the following
equations:

Equation 6

Equation 7

where:

• θ is the position (angle)

2.3.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_Park function are shown in the following table:

Table 2-3. Function versions

Function name Input type Output type Result type

GMCLIB_Park_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_2COOR_DQ_T_F16 * void

GMCLIB_2COOR_SINCOS_T_F16 *

The Park transformation of a 16-bit fractional two-phase stationary system input to a 16-bit
fractional two-phase rotating system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

GMCLIB_Park

GMCLIB User's Guide, Rev. 4, 04/2019

20 NXP Semiconductors

2.3.2 Declaration

The available GMCLIB_Park functions have the following declarations:

void GMCLIB_Park_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, const GMCLIB_2COOR_SINCOS_T_F16
*psAnglePos, GMCLIB_2COOR_DQ_T_F16 *psOut)

2.3.3 Function use

The use of the GMCLIB_Park function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_DQ_T_F16 sDQ;
static GMCLIB_2COOR_SINCOS_T_F16 sAngle;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

 /* Angle structure initialization */
 sAngle.f16Sin = FRAC16(0.0);
 sAngle.f16Cos = FRAC16(1.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Park Transformation calculation */
 GMCLIB_Park_F16(&sAlphaBeta, &sAngle, &sDQ);
}

2.4 GMCLIB_ParkInv

The GMCLIB_ParkInv function calculates the Park transformation, which transforms
values (flux, voltage, current) from the rotating two-phase (d-q) orthogonal coordinate
system to the stationary two-phase (α-β) coordinate system, according to the following
equations:

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 21

Equation 8

Equation 9

where:

• θ is the position (angle)

2.4.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ParkInv function are shown in the following
table:

Table 2-4. Function versions

Function name Input type Output type Result type

GMCLIB_ParkInv_F16 GMCLIB_2COOR_DQ_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_SINCOS_T_F16 *

Inverse Park transformation of a 16-bit fractional two-phase rotating system input to a 16-bit
fractional two-phase stationary system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

2.4.2 Declaration

The available GMCLIB_ParkInv functions have the following declarations:

void GMCLIB_ParkInv_F16(const GMCLIB_2COOR_DQ_T_F16 *psIn, const GMCLIB_2COOR_SINCOS_T_F16
*psAnglePos, GMCLIB_2COOR_ALBE_T_F16 *psOut)

2.4.3 Function use

The use of the GMCLIB_ParkInv function is shown in the following examples:

GMCLIB_ParkInv

GMCLIB User's Guide, Rev. 4, 04/2019

22 NXP Semiconductors

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_DQ_T_F16 sDQ;
static GMCLIB_2COOR_SINCOS_T_F16 sAngle;

void Isr(void);

void main(void)
{
 /* D, Q structure initialization */
 sDQ.f16D = FRAC16(0.0);
 sDQ.f16Q = FRAC16(0.0);

 /* Angle structure initialization */
 sAngle.f16Sin = FRAC16(0.0);
 sAngle.f16Cos = FRAC16(1.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Park Transformation calculation */
 GMCLIB_ParkInv_F16(&sDQ, &sAngle, &sAlphaBeta);
}

2.5 GMCLIB_DecouplingPMSM

The GMCLIB_DecouplingPMSM function calculates the cross-coupling voltages to
eliminate the d-q axis coupling that causes nonlinearity of the control.

The d-q model of the motor contains cross-coupling voltage that causes nonlinearity of
the control. Figure 2-1 represents the d-q model of the motor that can be described using
the following equations, where the underlined portion is the cross-coupling voltage:

Equation 10

where:

• ud, uq are the d and q voltages
• id, iq are the d and q currents
• Rs is the stator winding resistance
• Ld, Lq are the stator winding d and q inductances
• ωel is the electrical angular speed
• ψr is the rotor flux constant

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 23

Figure 2-1. The d-q PMSM model

To eliminate the nonlinearity, the cross-coupling voltage is calculated using the
GMCLIB_DecouplingPMSM algorithm, and feedforwarded to the d and q voltages. The
decoupling algorithm is calculated using the following equations:

Equation 11

where:

• ud, uq are the d and q voltages; inputs to the algorithm
• uddec, uqdec are the d and q decoupled voltages; outputs from the algorithm

The fractional representation of the d-component equation is as follows:

Equation 12

The fractional representation of the q-component equation is as follows:

GMCLIB_DecouplingPMSM

GMCLIB User's Guide, Rev. 4, 04/2019

24 NXP Semiconductors

Equation 13

where:

• kd, kq are the scaling coefficients
• imax is the maximum current
• umax is the maximum voltage
• ωel_max is the maximum electrical speed

The kd and kq parameters must be set up properly.

The principle of the algorithm is depicted in Figure 2-2 :

Figure 2-2. Algorithm diagram

2.5.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The parameters use the
accumulator types.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 25

The available versions of the GMCLIB_DecouplingPMSM function are shown in the
following table:

Table 2-5. Function versions

Function name Input/output type Result type

GMCLIB_DecouplingPMSM_F16 Input GMCLIB_2COOR_DQ_T_F16 * void

GMCLIB_2COOR_DQ_T_F16 *

frac16_t

Parameters GMCLIB_DECOUPLINGPMSM_T_A32 *

Output GMCLIB_2COOR_DQ_T_F16 *

The PMSM decoupling with a 16-bit fractional d-q voltage, current inputs, and a 16-
bit fractional electrical speed input. The parameters are 32-bit accumulator types.
The output is a 16-bit fractional decoupled d-q voltage. The inputs and the output are
within the range <-1 ; 1).

2.5.2 GMCLIB_DECOUPLINGPMSM_T_A32 type description

Variable name Input type Description

a32KdGain acc32_t Direct axis decoupling parameter. The parameter is within the range <0 ; 65536.0)

a32KqGain acc32_t Quadrature axis decoupling parameter. The parameter is within the range <0 ;
65536.0)

2.5.3 Declaration

The available GMCLIB_DecouplingPMSM functions have the following declarations:

void GMCLIB_DecouplingPMSM_F16(const GMCLIB_2COOR_DQ_T_F16 *psUDQ, const
GMCLIB_2COOR_DQ_T_F16 *psIDQ, frac16_t f16SpeedEl, const GMCLIB_DECOUPLINGPMSM_T_A32
*psParam, GMCLIB_2COOR_DQ_T_F16 *psUDQDec)

2.5.4 Function use

The use of the GMCLIB_DecouplingPMSM function is shown in the following
examples:

Fixed-point version:

GMCLIB_DecouplingPMSM

GMCLIB User's Guide, Rev. 4, 04/2019

26 NXP Semiconductors

#include "gmclib.h"

static GMCLIB_2COOR_DQ_T_F16 sVoltageDQ;
static GMCLIB_2COOR_DQ_T_F16 sCurrentDQ;
static frac16_t f16AngularSpeed;
static GMCLIB_DECOUPLINGPMSM_T_A32 sDecouplingParam;
static GMCLIB_2COOR_DQ_T_F16 sVoltageDQDecoupled;

void Isr(void);

void main(void)
{
 /* Voltage D, Q structure initialization */
 sVoltageDQ.f16D = FRAC16(0.0);
 sVoltageDQ.f16Q = FRAC16(0.0);

 /* Current D, Q structure initialization */
 sCurrentDQ.f16D = FRAC16(0.0);
 sCurrentDQ.f16Q = FRAC16(0.0);

 /* Speed initialization */
 f16AngularSpeed = FRAC16(0.0);

 /* Motor parameters for decoupling Kd = 40, Kq = 20 */
 sDecouplingParam.a32KdGain = ACC32(40.0);
 sDecouplingParam.a32KqGain = ACC32(20.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Decoupling calculation */
 GMCLIB_DecouplingPMSM_F16(&sVoltageDQ, &sCurrentDQ, f16AngularSpeed, &sDecouplingParam,
&sVoltageDQDecoupled);
}

2.6 GMCLIB_ElimDcBusRipFOC

The GMCLIB_ElimDcBusRipFOC function is used for the correct PWM duty cycle
output calculation, based on the measured DC-bus voltage. The side effect is the
elimination of the the DC-bus voltage ripple in the output PWM duty cycle. This function
is meant to be used with a space vector modulation, whose modulation index (with
respect to the DC-bus voltage) is an inverse square root of 3.

The general equation to calculate the duty cycle for the above-mentioned space vector
modulation is as follows:

Equation 14

where:

• UPWM is the duty cycle output
• uFOC is the real FOC voltage
• udcbus is the real measured DC-bus voltage

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 27

Using the previous equations, the GMCLIB_ElimDcBusRipFOC function compensates
an amplitude of the direct-α and the quadrature-β component of the stator-reference
voltage vector, using the formula shown in the following equations:

Equation 15

Equation 16

where:

• Uα* is the direct-α duty cycle ratio
• Uβ* is the quadrature-β duty cycle ratio
• Uα is the direct-α voltage
• Uβ is the quadrature-β voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 14 on page 27; the equation is as follows:

Equation 17

where:

• UFOC is the scaled FOC voltage
• Udcbus is the scaled measured DC-bus voltage
• UFOC_max is the FOC voltage scale
• Udcbus_max is the DC-bus voltage scale

If this algorithm is used with the space vector modulation with the ratio of square root
equal to 3, then the FOC voltage scale is expressed as follows :

Equation 18

GMCLIB_ElimDcBusRipFOC

GMCLIB User's Guide, Rev. 4, 04/2019

28 NXP Semiconductors

The equation can be simplified as follows:

Equation 19

The GMCLIB_ElimDcBusRipFOC function compensates an amplitude of the direct-α
and the quadrature-β component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

Equation 20

Equation 21

where:

• Uα* is the direct-α duty cycle ratio
• Uβ* is the quadrature-β duty cycle ratio
• Uα is the direct-α voltage
• Uβ is the quadrature-β voltage

The GMCLIB_ElimDcBusRipFOC function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-3 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage using a three-phase uncontrolled rectifier.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 29

Figure 2-3. Results of the DC-bus voltage ripple elimination

2.6.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ElimDcBusRipFOC function are shown in the
following table:

Table 2-6. Function versions

Function name Input type Output type Result
type

GMCLIB_ElimDcBusRipFOC_F16 frac16_t GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_ALBE_T_F16 *

Table continues on the next page...

GMCLIB_ElimDcBusRipFOC

GMCLIB User's Guide, Rev. 4, 04/2019

30 NXP Semiconductors

Table 2-6. Function versions (continued)

Function name Input type Output type Result
type

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system, using a 16-bit fractional DC-bus voltage information. The DC-
bus voltage input is within the fractional range <0 ; 1); the stationary (α-β) voltage
input and the output are within the fractional range <-1 ; 1).

2.6.2 Declaration

The available GMCLIB_ElimDcBusRipFOC functions have the following declarations:

void GMCLIB_ElimDcBusRipFOC_F16(frac16_t f16UDCBus, const GMCLIB_2COOR_ALBE_T_F16 *psUAlBe,
GMCLIB_2COOR_ALBE_T_F16 *psUAlBeComp)

2.6.3 Function use

The use of the GMCLIB_ElimDcBusRipFOC function is shown in the following
example:

#include "gmclib.h"

static frac16_t f16UDcBus;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBe;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBeComp;

void Isr(void);

void main(void)
{
 /* Voltage Alpha, Beta structure initialization */
 sUAlBe.f16Alpha = FRAC16(0.0);
 sUAlBe.f16Beta = FRAC16(0.0);

 /* DC bus voltage initialization */
 f16UDcBus = FRAC16(0.8);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* FOC Ripple elimination calculation */
 GMCLIB_ElimDcBusRipFOC_F16(f16UDcBus, &sUAlBe, &sUAlBeComp);
}

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 31

2.7 GMCLIB_ElimDcBusRip

The GMCLIB_ElimDcBusRip function is used for a correct PWM duty cycle output
calculation, based on the measured DC-bus voltage. The side effect is the elimination of
the the DC-bus voltage ripple in the output PWM duty cycle. This function can be used
with any kind of space vector modulation; it has an additional input - the modulation
index (with respect to the DC-bus voltage).

The general equation to calculate the duty cycle is as follows:

Equation 22

where:

• UPWM is the duty cycle output
• uFOC is the real FOC voltage
• udcbus is the real measured DC-bus voltage
• imod is the space vector modulation index

Using the previous equations, the GMCLIB_ElimDcBusRip function compensates an
amplitude of the direct-α and the quadrature-β component of the stator-reference voltage
vector, using the formula shown in the following equations:

Equation 23

Equation 24

where:

• Uα* is the direct-α duty cycle ratio
• Uβ* is the quadrature-β duty cycle ratio

GMCLIB_ElimDcBusRip

GMCLIB User's Guide, Rev. 4, 04/2019

32 NXP Semiconductors

• Uα is the direct-α voltage
• Uβ is the quadrature-β voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 22 on page 32; the equation is as follows:

Equation 25

where:

• UFOC is the scaled FOC voltage
• Udcbus is the scaled measured DC-bus voltage
• UFOC_max is the FOC voltage scale
• Udcbus_max is the DC-bus voltage scale

Thus, the modulation index in the fractional representation is expressed as follows :

Equation 26

where:

• imodfr is the space vector modulation index in the fractional arithmetic

The GMCLIB_ElimDcBusRip function compensates an amplitude of the direct-α and the
quadrature-β component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

Equation 27

Equation 28

where:

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 33

• Uα* is the direct-α duty cycle ratio
• Uβ* is the quadrature-β duty cycle ratio
• Uα is the direct-α voltage
• Uβ is the quadrature-β voltage

The GMCLIB_ElimDcBusRip function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-4 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage, using a three-phase uncontrolled rectifier.

Figure 2-4. Results of the DC-bus voltage ripple elimination

2.7.1 Available versions

This function is available in the following versions:

GMCLIB_ElimDcBusRip

GMCLIB User's Guide, Rev. 4, 04/2019

34 NXP Semiconductors

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The modulation index is a non-
negative accumulator type value.

The available versions of the GMCLIB_ElimDcBusRip function are shown in the
following table:

Table 2-7. Function versions

Function name Input type Output type Result
type

GMCLIB_ElimDcBusRip_F16sas frac16_t GMCLIB_2COOR_ALBE_T_F16 * void

acc32_t

GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system using a 16-bit fractional DC-bus voltage information and a 32-bit
accumulator modulation index. The DC-bus voltage input is within the fractional
range <0 ; 1); the modulation index is a non-negative value; the stationary (α-β)
voltage input and output are within the fractional range <-1 ; 1).

2.7.2 Declaration

The available GMCLIB_ElimDcBusRip functions have the following declarations:

void GMCLIB_ElimDcBusRip_F16sas(frac16_t f16UDCBus, acc32_t a32IdxMod, const
GMCLIB_2COOR_ALBE_T_F16 *psUAlBeComp, GMCLIB_2COOR_ALBE_T_F16 *psUAlBe)

2.7.3 Function use

The use of the GMCLIB_ElimDcBusRip function is shown in the following example:

#include "gmclib.h"

static frac16_t f16UDcBus;
static acc32_t a32IdxMod;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBe;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBeComp;

void Isr(void);

void main(void)
{
 /* Voltage Alpha, Beta structure initialization */
 sUAlBe.f16Alpha = FRAC16(0.0);
 sUAlBe.f16Beta = FRAC16(0.0);

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 35

 /* SVM modulation index */
 a32IdxMod = ACC32(1.3);

 /* DC bus voltage initialization */
 f16UDcBus = FRAC16(0.8);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Ripple elimination calculation */
 GMCLIB_ElimDcBusRip_F16sas(f16UDcBus, a32IdxMod, &sUAlBe, &sUAlBeComp);
}

2.8 GMCLIB_SvmStd

The GMCLIB_SvmStd function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using a special
standard space vector modulation technique.

The GMCLIB_SvmStd function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector, using a special space
vector modulation technique, called standard space vector modulation.

The basic principle of the standard space vector modulation technique can be explained
using the power stage diagram shown in Figure 2-5.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 04/2019

36 NXP Semiconductors

Figure 2-5. Power stage schematic diagram

The top and bottom switches are working in a complementary mode; for example, if the
top switch SAt is on, then the corresponding bottom switch SAb is off, and vice versa.
Considering that the value 1 is assigned to the ON state of the top switch, and value 0 is
assigned to the ON state of the bottom switch, the switching vector [a, b, c]T can be
defined. Creating of such vector allows for numerical definition of all possible switching
states. Phase-to-phase voltages can then be expressed in terms of the following states:

Equation 29

where UDCBus is the instantaneous voltage measured on the DC-bus.

Assuming that the motor is completely symmetrical, it is possible to write a matrix
equation, which expresses the motor phase voltages shown in Equation 29 on page 37.

Equation 30

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 37

In a three-phase power stage configuration (as shown in Figure 2-5), eight possible
switching states (shown in Figure 2-6) are feasible. These states, together with the
resulting instantaneous output line-to-line and phase voltages, are listed in Table 2-8.

Table 2-8. Switching patterns

A B C Ua Ub Uc UAB UBC UCA Vector

0 0 0 0 0 0 0 0 0 O000

1 0 0 2UDCBus/3 -UDCBus/3 -UDCBus/3 UDCBus 0 -UDCBus U0

1 1 0 UDCBus/3 UDCBus/3 -2UDCBus/3 0 UDCBus -UDCBus U60

0 1 0 -UDCBus/3 2UDCBus/3 -UDCBus/3 -UDCBus UDCBus 0 U120

0 1 1 -2UDCBus/3 UDCBus/3 UDCBus/3 -UDCBus 0 UDCBus U240

0 0 1 -UDCBus/3 -UDCBus/3 2UDCBus/3 0 -UDCBus UDCBus U300

1 0 1 UDCBus/3 -2UDCBus/3 UDCBus/3 UDCBus -UDCBus 0 U360

1 1 1 0 0 0 0 0 0 O111

The quantities of the direct-α and the quadrature-β components of the two-phase
orthogonal coordinate system, describing the three-phase stator voltages, are expressed
using the Clark transformation, arranged in a matrix form:

Equation 31

The three-phase stator voltages - Ua, Ub, and Uc, are transformed using the Clark
transformation into the direct-α and the quadrature-β components of the two-phase
orthogonal coordinate system. The transformation results are listed in Table 2-9.

Table 2-9. Switching patterns and space vectors

A B C Uα Uβ Vector

0 0 0 0 0 O000

1 0 0 2UDCBus/3 0 U0

1 1 0 UDCBus/3 UDCBus/√3 U60

0 1 0 -UDCBus/3 UDCBus/√3 U120

0 1 1 -2UDCBus/3 0 U240

0 0 1 -UDCBus/3 -UDCBus/√3 U300

1 0 1 UDCBus/3 -UDCBus/√3 U360

1 1 1 0 0 O111

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 04/2019

38 NXP Semiconductors

Figure 2-6 depicts the basic feasible switching states (vectors). There are six nonzero
vectors - U0, U60,U120, U180, U240, and U300, and two zero vectors - O111 and O000, usable
for switching. Therefore, the principle of the standard space vector modulation lies in
applying the appropriate switching states for a certain time, and thus generating a voltage
vector identical to the reference one.

Figure 2-6. Basic space vectors

Referring to this principle, the objective of the standard space vector modulation is an
approximation of the reference stator voltage vector US, with an appropriate combination
of the switching patterns, composed of basic space vectors. The graphical explanation of
this objective is shown in Figure 2-7 and Figure 2-8.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 39

Figure 2-7. Projection of reference voltage vector in the respective sector

The stator reference voltage vector US is phase-advanced by 30° from the direct-α, and
thus can be generated with an appropriate combination of the adjacent basic switching
states U0 and U60. These figures also indicate the resultant direct-α and quadrature-β
components for space vectors U0 and U60.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 04/2019

40 NXP Semiconductors

Figure 2-8. Detail of the voltage vector projection in the respective sector

In this case, the reference stator voltage vector US is located in sector I, and can be
generated using the appropriate duty-cycle ratios of the basic switching states U0 and
U60. The principal equations concerning this vector location are as follows:

Equation 32

where T60 and T0 are the respective duty-cycle ratios, for which the basic space vectors
T60 and T0 should be applied within the time period T. Tnull is the time, for which the null
vectors O000 and O111 are applied. Those duty-cycle ratios can be calculated using the
following equations:

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 41

Equation 33

Considering that normalized magnitudes of basic space vectors are |U60| = |U0| = 2 / √3,
and by the substitution of the trigonometric expressions sin 60° and tan 60° by their
quantities 2 / √3, and √3, respectively, the Equation 33 on page 42 can be rearranged for
the unknown duty-cycle ratios T60 / T and T0 / T as follows:

Equation 34

Sector II is depicted in Figure 2-9. In this particular case, the reference stator voltage
vector US is generated using the appropriate duty-cycle ratios of the basic switching
states T60 and T120. The basic equations describing this sector are as follows:

Equation 35

where T120 and T60 are the respective duty-cycle ratios, for which the basic space vectors
U120 and U60 should be applied within the time period T. Tnull is the time, for which the
null vectors O000 and O111 are applied. These resultant duty-cycle ratios are formed from
the auxiliary components, termed A and B. The graphical representation of the auxiliary
components is shown in Figure 2-10.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 04/2019

42 NXP Semiconductors

Figure 2-9. Projection of the reference voltage vector in the respective sector

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 43

Figure 2-10. Detail of the voltage vector projection in the respective sector

The equations describing those auxiliary time-duration components are as follows:

Equation 36

Equations in Equation 36 on page 44 have been created using the sine rule.

The resultant duty-cycle ratios T120 / T and T60 / T are then expressed in terms of the
auxiliary time-duration components, defined by Equation 37 on page 44 as follows:

Equation 37

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 04/2019

44 NXP Semiconductors

Using these equations, and also considering that the normalized magnitudes of the basic
space vectors are |U120| = |U60| = 2 / √3 , the equations expressed for the unknown duty-
cycle ratios of basic space vectors T120 / T and T60 / T can be expressed as follows:

Equation 38

The duty-cycle ratios in the remaining sectors can be derived using the same approach.
The resulting equations will be similar to those derived for sector I and sector II.

Equation 39

To depict the duty-cycle ratios of the basic space vectors for all sectors, we define:

• Three auxiliary variables:

Equation 40
• Two expressions - t_1 and t_2, which generally represent the duty-cycle ratios of the

basic space vectors in the respective sector (for example, for the first sector, t_1 and
t_2), represent duty-cycle ratios of the basic space vectors U60 and U0; for the second
sector, t_1 and t_2 represent duty-cycle ratios of the basic space vectors U120 and
U60, and so on.

The expressions t_1 and t_2, in terms of auxiliary variables X, Y, and Z for each sector,
are listed in Table 2-10.

Table 2-10. Determination of t_1 and t_2 expressions

Sectors U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

t_1 X Y -Y Z -Z -X

t_2 -Z Z X -X -Y Y

For the determination of auxiliary variables X, Y, and Z, the sector number is required.
This information can be obtained using several approaches. The approach discussed here
requires the use of modified Inverse Clark transformation to transform the direct-α and
quadrature-β components into balanced three-phase quantities uref1, uref2, and uref3, used
for straightforward calculation of the sector number, to be shown later.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 45

Equation 41

The modified Inverse Clark transformation projects the quadrature-uβ component into
uref1, as shown in Figure 2-11 and Figure 2-12, whereas voltages generated by the
conventional Inverse Clark transformation project the direct-uα component into uref1.

Figure 2-11. Direct-ua and quadrature-ub components of the stator reference voltage

Figure 2-11 depicts the direct-uα and quadrature-uβ components of the stator reference
voltage vector US, which were calculated using equations uα = cos ϑ and uβ = sin ϑ,
respectively.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 04/2019

46 NXP Semiconductors

Figure 2-12. Reference voltages Uref1, Uref2, and Uref3

The sector identification tree shown in Figure 2-13 can be a numerical solution of the
approach shown in GMCLIB_SvmStd_Img8.

Figure 2-13. Identification of the sector number

In the worst case, at least three simple comparisons are required to precisely identify the
sector of the stator reference voltage vector. For example, if the stator reference voltage
vector is located as shown in Figure 2-7, the stator-reference voltage vector is phase-
advanced by 30° from the direct α-axis, which results in the positive quantities of uref1
and uref2, and the negative quantity of uref3; see Figure 2-12. If these quantities are used
as the inputs for the sector identification tree, the product of those comparisons will be
sector I. The same approach identifies sector II, if the stator-reference voltage vector is

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 47

located as shown in Figure 2-9. The variables t1, t2, and t3, which represent the switching
duty-cycle ratios of the respective three-phase system, are calculated according to the
following equations:

Equation 42

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors given for the respective sector; Table 2-10, Equation 31 on page 38, and
Equation 42 on page 48 are specific solely to the standard space vector modulation
technique; other space vector modulation techniques discussed later will require deriving
different equations.

The next step is to assign the correct duty-cycle ratios - t1, t2, and t3, to the respective
motor phases. This is a simple task, accomplished in a view of the position of the stator
reference voltage vector; see Table 4.

Table 2-11. Assignment of the duty-cycle ratios to motor phases

Sectors U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

pwm_a t3 t2 t1 t1 t2 t3

pwm_b t2 t3 t3 t2 t1 t1

pwm_c t1 t1 t2 t3 t3 t2

The principle of the space vector modulation technique consists of applying the basic
voltage vectors UXXX and OXXX for certain time, in such a way that the main vector
generated by the pulse width modulation approach for the period T is equal to the original
stator reference voltage vector US. This provides a great variability of arrangement of the
basic vectors during the PWM period T. These vectors might be arranged either to lower
the switching losses, or to achieve diverse results, such as center-aligned PWM, edge-
aligned PWM, or a minimal number of switching states. A brief discussion of the widely
used center-aligned PWM follows.

Generating the center-aligned PWM pattern is accomplished by comparing the threshold
levels pwm_a, pwm_b, and pwm_c with a free-running up-down counter. The timer
counts to one, and then down to zero. It is supposed that when a threshold level is larger
than the timer value, the respective PWM output is active. Otherwise, it is inactive; see
Figure 2-14.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 04/2019

48 NXP Semiconductors

Figure 2-14. Standard space vector modulation technique — center-aligned PWM

Figure 2-15 shows the waveforms of the duty-cycle ratios, calculated using standard
space vector modulation.

For the accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β
components of the stator reference voltage vector, it must be considered that the duty
cycle cannot be higher than one (100 %); in other words, the assumption must be
met.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 49

Figure 2-15. Standard space vector modulation technique

2.8.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 04/2019

50 NXP Semiconductors

The available versions of the GMCLIB_SvmStd function are shown in the following
table.

Table 2-12. Function versions

Function name Input type Output type Result type

GMCLIB_SvmStd_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard space vector modulation with a 16-bit fractional stationary (α-β) input and a 16-bit
fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates the
actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range
<0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.8.2 Declaration

The available GMCLIB_SvmStd functions have the following declarations:

uint16_t GMCLIB_SvmStd_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.8.3 Function use

The use of the GMCLIB_SvmStd function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmStd_F16(&sAlphaBeta, &sAbc);
}

2.9 GMCLIB_SvmIct

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 51

The GMCLIB_SvmIct function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_SvmIct function calculates the appropriate duty-cycle ratios, needed for
generation of the given stator reference voltage vector using the conventional Inverse
Clark transformation. Finding the sector in which the reference stator voltage vector US
resides is similar to GMCLIB_SvmStd. This is achieved by first converting the direct-α
and the quadrature-β components of the reference stator voltage vector US into the
balanced three-phase quantities uref1, uref2, and uref3 using the modified Inverse Clark
transformation:

Equation 43

The calculation of the sector number is based on comparing the three-phase reference
voltages uref1, uref2, and uref3 with zero. This computation is described by the following
set of rules:

Equation 44

After passing these rules, the modified sector numbers are then derived using the
following formula:

Equation 45

The sector numbers determined by this formula must be further transformed to
correspond to those determined by the sector identification tree. The transformation
which meets this requirement is shown in the following table:

Table 2-13. Transformation of the sectors

Sector* 1 2 3 4 5 6

Sector 2 6 1 4 3 5

GMCLIB_SvmIct

GMCLIB User's Guide, Rev. 4, 04/2019

52 NXP Semiconductors

Use the Inverse Clark transformation for transforming values such as flux, voltage, and
current from an orthogonal rotating coordination system (uα, uβ) to a three-phase rotating
coordination system (ua, ub, and uc). The original equations of the Inverse Clark
transformation are scaled here to provide the duty-cycle ratios in the range <0 ; 1). These
scaled duty cycle ratios pwm_a, pwm_b, and pwm_c can be used directly by the registers
of the PWM block.

Equation 46

The following figure shows the waveforms of the duty-cycle ratios calculated using the
Inverse Clark transformation.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 53

Figure 2-16. Inverse Clark transform modulation technique

For an accurate calculation of the duty-cycle ratios and the direct-α and quadrature-β
components of the stator reference voltage vector, the duty cycle cannot be higher than
one (100 %); in other words, the assumption must be met.

2.9.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB_SvmIct

GMCLIB User's Guide, Rev. 4, 04/2019

54 NXP Semiconductors

The available versions of the GMCLIB_SvmIct function are shown in the following
table:

Table 2-14. Function versions

Function name Input type Output type Result type

GMCLIB_SvmIct_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.9.2 Declaration

The available GMCLIB_SvmIct functions have the following declarations:

uint16_t GMCLIB_SvmIct_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.9.3 Function use

The use of the GMCLIB_SvmIct function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmIct_F16(&sAlphaBeta, &sAbc);
}

2.10 GMCLIB_SvmU0n

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 55

The GMCLIB_SvmU0n function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_SvmU0n function for calculating of duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with O000 nulls, where only
one type of null vector O000 is used (all bottom switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O000 nulls is in
many aspects identical to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of the variables t1, t2, and t3 that represent
switching duty-cycle ratios of the respective phases:

Equation 47

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors that are defined for the respective sector in Table 2-10.

The generally used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished practically by comparing the
threshold levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The
timer counts up to 1 (0x7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise it is inactive (see Figure 2-17).

GMCLIB_SvmU0n

GMCLIB User's Guide, Rev. 4, 04/2019

56 NXP Semiconductors

Figure 2-17. Space vector modulation technique with O000 nulls — center-aligned PWM

Figure Figure 2-17 shows calculated waveforms of the duty cycle ratios using space
vector modulation with O000 nulls.

For an accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β
components of the stator reference voltage vector, consider that the duty cycle cannot be
higher than one (100 %); in other words, the assumption must be met.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 57

Figure 2-18. Space vector modulation technique with O000 nulls

2.10.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB_SvmU0n

GMCLIB User's Guide, Rev. 4, 04/2019

58 NXP Semiconductors

The available versions of the GMCLIB_SvmU0n function are shown in the following
table:

Table 2-15. Function versions

Function name Input type Output type Result type

GMCLIB_SvmU0n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input, and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.10.2 Declaration

The available GMCLIB_SvmU0n functions have the following declarations:

uint16_t GMCLIB_SvmU0n_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.10.3 Function use

The use of the GMCLIB_SvmU0n function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmU0n_F16(&sAlphaBeta, &sAbc);
}

2.11 GMCLIB_SvmU7n

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 59

The GMCLIB_SvmU7n function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using the general
sinusoidal modulation technique.

The GMCLIB_SvmU7n function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with O111 nulls, where only
one type of null vector O111 is used (all top switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O111 nulls is
identical (in many aspects) to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of variables t1, t2, and t3 that represent switching
duty-cycle ratios of the respective phases:

Equation 48

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors defined for the respective sector in Table 2-10.

The generally-used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished by comparing threshold
levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The timer
counts up to 1 (0x7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise, it is inactive (see Figure 2-19).

GMCLIB_SvmU7n

GMCLIB User's Guide, Rev. 4, 04/2019

60 NXP Semiconductors

Figure 2-19. Space vector modulation technique with O111 nulls — center-aligned PWM

Figure Figure 2-19 shows calculated waveforms of the duty-cycle ratios using Space
Vector Modulation with O111 nulls.

For an accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β
components of the stator reference voltage vector, it must be considered that the duty
cycle cannot be higher than one (100 %); in other words, the assumption must be
met.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 61

Figure 2-20. Space vector modulation technique with O111 nulls

2.11.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB_SvmU7n

GMCLIB User's Guide, Rev. 4, 04/2019

62 NXP Semiconductors

The available versions of the GMCLIB_SvmU7n function are shown in the following
table:

Table 2-16. Function versions

Function name Input type Output type Result type

GMCLIB_SvmU7n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.11.2 Declaration

The available GMCLIB_SvmU7n functions have the following declarations:

uint16_t GMCLIB_SvmU7n_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.11.3 Function use

The use of the GMCLIB_SvmU7n function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmU7n_F16(&sAlphaBeta, &sAbc);
}

2.12 GMCLIB_SvmDpwm

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 63

The GMCLIB_SvmDpwm function calculates the appropriate duty-cycle ratios needed
for the generation of the given stator-reference voltage vector using the general non-
sinusoidal modulation technique. The GMCLIB_SvmDpwm function is a subset of the
GMCLIB_SvmExDpwm function and includes a power factor angle input. Both
functions are identical if φ = 0.

The GMCLIB_SvmDpwm function belongs to the discontinuous PWM modulation
techniques for 3-phase voltage inverters. The advantages of the discontinuous PWM
technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is
more complicated and less precise when compared with the symmetrical modulation
techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continous SVM are
usually combined together.

Finding the sector in which the reference stator voltage vector US resides is similar to
GMCLIB_SvmStd. This is achieved by converting the direct-α and quadrature-β
components of the reference stator voltage vector US into the balanced 3-phase quantities
uref1, uref2, and uref3 using the modified Inverse Clarke transformation:

Equation 49

The sector calculation is based on comparing the 3-phase reference voltages uref1, uref2,
and uref3 with zero. This computation is described by the following figure:

Figure 2-21. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt
resistors are used. The GMCLIB_SvmDpwm function does not require the sector
directly, but it requires the portion identification explained in the following. The Inverse
Clarke transformation converts the uα, uβ voltage components of the reference stator

GMCLIB_SvmDpwm

GMCLIB User's Guide, Rev. 4, 04/2019

64 NXP Semiconductors

voltage vector US to 3-phase voltage components ua, ub, and uc. The portion
identification selects the portion from the ua, ub, and uc voltages, based on the following
conditions.

Figure 2-22. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the
column of the following table.

Table 2-17. Duty cycle calculation from portions

Portions I II III IV V VI

Voltage
boundaries

U330,U30 U30,U90 U90,U150 U150,U210 U210,U270 U270,U330

pwm_a 1 0 - uref3 1 + uref2 0 1 - uref3 0 + uref2

pwm_b 1 - uref2 0 + uref1 = uβ 1 0 - uref2 1 + uref1 = 1 + uβ 0

pwm_c 1 + uref3 0 1 - uref1 = 1 - uβ 0 + uref3 1 0 - uref1 = 0 - uβ

2.12.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmDpwm function are shown in the following
table:

Table 2-18. Function versions

Function name Input type Output type Result type

GMCLIB_SvmDpwm_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard discontinuous PWM with a 16-bit fractional stationary (α-β) input, and a 16-bit fractional
3-phase output. The result type is a 16-bit unsigned integer, which indicates the actual SVM
sector. The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1). The
output sector is an integer value within the range <1 ; 6>.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 65

2.12.2 Declaration

The available GMCLIB_SvmDpwm functions have the following declarations:

uint16_t GMCLIB_SvmDpwm_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.12.3 Function use

The use of the GMCLIB_SvmDpwm function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

/* Periodical function or interrupt */
}

 void Isr(void)
{
 /* Standard Discountinues PWM SVM calculation */
 u16Sector = GMCLIB_SvmGenDpwm_F16(&sAlphaBeta, &sAbc);
}

2.13 GMCLIB_SvmExDpwm

The GMCLIB_SvmExDpwm function calculates the appropriate duty-cycle ratios needed
for the generation of the given stator-reference voltage vector using the general non-
sinusoidal modulation technique. The GMCLIB_SvmExDpwm function is a superset of
the GMCLIB_SvmDpwm function without the power factor angle input.

The GMCLIB_SvmExDpwm function belongs to the discontinuous PWM modulation
techniques for a 3-phase voltage inverter. The advantages of the discontinuous PWM
technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is

GMCLIB_SvmExDpwm

GMCLIB User's Guide, Rev. 4, 04/2019

66 NXP Semiconductors

more complicated and less precise when compared to the symmetrical modulation
techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continuous SVM
are usually combined together.

Finding the sector in which the reference stator voltage vector US resides is similar to
GMCLIB_SvmStd. This is achieved by converting the direct-α and quadrature-β
components of the reference stator voltage vector US into the balanced 3-phase quantities
uref1, uref2, and uref3 using the modified Inverse Clarke transformation:

Equation 50

The sector calculation is based on comparing the 3-phase reference voltages uref1, uref2,
and uref3 with zero. This computation is described by the following figure:

Figure 2-23. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt
resistors are used. The GMCLIB_SvmExDpwm function does not require the sector
directly, but it requires the portion identification explained in following text. The Park
transformation uses the phase shift of the generated phase voltages and currents - φ angle
to rotate the reference stator voltage vector US to US* with the uα*, uβ* components. The
inverse Clarke transformation converts the uα*, uβ* voltage components to 3-phase
voltage components ua*, ub*, and uc*. The portion identification selects the portion from
the ua*, ub*, and uc* voltages based on the following conditions.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 67

Figure 2-24. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the
column of the following table.

Table 2-19. Duty cycle calculation from portions

Portions I II III IV V VI

Voltage
boundaries

U330,U30 U30,U90 U90,U150 U150,U210 U210,U270 U270,U330

pwm_a 1 0 - uref3 1 + uref2 0 1 - uref3 0 + uref2

pwm_b 1 - uref2 0 + uref1 = uβ 1 0 - uref2 1 + uref1 = 1 + uβ 0

pwm_c 1 + uref3 0 1 - uref1 = 1 - uβ 0 + uref3 1 0 - uref1 = 0 - uβ

2.13.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmExDpwm function are shown in the
following table:

Table 2-20. Function versions

Function name Input type Output type Result type

GMCLIB_SvmExDpwm_F1
6

GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_2COOR_DQ_T_F16 * uint16_t

GMCLIB_2COOR_SINCOS_T_F16 *

Extended discontinuous PWM with a 16-bit fractional stationary (α-β) input, the second input
using a 16-bit fractional (sin(φ) / cos(φ)) structure of φ angle (-1/6 ; 1/6) in fraction corresponding
(-π/6 ; π/6) in radians - angle of the power factor, it is a phase shift of the generated phase
voltages and currents and a 16-bit fractional 3-phase output. The result type is a 16-bit unsigned
integer which indicates the actual SVM sector. The input is within the range <-1 ; 1); the output
duty cycle is within the range <0 ; 1). The output sector is an integer value within the range <1 ;
6>.

GMCLIB_SvmExDpwm

GMCLIB User's Guide, Rev. 4, 04/2019

68 NXP Semiconductors

2.13.2 Declaration

The available GMCLIB_SvmExDpwm functions have the following declarations:

uint16_t GMCLIB_SvmExDpwm_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn,const
GMCLIB_2COOR_SINCOS_T_F16 *psAngle, GMCLIB_3COOR_T_F16 *psOut)

2.13.3 Function use

The use of the GMCLIB_SvmExDpwm function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_SINCOS_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

 /* Power factor angle structure initialization */
 sAngle.f16Cos = FRAC16(1.0);
 sAngle.f16Sin = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Extended Discountinues PWM calculation */
 u16Sector = GMCLIB_SvmExDpwm_F16(&sAlphaBeta, &sAngle, &sAbc);
}

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 69

GMCLIB_SvmExDpwm

GMCLIB User's Guide, Rev. 4, 04/2019

70 NXP Semiconductors

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused
Logi
cal

TRUE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1

FALSE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 71

Table A-2. Data storage

7 6 5 4 3 2 1 0

Value Integer

255
1 1 1 1 1 1 1 1

F F

11
0 0 0 0 1 0 1 1

0 B

124
0 1 1 1 1 1 0 0

7 C

159
1 0 0 1 1 1 1 1

9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uint16_t;

The following figure shows the way in which the data is stored by this type:

Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer

65535
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F F F F

5
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 5

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

40768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.4 uint32_t

uint16_t

GMCLIB User's Guide, Rev. 4, 04/2019

72 NXP Semiconductors

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32_t;

The following figure shows the way in which the data is stored by this type:

Table A-4. Data storage

31 24 23 16 15 8 7 0

Value Integer

4294967295 F F F F F F F F

2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

3451051828 C D B 2 D F 3 4

A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8_t;

The following figure shows the way in which the data is stored by this type:

Table A-5. Data storage

7 6 5 4 3 2 1 0

Value Sign Integer

127
0 1 1 1 1 1 1 1

7 F

-128
1 0 0 0 0 0 0 0

8 0

60
0 0 1 1 1 1 0 0

3 C

-97
1 0 0 1 1 1 1 1

9 F

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 73

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer

32767
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-32768
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-24768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table A-7. Data storage

31 24 23 16 15 8 7 0

Value S Integer

2147483647 7 F F F F F F F

-2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

-843915468 C D B 2 D F 3 4

int16_t

GMCLIB User's Guide, Rev. 4, 04/2019

74 NXP Semiconductors

A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table A-8. Data storage

7 6 5 4 3 2 1 0

Value Sign Fractional

0.99219
0 1 1 1 1 1 1 1

7 F

-1.0
1 0 0 0 0 0 0 0

8 0

0.46875
0 0 1 1 1 1 0 0

3 C

-0.75781
1 0 0 1 1 1 1 1

9 F

To store a real number as frac8_t, use the FRAC8 macro.

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short frac16_t;

The following figure shows the way in which the data is stored by this type:

Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional

0.99997
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table continues on the next page...

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 75

Table A-9. Data storage (continued)

8 0 0 0

0.47357
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-0.75586
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32_t;

The following figure shows the way in which the data is stored by this type:

Table A-10. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995 7 F F F F F F F

-1.0 8 0 0 0 0 0 0 0

0.02606645970 0 3 5 6 2 5 5 0

-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acc16_t;

The following figure shows the way in which the data is stored by this type:

frac32_t

GMCLIB User's Guide, Rev. 4, 04/2019

76 NXP Semiconductors

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

1.0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 8 0

-1.0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

F F 8 0

13.7890625
0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

0 6 E 5

-89.71875
1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0

D 3 2 4

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;

The following figure shows the way in which the data is stored by this type:

Table A-12. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional

65535.999969 7 F F F F F F F

-65536.0 8 0 0 0 0 0 0 0

1.0 0 0 0 0 8 0 0 0

-1.0 F F F F 8 0 0 0

23.789734 0 0 0 B E 5 1 6

-1171.306793 F D B 6 5 8 B C

To store a real number as acc32_t, use the ACC32 macro.

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 77

A.13 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the frac16_t
data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16A;
 frac16_t f16B;
 frac16_t f16C;
} GMCLIB_3COOR_T_F16;

The structure description is as follows:

Table A-13. GMCLIB_3COOR_T_F16 members description

Type Name Description

frac16_t f16A A component; 16-bit fractional type

frac16_t f16B B component; 16-bit fractional type

frac16_t f16C C component; 16-bit fractional type

A.14 GMCLIB_2COOR_AB_T_F16

The GMCLIB_2COOR_AB_T_F16 structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16A;
 frac16_t f16B;
} GMCLIB_2COOR_AB_T_F16;

The structure description is as follows:

Table A-14. GMCLIB_2COOR_AB_T_F16 members description

Type Name Description

frac16_t f16A A-component; 16-bit fractional type

frac16_t f16B B-component; 16-bit fractional type

GMCLIB_3COOR_T_F16

GMCLIB User's Guide, Rev. 4, 04/2019

78 NXP Semiconductors

A.15 GMCLIB_2COOR_AB_T_F32

The GMCLIB_2COOR_AB_T_F32 structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the frac32_t data type. The structure definition is as follows:

typedef struc
{
 frac32_t f32Alpha;
 frac32_t f32Beta;
} GMCLIB_2COOR_AB_T_F32;

The structure description is as follows:

Table A-15. GMCLIB_2COOR_AB_T_F32 members description

Type Name Description

frac32_t f32A A component; 32-bit fractional type

frac32_t f32B B component; 32-bit fractional type

A.16 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase
stationary coordinate system, based on the Alpha and Beta orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16Alpha;
 frac16_t f16Beta;
} GMCLIB_2COOR_ALBE_T_F16;

The structure description is as follows:

Table A-16. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description

frac16_t f16Apha α-component; 16-bit fractional type

frac16_t f16Beta β-component; 16-bit fractional type

A.17 GMCLIB_2COOR_DQ_T_F16

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 79

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16D;
 frac16_t f16Q;
} GMCLIB_2COOR_DQ_T_F16;

The structure description is as follows:

Table A-17. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description

frac16_t f16D D-component; 16-bit fractional type

frac16_t f16Q Q-component; 16-bit fractional type

A.18 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac32_t data type. The structure definition is as follows:

typedef struct
{
 frac32_t f32D;
 frac32_t f32Q;
} GMCLIB_2COOR_DQ_T_F32;

The structure description is as follows:

Table A-18. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description

frac32_t f32D D-component; 32-bit fractional type

frac32_t f32Q Q-component; 32-bit fractional type

A.19 GMCLIB_2COOR_SINCOS_T_F16

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the frac16_t data type. The structure definition is as follows:

GMCLIB_2COOR_DQ_T_F32

GMCLIB User's Guide, Rev. 4, 04/2019

80 NXP Semiconductors

typedef struct
{
 frac16_t f16Sin;
 frac16_t f16Cos;
} GMCLIB_2COOR_SINCOS_T_F16;

The structure description is as follows:

Table A-19. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description

frac16_t f16Sin Sin component; 16-bit fractional type

frac16_t f16Cos Cos component; 16-bit fractional type

A.20 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = FALSE; /* bVal = FALSE */
}

A.21 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = TRUE; /* bVal = TRUE */
}

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 81

A.22 FRAC8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>,
which corresponds to <-1.0 ; 1.0-2-7>.

#include "mlib.h"

static frac8_t f8Val;

void main(void)
{
 f8Val = FRAC8(0.187); /* f8Val = 0.187 */
}

A.23 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-2-15>.

#include "mlib.h"

static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.736); /* f16Val = 0.736 */
}

A.24 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

FRAC8

GMCLIB User's Guide, Rev. 4, 04/2019

82 NXP Semiconductors

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2-31>.

#include "mlib.h"

static frac32_t f32Val;

void main(void)
{
 f32Val = FRAC32(-0.1735667); /* f32Val = -0.1735667 */
}

A.25 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"

static acc16_t a16Val;

void main(void)
{
 a16Val = ACC16(19.45627); /* a16Val = 19.45627 */
}

A.26 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : 0x7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 04/2019

NXP Semiconductors 83

#include "mlib.h"

static acc32_t a32Val;

void main(void)
{
 a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */
}

GMCLIB User's Guide, Rev. 4, 04/2019

84 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits based on the information in this document. Freescale reserves the
right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each customer
application by customer's technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product
or service names are the property of their respective owners.

© 2019 NXP B.V.

Document Number DSP56800EXGMCLIBUG
Revision 4, 04/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (CodeWarrior™ Development Studio)
	New project
	Library path variable
	Library folder addition
	Library path setup

	Chapter 2​: Algorithms in detail
	GMCLIB_Clark
	Available versions
	Declaration
	Function use

	GMCLIB_ClarkInv
	Available versions
	Declaration
	Function use

	GMCLIB_Park
	Available versions
	Declaration
	Function use

	GMCLIB_ParkInv
	Available versions
	Declaration
	Function use

	GMCLIB_DecouplingPMSM
	Available versions
	GMCLIB_DECOUPLINGPMSM_T_A32 type description
	Declaration
	Function use

	GMCLIB_ElimDcBusRipFOC
	Available versions
	Declaration
	Function use

	GMCLIB_ElimDcBusRip
	Available versions
	Declaration
	Function use

	GMCLIB_SvmStd
	Available versions
	Declaration
	Function use

	GMCLIB_SvmIct
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU0n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU7n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmDpwm
	Available versions
	Declaration
	Function use

	GMCLIB_SvmExDpwm
	Available versions
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	GMCLIB_3COOR_T_F16
	GMCLIB_2COOR_AB_T_F16
	GMCLIB_2COOR_AB_T_F32
	GMCLIB_2COOR_ALBE_T_F16
	GMCLIB_2COOR_DQ_T_F16
	GMCLIB_2COOR_DQ_T_F32
	GMCLIB_2COOR_SINCOS_T_F16
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

