
1 Overview
This document describes how to build Android Oreo 8.0
platform for the i.MX 8 series devices. It provides instructions
for:

• Configuring a Linux® OS build machine.
• Downloading, patching, and building the software

components that create the Android™ system image.
• Building from sources and using pre-built images.
• Copying the images to boot media.
• Hardware/software configurations for programming the

boot media and running the images.

For more information about building the Android platform,
see source.android.com/source/building.html.

2 Preparation
The minimum recommended system requirements are as
follows:

• 16 GB RAM
• 300 GB hard disk

For any problems on the building process related to the Jack
server, see the Android website source.android.com/source/
jack.html.

NXP Semiconductors Document Number: AUG

User's Guide Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

Android™ User's Guide

Contents

1 Overview..1

2 Preparation................................ 1

3 Building the Android platform for i.MX...................2

4 Running the Android Platform with a
Prebuilt Image... 7

5 Programming Images..................... 8

6 Booting................................ 10

7 Revision History......................... 13

http://source.android.com/source/building.html
https://source.android.com/source/jack.html
https://source.android.com/source/jack.html

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 14.04 64bit version and openjdk-8-jdk
is the most tested environment for the Android Oreo 8.0 build.

After installing the computer running Linux OS, check whether all the necessary packages are installed for an Android build.
See "Setting up your machine" on the Android website source.android.com/source/initializing.html.

In addition to the packages requested on the Android website, the following packages are also needed:

$ sudo apt-get install uuid uuid-dev
$ sudo apt-get install zlib1g-dev liblz-dev
$ sudo apt-get install liblzo2-2 liblzo2-dev
$ sudo apt-get install lzop
$ sudo apt-get install git-core curl
$ sudo apt-get install u-boot-tools
$ sudo apt-get install mtd-utils
$ sudo apt-get install android-tools-fsutils
$ sudo apt-get install openjdk-8-jdk
$ sudo apt-get install device-tree-compiler
$ sudo apt-get install gdisk

NOTE
If you have trouble installing the JDK in Ubuntu, see How to install misc JDK in Ubuntu
for Android build.
Configure git before use. Set the name and email as follows:

• git config --global user.name "First Last"
• git config --global user.email "first.last@company.com"

2.2 Unpacking the Android release package
After you have set up a computer running Linux OS, unpack the Android release package by using the following commands:

$ cd ~ (or any other directory you like)
$ tar xzvf imx-o8.0.0_1.3.0_8mq-prc.tar.gz

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in the CodeAurora Forum repository.
• AOSP Android public source code, which is maintained in android.googlesource.com.
• NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com

Assume you had i.MX Android proprietary source code package imx-o8.0.0_1.3.0_8m-prc.tar.gz under ~/. directory. To
generate the i.MX Android release source code build environment, execute the following commands:

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Building the Android platform for i.MX

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

2 NXP Semiconductors

http://source.android.com/source/initializing.html
https://community.freescale.com/docs/DOC-98441
https://community.freescale.com/docs/DOC-98441

$ export PATH=${PATH}:~/bin
$ source ~/imx-o8.0.0_1.3.0_8mq-prc/imx_android_setup.sh
By default, the imx_android_setup.sh script will create the source code build environemnt
in the folder ~/android_build
${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX
Andorid release documentation.
$ export MY_ANDROID=~/android_build

The default release package does not include the 1CQ (QCA6174A) calibrated Wi-Fi firmware. To use Wi-Fi, perform the
following steps:

1. Fetch murata's public git for the calibrated firmware.

The github source URL is https://github.com/murata-wireless/qca-linux-calibration.git, and the branch for calibrated
firmware is i.MX8x-1cq-morty.

The destination path is external/qca-linux. You can adjust the path, but you need to change the path in the next changes
applied as well.

 $cd {$MYANDORID}/external
 $git clone https://github.com/murata-wireless/qca-linux-calibration.git -b i.MX8x-1cq-
morty qca-linux

2. Apply the following changes to ${MY_ANDROID}/device/fsl.

 diff --git a/imx8/evk_8mq.mk b/imx8/evk_8mq.mk
 index c7aafe3..e056503 100644
 --- a/imx8/evk_8mq.mk
 +++ b/imx8/evk_8mq.mk
 @@ -136,9 +136,9 @@ PRODUCT_PACKAGES += \

 # Qcom WiFi Firmware
 PRODUCT_COPY_FILES += \
 - $(IMX_FIRMWARE_PATH)/linux-firmware/qca/nvm_00130302.bin:vendor/firmware/
nvm_tlv_3.2.bin \
 + external/qca-linux/1CQ/nvm_tlv_3.2.bin:vendor/firmware/nvm_tlv_3.2.bin \
 + external/qca-linux/1CQ/board.bin:vendor/firmware/ath10k/QCA6174/hw3.0/board.bin \
 $(IMX_FIRMWARE_PATH)/linux-firmware/qca/rampatch_00130302.bin:vendor/firmware/
rampatch_tlv_3.2.tlv \
 - $(IMX_FIRMWARE_PATH)/linux-firmware/ath10k/QCA6174/hw3.0/board.bin:vendor/
firmware/ath10k/QCA6174/hw3.0/board.bin \
 $(IMX_FIRMWARE_PATH)/linux-firmware/ath10k/QCA6174/hw3.0/board-2.bin:vendor/
firmware/ath10k/QCA6174/hw3.0/board-2.bin \
 $(IMX_FIRMWARE_PATH)/linux-firmware/ath10k/QCA6174/hw3.0/firmware-4.bin:vendor/
firmware/ath10k/QCA6174/hw3.0/firmware-4.bin

3.2 Building Android images
Building the Android image is performed when the source code has been downloaded (Section 3.1) and patched (Section
3.2).

Commands lunch <buildName-buildType> to set up the build configuration and make to start the build process are
executed.

The build configuration command lunch can be issued with an argument <Build name>-<Build type> string, such as lunch
evk_8mq-userdebug, or can be issued without the argument, which will present a menu of options to select.

Building the Android platform for i.MX

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

NXP Semiconductors 3

https://github.com/murata-wireless/qca-linux-calibration.git

The Build Name is the Android device name found in the directory ${MY_ANDROID}/device/fsl/. The following table lists
the i.MX build names.

Table 1. Build names

Build name Description

evk_8mq i.MX 8MQuad EVK Board

The build type is used to specify what debug options are provided in the final image. The following table lists the build types.

Table 2. Build types

Build type Description

user Production-ready image, no debug

userdebug Provides image with root access and debug, similar to "user"

eng Development image with debug tools

Android build steps are as follows:
1. Change to the top level build directory.

$ cd ${MY_ANDROID}
2. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh
3. Execute the Android lunch command. In this example, the setup is for the production image of i.MX 8MQuad EVK

Board/Platform device with userdebug type.

$ lunch evk_8mq-userdebug
4. Execute the make command to generate the image.

$ make 2>&1 | tee build-log.txt

When the make command is complete, the build-log.txt file contains the execution output. Check for any errors.

For BUILD_ID & BUILD_NUMBER changing, update build_id.mk in your ${MY_ANDROID} directory. For details, see
the Android™ Frequently Asked Questions (AFAQ).

The following outputs are generated by default in ${MY_ANDROID}/out/target/product/evk_8mq:

• root/: root file system (including init, init.rc). Mounted at /.
• system/: Android system binary/libraries. Mounted at /system.
• data/: Android data area. Mounted at /data.
• recovery/: root file system when booting in "recovery" mode. Not used directly.
• boot-imx8mq.img: a composite image for i.MX 8MQuad EVK, which includes the kernel zImage, ramdisk, board's

device tree binary, and boot parameters. It is used to support HDMI output.
• boot-imx8mq-mipi.img: a composite image for i.MX8MQuad EVK, which includes the kernel zImage, ramdisk,

board's device tree binary, and boot parameters. It is used to support MIPI HDMI output.
• ramdisk.img: Ramdisk image generated from "root/". Not directly used.
• system.img: EXT4 image generated from "system/". Can be programmed to "SYSTEM" partition on SD/eMMC card

with "dd".
• userdata.img: EXT4 image generated from "data/".
• vbmeta-imx8mq.img: Android Verify boot metadata image for boot-imx8mq.img.
• vbmeta-imx8mq-mipi.img: Android Verify boot metadata image for boot-imx8mq-mipi.img.
• partition-table.img: GPT partition table image. Used for 16 GB SD card and eMMC card.
• partition-table-7GB.img: GPT partition table image. Used for 8 GB SD card.

Building the Android platform for i.MX

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

4 NXP Semiconductors

• partition-table-28GB.img: GPT partition table image. Used for 32 GB SD card.
• u-boot-imx8mq.imx: U-Boot image without padding for i.MX 8MQuad EVK.
• vendor.img: vendor image, which holds platform binaries. Mounted at /vendor

NOTE
• To build the U-Boot image separately, see Building U-Boot images.
• To build the kernel uImage separately, see Building a kernel image.
• To build boot.img, see Building boot.img.

3.2.1 Configuration examples of building i.MX devices
The following table shows examples of using the lunch command to set up different i.MX devices. After the desired i.MX
device is set up, the make command is used to start the build.

Table 3. i.MX device lunch examples

Build name Description

i.MX 8MQuad EVK Board $ lunch evk_8mq-userdebug

After the lunch command is executed, the make command is issued:

$ make 2>&1 | tee build-log.txt

3.2.2 User build mode
A production release Android system image is created by using the userdebug Build Type. For configuration options, see
Table "Build types" in Section Building Android images.

The notable differences between the user and eng build types are as follows:
• Limited Android System image access for security reasons.
• Lack of debugging tools.
• Installation modules tagged with user.
• APKs and tools according to product definition files, which are found in PRODUCT_PACKAGES in the sources

folder ${MY_ANDROID}/device/fsl/imx8/imx8.mk. To add customized packages, add the package
MODULE_NAME or PACKAGE_NAME to this list.

• The properties are set as: ro.secure=1 and ro.debuggable=0.
• adb is disabled by default.

There are two methods for the build of Android image.

Method 1: Set the environment first and then issue the make command:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh #set env
$ make PRODUCT-XXX #XXX depends on different board, see table below

Table 4. Android system image production build method 1

i.MX development tool Description Image build command

Evaluation Kit i.MX 8MQuad EVK $ make PRODUCT-evk_8mq-userdebug>&1 | tee
buildlog.txt

Building the Android platform for i.MX

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

NXP Semiconductors 5

Method 2: Set the environment and then use lunch command to configure argument. See table below. An example for the
i.MX 8MQuad EVK board is as follows:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mq-userdebug
$ make

Table 5. Android system image production build method 2

i.MX development tool Description Lunch configuration

Evaluation Kit i.MX 8MQuad EVK evk_8mq-userdebug

To create Android platform over-the-air, OTA, and package, the following make target is specified:

$ make otapackage

For more Android platform building information, see source.android.com/source/building.html.

3.3 Building U-Boot images
After you set up U-Boot using the steps outlined above, you can find the tool (mkimage) under tools/.

$ cd ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx
$ export ARCH=arm64
$ export CROSS_COMPILE=${MY_ANDROID}/prebuilts/gcc/linux-x86/aarch64/aarch64-linux-
android-4.9/bin/aarch64-linux-android-
$ make distclean

For i.MX 8MQuad EVK board:

To build uboot.imx that is used on the Android platform:
$ make mx8mq_evk_android_defconfig
$ make
$ cp {MY_ANDROID}/out/target/product/evk_8mq/obj/BOOTLOADER_OBJ/u-boot-nodtb.bin $
{MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ cp {MY_ANDROID}/out/target/product/evk_8mq/obj/BOOTLOADER_OBJ/spl/u-boot-spl.bin $
{MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ cp ${MY_ANDROID}/out/target/product/evk_8mq/obj/BOOTLOADER_OBJ/tools/mkimage $
{MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/mkimage_uboot
$ cp ${MY_ANDROID}/out/target/product/evk_8mq/obj/BOOTLOADER_OBJ/arch/arm/dts/fsl-imx8mq-
evk.dtb ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/signed_hdmi_imx8m.bin $
{MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/
lpddr4_pmu_train_1d_dmem.bin ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/
lpddr4_pmu_train_1d_imem.bin ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/
lpddr4_pmu_train_2d_dmem.bin ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/
lpddr4_pmu_train_2d_imem.bin ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ cp ${MY_ANDROID}/vendor/nxp//fsl-proprietary/uboot-firmware/imx8m/bl31.bin ${MY_ANDROID}/
vendor/nxp-opensource/imx-mkimage/iMX8M/.
$ make -C ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/ clean
$ make -C ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/ SOC=iMX8M flash_hdmi_spl_uboot

"vendor/nxp-opensource//imx-mkimage/iMX8M/flash.bin" is generated if the build is successful. Flash.bin is taken as uboot-
imx8mq.imx.

Building the Android platform for i.MX

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

6 NXP Semiconductors

http://source.android.com/source/building.html

NOTE

imx-mkimage is a tool that bundles uboot.bin, spl, and firmware images.

3.4 Building a kernel image
Kernel image is automatically built when building the Android root file system.

The following are the default Android build commands to build the kernel image:

$ cd ${MY_ANDROID}/kernel_imx
$ echo $ARCH && echo $CROSS_COMPILE

Make sure that you have those two environment variables set. If the two variables are not set, set them as follows:

$ export ARCH=arm64
$ export CROSS_COMPILE=${MY_ANDROID}/prebuilts/gcc/linux-x86/aarch64/aarch64-linux-
android-4.9/bin/aarch64-linux-android-

Generate ".config" according to default config file under arch/arm64/configs/
android_defconfig.
To build the kernel zImage for i.MX 8MQuad
$ make android_defconfig
$ make KCFLAGS=-mno-android

to build the zImage which is used in MFGTOOL
zImage is under mfgtools\Profiles\Linux\OS Firmware\firmware\
$ make android_defconfig
$ make KCFLAGS=-mno-android -j4

The kernel images are found in ${MY_ANDROID}/kernel_imx/arch/arm64/boot/Image.

3.5 Building boot.img
boot.img and boota are default booting commands.

As outlined in Running the Android Platform with a Prebuilt Image, we use boot.img and boota as default commands to boot
instead of the uramdisk and zImage we used before.

Use this command to generate boot.img under Android environment:

Boot image for i.MX 8MQuad EVK board
$ source build/envsetup.sh
$ lunch evk_8mq-userdebug
$ make bootimage

4 Running the Android Platform with a Prebuilt Image
To test the Android platform before building any code, use the prebuilt images from the following packages and go to
"Download Images" and "Boot".

Table 6. Image packages

Image package Description

android_O8.0.0_1.3.0_8M-
PRC_image_8mq.tar.gz

Prebuilt-image for i.MX 8MQuad EVK board, which includes NXP extended
features.

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

NXP Semiconductors 7

The following tables list the detailed contents of android_O8.0.0_1.3.0_8M-PRC_image_8mq.tar.gz image package.

The table below shows the prebuilt images to support the system boot from SD and eMMC on i.MX 8MQuad EVK boards.

Table 7. Images for i.MX 8MQuad EVK

i.MX 8MQuad EVK image Description

u-boot-imx8mq.imx Bootloader (with padding) for i.MX 8MQuad EVK board

partition-table.img GPT table image for 16 GB SD card and eMMC

partition-table-7GB.img GPT table image for 8 GB SD card

partition-table-28GB.img GPT table image for 32 GB SD card

boot-imx8mq.img Boot image for i.MX 8MQuad EVK board to support HDMI
output

boot-imx8mq-mipi.img Boot Image for i.MX8MQuad EVK board to support MIPI
output

system.img System Boot image

vbmeta-imx8mq.img Android Verify Boot metadata Image for i.MX 8MQuad EVK
board to support HDMI output

vbmeta-imx8mq-mipi.img Android Verify Boot metadata Image for i.MX 8MQuad EVK
board to support MIPI output

vendor.img Vendor image for i.MX 8MQuad EVK board

NOTE
boot.img is an Android image that stores kernel Image and ramdisk together. It also
stores other information such as the kernel boot command line, machine name. This
information can be configured in android.mk. It can avoid touching the boot loader code
to change any default boot arguments.

5 Programming Images
The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image,
GPT image, vendor image, and vbmeta image. At a minium, the storage devices on the development system (MMC/SD or
NAND) must be programmed with the U-Boot boot loader. The i.MX 8 series boot process determines what storage device to
access based on the switch settings. When the boot loader is loaded and begins execution, the U-Boot environment space is
then read to determine how to proceed with the boot process. For U-Boot environment settings, see Section Booting.

The following download methods can be used to write the Android System Image:

• MFGTool to download all images to eMMC/SD card.

5.1 System on eMMC/SD
The images needed to create an Android system on eMMC/SD can either be obtained from the release package or be built
from source.

The images needed to create an Android system on eMMC/SD are listed below:

• U-Boot image: u-boot.imx
• Android boot image: boot.img

Programming Images

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

8 NXP Semiconductors

• Android system image: system.img
• Android verify boot metadata image: vbmeta.img
• GPT table image: partition-table.img
• Android vendor image: vendor.img

5.1.1 Storage partitions
The layout of the eMMC/SD/TF card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.
• [Start Offset] shows where partition is started, unit in MB.

The system partition is used to put the built-out Android system image. The userdata parition is used to put the unpacked
codes/data of the applications, system configuration database, etc. In normal boot mode, the root file system is mounted from
the system partition. In recovery mode, the root file system is mounted from the boot partition.

Table 8. Storage partitions

Partition type/index Name Start offset Size File system Content

N/A bootloader 33 KB 8 MB - 33 KB N/A bootloader

1 boot_a 8 MB 32 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

2 boot_b Follow boot_a 32 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

3 system_a Follow boot_b 1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

4 system_b Follow
system_a

1536MB EXT4. Mount as /
system

Android system files under /
system/dir

5 misc Follow
system_b

4 MB N/A For recovery store
bootloader message, reserve

6 datafooter Follow misc 2 MB N/A For crypto footer of DATA
partition encryption

7 metadata Follow
datafootor

2 MB N/A For system slide show

8 presistdata Follow
metadata

1 MB N/A Option to operate unlock
\unlock

9 vendor_a Follow
persistdata

112 MB EXT4. Mount at /
vendor

vendor.img

10 vendor_b Follow
vendor_a

112 MB EXT4. Mount at /
vendor

vendor.img

11 userdata Follow
vendor_b

Remained
space

EXT4. Mount at /data Application data storage for
system application, and for
internal media partition,
in /mnt/sdcard/ dir.

12 fbmisc Follow
userdata

1 MB N/A For storing the state of lock
\unlock

13 vbmeta_a Follow fbmisc 1 MB N/A For storing the verify boot's
metadata

Table continues on the next page...

Programming Images

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

NXP Semiconductors 9

Table 8. Storage partitions (continued)

Partition type/index Name Start offset Size File system Content

14 vbmeta_b Follow
vbmeta_a

1 MB N/A For storing the verify boot's
metadata

To create these partitions, use fsl-sdcard-partition.sh described in the Android™ Quick Start Guide (AQSUG), or use format
tools in the prebuilt directory.

The script below can be used to partition an SD card as shown in the partition table above:

$ cd ${MY_ANDROID}/
$ sudo ./device/fsl/common/tools/fsl-sdcard-partition.sh -f <soc_name> /dev/sdX
<soc_name> can be as imx8mq.

NOTE
• The minimum size of the SD card is 8 GB.
• /dev/sdX, the X is the disk index from 'a' to 'z'. That may be different on each

computer running Linux OS.
• If the SD card is 8 GB, use "sudo fsl-sdcard-partition.sh -f imx8mq -c 7 /dev/sdX"

to flash images.
• If the SD card is 16 GB, use "sudo fsl-sdcard-partition.sh -f imx8mq /dev/sdX" to

flash images.
• If the SD card is 32 GB, use "sudo fsl-sdcard-partition.sh -f imx8mq -c 28 /dev/

sdX" to flash images.
• Unmount all the SD card partitions before running the script.
• Put the related bootloader, boot image, system image, recovery image in your

current directory. This script requires to install the simg2img tool on the computer.
simg2img is a tool that converts the sparse system image to raw system image on
the Linux OS host computer. The android-tools-fsutils package includes the
simg2img command for Ubuntu Linux OS.

• If the SD card is 8 GB, copy partition-table-7GB.img and rename it to partition-
table.img. If the SD card is 16 GB, use the default partition-table.img. If the SD
card is 32 GB, copy partition-table-28GB.img and rename it to partition-table.img.

5.1.2 Downloading images with MFGTool
MFGTool can be used to download all images into a target device. It is a quick and easy tool for downloading images. See
Android™ Quick Start Guide (AQSUG) for a detailed description of MFGTool.

6 Booting
This chapter describes booting from MMC/SD, NAND, TFTP and NFS.

6.1 Booting from eMMC/SD/NAND

Booting

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

10 NXP Semiconductors

6.1.1 Booting from SD/eMMC on the i.MX 8MQuad EVK board
The following tables list the boot switch settings to control the boot storage.

Table 9. Boot device switch settings

Boot device switch External SDcard eMMC

SW801 (from 1 bit to 4 bit) 1100 0010

Table 10. Boot mode switch settings

Boot mode switch Download Mode (MFGTool mode) Boot mode

SW802 (from 1 bit to 2 bit) 01 10

Booting from SD

Chang the board Boot_Mode switch to 10 (from 1 bit to 2 bit) and SW801 1100 (from 1 bit to 4 bit).

The default environment in boot.img is booting from SD. To use the default environment in boot.img, use the following
command:

U-Boot > setenv bootargs

To clear the bootargs environment, use the following command:

U-Boot > setenv bootcmd boota mmc1
U-Boot > setenv bootargs console=ttyLP0,115200 earlycon=lpuart32,0x5a060000,115200,115200
init=/init video=imxdpufb1:off video=imxdpufb2:off video=imxdpufb3:off video=imxdpufb4:off
androidboot.console=ttyLP0 consoleblank=0 androidboot.hardware=freescale cma=800M [Optional]
U-Boot > saveenv [Save the environments]

Booting from eMMC

Chang the board Boot_Mode switch to 10 (from 1 bit to 2 bit) and SW801 0010 (from 1 bit to 4 bit).

The default environment in boot.img is booting from eMMC. To use the default environment in boot.img, use the following
command:

U-Boot > setenv bootargs
To clear the bootargs env, you can use the following command
U-Boot > setenv bootcmd boota mmc0
U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/
init video=HDMI-A-1:1920x1080-32@60 androidboot.zygote=zygote64_32
androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=800M
[Optional]
U-Boot > saveenv [Save the environments]

NOTE

bootargs environment is an optional setting for boota. The boot.img includes a default
bootargs, which is used if there is no definition about the bootargs environment.

6.2 Boot-up configurations
This section explains the common U-Boot environments used for NFS, MMC/SD boot, and kernel command line.

Booting

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

NXP Semiconductors 11

6.2.1 U-Boot environment
• bootcmd: the first variable to run after U-Boot boot.
• bootargs: the kernel command line, which the bootloader passes to the kernel. As described in Kernel command line

(bootargs), bootargs environment is optional for booti. boot.img already has bootargs. If you do not define the bootargs
environment, it uses the default bootargs inside the image. If you have the environment, it is then used.

To use the default environment in boot.img, use the following command to clear the bootargs environment.

> setenv bootargs
• dhcp: get the IP address by BOOTP protocol, and load the kernel image ($bootfile env) from the TFTP server.
• boota:

boota command parses the boot.img header to get the zImage and ramdisk. It also passes the bootargs as needed (it only
passes bootargs in boot.img when it cannot find "bootargs" var in your U-Boot environment). To boot from mmcX, do
the following:

> boota mmcX

To read the boot partition (the partition store boot.img, in this instance, mmcblk0p1), the X is the eMMC bus number,
which is the hardware eMMC bus number, in SABRE-SD boards. eMMC is mmc2 or you can add the partition ID after
mmcX.

Add partition ID after mmcX.

> boota mmcX boot # boot is default
> boota mmcX recovery # boot from the recovery partition

If you have read the boot.img into memory, use this command to boot from

> boota 0xXXXXXXXX

6.2.2 Kernel command line (bootargs)
Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootargs.

Table 11. Kernel boot parameters

Kernel parameter Description Typical value Used when

console Where to output
kernel log by
printk.

console=ttymxc0,115200 All use cases.

init Tells kernel where
the init file is
located.

init=/init All use cases. "init" in the Android platform
is located in "/" instead of in "/sbin".

androidboot.hardware Specifies
hardware name
for this product.
Android init
process loads the
configuration file
init.$
(androidboot.hard
ware).rc in the root
directory.

androidboot.hardware=freescal
e

All use cases.

Table continues on the next page...

Booting

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

12 NXP Semiconductors

Table 11. Kernel boot parameters (continued)

Kernel parameter Description Typical value Used when

video Tells the kernel/
driver which DRM
device is used and
resolution/depth
and refreshes the
rate it works on.

4K display should be
configured as:

androidboot.gui_resolut
ion=1080p
1080P display shoulde
be configured as:
video=HDMI-
A-1:1920x1080-32@60
720P display should be
configured as:
video=HDMI-
A-1:1280x720-32@60

-

androidboot.console The Android shell
console. It should
be the same as
console=.

androidboot.console=ttymxc0 To use the default shell job control, such as
Ctrl+C to terminate a running process, set
this for the kernel.

fec_mac Sets up the FEC
MAC address.

fec_mac=00:04:9f:00:ea:d3 On SABRE-SD board, the SoC does not
have a MAC address fused in. To use FEC,
assign this parameter to the kernel.

cma CMA memory size
for GPU/VPU
physical memory
allocation.

cma=800M It is 800 MB by default.

androidboot.selinux Argument to
disable selinux
check and enable
serial input when
connecting a host
computer to the
target board’s
USB UART port.
For details about
selinux, see
Security-
Enhanced Linux in
Android.

androidboot.selinux=permissiv
e

Android Nougat 7.1 CTS requirement: The
serial input should be disabled by default.
Setting this argument enables console
serial input, which violates the CTS
requirement.

androidboot.lcd_density It is used to set
the display density
and over-write
ro.sf.lcd_density in
init.freescale.rc for
MIPI display.

androidboot.lcd_density=160 -

7 Revision History
Table 12. Revision history

Revision number Date Substantive changes

N7.1.2_2.1.0_8MQ-EAR 09/2017 Initial release

Table continues on the next page...

Revision History

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

NXP Semiconductors 13

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/

Table 12. Revision history (continued)

Revision number Date Substantive changes

O8.0.0_1.3.0_8M-PRC 01/2018 i.MX 8MQuad PRC release

Revision History

Android™ User's Guide, Rev. O8.0.0_1.3.0_8M-PRC, 01/2018

14 NXP Semiconductors

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. ìTypicalî

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including ìtypicals,î must be validated for each customer application by

customerís technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V.

Arm, the Arm logo, and Cortex are registered trademarks of Arm Limited (or its

subsidiaries) in the EU and/or elsewhere. All other product or service names are the

property of their respective owners. All rights reserved.

© 2018 NXP B.V.

Document Number: AUG
Rev. O8.0.0_1.3.0_8M-PRC

01/2018

http://www.nxp.com
http://www.nxp.com/support

	Overview
	Preparation
	Setting up your computer
	Unpacking the Android release package

	Building the Android platform for i.MX
	Getting i.MX Android release source code
	Building Android images
	Configuration examples of building i.MX devices
	User build mode

	Building U-Boot images
	Building a kernel image
	Building boot.img

	Running the Android Platform with a Prebuilt Image
	Programming Images
	System on eMMC/SD
	Storage partitions
	Downloading images with MFGTool

	Booting
	Booting from eMMC/SD/NAND
	Booting from SD/eMMC on the i.MX 8MQuad EVK board

	Boot-up configurations
	U-Boot environment
	Kernel command line (bootargs)

	Revision History

