
Part Number: 926-77201
Rev. 1.5

2/2009

®

i.MX31 PDK 1.5 Windows
Embedded CE 6.0

Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. The
Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© Freescale Semiconductor, Inc., 2008-2009. All rights reserved.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

®

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor iii

Contents
Paragraph
Number Title

Page
Number

Contents

About This Book

Audience ... xix
Suggested Reading .. xix
Conventions .. xix
Acronyms and Abbreviations ...xx

Chapter 1
Introduction

1.1 Getting Started ... 1-1
1.2 SDK System Architecture.. 1-1
1.2.1 Tools and Bootloader ... 1-2
1.2.2 BSP Layer .. 1-2
1.2.3 Middleware and Core OS Service Layer ... 1-2
1.2.4 Application Layer .. 1-2
1.3 Windows Embedded CE 6.0 Architecture ... 1-4

Chapter 2
ACC Driver

2.1 ACC Driver Summary ... 2-1
2.2 Supported Functionality... 2-2
2.3 Hardware Operation... 2-2
2.4 Software Operation .. 2-2
2.4.1 Application / User Interface to ACC drives... 2-2
2.4.2 ACC Driver Configuration .. 2-2
2.4.3 Loading and Initialization.. 2-2
2.4.4 Mode Selection .. 2-3
2.4.5 G-Level Selection .. 2-3
2.4.6 Output Resolution.. 2-3
2.4.7 Detection Axis ... 2-3
2.4.8 Calibration ... 2-4
2.4.9 Power Management ... 2-4

Chapter 3
ATA Driver

3.1 ATA Driver Summary .. 3-1
3.2 Requirements ... 3-1

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

iv Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

3.3 Hardware Operation... 3-2
3.3.1 Conflicts with other Peripherals and Catalog Options... 3-3
3.3.2 Cabling... 3-3
3.4 Software Operation .. 3-3
3.4.1 Application / User Interface to ATA drives ... 3-3
3.4.2 ATA Driver Configuration ... 3-4
3.4.3 Power Management ... 3-4
3.4.4 Registry Settings .. 3-5
3.4.5 DMA Support .. 3-7
3.5 Unit Test... 3-7
3.5.1 Unit Test Hardware.. 3-7
3.5.2 Unit Test Software ... 3-8
3.5.3 Building the Storage Device Tests... 3-8
3.5.4 Running the Storage Device Tests ... 3-8
3.6 Basic Elements for Driver Development ... 3-9
3.6.1 BSP Environment Variables... 3-10
3.6.2 Mutual Exclusive Drivers .. 3-10
3.6.3 Dependencies of Drivers.. 3-10
3.7 Block Device API Reference ... 3-10
3.7.1 IOCTL_DISK_DEVICE_INFO .. 3-10
3.7.2 IOCTL_DISK_GET_STORAGEID.. 3-11
3.7.3 IOCTL_DISK_GETINFO ... 3-11
3.7.4 IOCTL_DISK_GETNAME... 3-11
3.7.5 IOCTL_DISK_READ ... 3-12
3.7.6 IOCTL_DISK_SETINFO.. 3-12
3.7.7 IOCTL_DISK_WRITE.. 3-12
3.7.8 IOCTL_DISK_FLUSH_CACHE .. 3-12

Chapter 4
Audio Driver

4.1 Audio Driver Summary ... 4-1
4.2 Requirements ... 4-2
4.3 Hardware Operation... 4-3
4.3.1 Audio Playback.. 4-4
4.3.2 Speaker output ... 4-5
4.3.3 Required SoC Peripherals.. 4-5
4.3.4 Conflicts with Other SoC Peripherals.. 4-5
4.3.5 Known Issues... 4-5
4.3.6 Required MC13783 PMIC Components.. 4-5

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor v

Contents
Paragraph
Number Title

Page
Number

4.4 Software Operation .. 4-6
4.4.1 Audio Playback.. 4-6
4.4.2 Audio Recording.. 4-6
4.4.3 Audio Driver Compile-time Configuration Options.. 4-6
4.4.4 DMA Support .. 4-8
4.4.5 Power Management ... 4-10
4.4.6 Audio Driver Registry Settings.. 4-11
4.5 Unit Test... 4-12
4.5.1 Unit Test Hardware.. 4-12
4.5.2 Unit Test Software ... 4-12
4.5.3 Building the Audio Driver CETK Tests .. 4-13
4.5.4 Running the Audio Driver CETK Tests... 4-13
4.6 System-level Audio Driver Tests ... 4-13
4.6.1 Checking for a Boot-time Musical Tune ... 4-13
4.6.2 Confirming Touchpanel Taps and Keypad Key Presses .. 4-14
4.6.3 Playing Back Sample Audio and Video Files Using the Media Player 4-14
4.6.4 Using the SDK Sample Audio Applications for Testing ... 4-14
4.7 Audio Driver API Reference ... 4-14
4.8 Audio Driver Troubleshooting Guide .. 4-14
4.8.1 Checking Build-time Configuration Options... 4-14
4.8.2 Confirming Audio Driver Loading During Device Boot... 4-15
4.8.3 Media Player Application Not Found.. 4-15
4.8.4 Media Player Fails to Load and Play an Audio File .. 4-15

Chapter 5
Backlight Driver

5.1 Backlight Driver Summary.. 5-1
5.2 Requirements ... 5-1
5.3 Hardware Operation... 5-2
5.4 Software Operation .. 5-2
5.4.1 Backlight Driver Registry Settings .. 5-2
5.5 Unit Test... 5-2
5.5.1 Unit Test Hardware.. 5-3
5.5.2 Unit Test Software ... 5-3
5.5.3 Running the Backlight Application Test.. 5-3
5.6 Backlight API Reference ... 5-4

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

vi Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 6
Battery Driver

6.1 Battery Driver Summary.. 6-1
6.2 Requirements ... 6-1
6.3 Hardware Operation... 6-1
6.3.1 Conflicts with other SoC Peripherals... 6-2
6.4 Software Operation .. 6-2
6.4.1 Battery Driver Registry Settings.. 6-2
6.4.2 Power Management ... 6-2
6.5 Unit Test... 6-2
6.5.1 Unit Test Hardware.. 6-3
6.6 Battery API Reference ... 6-3
6.6.1 Battery PDD Functions.. 6-3
6.6.2 Battery Driver Structures ... 6-4

Chapter 7
Bluetooth Driver

7.1 Bluetooth Driver Summary.. 7-1
7.2 Supported Functionality... 7-2
7.3 Hardware Operation... 7-2
7.3.1 Conflicts with Other Peripherals and Catalog Items ... 7-3
7.4 Software Operation .. 7-3
7.4.1 Registry Settings .. 7-4
7.5 Unit Test... 7-4
7.5.1 Unit Test Hardware.. 7-4
7.5.2 Unit Test Software ... 7-4
7.5.3 Running the Unit Tests .. 7-4
7.5.4 Operation Attention Items and Tips... 7-7
7.5.5 Known Issues... 7-8

Chapter 8
Camera Driver

8.1 Camera Driver Summary ... 8-1
8.2 Supported Functionality... 8-1
8.3 Hardware Operation... 8-2

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor vii

Contents
Paragraph
Number Title

Page
Number

8.4 Software Operation .. 8-2
8.4.1 Communicating with the Camera .. 8-2
8.4.2 Camera Registry Settings... 8-2
8.4.3 Power Management ... 8-3
8.5 Unit Test... 8-4
8.5.1 Unit Test Hardware.. 8-4
8.5.2 Unit Test Software ... 8-4
8.5.3 Building the Camera Tests ... 8-5
8.5.4 Running the Camera Tests ... 8-6
8.6 Camera Driver API Reference ... 8-6

Chapter 9
Chip Support Package Driver Development Kit (CSPDDK)

9.1 CSPDDK Driver Summary.. 9-1
9.2 Supported Functionality... 9-1
9.3 Hardware Operation... 9-2
9.3.1 Conflicts with Other Peripherals.. 9-2
9.4 Software Operation .. 9-2
9.4.1 Communicating with the CSPDDK... 9-2
9.4.2 Compile-Time Configuration Options... 9-2
9.4.3 Registry Settings .. 9-3
9.4.4 Power Management ... 9-3
9.5 CSPDDK DLL Reference.. 9-3
9.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference... 9-3
9.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference.. 9-6
9.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference ... 9-10
9.5.4 CSPDDK DLL SDMA (DDK_SDMA) Reference ... 9-14

Chapter 10
Display Driver

10.1 Display Driver Summary ... 10-1
10.2 Supported Functionality... 10-1
10.3 Hardware Operation... 10-2
10.3.1 Rotation Control .. 10-2
10.3.2 TV Output Mode.. 10-2
10.4 Software Operation .. 10-3
10.4.1 Communicating with the Display .. 10-3
10.4.2 Configuring the Display... 10-4
10.4.3 Power Management ... 10-5

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

viii Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

10.5 Unit Test... 10-5
10.5.1 Unit Test Hardware.. 10-6
10.5.2 Unit Test Software ... 10-6
10.5.3 Building the Display Tests ... 10-7
10.5.4 Running the Display Tests ... 10-7
10.6 Display Driver API Reference ... 10-7

Chapter 11
Dynamic Voltage and Frequency Control (DVFC) Driver

11.1 DVFC Driver Summary... 11-1
11.2 Supported Functionality... 11-1
11.3 Hardware Operation... 11-2
11.3.1 Pin Settings and Conflicts.. 11-2
11.4 Software Operation .. 11-2
11.4.1 Loading and Initialization.. 11-2
11.4.2 Clock Tree Dependency... 11-2
11.4.3 Processor Workload Tracking.. 11-2
11.4.4 Setpoint Consideration... 11-3
11.4.5 Lock and Performance ... 11-3
11.4.6 DDK Interface.. 11-3
11.4.7 Power Management ... 11-3
11.5 Unit Test... 11-4

Chapter 12
FM Radio Driver

12.1 Radio Driver Summary.. 12-1
12.2 Supported Functionality... 12-1
12.3 Hardware Operation... 12-1
12.4 Software Operation .. 12-1
12.4.1 Radio Driver Registry Settings .. 12-2
12.4.2 Power Management ... 12-2
12.5 Unit Test... 12-2
12.5.1 Unit Test Hardware.. 12-3
12.5.2 Building the Radio Tests.. 12-3
12.5.3 Running the Radio Tests .. 12-3
12.6 Radio IOCTL Reference.. 12-3
12.6.1 Radio Driver IOCTLS ... 12-3
12.6.2 Radio Driver Structures ... 12-6

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor ix

Contents
Paragraph
Number Title

Page
Number

Chapter 13
General Purpose Timer (GPT) Driver

13.1 GPT Driver Summary .. 13-1
13.2 Supported Functionality... 13-1
13.3 Hardware Operation... 13-1
13.3.1 Conflicts with Other Peripherals.. 13-2
13.4 Software Operation .. 13-2
13.4.1 Communicating with the GPT ... 13-2
13.4.2 Creating a Handle to the GPT.. 13-2
13.4.3 Configuring the GPT.. 13-2
13.4.4 Write Operations.. 13-3
13.4.5 Closing the Handle to the GPT .. 13-3
13.4.6 Power Management ... 13-4
13.4.7 GPT Registry Settings.. 13-4
13.5 Unit Test... 13-4
13.5.1 Unit Test Hardware.. 13-4
13.5.2 Unit Test Software ... 13-5
13.5.3 Building the GPT Tests .. 13-5
13.5.4 Running the GPT Tests .. 13-5
13.6 GPT Driver API Reference .. 13-6
13.6.1 GPT Driver Functions.. 13-6
13.6.2 GPT Driver Structures ... 13-9

Chapter 14
Global Positioning System Driver

14.1 GPS Driver Summary .. 14-1
14.1.1 Application layer.. 14-2
14.1.2 GPS Core Driver Layer.. 14-3
14.1.3 GPS HAL driver layer ... 14-3
14.2 Supported Functionality... 14-3
14.3 Hardware Operation... 14-3
14.3.1 UART Port ... 14-3
14.3.2 GPIO Control... 14-3
14.3.3 Conflicts with Other Peripherals.. 14-4
14.4 Software Operation .. 14-4
14.4.1 Communicating with the GPS Module.. 14-4
14.4.2 Power Management ... 14-4
14.4.3 GPS Driver Registry Settings .. 14-4
14.5 Unit Test... 14-4

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

x Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 15
Inter-Integrated Circuit (I2C) Driver

15.1 I2C Driver Summary ... 15-1
15.2 Requirements ... 15-1
15.3 Hardware Operation... 15-1
15.3.1 Conflicts with other SoC peripherals... 15-2
15.4 Software Operation .. 15-2
15.4.1 Communicating with the I2C... 15-2
15.4.2 Creating a Handle to the I2C ... 15-2
15.4.3 Configuring the I2C... 15-3
15.4.4 Data Transfer Operations ... 15-4
15.4.5 Closing the Handle to the I2C.. 15-6
15.4.6 Power Management ... 15-6
15.4.7 I2C Registry Settings ... 15-6
15.5 Unit Test... 15-7
15.6 I2C Driver API Reference ... 15-7
15.6.1 I2C Driver IOCTLS... 15-7
15.6.2 I2C Driver Macros ... 15-9
15.6.3 I2C Driver Structures... 15-13

Chapter 16
Keypad Driver

16.1 Keypad Driver Summary ... 16-1
16.2 Requirements ... 16-1
16.3 Hardware Operation... 16-1
16.3.1 The Keypad.. 16-2
16.3.2 Conflicts with other SoC peripherals... 16-2
16.4 Software Operation .. 16-2
16.4.1 Keypad Scan Codes and Virtual Keys ... 16-3
16.4.2 Power Management ... 16-3
16.4.3 Keypad Registry Settings... 16-4
16.5 Unit Test... 16-4
16.5.1 Unit Test Hardware.. 16-4
16.5.2 Unit Test Software ... 16-4
16.5.3 Building the Keyboard Tests.. 16-5
16.5.4 Running the Keyboard Tests.. 16-5
16.6 Keypad Driver API Reference ... 16-5
16.6.1 Keypad PDD Functions ... 16-5

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor xi

Contents
Paragraph
Number Title

Page
Number

Chapter 17
LAN9217 Product Ethernet Driver

17.1 LAN9217 Product Ethernet Driver Summary ... 17-1
17.2 Requirements ... 17-1
17.3 Hardware Operation... 17-2
17.3.1 Conflicts with other SoC peripherals... 17-2
17.4 Software Operation .. 17-2
17.4.1 Power Management ... 17-2
17.4.2 Product Ethernet Registry Settings .. 17-2
17.5 Unit Test... 17-3
17.5.1 Unit Test Hardware.. 17-3
17.5.2 Unit Test Software ... 17-3
17.5.3 Building the LAN9217 Product Ethernet Tests ... 17-4
17.5.4 Running the LAN9217 Product Ethernet Tests ... 17-5
17.6 LAN9217 Product Ethernet Driver API Reference ... 17-6

Chapter 18
MBX Direct3D Mobile/OpenGL ES Drivers

18.1 Direct3D Mobile/OpenGL ES Drivers Summary.. 18-1
18.2 Supported Functionality... 18-2
18.3 Hardware Operation... 18-2
18.3.1 Conflicts with other Peripherals .. 18-2
18.4 Software Operation .. 18-2
18.4.1 Application / User Interface to MBX Drivers ... 18-2
18.4.2 Configuring the LCD Display Panels .. 18-3
18.4.3 Float Pointing Acceleration using the ARM VFP Library .. 18-4
18.5 Unit Test... 18-5
18.5.1 Unit Test Hardware.. 18-5
18.5.2 Unit Test Software ... 18-5
18.5.3 Building the Direct3D Mobile Tests.. 18-6
18.5.4 Running the Direct3D Mobile Tests .. 18-6
18.5.5 Direct3D Mobile/OpenGL ES Application Samples/Demos 18-6
18.5.6 Direct3D Mobile Application Samples.. 18-6
18.5.7 Known Issues for MBX CE6 Driver.. 18-7
18.6 Drivers API Reference... 18-7
18.6.1 Direct3D Mobile .. 18-7
18.6.2 OpenGL ES.. 18-8

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

xii Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 19
NAND Flash Media Driver (FMD)

19.1 NAND FMD Summary.. 19-1
19.2 Requirements ... 19-1
19.2.1 Conflicts with other SoC peripherals... 19-2
19.3 Software Operation .. 19-2
19.3.1 Compile-Time Configuration Options... 19-2
19.3.2 Registry Settings .. 19-2
19.3.3 DMA Support .. 19-2
19.3.4 Power Management ... 19-2
19.4 Unit Test... 19-3
19.4.1 CETK Testing .. 19-3
19.4.2 System Testing... 19-4

Chapter 20
Postfilter Driver

20.1 Postfilter Driver Summary... 20-1
20.2 Requirements ... 20-1
20.3 Hardware Operation... 20-2
20.3.1 Conflicts with other SoC peripherals... 20-2
20.4 Software Operation .. 20-2
20.4.1 Communicating with the Postfilter Driver... 20-2
20.4.2 Creating a Handle to the Postfilter Driver ... 20-2
20.4.3 Configuring the Postfilter Driver... 20-2
20.4.4 Executing Postfilter Operations ... 20-3
20.4.5 Closing the Handle to the Postfilter Driver ... 20-4
20.4.6 Postfilter Registry Settings .. 20-4
20.4.7 Power Management ... 20-4
20.5 Unit Test... 20-5
20.5.1 Unit Test Software ... 20-5
20.5.2 Building the Postfilter Tests... 20-5
20.5.3 Running the Postfilter Tests ... 20-5
20.6 Postfilter Driver API Reference... 20-6
20.6.1 Postfilter Driver Functions... 20-6
20.6.2 PF Driver Enumerations .. 20-10
20.6.3 PF Driver Structures .. 20-11

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor xiii

Contents
Paragraph
Number Title

Page
Number

Chapter 21
Power Management IC (PMIC)

21.1 PMIC Driver Summary.. 21-1
21.2 Requirements ... 21-1
21.2.1 PMIC API Framework... 21-2
21.3 Hardware Operation... 21-3
21.3.1 MX31 Peripheral Conflicts.. 21-3
21.4 Software Operation .. 21-3
21.4.1 Configuring the PMIC ... 21-3
21.4.2 Creating a Handle to the PMIC.. 21-3
21.4.3 Write Operations.. 21-4
21.4.4 Read Operations... 21-4
21.4.5 Closing the Handle to the PMIC.. 21-4
21.4.6 Power Management ... 21-4
21.4.7 PMIC Registry Settings ... 21-5
21.4.8 A/D Converter and Touch.. 21-5
21.5 Unit Test... 21-8
21.5.1 Unit Test Hardware.. 21-8
21.5.2 Unit Test Software ... 21-8
21.5.3 Building the PMIC Tests.. 21-9
21.5.4 Running the PMIC Tests.. 21-9
21.6 PMIC Reference API ... 21-10
21.6.1 PMIC Driver IOCTLS ... 21-10
21.6.2 Interrupt Handling.. 21-12
21.6.3 Register Access API .. 21-18
21.6.4 Power Control Reference... 21-19
21.6.5 PowerCutTimer Functions .. 21-29
21.6.6 Memory Hold Operation functions ... 21-30
21.6.7 Power Cut Counter Functions.. 21-32
21.6.8 Power Management ... 21-33
21.6.9 Voltage Regulator .. 21-33

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

xiv Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

21.6.10 Data Structures... 21-33
21.6.11 Switch mode regulator API’s... 21-37
21.6.12 Linear Voltage Regulator API’s ... 21-42
21.6.13 Power Management ... 21-44
21.6.14 Battery Charger ... 21-44
21.6.15 Data Structures... 21-44
21.6.16 Battery Charger API (Compatible with SC55112 API)... 21-44
21.6.17 Battery Charger API (MC13783 Native For Compatibility with SC55112) 21-47
21.6.18 Battery Charger API (MC13783 Native)... 21-48
21.6.19 Power Management ... 21-54

Chapter 22
Power Manager

22.1 Power Manager Summary ... 22-1
22.2 Requirements ... 22-1
22.3 Hardware Operation... 22-1
22.4 3-Stack Software Operation... 22-1
22.4.1 Power Management ... 22-2
22.4.2 Image Configuration.. 22-2
22.4.3 Registry Settings .. 22-3
22.5 Unit Test... 22-4
22.6 Power Manager API Reference ... 22-4
22.6.1 Application Interface ... 22-4
22.6.2 Device Driver Interface ... 22-5

Chapter 23
Secure Digital Host Controller Driver

23.1 SDHC Driver Summary... 23-1
23.2 Supported Functionality... 23-1
23.3 Hardware Operation... 23-1
23.3.1 Conflicts with Other Peripherals.. 23-2
23.4 Software Operation .. 23-2
23.4.1 Required Catalog Items ... 23-2
23.4.2 SDHC Registry Settings .. 23-2
23.4.3 DMA Support .. 23-3
23.4.4 Power Management ... 23-3

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor xv

Contents
Paragraph
Number Title

Page
Number

23.5 Unit Test... 23-4
23.5.1 Unit Test Hardware.. 23-4
23.5.2 Unit Test Software ... 23-5
23.5.3 Building the Tests .. 23-5
23.5.4 Running the Tests... 23-5
23.5.5 System Testing... 23-6
23.6 Secure Digital Card Driver API Reference.. 23-6

Chapter 24
Serial Driver

24.1 Serial Driver Summary .. 24-1
24.2 Supported Functionality... 24-1
24.3 Hardware Operation... 24-2
24.3.1 Conflicts with Other Peripherals.. 24-2
24.4 Software Operation .. 24-2
24.4.1 Serial Registry Settings.. 24-2
24.4.2 DMA Support .. 24-3
24.5 Unit Test... 24-4
24.5.1 Unit Test Hardware.. 24-4
24.5.2 Unit Test Software ... 24-4
24.5.3 Building the Serial Port Driver Tests ... 24-4
24.5.4 Running the Serial Port Driver Test... 24-4
24.6 Serial Driver API Reference .. 24-5
24.6.1 Serial PDD Functions .. 24-6
24.6.2 Serial Driver Macros.. 24-7
24.6.3 Serial Driver Structures ... 24-7

Chapter 25
Touch Panel Driver

25.1 Touch Panel Driver Summary.. 25-1
25.2 Supported Functionality... 25-1
25.3 Hardware Operations ... 25-1
25.3.1 Conflicts with Peripherals.. 25-2
25.3.2 Conflicts with i.MX31 3-Stack .. 25-2
25.4 Software Operation .. 25-2
25.4.1 Touch Driver Registry Settings.. 25-2

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

xvi Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

25.5 Unit Tests ... 25-3
25.5.1 Unit Test Hardware.. 25-3
25.5.2 Unit Test Software ... 25-3
25.5.3 Building the Touch Panel Tests.. 25-4
25.6 Touch Panel API Reference ... 25-4

Chapter 26
USB Boot and KITL

26.1 USB Boot and KITL Summary ... 26-1
26.2 Supported Functionality... 26-1
26.3 Hardware Operation... 26-2
26.3.1 Conflicts with Other Peripherals.. 26-2
26.4 Software Operation .. 26-2
26.4.1 Software Architecture .. 26-2
26.4.2 Source Code Layout... 26-3
26.4.3 IOMUX and Pinout.. 26-3
26.4.4 Power Management ... 26-3
26.4.5 Registry Settings .. 26-3
26.4.6 DMA Support .. 26-3
26.5 Unit Test... 26-4
26.5.1 Building the USB Boot and KITL ... 26-4
26.5.2 Testing USB Boot and KITL ... 26-4

Chapter 27
USB OTG Driver

27.1 USB OTG Driver Summary .. 27-1
27.1.1 OTG Client Driver Summary .. 27-1
27.1.2 OTG Host Driver Summary... 27-2
27.1.3 OTG Transceiver Driver Summary (For HIGH-SPEED only).................................. 27-2
27.2 Supported Functionality... 27-3
27.3 Hardware Operation... 27-4
27.3.1 Conflicts with Other Peripherals.. 27-4
27.3.2 Signal Quality Requirement... 27-4

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor xvii

Contents
Paragraph
Number Title

Page
Number

27.4 Software Operation .. 27-4
27.4.1 USB OTG Host Controller Driver ... 27-4
27.4.2 USB Client Driver ... 27-13
27.4.3 USB Transceiver Driver (ID Pin Detect Driver -- XCVR)...................................... 27-18
27.4.4 Power Management ... 27-22
27.4.5 Function Drivers .. 27-25
27.4.6 Class Drivers.. 27-28
27.5 IRAM Patch ... 27-30
27.6 Basic Elements for Driver Development ... 27-30
27.6.1 BSP Environment Variables... 27-30
27.6.2 Dependencies of Drivers.. 27-31

Chapter 28
WLAN Driver

28.1 WLAN Driver Summary ... 28-1
28.2 Supported Functionality... 28-2
28.3 Hardware Operation... 28-2
28.3.1 Conflicts with Other Peripherals.. 28-2
28.4 Software Operation .. 28-2
28.4.1 Wi-FI Registry setting.. 28-3
28.5 Unit Test... 28-4
28.5.1 Unit Test Hardware.. 28-4
28.5.2 Unit Test Software ... 28-5
28.5.3 Running the WLAN Driver Tests .. 28-5
28.5.4 Test the WLAN Communication without Protection .. 28-6

Appendix A
Frequently Asked Questions

A.1 How to Deal with Different Resolutions of the Display Panel? A-1
A.2 How to Deal with Different Display Interface Formats?.. A-1

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

xviii Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor xix

About This Book
This reference manual describes the requirements, implementation, and testing for the modules included
in Freescale’s software development kit (SDK) for Microsoft® Windows® CE 6.0.

Audience
This document is intended for device driver developers, application developers, and test engineers who are
planning to use the product. This document is also intended for people who want to know more about
Freescale’s software development kit (SDK) for Microsoft Windows CE 6.0.

Suggested Reading
Freescale documentation is available from the sources listed on the back cover of this manual.

• Microsoft Windows Embedded CE Help can be viewed from the Microsoft Developer Network at
http://msdn.microsoft.com. Visit the web site and search for the string, “Windows Embedded CE.”

• http://msdn.microsoft.com/embedded/windowsce

• i.MX31 PDK Hardware User’s Guide

• i.MX31 Applications Processor IC Reference Manual

• i.MX31 PDK Windows Embedded CE 6.0 Release Notes

• i.MX31 PDK Windows Embedded CE 6.0 User’s Guide

• Windows Embedded CE 6.0 BSP Reference Guide (RTM14)

• Visual Studio 2005 Help

The Freescale manuals can be also be found at http://www.freescale.com. The manuals can be downloaded
directly from the web, or you can also order the printed copies. The Freescale manuals may also be
provided with your PDK.

Conventions
This document uses the following conventions:

• Courier is used to identify commands, explicit command parameters, code examples,
expressions, data types, and directives.

• Bold indicates the menu options or buttons the user can select. Cascaded menu options are
delimited with the → symbol.

• Italic is used for emphasis, to identify new terms, and for replaceable command parameters.

http://msdn.microsoft.com
http://www.freescale.com

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

xx Freescale Semiconductor

Acronyms and Abbreviations
Table i contains acronyms and abbreviations used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

API Application programming interface

BSP Board support package

CSP Chip support package

CSPI Configurable serial peripheral interface

D3DM Direct 3D Mobile

DHCP Dynamic host configuration protocol

DPTC Dynamic power and temperature control

DVFC Dynamic voltage and frequency control

DVFS Dynamic voltage and frequency scaling

EBOOT Ethernet bootloader

FAL Flash abstraction layer

FIR Fast infrared

FMD Flash media driver

GDI Graphics display interface

GPT General purpose timer

I2C Inter-integrated circuit

IDE Integrated development environment

IPU Image processing unit

IST Interrupt service thread

KITL Kernel independent transport layer

LVDS Low-voltage differential signaling

MAC Media access control

MMC Multimedia cards

NLED Notification Light Emitting Diode

OAL OEM adaptation layer

OEM Original equipment manufacturer

OS Operating system

OTG On-the-go

PMIC Power management IC

PQOAL Production quality OEM adaptation layer

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor xxi

PWM Pulse-width modulation

SD Secure digital cards

SDC Synchronous display controller

SDHC Secure digital host controller

SDIO Secure digital I/O and combo cards

SDK Software development kit

SDRAM Synchronous dynamic random access memory

SIM Subscriber identification module

SIR Slow infrared

SoC System on a chip

UART Universal asynchronous receiver transmitter

USB Universal serial bus

Table i. Acronyms and Abbreviated Terms

Term Meaning

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

xxii Freescale Semiconductor

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 1-1

Chapter 1
Introduction
This Freescale i.MX31 PDK Windows Embedded CE 6.0 based product development kit (PDK) helps
speed development of applications for the Freescale i.MX31 3-Stack multimedia applications processor.
It includes the following:

• Software development kit (SDK), which includes tools, BSP, codecs, basic middleware, and
applications

• Hardware board (i.MX31 3-Stack board)

• Documentation

This kit supports the Microsoft Windows® Embedded CE 6.0 operating system, and requires the use of
Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded OS designs. To view feature information, see the i.MX31 PDK Release Notes.

NOTE
Use this guide in conjunction with Microsoft Windows Platform Builder
Help (or the identical Platform Builder User Guide).

• To view the Platform Builder Help, click Help from within the Platform
Builder application.

• To view the Platform Builder User Guide, visit:
http://msdn2.microsoft.com/en-us/library/aa448606.aspx

1.1 Getting Started
For instructions on installing the SDK, and on building, downloading, and running the OS image on the
hardware board, refer to the i.MX31 PDK 1.5 Windows Embedded CE 6.0 User’s Guide included with this
distribution.

1.2 SDK System Architecture
Figure 1-1 shows the SDK system, which consists of tools, bootloader, BSP layer, a middleware, and core
OS service layer, and an application layer.

Introduction

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

1-2 Freescale Semiconductor

1.2.1 Tools and Bootloader

The PDK tools and boot loader consist of the following components.

1.2.2 BSP Layer

The BSP layer contains the following components.

1.2.3 Middleware and Core OS Service Layer

The middleware and core OS service layer contains the Power Management components.

1.2.4 Application Layer

The application layer contains the following components.

Tools Flashing tool: support image download and flashing from UART

EBOOT

ATA Display LCD GPT Serial

Audio DAC Display TV-Out I2C SDHC

Backlight DVFC KPP Touch Panel

Battery Ethernet MBX D3DM&OpenGL USB

Camera FM Radio NAND FMD WiFi

DDK GPS PMIC

FM Radio application TV-Out application

Camera application 3D Demo Application

Introduction

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 1-3

Figure 1-1. WSDK System Diagram

Introduction

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

1-4 Freescale Semiconductor

1.3 Windows Embedded CE 6.0 Architecture
The Windows Embedded CE 6.0 architecture is a variation of Microsoft's Windows operating system for
minimalistic computers and embedded systems. The architecture of the operating system and sub-systems
(for example, power management and DirectDraw) are described in several locations in the Help. You may
want to begin at the following location in Help:
Welcome to Windows Embedded CE 6.0 > Windows Embedded CE Architecture

ACC Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 2-1

Chapter 2
ACC Driver
The accelerometer (ACC) driver is used as the lower layer for the ACC algorithm layer. The main purpose
of the ACC driver is to provide I2C interface for register access, and act as an interrupt process on the
MMA7450L accelerometer. The ACC driver is constructed as a stream interface driver that exposes I/O
control codes (IOCTL_ACC_XXX).

2.1 ACC Driver Summary
The following table identifies the source code location, library dependencies, and other BSP information.

Driver Attribute Definition

Target Platform (TGTPLAT) IMX313DS

Target SOC (TGTSOC) N/A

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path ..\PLATFORM\<tgtplat>\SRC\DRIVERS\ACCELEROMETER

Import Library (cspddk.lib)

Driver DLL mma.dll

Catalog Item Third Party −> BSPs −> Freescale i.MX313DS:ARMV4I −>
Device Drivers −> Accelerometer

SYSGEN Dependency

BSP Environment Variable BSP_ACC

ACC Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

2-2 Freescale Semiconductor

2.2 Supported Functionality
The ACC driver enables the MMA7450L sensor on the 3-Stack board to provide the following software
and hardware support:

• Flexibility to select STANDBY, MEASUREMENT, LEVEL DETECTION or PULSE
DETECTION mode for multifunctional applications

• Flexibility to select 2g, 4g or 8g of acceleration for multifunctional applications

• Flexibility to select an output resolution of 8-bit or 10-bit

• Flexibility to select detection axis, X-axis,Y-axis, Z-axis or arbitrary combination

• Offset calibration

2.3 Hardware Operation
For operation and programming information, see the MCIMX31 and MCIMX31L Applications Processors
Reference Manual.

2.4 Software Operation

2.4.1 Application / User Interface to ACC drives

The ACC device exports a standard streams interface to the Application/User, and can be accessed using
functions such as CreateFile() and CloseHandle().

2.4.2 ACC Driver Configuration

You configure the driver into the BSP build by dragging the catalog item. Doing so defines the
environment variable/configuration option: BSP_ACC.

2.4.3 Loading and Initialization

The ACC driver is loaded by the device manager in the kernel space. As part of the stream driver loading
procedure, the device manager invokes the corresponding stream initialization function exported by the
ACC driver. The initialization sequence includes a call to platform-specific code (BSPEnableACC) to power
on the sensor and set the IOMUX configuration.

ACC Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 2-3

2.4.4 Mode Selection

The following table describes the four available modes.

2.4.5 G-Level Selection

The following table describes the four G-Level options.

2.4.6 Output Resolution

There are two available output resolutions.

2.4.7 Detection Axis

The X, Y and Z axis detection can be enabled separately and combined in any way.

Name Configuration Setting Name Description

STANDBY ACC_MODE_STANDBY The device outputs are turned off, providing significant
reduction of operating current.

MEASUREMENT ACC_MODE_MEASUREMENT During measurement mode, continuous measurements on all
three axes enabled.

LEVEL
DETECTION

ACC_MODE_LEVEDETECTION In level detection mode, the measurements for x, y and z are
all enabled with 2g/4g and 8g range available. The detection of
thresholds for an acceleration signal level for the combinations
of x and y or x, y, and z is enabled.

PULSE
DETECTION

ACC_MODE_PULSEDETECTION In pulse detection mode, both 2g/4g and 8g range are
available. Measurements for x, y and z in 2g/4g or 8g mode are
enabled.
The level detection is also enabled in this mode. The pulse
detected by the acceleration signal is enabled with single pulse
and double pulse detection allowing the choice of either
positive, negative, or absolute value pulse detection.

Name
Configuration

Setting
g-Range Sensitivity

8G(10bit) ACC_GSEL_8G -8G~~8G 64 LSB/g

8G(8bit) ACC_GSEL_8G -8G~~8G 16 LSB/g

4G ACC_GSEL_4G -4G~~4G 32 LSB/g

2G ACC_GSEL_2G -2G~~2G 64 LSB/g

Resolution Configuration Setting

8-bit ACC_GSEL_8G, ACC_GSEL_4G, ACC_GSEL_2G

10-bit ACC_GSEL_8G

ACC Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

2-4 Freescale Semiconductor

2.4.8 Calibration

The offsets of the X, Y and Z axes can be assigned to calibrate the output.

2.4.9 Power Management

The ACC supports two power management modes, ON (D0) and STANDBY (D4). These modes are
managed through the standard Windows Power Manager. Power Manager uses IOCTL_POWER_SET to
switch the disk's power state, according to the inactivity settings configured in Power Manager.

2.4.9.1 PowerUp

This stream interface function is not implemented for the ACC driver.

2.4.9.2 PowerDown

This stream interface function is not implemented for the ACC driver.

2.4.9.3 IOCTL_POWER_CAPABILITIES

The D0 or D4 device power states are supported.

2.4.9.4 IOCTL_POWER_SET

The DVFC driver supports requests to enter the D0 or D4 device power state.

2.4.9.5 IOCTL_POWER_GET

The DVFC driver reports the current device power state (D0 or D4).

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-1

Chapter 3
ATA Driver
The ATA driver in Windows Embedded CE 6.0 is a block driver, used as the lower layer for File Systems
and USB mass storage, for example. It is constructed as a stream interface driver that exposes I/O control
codes (IOCTL_DISK_XXX and DISK_IOCTL_XXX). The file system uses these I/O control codes to
access the ATA devices.

3.1 ATA Driver Summary
The following table provides a summary of source code location, library dependencies and other BSP
information:

Table 3-1. ATA Driver Attributes

3.2 Requirements
The ATA driver must meet/support the following requirements:

• Provide standard Microsoft Block Storage Device API, including disk information management,
formatting, block data read/write with full scatter-gather buffer support

• Support two power management modes, full on and full off

• Support standard bus timing mode for UDMA mode 3 (optional support other modes such as PIO
modes 0-4, MDMA modes 0-2, and UDMA modes 0-2 & 4).

• Support full sustained (media) data throughput capacity of Hitachi TravelStar C4K40 (or
equivalent) at UDMA mode 3.

• Support full sustained (media) data throughput capacity of SST NANDrive (or equivalent) at
UDMA mode 3.

Driver Attribute Definition

Target Platform (TGTPLAT) IMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\FREESCALE\<TGTSOC>\A
TA

CSP Static Library ata_<TGTSOC>.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\BLOCK\ATA

Import Library (cspddk.lib)

Driver DLL ata_mx31.dll

Catalog Item Third Party −> BSP −> Freescale i.MX31 3DS: ARMV4I −>
Storage Drivers −> ATA device driver

SYSGEN Dependency SYSGEN_MSPART,SYSGEN_FATFS,SYSGEN_EXFAT

BSP Environment Variable BSP_ATA

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-2 Freescale Semiconductor

NOTE
UDMA5 mode requires 80MHz bus clock or above, so this mode may not
apply to MX31 which bus clock is 66.5MHz.

NOTE
If SST NANDdrive is set to be write-protected through a jumper or host
logic, the ATA driver will output message “WARNING: NANDrive write
protected!!!”.

3.3 Hardware Operation
For operation and programming information, see the chapter on the Advanced Technology Attachment
(ATA) in the MCIMX31 and MCIMX31L Applications Processors Reference Manual.

The MX31 contains an on-chip ATA controller. Data transfers on the ATA bus can take place through the
following:

• CPU programmed data transfers through ATA controller registers. (Programmed I/O modes, “PIO”
modes 0-4)

• “Multi-word” DMA (MDMA modes 0-2)

• “Ultra” DMA (UDMA modes 0-5)

Within the types of ATA-bus data transfer (PIO or xDMA), the various “modes” (0-n) refer only to
specified combinations of timing parameters, as supported by industry standard hardware. The ATA DMA
modes transport data between the ATA peripheral (disk) and the system bus, through the MX31's ATA
peripheral data FIFO.

Figure 3-1. ATA Hardware Block Diagram

ARM CPU

Memory Management
Unit

Smart DMA
Controller

System
Memory System Bus

ATA Data
FIFO

ATA DMA
Controller

ATA Control
Registers

Interrupt

MDMA UDMA

Transaction
Parameters,
PIO data,
Interrupts

ATA Bus

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-3

The MX31 also contains a “Smart DMA controller” (SDMA) which acts as a third-party bus mastering
DMA, for transporting data between the ATA data FIFO and system memory. SDMA support is built in to
the ATA driver, and is automatically configured and used when UDMA or MDMA modes are selected for
data transport on the ATA bus. The default block/sector size is 512 bytes. With these sector sizes, far
greater efficiency in processor/bus usage is gained by setting UDMA or MDMA modes, instead of PIO
modes. The PIO modes are provided for functional compatibility with legacy hardware which may not
support fastest current data rates.

The appropriate ATA-specific mode (PIO, MDMA or UDMA) must be selected based on the capabilities
of the specific attached ATA peripheral.

3.3.1 Conflicts with other Peripherals and Catalog Options

3.3.1.1 Conflicts with SoC Peripherals

On the MX31 processor, the ATA has signals which can conflict with the CSPI device (CSPI1), USB
Host 1 port and PWM module depending on configuration. See below for details of current
implementation.

3.3.1.2 Conflicts on 3-Stack board

Because the CSPI1 device, the USB Host 1 port, and the PWM module are not supported on the 3-Stack
board, the ATA as implemented for the 3-Stack board has no pin conflicts with the CSPI device (CSPI1),
USB Host 1 port, and PWM.

3.3.2 Cabling

The ATA specification requires an 80 core ribbon cable when used in UDMA modes 3 or greater. This may
be relaxed for cables shorter than the maximum defined in the specification.

3.4 Software Operation

3.4.1 Application / User Interface to ATA drives

The ATA device exports a standard streams interface to the Windows File System. Application-level
access to ATA disks is through the Windows File System, using functions such as CreateFile() and
CloseHandle().

The File System, or user software which requires block device access to the ATA, does so through the
standard Windows Embedded CE Block Device IOCTLs as described in section 0. These provide
functions to acquire disk information and to read and write blocks (disk sectors) of data.

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-4 Freescale Semiconductor

3.4.2 ATA Driver Configuration

The driver is configured into the BSP build by dragging & dropping the catalog item as defined in
Section 3.1, “ATA Driver Summary.” This defines the environment variable/configuration option:
BSP_ATA.

Configuration for the ATA is then provided through registry settings imported from platform.reg. These
settings can be modified to select timing and transfer mode, and if necessary the device prefix and index.

3.4.2.1 Transfer Mode and Timing

The mode by which data is transported on the ATA bus (TransferMode) is configured by a registry setting
defined in Section 3.4.4, “Registry Settings.”

The ATA bus timings are based on the i.MX31 clock, as defined in the MX31 hardware reference manual.
The driver requires a clock period of 15 nanosec (66.6 MHz).

3.4.2.2 Prefix and Index

The default device prefix is “DSK” and Index is “1”. These items are important when configuring a storage
device as source for the USB Mass Storage client. The USB Mass Storage client (function) driver's default
registry configuration, from PUBLIC\Common\OAK\FILES\common.reg, sets the source block device as
“DSK1”.

When no Index is configured for the ATA block device, the bus enumerator will assign an index according
to the order of block device loading. When removable storage is attached to USB host ports (as mass
storage class), or when RAMDISK is included, the index assigned to these other block devices can
influence any Index automatically assigned by the bus enumerator.

3.4.2.3 IOMUX and Pinout

The internal MX31 ATA signals can be multiplexed to a choice of pins on IC, as described for the IOMUX
in the hardware reference manual.

3.4.2.4 Defaults

The default mode for the ATA is transfer mode UDMA mode 3 for MX31, as selected by the default
platform.reg file supplied for the build.

3.4.3 Power Management

The ATA supports two power management modes, ON (D0) and OFF (D4). These modes are managed
through the standard Windows Power Manager. Power Manager uses IOCTL_POWER_SET to switch the
disk's power state, according to inactivity settings configured in Power Manager.

As for standard block drivers, PowerUp and PowerDown functions are called by the Device Manager.

The primary method for limiting power consumption in the ATA module is to gate off all clocks to the
module when those clocks are not needed. This is accomplished through the DDKClockSetGatingMode

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-5

function call. The clock is turned on during initialization process and the clock is turned off after
initialization is completed. Data transfer operations are handled in DSK_IOCTL function to process the
IOCTL calls from the File System. The ATA driver turns ON the clock and enables the ATA module before
processing any data transfer. After the block of data has been processed, the ATA module is disabled and
the clock is turned OFF.

3.4.3.1 PowerUp

This function called by the Device Manager sets a flag to indicate power is up.

3.4.3.2 PowerDown

This function called by the Device Manager ensures volatile data is stored in RAM and sets a flag to
indicate power is down.

3.4.3.3 IOCTL_POWER_SET

This IOCTL handles the request to change disk power state (D0 or D4), called by Power Manager (or
SetDevicePower() API).

3.4.4 Registry Settings

The ATA driver settings are taken from platform.reg, which can be customized for each particular build.
These registry values are located under the registry key:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ATA_MX31]

The values under that registry key should be defined in platform.reg. These can be qualified with the
BSP_ATA system variable for configurable catalog item support.

Table 3-2. ATA Driver Registry Key Values

Value Type Content Description

Dll sz ata_mx31.dll Driver dynamic link library

IClass sz "{A4E7EDDA-E575-4252-9D6B-4195D48BB865}"
GUID for a power-manageable block device

TransferMode dword 08 PIO mode 0

09 PIO mode 1

... ...

0C PIO mode 4

20 MDMA mode 0

21 MDMA mode 1

22 MDMA mode 2

40 UDMA mode 0

... ...

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-6 Freescale Semiconductor

As indicated in the above table, the following settings should be combined:

For PIO modes:
"InterruptDriven"=dword:01 ; 01-enable interrupt driven I/O, 00-disable
"DMA"=dword:00 ; disable DMA
"TransferMode"=dword:0c ; 08-PIO mode 0, ..., 0C-PIO mode 4
"IORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

For MWDMA modes:
"InterruptDriven"=dword:01 ; enable interrupt driven I/O
"DMA"=dword:01 ; enable DMA
"TransferMode"=dword:20 ; 20-MWDMA mode 0, ..., 22-MWDMA mode 2
"IORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

For UDMA modes:
"InterruptDriven"=dword:01 ; enable interrupt driven I/O
"DMA"=dword:01 ; enable DMA
"TransferMode"=dword:43 ; 40-UDMA mode 0, ..., 45-UDMA mode 5
"IORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

Standard registry entries also to be included for the ATA device under the above key, are indicated below.

Table 3-3. ATA Standard Registry Values

45 UDMA mode 5

InterruptDriven dword 01

(00)

enable interrupt-driven I/O use for PIO or MDMA/UDMA modes
(disable interrupt; not used normally)

DMA dword 00
01

disable DMA (always disable for PIO mode)
enable DMA (always enable for MDMA or UDMA modes)

IORDYEnable dword 01 enable Host IORDY for PIO mode 3 and 4

Value Type Content Description

Prefix sz “DSK” Device identifier (combined with Index for DSK1 for example)

Index dword 1 Instance of ATA drive.

Order dword 10 Early, to allow file system loading

DoubleBufferSize dword 10000 128 sectors

DrqDataBlockSize dword 200 Each data request is one sector, always 512 bytes

WriteCache dword 01 disk internal cache is enabled within drive

LookAhead dword 01 disk read-ahead to internal is enabled within drive

DeviceId dword 00 primary device ID

HDProfile sz “HDProfile” Storage Manager profile to be used in GetDeviceInfo (see below)

Value Type Content Description

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-7

In addition to these values, the ATA makes use of the HDProfile information from the StorageManager
registry keys. Default/sample values are as below:
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile]
"Name"="ATA Hard Disk Drive"
"Folder"="Hard Disk"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile\FATFS]
"EnableCacheWarm"=dword:00000000

3.4.5 DMA Support

The ATA driver supports DMA mode and non-DMA mode of transfer. The driver always defaults to DMA
mode of transfer. ATA supports three transfer-types: UDMA, MDMA and PIO modes. PIO mode works
in non-DMA mode of operation while other modes works in DMA mode. To change the mode of tranfer,
change the value of “TransferMode“ from the registry. When the ATA driver operates in SDMA, it always
uses the scatter gather method. Though the flag BSP_SDMA_SUPPORT_ATA is present in bsp_cfg.h, it
does not control whether SDMA is used or not.

The driver does not allocate or manage DMA buffers internally. All buffers are allocated and managed by
the upper layers, the details of which are given in the request submitted to the driver. For every request
submitted to it, the driver attempts to build a DMA Scatter Gather Buffer Descriptor list for the buffer
passed to it by the upper layer.

For the driver to attempt to build the Scatter Gather DMA Buffer Descriptors, the upper layer should
ensure that the buffer meets the following criteria:

• Start of the buffer should be a cache-line (32byte) aligned address.

• Number of bytes to transfer should be cache-line (32byte) aligned.

3.5 Unit Test
The ATA driver is tested using the Storage Device test cases included as part of the Windows Embedded
CE Test Kit (CETK). There are no custom CETK test cases for the ATA driver. The Storage Device test
cases used to test the ATA driver include:

1. File System Driver Test cases

2. Storage Device Block Driver API Test cases

3. Storage Device Block Driver Read/Write Test cases

4. Storage Device Block Driver Benchmark Test cases

5. Storage Device Block Driver Performance Test cases

3.5.1 Unit Test Hardware

The following table lists the required hardware to run the ATA driver unit tests.
Table 3-4. ATA Driver Unit Test Hardware Requirements

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-8 Freescale Semiconductor

3.5.2 Unit Test Software

The following table lists the required software to run the Storage Device Tests.

Table 3-5. ATA Storage Device Test Software Requirements

3.5.3 Building the Storage Device Tests

The Storage Device Tests come pre-built as part of the CETK. No steps are required to build these tests.
The fsdtst.dll, disktest.dll rw_all.dll and rwtest.dll files can be found alongside the other required CETK
files in the following location:
\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

3.5.4 Running the Storage Device Tests

These CETK tests will destroy any information residing on the hard disk.

The tests can be launched from command line or CE Target Control window in Platform Builder.

The command line for running the File System Driver Test is:
 tux –o –d fsdtst -x 1001-1010,5001-5031 -c "-p HDProfile –zorch”

This performs file system tests which cover all required File System API functions. Excluded are those
tests which manipulate disk partitions.

The command line option HDProfile refers to the registry setting used to establish storage device profile
information to the Storage Manager:
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\HDProfile]
"Name"="ATA Hard Disk Drive"
"Folder"="Hard Disk"

Requirements Description

i.MX31 and attached HITACHI hard disk
C4K40 or SST NANDrive.

Other drives supporting up to UDMA mode 3 may be used.

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test.

Kato.dll Kato logging engine, which is required for logging test data.

fsdtst.dll Test .dll file used to perform File System Driver Test cases.

disktest.dll Test .dll file used to perform Storage Device Block Driver API Test cases.

rw_all.dll Test .dll file used to perform Storage Device Block Driver Benchmark Test cases.

rwtest.dll Test .dll for various read/write options, including multi-threading and various block sizes.

Disktest_perf.dll Test .dll file used to perform Storage Device Block Driver Performance Test cases.

perflog.dll Logging library that provides functionality for timing and logging the performance data generated
by the test dll.

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-9

NOTE
The command line option “-zorch” is case-sensitive (the help message
within the test .dll is not correct) and is used to confirm over-writing of all
information on the hard disk.

NOTE
Test cases 5019 and 5022 can be safely skipped.

The command line for running the Storage Device Block Driver API Test is:
tux –o –d disktest –c "-p HDProfile -zorch /maxsectors 65536"

NOTE
The free program memory to be adjusted to be larger than 64Mbytes in
control panel, CETK cases 4021 can be safely skipped.

The command line for running the Storage Device Block Driver Read/Write Test is:
tux -o -d rwtest -c "-p HDProfile -zorch"

The command line for running the Storage Device Block Benchmark Test is:
tux -o -d rw_all –x 1006 –c "-p HDProfile -zorch"

The command line for running the Storage Device Block Driver Performance Test is:
tux -o -d disktest_perf -c "-profile HDProfile -zorch"

This includes only the benchmark test for 128 contiguous sectors. The test reads and writes all sectors of
the drive in 128 block (64 kByte) chunks. When drive read-ahead is enabled, this will allow the drive to
provide maximum sustained data rate from the media, to ensure the ATA driver supports the same. It is not
necessary for all drive sectors to be tested, but the pre-compiled test does not have options to limit the
portion tested, and all components are not publicly available for test customization. The test takes
approximately 4 hours to execute on a 40 GB drive. Tests using smaller contiguous chunks take even
longer, and are not necessary for driver characterization.

For detailed information on the Storage Device CETK test cases, refer to the following:
Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests > File System Driver
Test

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests −> Storage Device
Block Driver API Test

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests −> Storage Device
Block Driver Read/Write Test

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests −> Storage Device
Block Benchmark Test

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests −> Storage Device
Block Driver Performance Test

3.6 Basic Elements for Driver Development
This chapter provides details of the basic elements for driver development in the <TGTPLAT> BSP.

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-10 Freescale Semiconductor

3.6.1 BSP Environment Variables
Table 3-6. BSP Environment Variables

3.6.2 Mutual Exclusive Drivers

Since the ATA as implemented for the 3-Stack board has no pin conflicts with the CSPI device (CSPI1),
USB Host 1 port and PWM, there are no mutual exclusive drivers.

3.6.3 Dependencies of Drivers

The following table summarizes the Microsoft-defined environment variables used in the BSP.
Table 3-7. Environment Variables Used in the BSP

3.7 Block Device API Reference
The primary interface to the ATA block device is through the standard Windows Embedded CE Block
Device IOCTLs as described in the following sections. Application-level access to ATA disks should be
through the Windows File System.

For reverse compatibility deprecated DISK_IOCTL* are also supported but not documented here. See
CE 6.0 Help for further details.

The driver also supports the standard XXX_Init, XXX_Deinit, XXX_Open and XXX_Close routines, as
used by the Device Manager and the bus enumerator to load the driver. When the registry settings for ATA
are correct, these functions are handled automatically, and need no further documentation here.

3.7.1 IOCTL_DISK_DEVICE_INFO

This DeviceIoControl request returns storage information to block device drivers.

Parameters

lpInBuffer [in] Pointer to a STORAGEDEVICEINFO structure.

nInBufferSize [in] Specifies the size of the STORAGEDEVICEINFO structure.

Names Definition

BSP_ATA Set to enable ATA device driver

Names Definition

SYSGEN_FATFS Set to support FAT32 file system

SYSGEN_EXFAT Set to support EXFAT file system

SYSGEN_STOREMGR Set to support storage manager

SYSGEN_STOREMGR_CPL Set to support storage manager in control
panel

SYSGEN_MSPART Set to support partition driver.

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-11

lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.2 IOCTL_DISK_GET_STORAGEID

This DeviceIoControl request returns the current STORAGE_IDENTIFICATION structure for a particular
storage device.

Parameters

hDevice [in] Handle to the block device storage volume, which can be obtained by opening
the FAT volume by its file system entry. The following code example shows how
to open a PC Card storage volume.

hVolume = CreateFile(TEXT("\Storage Card\Vol:"),
GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,
NULL);

lpOutBuffer [out] Set to the address of an allocated STORAGE_IDENTIFICATION structure.
This buffer receives the storage identifier data when the IoControl call returns

nOutBufferSize [out] Set to the size of the STORAGE_IDENTIFICATION structure and also
additional memory for the identifiers. For Advanced Technology Attachment
(ATA) disk devices, the identifiers consist of 20 bytes for a manufacturer identifier
string, and also 10 bytes for the serial number of the disk.

lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.3 IOCTL_DISK_GETINFO

This DeviceIoControl request returns notifies the block device drivers to return disk information.

Parameters

lpOutBuffer [out] Pointer to a DISK_INFO structure.

nOutBufferSize [out] Specifies the size of the DISK_INFO structure.

lpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.4 IOCTL_DISK_GETNAME

This DeviceIoControl request services the request from the FAT file system for the name of the folder that
determines how users access the block device. If the driver does not supply a name, the FAT file system
uses the default name passed to it by the file system.

Parameters

lpOutBuffer [out] Specifies a buffer allocated by the file system driver. The device driver fills
this buffer with the folder name. The folder name must be a Unicode string.

nOutBufferSize [out] Specifies the size of lpOutBuffer. Always set to MAX_PATH where
MAX_PATH includes the terminating NULL character.

ATA Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-12 Freescale Semiconductor

lpBytesReturned [out] Set by the device driver to the length of the returned string and also the
terminating NULL character.

3.7.5 IOCTL_DISK_READ

This DeviceIoControl request services FAT file system requests to read data from the block device.

Parameters

lpInBuffer [in] Pointer to a SG_REQ structure.

nInBufferSize [in] Specifies the size of the SG_REQ structure.

lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned. Set to NULL if you do
not need to return this value.

3.7.6 IOCTL_DISK_SETINFO

This DeviceIoControl request services FAT file system requests to set disk information.

Parameters

lpInBuffer [in] Pointer to a DISK_INFO structure.

nInBufferSize [in] Specifies the size of DISK_INFO.

lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned.

3.7.7 IOCTL_DISK_WRITE

This DeviceIoControl request services FAT file system requests to write data to the block device.

Parameters

lpInBuffer [in] Pointer to an SG_REQ structure.

nInBufferSize [in] Specifies the size of SG_REQ.

lpBytesReturned [out] Pointer to a DWORD to receive total bytes returned.

See the sr_status member of SG_REQ for write status. ERROR_SUCCESS indicates write success.

3.7.8 IOCTL_DISK_FLUSH_CACHE

This DeviceIoControl request issues the ATA FLUSH CACHE command to the disk.

Parameters [No parameters]

Return Value ERROR_SUCCESS: flushed okay

ERROR_GEN_FAILURE: Failed to send flush command. Either write caching
was not enabled on the device, or command was aborted.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-1

Chapter 4
Audio Driver
The audio driver module for the MC13783 PMIC (wavedev_MC13783.dll) is used for providing audio
playback and recording functions. This module is capable of performing audio playback using the
MC13783 PMIC Stereo DAC and recording using the MC13783 Voice CODEC. Note that for the 3-Stack
board set, the ssi channel for Voise CODEC is not connected on the CPU engine board. So only playback
function is supported. Recording function is not supported, and is disabled in the driver.

An application can access the audio driver using the methods and functions related with waveout function
that are described in the following Platform Builder online help section:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Application
Development

4.1 Audio Driver Summary
The table below provides a summary of the source code location, library dependencies, and other BSP
information:

Table 4-1. Audio Driver Attributes

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path ..\PLATFORM\common\src\soc\freescale\mxarm11_fsl_v1\audiodev

IC-specific CSP Driver Path N/A

CSP Static Library audiodev_mxarm11_fsl_v1.lib
audiodev_record_stubs_mxarm11_fsl_v1.lib
audiodev_record_mxarm11_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\WAVEDEV\MC13783

Import Library N/A

Driver DLL wavedev_MC13783.dll

Required Catalog Items Third Party > BSP > Freescale i.MX31 3DS:ARMV4I > Device Drivers >
Audio > MC13783 Audio Driver

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-2 Freescale Semiconductor

The Recommended Catalog Items listed in the table above should be included in the OS design in order to
provide a fairly comprehensive audio playback capability using the Windows Media Player application.
The choice of which audio CODECs to include or exclude from the OS design can be altered based upon
the specific functional requirements and degree of audio support that is desired.

Note that the selection and use of the Windows Media Player and the various software CODECs is beyond
the scope of the audio driver and will not be discussed further in this document. Refer to the following
Platform Builder online help section if additional information about these items is required:

Windows Embedded CE Features Audio

4.2 Requirements
The audio driver must meet/support the following requirements:

1. Conform to the Microsoft audio driver architecture as defined for Windows Embedded CE 6.0 and
all related operating systems.

2. Support any Freescale MXARM11-based platform that is compatible with the MC13783 PMIC.

3. Use double-buffered DMA operations to transfer audio data between memory and the SSI FIFO.

4. Support two power management modes, full on and full off.

5. Minimize power consumption at all times using clock gating and by disabling all audio-related
hardware components that are not actively being used.

Recommended Catalog Items Core OS > CEBASE > Graphics and Multimedia Technologies > Audio >
Waveform Audio
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > MP3 Codec
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > MPEG-1 Layer 1 and 2 Audio Codec
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > MS ADPCM Audio Codec
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > Wave/AIFF/au/snd File Parser
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > Waveform Audio Renderer
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > WMA Codec
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Windows Media Player > Windows Media Player
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Windows Media Player > Windows Media Player OCX
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Windows Media Player > Windows Media Technologies

SYSGEN Dependency N/A

BSP Environment Variables BSP_AUDIO_MC13783=1
BSP_PMIC_MC13783=1

Driver Attribute Definition

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-3

Figure 4-1. Audio Playback and Recording Hardware Components

4.3 Hardware Operation
Figure 4-1 shows the hardware components and the default configuration that is used for both audio
playback and recording. Refer to the chapters in the IC-specific Reference Manual for the SSI, Serial
Clock PLL, SDMA, Audio MUX, and IO MUX components for detailed operation and programming
information. Also refer to the MC13783 DTS document for complete technical details concerning all of
the MC13783 audio components. This includes the Stereo DAC, the Voice CODEC, the various audio
input/output paths that are available, and the supported amplifier/mixer configurations.

Note that on the 3-Stack board, the connection between the IOMUX module of MX31 and Voice CODEC
of PMIC is not available.

The schematics for the platform and the MC13783 PMIC (which may be in the form of an add-on daughter
card) should also be consulted if information about the routing of the various audio-related signal lines is
needed.

Also see the Audio Driver Compile-time Configuration Options section below for information about how
to change or fine-tune the hardware configuration for audio playback and recording.

Audio Application

SDMA
Controller

SSI1

SSI2

Audio MUX IO MUX

Stereo DAC

Voice CODEC

Playback

Recording

Microphone

Stereo
Headset

MX31 ADS MC13783
PMIC

Serial PLL

Control
Registers

CSPI
Bus

Interface

Audio Driver

Primary SPI
Interface

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-4 Freescale Semiconductor

4.3.1 Audio Playback

The following hardware configuration steps are performed just prior to each playback operation (based
upon the default audio driver configuration):

• Configure SSI2 for time-slotted network mode using 4 timeslots/frame and a sampling rate of 44.1
kHz. The first two timeslots are used to transmit the left and right audio channel data words,
respectively. Each audio data word is 16 bits long. SSI2 is also configured to operate in slave mode
using the CLIA (from MC13783) clock signal to generate the appropriate framesync and bitclock
signals. Note that the clock gating scheme is used with SSI2 where all clock signals to SSI2 are
disabled until SSI2 is actually being used. This helps to minimize power consumption when audio
playback is not being performed.

• The SSI2 transmitter watermark levels are also set to support SDMA transfers during audio
playback.

• The MC13783 Stereo DAC is then also configured for time-slotted network mode using 4
timeslots/frame and a 44.1 kHz sample rate but operating in slave mode. The first two timeslots are
also used to receive the left and right audio channel data words, respectively, to match the SSI2
configuration. If necessary, the required MC13783 audio components are also powered on or
re-enabled at this time. Normally, the MC13783 audio components that are not actively being used
are kept in a power-off or disabled state so as to minimize power consumption.

• The Digital Audio MUX is configured to connect internal port 2(which is assigned to SSI2) with
external port 4 (which is used to communicate with the Stereo DAC). At the same time, the
appropriate IO MUX pins are also configured so that the Audio MUX external port 4 signals can
actually be routed off-chip to the MC13783.

• The SDMA channel is fully configured to support 16-bit data transfers between the application’s
memory buffers and the SSI2 TX FIFO0. The SSI2 TX FIFO0 is prefilled with audio data at this
point along with the DMA buffers.

• Finally, the SSI2 transmitter is enabled which begins the transmission of the audio data stream.

The hardware repeatedly performs the following functions while audio playback is being performed:

• The SSI will issue a new DMA request whenever the transmitter’s FIFO0 level reaches the empty
watermark level. The SDMA controller will then refill FIFO0 using data from the DMA buffers
until the DMA buffer has been emptied.

• An interrupt is generated whenever a DMA buffer has been emptied and this interrupt is handled
by the audio driver. The audio driver is responsible for refilling the DMA buffer and returning it to
the SDMA controller for processing.

• Since a double-buffering scheme is used, the SDMA controller simply uses the other DMA buffer
to continue refilling the SSI2 transmitter FIFO0 while the previous DMA buffer is being refilled.

The following hardware changes are made at the completion of each playback operation:

• When the entire audio stream is transmitted, there will be no more data available to refill the empty
DMA buffers. Therefore, the output DMA channel can be disabled when both output DMA buffers
are empty and there is no additional data available to refill them.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-5

• The MC13783 audio components that were used for playback are disabled to minimize power
consumption. This step is done before disabling SSI2 to avoid any extraneous noise or “pop” that
may be heard over the headphones.

• Finally, we also disable and clock gate SSI2.

4.3.2 Speaker output

The hardware supports speaker output as follows:

• The system detects in real-time if the headset is plugged in or unplugged.

• If the headset is plugged in, the speaker output is disabled.

• If the headset is unplugged, the speaker output is enabled.

4.3.3 Required SoC Peripherals

The audio driver requires the exclusive use of all of the following SoC hardware components:

• SSI2 synchronous serial interfaces, used for playback.

• The Serial Clock PLL to provide the master clock signal for SSI2 (for SSI master mode).

• A 26 MHz clock signal generator that supplies the CLIA clock input to the MC13783 PMIC (for
MC13783 master mode).

• The Digital Audio MUX to connect SSI2 to the IO MUX in order to access off-chip peripherals.

• The IO MUX pins for connecting the Digital Audio MUX external ports 4 to the MC13783 PMIC.

• The SDMA Controller to manage the DMA channels that are used for playback.

4.3.4 Conflicts with Other SoC Peripherals

4.3.4.1 i.MX31 Peripheral Conflicts

There are no known conflicts between the SoC peripherals that are required by the audio driver and any
other device driver.

4.3.5 Known Issues

None.

4.3.6 Required MC13783 PMIC Components

The audio driver requires the exclusive use of all of the following MC13783 PMIC hardware components:

• The Stereo DAC and the audio output section to perform playback.

• Digital audio buses in order to transfer data between the SSI and the Stereo DAC

• The CLIA clock input is also required if the Stereo DAC is to be operated in master mode.

Note that the audio driver expects that all of the following MC13783 hardware control registers are
accessible by the ARM core: RX0, RX1, Audio Codec, Audio Stereo DAC, Audio Tx, and SSI Network.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-6 Freescale Semiconductor

This means that the ARM core must be connected to the MC13783 control registers using the primary
processor interface and not the secondary processor interface. This is the normal configuration for all of
the currently supported platforms.

4.4 Software Operation
This driver follows the Microsoft-recommended architecture for audio drivers. The details of this
architecture and its operation can be found in the Platform Builder Help at the following location:

Developing a Device Driver Windows Embedded CE Drivers Audio Drivers Audio Driver
Development Concepts.

4.4.1 Audio Playback

The operation of the audio driver for playback basically follows the hardware configuration steps that were
described earlier. Once the appropriate hardware components have been properly configured, then the only
thing that the audio driver must still do is to handle the output DMA buffer empty interrupts. This is done
through the interrupt handler which simply refills each of the output DMA buffers with new audio data
that has been supplied by the application and then returns the DMA buffer to the SDMA controller.

4.4.2 Audio Recording

Note that the recording function is not supported for hardware limitation and disabled in driver.

The operation of the audio driver for recording basically follows the hardware configuration steps that
were described earlier. Once the appropriate hardware components have been properly configured, then
the only thing that the audio driver must still do is to handle the input DMA buffer full interrupts. This is
done through the interrupt handler which simply copies the contents of each input DMA buffer to an
application-supplied buffer and then returns the empty DMA buffer to the SDMA controller. If the
application-supplied buffer does not have enough space for all of the new data, then any extra data is
simply discarded.

The application is signaled using a callback function when the application-supplied buffer is full.

4.4.3 Audio Driver Compile-time Configuration Options

The audio driver can be configured for a wide variety of operating modes depending upon the specific
hardware and software requirements. The available compile-time configuration options are described in
Table 4-2 and Table 4-3.

The audio driver configuration settings should not be changed without a detailed understanding of the
platform’s hardware configuration and operating characteristics. Selecting invalid or incorrect
configuration settings may result in an audio driver that will not load or work properly. Conversely, the
audio driver performance and resource usage can be fine-tuned by adjusting these configuration settings.
Additional documentation regarding each of the configuration options may be found in the corresponding
source files.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-7

Table 4-2. Audio Driver Configuration Settings (hwctxt.h)

Configuration Setting Name Description

OUTCHANNELS Defines the number of output/playback channels that are available. Can be
set to either 1 or 2. Default is 2.

BITSPERSAMPLE The number of data bits per audio sample. This must match with the
HWSAMPLE typedef and the
AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

INSAMPLERATE The hardware input/recording sampling rate in Hz. Default is 16000.

OUTSAMPLERATE The hardware output/playback sampling rate in Hz. Default is 44100.

HWSAMPLE A typedef that defines the size of each audio data word. This must match
the BITSPERSAMPLE and
AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is INT16.

USE_MIX_SATURATE Enable a check in the software mixer code to guard against saturation.
Default is 1.

AUDIO_SAMPLE_MAX and
AUDIO_SAMPLE_MIN

The valid range of each audio data word. Values that are outside of this
range will be clipped to the max/min value by the saturation protection
code if USE_MIX_SATURATE is set to 1. Default is 32767 and -32768.

AUDIO_DMA_PAGE_SIZE The size in bytes of each audio DMA buffer. Default is 2048 bytes.

AUDIO_REGKEY_PREFIX The common prefix to be used for accessing all of the audio driver runtime
configuration registry keys. Default is “Drivers\BuiltIn\Audio\PMIC\Config”.

PLAYBACK_DISABLE_DELAY_MSEC and
RECORD_DISABLE_DELAY_MSEC

The delay, in milliseconds, that the audio driver will wait following the
completion of an I/O operation before actually disabling the audio CODEC
hardware. On some devices, such as the MC13783, there is a significant
CODEC warm-up delay before an audio playback or recording operation
can be performed. Audio hardware disabling can be delayed for a brief
period following each audio operation and thereby skip having to re-enable
the hardware if another audio I/O operation is started soon after. The delay
interval can be set to zero to disable this feature. The default is 1000 for
both playback and recording.

Table 4-3. Audio Driver Configuration Settings (hwctxt.cpp)

Configuration Setting Name Description

BSP_SSI1_MASTER_BOOL and
BSP_SSI2_MASTER_BOOL

Selects whether SSI1 and/or SSI2 are to be operated in master mode.
Default is FALSE for both settings.

SSI1_MASTER_CLOCK_SOURCE and
SSI2_MASTER_CLOCK_SOURCE

Defines the master clock input for each SSI. This is only used when the SSI
is operating in master mode. The default settings are
DDK_CLOCK_BAUD_SOURCE_SERPLL for both settings.

STEREO_DAC_SSI The SSI that will be used for playback through the Stereo DAC. Default is
m_pSSI2.

VOICE_CODEC_SSI The SSI that will be used for recording using the Voice CODEC. Default is
m_pSSI1.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-8 Freescale Semiconductor

4.4.4 DMA Support

As indicated above, the audio driver uses the SDMA controller to transfer the digital audio data between
the audio application and the SSI FIFOs. This minimizes the processing that is required by the ARM core
and can also reduce the power consumption during audio playback and recording operations.

Note, however, that the audio driver always requires the use of DMA support for proper operation. Unlike
some of the other device drivers, the audio driver does not have any support for an alternative non-DMA
or polling-based operating mode. Therefore, the BSP_SDMA_SUPPORT_SSI1 (for audio playback) and
BSP_SDMA_SUPPORT_SSI2 (for audio record) macros in the bsp_cfg.h header file must always be
defined as TRUE even though the audio driver does not explicitly make use of these definitions.

This section will describe the audio driver DMA implementation issues and tradeoffs. The available
compile-time DMA-related configuration options will also be described.

In order to use DMA transfers, all of the following items must be properly allocated, managed, and
deallocated by the device driver:

• The DMA data buffers where the application data is kept.

• The DMA buffer descriptors which are used by the DMA hardware to manage the state of each
DMA buffer.

The DMA data buffers can be allocated from either "internal memory" (which is provided by on-chip
internal RAM) or "external memory" (which is provided by off-chip external DRAM). Table 4-4 is a

SSI1_AUDMUX_PORT and
SSI2_AUDMUX_PORT

The internal Digital Audio MUX ports that are connected to SSI1 and SSI2.
The defaults are PORT1 for SSI1 and PORT2 for SSI2.

VOICE_CODEC_AUDMUX_PORT The external Digital Audio MUX port that is connected to the Voice CODEC.
The default is PORT5.

STEREO_DAC_AUDMUX_PORT The external Digital Audio MUX port that is connected to the Stereo DAC.
The default is PORT4.

VOICE_CODEC_AUDIO_BUS The digital audio bus that connects the Audio MUX to the Voice CODEC.
The default is AUDIO_DATA_BUS_2.

STEREO_DAC_AUDIO_BUS The digital audio bus that connects the Audio MUX to the Stereo DAC. The
default is AUDIO_DATA_BUS_1.

STEREO_DAC_BUS_MODE The digital audio bus protocol that is to be used. Either timeslotted
NETWORK_MODE or I2S_MODE may be selected. The default is
NETWORK_MODE.

VOICE_CODEC_BUS_MODE The digital audio bus protocol that is to be used. Either timeslotted
NETWORK_MODE or I2S_MODE may be selected. The default is
NETWORK_MODE.

SSI_SFCSR_TX_WATERMARK and
SSI_SFCSR_RX_WATERMARK

The transmitter and receiver watermarks that are to be used with SSI1 and
SSI2. The default is 4 for both watermark levels.

DEFAULT_OUTPGA_GAIN Sets the default output amplifier gain level. The default is
OUTPGA_GAIN_MINUS_3DB.

Configuration Setting Name Description

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-9

summary of the issues and tradeoffs regarding which type of memory should be used for the DMA data
buffers.

Table 4-5 describes how to configure the build so that the audio driver will allocate its DMA data buffers
from either internal or external memory.

The DMA buffer descriptors can also be allocated from either internal or external memory. However, in
this case, the choice is made automatically through the use of the CSPDDK APIs, specifically
DDKSdmaAllocChain(). Refer to the CSPDDK documentation for additional information about the
DDKSdmaAllocChain() API.

Table 4-4. DMA Memory Allocation Issues and Considerations

Memory Region Memory Usage Issues and Considerations

Internal Allows the external memory to be placed in a low power mode while the DMA data buffers
are being processed to reduce system power consumption (as long as nothing else on the
system requires access to external memory). Also, less power is required to access the
internal RAM than to access

But the total size of the internal memory region is limited (only 16 kB for the i.MX31).

The limited amount of internal memory may have to be shared by multiple device drivers.

The entire internal memory region must be manually managed with predefined addressed
ranges being reserved for each specific use.

External The total size of the external memory is typically much greater than the size of the internal
memory (128 MB compared to 16 kB for the i.MX31). This provides much greater flexibility
in selecting the size of the DMA data buffers.

There is typically no need to worry about the possible impact and memory requirements of
any other device driver.

Memory allocation is handled using the standard Windows Embedded CE 6.0 system
calls.

The external memory cannot be placed into a low power mode while the DMA is active.

Table 4-5. Configuring for Internal/External Memory DMA Data Buffer Allocation

Memory Region Required Configuration Options

Internal Set the BSP_AUDIO_DMA_BUF_ADDR macro in bsp_cfg.h to an address within the
internal memory region. Also set BSP_AUDIO_DMA_BUF_SIZE to the total size (in bytes)
for all DMA data buffers that will be allocated.

External Make sure that the BSP_AUDIO_DMA_BUF_ADDR macro is commented out in bsp_cfg.h

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-10 Freescale Semiconductor

4.4.5 Power Management

The primary method for limiting power consumption in the audio driver is to gate off all clocks to the SSI
when those clocks are not needed and to turn off all audio hardware components at the end of each audio
stream. This is accomplished through the DDKClockSetGatingMode function call and the various PMIC
audio APIs. In the Windows CE 6.0 BSP, the audio module can be disabled, and its clocks turned off,
whenever there are no active audio I/O operations. The clock gating as well as the disabling of all related
audio hardware components is all handled automatically within the audio module and requires no
additional configuration or code changes.

The audio driver can work correctly after resume for power down mode.

4.4.5.1 PowerUp

This function has been implemented to support resuming an audio I/O operation that was previously
terminated by calling the PowerDown() API. It begins by restoring power and re-enabling all of the
required audio hardware components. Next, the audio DMA transfers are restarted to complete the
powerup process for the audio driver.

Note that this function is intended to be called only by the Power Manager and must not block or depend
on any hardware interrupts. Therefore, all required timed delays must be handled using a polling loop
instead of any of the normal “wait for an event to be signaled” functions. This functionality is currently
handled by IOCTL_POWER_SET and the function is just a stub.

4.4.5.2 PowerDown

This function has been implemented to support suspending all currently active audio I/O operations just
before the entire system enters the low power state. Note that this function is intended to be called only by
the Power Manager and must not block or depend on any hardware interrupts. Therefore, the first thing
that this function must do is to signal all of the possible wait events that the normal audio driver thread
may be currently waiting on. If it is not done, the PowerDown thread may be blocked waiting for a critical
section that is currently being held by the normal audio driver thread. This is an error and would deadlock
the entire system and prevent it from properly entering the low power state.

Since, all possible waiting events are signaled, the normal audio thread will now be guaranteed (because
of priority inversion) to run to the point where it will release the required critical section and allow the
PowerDown thread to proceed without the possibility of deadlocking.

Now it is ensured that the normal audio thread is not executing inside any critical section, the PowerDown
thread can safely proceed to disable all active audio DMA operations and to powerdown all of the
associated audio hardware components. Once this has been done, the audio driver will remain in its low
power state until the PowerUp function is called by the Power Manager. This functionality is currently
handled by IOCTL_POWER_SET and the function is just a stub.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-11

4.4.5.3 IOCTL_POWER_SET

This Power Manager IOCTL is implemented for the audio driver. All system suspend and resume handling
is currently handled by the IOCTL which handles the PowerDown and PowerUp functionalities. For all
platforms, the following registry entry must be defined:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

This registry entry is required for proper power management functionality.

4.4.6 Audio Driver Registry Settings

At least one registry key must be properly defined so that the Device Manager will know to load the audio
driver when the system is booted. Additional registry keys may also be defined, and even changed at
runtime, to configure the operation of the audio driver. Both the required and optional registry keys for the
audio driver are described in the following sections.

4.4.6.1 Required Audio Driver Registry Settings

The following registry keys are required in order for the Device Manager to properly load the audio device
driver during the device’s normal boot process. These registry settings should typically not be modified.
If they are missing or incorrectly defined, then the audio driver may not be loaded at all and all audio
functions will be disabled.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

 "Prefix"="WAV"
 "Dll"="wavedev_MC13783.dll"
 "Index"=dword:1
 "Order"=dword:10

"Priority256"=dword:95
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

4.4.6.2 Optional Audio Driver Runtime Configuration Registry Settings

The following optional registry keys can also be defined in order to configure the audio driver’s various
runtime operating modes. If these registry keys are not defined or if the values are invalid, then the values
shown below are used as the default settings by the audio driver. Additional configuration settings that are
currently supported by the audio driver can be found by looking at the enumerated type definitions in the
pmic_audio.h header file. All of the numeric constants that are used in the following registry key values
are simply the integer value that corresponds to the enumerated types that are defined in pmic_audio.h for
each specific function or item.

Note that the registry settings for the recording does not function for the 3-Stack board.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio\PMIC\Config\Playback]

"LeftChannel"=dword:40
"RightChannel"=dword:80
"Description"="Stereo headset jack J8 (LeftChannel=0x40, RightChannel=0x80)"

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio\PMIC\Config\Recording]
"LeftChannel"=dword:1

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-12 Freescale Semiconductor

"RightChannel"=dword:2
"Description"="Stereo input jack J4 (LeftChannel=1, RightChannel=2)"

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio\PMIC\Config\MicBias1]
 "Enable"=dword:0
 "Description"="Microphone bias circuit 1 disabled (0) or enabled (1)"

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio\PMIC\Config\MicBias2]
"Enable"=dword:1
"Description"="Microphone bias circuit 2 disabled (0) or enabled (1)"

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio\PMIC\Config\InputAmp]
 "Mode"=dword:1
 "Mode Description"="Voltage-to-Voltage (1) or Current-to-Voltage (2)"
 "Gain"=dword:8
 "Gain Description"="-8 dB (0) to 23 dB (31 or 0x1F) in 1 dB steps"

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio\PMIC\Config\HeadsetDetect]
 "Enable"=dword:0
 "Description"="Disabled (0) or enabled (1)"

Note that changes to these audio driver configuration registry keys can be made at any time and the new
settings will immediately take effect at the beginning of the next audio I/O operation. A device’s current
registry entries can be viewed and modified using the Remote Registry Editor tool that is provided with
Platform Builder.

4.5 Unit Test
The audio driver is tested using the Waveform Audio Driver Test suite that is included as part of the
Windows CE 6.0 Test Kit (CETK). The test suite includes both automated and interactive tests that are
used to test various playback and recording functions.

4.5.1 Unit Test Hardware

The following table lists the required hardware to run the unit tests.
Table 4-6. Unit Test Hardware Requirements

4.5.2 Unit Test Software

The following table lists the required software to run the unit tests.

Requirements Description

Stereo headphones or earphones.
This is required to confirm that audio playback is working. The headphones or
earphones should have a 3.5mm jack for the MX31 platforms.

Mono microphone. This is not required for the MX31 3-Stack board.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-13

Table 4-7. Unit Test Software Requirements

4.5.3 Building the Audio Driver CETK Tests

The audio driver tests come pre-built as part of the CETK. No steps are required to build these tests. The
wavetest.dll file can be found alongside the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

4.5.4 Running the Audio Driver CETK Tests

The command line for running the audio driver test is tux –o –d wavetest. Alternatively, the CETK GUI
interface can also be used from within Platform Builder. As full-duplex operation is not supported, the
command line should be tux -o -d wavetest -c “-e -t 5 -p”.

The tread count used in test case 6000 Playback Mixing needs to be reduced to “5” instead of the default
value of “9” because of a CETK known issue. Please refer to ticket ENGR76843.

Refer to BSP release notes for the test cases failed as MSFT's known issue.

For detailed information about the audio driver tests, see the following section in the Platform Builder
online help:

Windows Embedded CE Test Kit CETK Tests and Test Tools CETK Tests Audio Tests
Waveform Audio Driver Test

4.6 System-level Audio Driver Tests
In addition to running the audio driver tests in the CETK, it is also possible to perform various system-level
tests that involve the use of the audio driver. The following sections describe various ways to test the audio
driver without using the CETK.

4.6.1 Checking for a Boot-time Musical Tune

The normal Windows Embedded CE 6.0 boot procedure includes playing a short musical tune just before
displaying the touchpanel calibration screen. At this point, the audio driver should already have
successfully loaded and you should hear the tune if you attach a headset to the stereo output jack.

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

wavetest.dll Test .dll file

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-14 Freescale Semiconductor

4.6.2 Confirming Touchpanel Taps and Keypad Key Presses

The normal Windows Embedded CE 6.0 system configuration includes the ability to play back a short
tapping sound whenever the stylus makes contact with the touchpanel. Again, it is quite easy to confirm
whether or not these taps are heard when a headset is attached to the stereo output jack.

A similar “click” should also be heard whenever a key on the keypad is pressed.

4.6.3 Playing Back Sample Audio and Video Files Using the Media Player

The Microsoft-supplied Media Player application can be used to load and play a variety of audio and video
media files in a number of different formats. The only requirement here is that the appropriate software
CODECs that may be needed to decode the media file be included in the OS image. The Media Player
includes controls for pausing, resuming, and stopping playback as well as advancing it to a specific point.
Additional volume and muting controls are also provided.

4.6.4 Using the SDK Sample Audio Applications for Testing

The Windows Embedded CE 6.0 SDK that is included as part of Platform Builder includes two
audio-related sample applications. The wavrec sample application, which is not supported on PDK, can be
used to test the audio recording function while the wavplay sample application provides a command
line-based method of playing back various media files. Additional information about both the wavrec and
wavplay sample applications may be found in the following Platform Builder online help section:

Windows Embedded CE Features Audio Waveform Audio Waveform Audio Samples

4.7 Audio Driver API Reference
Detailed reference information for the audio driver may be found in Platform Builder Help at the following
location:

Developing a Device Driver Windows Embedded CE Drivers Audio Drivers Audio Driver
Reference Waveform Audio Driver Reference

4.8 Audio Driver Troubleshooting Guide
The following sections describe various techniques that may be used to help identify and fix the most
common problems involving the audio driver.

4.8.1 Checking Build-time Configuration Options

Any compile- or link-time errors are probably due to incorrect or invalid configuration settings that were
defined in hwctxt.h or hwctxt.cpp. See the Audio Driver Compile-time Configuration Options section
above for information about each of the device driver build configuration options.

The build procedure that is documented in the BSP Users Guide must also be followed in order to
successfully compile and link the audio driver.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-15

Finally, also confirm that the required Platform Builder catalog items have been included in the OS design.
See the Table 1 above for a list of the required and recommended audio driver-related catalog items.

4.8.2 Confirming Audio Driver Loading During Device Boot

First, confirm that the appropriate [HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio] registry key has
been defined.

Next, confirm that all of the following files exist in the release directory: wavedev_MC13783.dll,
waveapi.dll, device.exe. The first DLL is the audio device driver while the second DLL provides the means
for applications to access the audio driver. The last file is the Device Manager executable that is required
to load the audio driver.

Finally, if you are booting a release OSDesignsimage, then you should see all of the following messages
in the Platform Builder output window:
Loaded symbols for
'D:\WINCE600\OSDesigns\<workspace>\RELDIR\<platform>_ARMV4I_RELEASE\WAVEDEV_MC13783.DLL'
Loaded symbols for
'D:\WINCE600\OSDesigns\<workspace>\RELDIR\<platform>_ARMV4I_RELEASE\WAVEAPI.DLL'
The corresponding messages when booting a debug image are (the timestamp, process ID, and thread
ID numbers may differ from those shown below but the important thing to confirm is that the
modules are being loaded):
4294770428 PID:2bf8a70e TID:2bf9bd56 0x8bf8a4a8: >>> Loading module wavedev_MC13783.dll at
address 0x01A20000-0x01A38000
Loaded symbols for
'D:\WINCE600\OSDesigns\<workspace>\RELDIR\<platform>_ARMV4I_DEBUG\WAVEDEV_MC13783.DLL'
4294770755 PID:2bf8a70e TID:2bf9bd56 0x8bf8a4a8: >>> Loading module waveapi.dll at address
0x03BF0000-0x03C1B000 (RW data at 0x01FCF000-0x01FCF958)
Loaded symbols for
'D:\WINCE600\OSDesigns\<workspace>\RELDIR\<platform>_ARMV4I_DEBUG\WAVEAPI.DLL'

4.8.3 Media Player Application Not Found

Make sure that the Media Player catalog item has been included in the OS design (see Table 1 above). The
Media Player application will not be included in the final system image if the catalog item is not selected.

4.8.4 Media Player Fails to Load and Play an Audio File

This problem is typically caused by failing to include the appropriate software CODEC that is required to
handle the audio file format. See the list of recommended audio driver catalog items in Table 1 above and
make sure that support for the desired audio file format has been included.

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-16 Freescale Semiconductor

Backlight Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 5-1

Chapter 5
Backlight Driver
The backlight drvier use the hardware provided by the display module on the chip to control the backlight
on the LCD display.

The backlight driver interfaces with the Windows CE Power Manager to provide timed control over the
display backlight. A timeout interval controls the length of time that the backlight stays on.

The backlight driver should be power-manageable; hence it must meet the requirements of a
power-manageable device by implementing the required IOCTLs. The backlight driver will use its own
defined timer to set the backlight power states.

5.1 Backlight Driver Summary
Table 5-1. Backlight Driver Attributes

5.2 Requirements

The backlight driver should meet the following requirements:

1. Conform to the Device Manager streams interface.

2. Support 0~255 level adjustment.

3. Support power management mode full on / full off.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXAR
M11_FSL_V1\BACKLIGHT\DRIVER

CSP Static Library backlight_mxarm11_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>
\SRC\DRIVERS\BACKLIGHT\DRIVER

Import Library N/A

Driver DLL backlight.dll

Catalog Item Third Party >BSPs > Freescale i.MX31 3DS: ARMV4I
−>Device Drivers −>Smart Backlight Control−>Backlight
IPU

SYSGEN Dependency N/A

BSP Environment Variables BSP_BACKLIGHT_IPU=1
BSP_BACKLIGHT_MC13783 should not be set.

Backlight Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

5-2 Freescale Semiconductor

5.3 Hardware Operation

The hardware consists of an independently programmable register in the Image Processing Unit (IPU)
module, SDC_CUR_BLINK_PWM_CTRL Register, which is used to control the signal output at the
contrast pin. Default behavior for the Backlight Drivers is to control the pulse-width of the built-in
pulse-width modulator, which controls the contrast of the LCD screen.

5.4 Software Operation

The backlight driver is a stream interface driver, and is thus accessed through the file system APIs. To
use the backlight driver, a handle to the device must first be created using the CreateFile function.
Subsequent commands to the device are issued using the DeviceIoControl function with IOCTL codes
specifying the desired operation.

The control of the backlight operation requires a call to the DeviceIoControl function. Four possible
choices are available for the user:

• IOCTL_POWER_CAPABILITIES - where you register and inform the Power Manager of
capabilities

• IOCTL_POWER_QUERY – where the new power state is returned

• IOCTL_POWER_SET – interface to the hardware that controls the backlight through the PDD
layer.

• IOCTL_POWER_GET – the current power state is returned

5.4.1 Backlight Driver Registry Settings

The following registry keys are required to properly load the backlight driver.

 [HKEY_CURRENT_USER\ControlPanel\Backlight]

 "BattBacklightLevel"=dword:7F ; Backlight level settings. 0xFF = Full On

 "ACBacklightLevel"=dword:7F ; Backlight level settings. 0xFF = Full On

 "BatteryTimeout"=dword:1E ; 30 seconds

 "ACTimeout"=dword:78 ; 2 minutes

 "UseExt"=dword:1 ; Enable timeout when on external power

 "UseBattery"=dword:1 ; Enable timeout when on battery

 "AdvancedCPL"="AdvBacklight" ; Enable Advanced Backlight control panel dialog

5.5 Unit Test

The backlight driver is tested by Application test.

Backlight Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 5-3

5.5.1 Unit Test Hardware

The following table lists the required hardware to run the backlight application test.
Table 5-2. Unit Test Hardware Requirements

5.5.2 Unit Test Software

The following table lists the required software to run the backlight application test.
Table 5-3. Unit Test Software Requirements

5.5.3 Running the Backlight Application Test

The following table lists the backlight application test procedures:

Table 5-4. Backlight Application Test Procedures

Requirements Description

Epson L4F00242T03 VGA Panel Display panel required for display of graphics data.

Requirements Description

backlight.dll The backlight driver to implement the backlight functions.

Advbacklight.dll The file implements adding an Advanced button to the Backlight Control Panel application.

Test Cases Entry Criteria/Procedure/Expected Results

Backlight Level Entry Criteria:

N/A

Procedure:

1. Go to “Setting > Control Panel”
2. Double click on the “Display” icon, then click on the “Backlight” tab
3. Click on the “Advanced…” button
4. Modify the backlight level setting for both battery and external power
5. Observe that the backlight level behaves according to the new setting

Expected Result:

N/A

Backlight Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

5-4 Freescale Semiconductor

5.6 Backlight API Reference
The API for the backlight driver conforms to the stream interface and exposes the standard functions.
Further information can be found at “Developing a Device Driver Windows CE Embedded Drivers

 Streams Interface Drivers”

Backlight Timeout Entry Criteria:

N/A

Procedure:

1. Go to “Setting >Control Panel”
2. Double click on the “Display” icon, then click on the “Backlight” tab
3. Modify the backlight timeout setting for both battery and external power, and

then click on “OK” button to apply the changes
4. Observe the time it takes for the backlight to go out, make sure it correspond with

the new settings entered in step 3

Expected Result:

N/A

Battery Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 6-1

Chapter 6
Battery Driver
The battery driver module is used to provide information about the battery level to the operating system.

The battery driver samples the voltage level upon initialization as well as on power up when coming out
of suspend. It checks to determine if the charger and/or battery is attached, then decides whether to execute
the charging or discharging operations. It also reports the battery capability and power supply state to the
OS periodically by measuring battery voltage. During charging, current-limit and voltage-limit will take
place to protect the charger and battery, and the operating system will be forbidden to enter suspend mode
to prevent the charging operation from losing control.

6.1 Battery Driver Summary
The following table provides a summary of source code location, library dependencies and other BSP
information:

Table 6-1. Battery Driver Attributes

6.2 Requirements
The battery driver should meet the following requirements:

1. Conform to the Device Manager streams interface.

2. Support the <TGTPLAT> MC13783 PMIC.

3. Support the main battery without the support of the change notification.

6.3 Hardware Operation
The battery driver is implemented with the aid of the MC13783 Power Management Integrated Circuit
(PMIC). The PMIC is a multi-functional IC that contains on-chip analog to digital converters used to

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Static Library N/A

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\BATTDRVR\MC13783

Import Library N/A

Driver DLL battdrvr_MC13783.dll

Catalog Item Third Party −> BSP −> Freescale i.MX31 3DS:ARMV4I−> Device Drivers
−>Battery −> MC13783 Battery

SYSGEN Dependency N/A

BSP Environment Variables BSP_BATTERY=1, BSP_PMIC_MC13783=1

Battery Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

6-2 Freescale Semiconductor

measure the voltage and current levels of the battery. These levels are then used in determining the capacity
level of the battery.

6.3.1 Conflicts with other SoC Peripherals

No conflicts.

6.4 Software Operation
Upon initialization of the driver, the default values for the battery parameters are retrieved from the
registry, and battery status information is updated. After initialization the function BatteryPDDGetStatus()
is called periodically to get the status of the Battery and to decide to charge or discharge the battery. It fills
the structure SYSTEM_POWER_STATUS_EX2 and returns it to the system. The power properties
window is updated based on the values in this structure.

6.4.1 Battery Driver Registry Settings

The following registry keys are required to properly load the battery driver.
; These registry entries load the battery driver. The IClass value must match
; the BATTERY_DRIVER_CLASS definition in battery.h -- this is how the system
; knows which device is the battery driver.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Battery]
 "Prefix"="BAT"
 "Flags"=dword:8 ; DEVFLAGS_NAKEDENTRIES
 "IClass"="{DD176277-CD34-4980-91EE-67DBEF3D8913}"
 "BattFullLiftTime" = dword:8 ;Batt Spec defined: in hr,8hr is assumed
 "BattFullCapacity"=dword:960 ;Batt Spec defined: in mAh,2400mAhr is assumed
 "BattMaxVoltage"=dword:1068 ;Batt Spec defined: in mV,4200mV is assumed
 "BattMinVoltage"=dword:BB8 ;Batt Spec defined: in mV,3000mV is assumed
 "BattPeukertNumber"=dword:73 ;Batt Spec defined, 1.15 is assumed
 "BattChargeEff"=dword:50 ;Batt Spec defined, 0.80 is assumed
"PollInterval"=dword:000003e8 ;Batt poll interval in milliseconds
 "Dll"="battdrvr_MC13783.dll"

[HKEY_LOCAL_MACHINE\System\Events]
 "SYSTEM/BatteryAPIsReady"="Battery Interface APIs"

6.4.2 Power Management

There is no additional power management implementation done specifically for the battery driver other
than the implementation described in section 17.5.6 of Power Management IC (PMIC) reference
document.

6.5 Unit Test
The battery can be tested, by switching on the system and watching the power properties window. When
charging, the LED indicator will turn on and the charge capacity of the battery can be seen increasing until

Battery Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 6-3

charged to 100%. When without battery attached or battery fully charged or supplied with battery, the LED
indicator will be turned off.

CAUTION
Please do not plug in or remove the battery after booting up the device. The
device can be damaged if the battery is plugged in or removed after boot.

6.5.1 Unit Test Hardware

The MX31 3-Stack board is required.

6.6 Battery API Reference
The API for the battery driver conforms to the stream interface and exposes the standard functions. Further
information can be found at Developing a Device Driver −> Windows Embedded CE Drivers −>
Battery Drivers

6.6.1 Battery PDD Functions

6.6.1.1 BSPBattdrvrGetParameters

This function returns the battery and charger voltage levels, the current level, and a flag that indicates if
the current is charging or discharging.

Prototype BOOL BSPBattdrvrGetParameters(DWORD *pBatt_V, DWORD *pCharger_V, BOOL

*fCharge, DWORD *I)

Parameters pBatt_V

[out] pointer to the battery voltage value

pCharger_V

[out] pointer to the charger voltage value

fCharge

[out] pointer to the flag TRUE for charging FALSE for discharging

I

[out] pointer to the charging/discharging current

6.6.1.2 BSPBattdrvrGetSample

This function returns the battery voltage sample.

Prototype BOOL BSPBattdrvrGetSample(UINT16 *psample)

Parameters psample

[out] pointer to the sample value,

psample[0] = battery voltage;

psample[1] = battery current;

Battery Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

6-4 Freescale Semiconductor

psample[2] = charger voltage;

psample[3] = charger current;

6.6.2 Battery Driver Structures

6.6.2.1 Battery Channels Structure
typedef enum _BATTDRVR_CHANNELS {
 BattVoltage,
 BattCurrent,
 ChargerVoltage,
 ChargerCurrent,
 TotalChannels,
} BATTDRVR_CHANNELS;

6.6.2.2 Battery Information Structure
typedef struct _BATT_INFO
{
 DWORD adc_level;
 DWORD adc_batt_max_V;
 DWORD adc_batt_min_V;
 DWORD adc_batt_max_I;
 DWORD adc_batt_min_I;
 DWORD adc_charger_max_V;
 DWORD adc_charger_min_V;
 DWORD adc_charger_max_I;
 DWORD adc_charger_min_I;
 DWORD charger_V_limit;
} BATT_INFO, *PBATT_INFO;

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 7-1

Chapter 7
Bluetooth Driver
The Bluetooth driver is used to drive the APM6628 module to implement Bluetooth functionality
compatible with Bluetooth v2.0 +EDR. Bluetooth exchanges data with the through the UART2 port. The
APM6628 module adopts BlueCore4 Bluetooth solution of Cambridge Silicon Radio company.

7.1 Bluetooth Driver Summary
The Bluetooth driver is provided in binary form instead of source codes. Table 7-1 provides a summary of
the source code location, library dependencies, and other BSP information.

Table 7-1. Bluetooth Driver Summary

Driver Attribute Definition

Target Platform

Target SOC

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\BLUETOOTH

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BLUETOOTH

Driver DLL bthbcsp.dll btp_bchs.dll btp_modules.dll bth_avdrv.dll

SDK Library N\A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > BlueTooth >
CSR BlueTooth
Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > Serial > UART2
serial port support
Core OS > CEBASE > Communication Services and Networking > Networking - Personal Area
Network(PAN) > Bluetooth > Bluetooth Protocol Stack with Transport Driver Support >
Bluetooth Stack with Universal Loadable Driver (exclude other HCI drivers)
Core OS > CEBASE > Applications and Services Development > .NET Compact Framework
2.0 > .NET Compact Framework 2.0
Core OS > CEBASE > Applications and Services Development > Object Exchange
Protocol(OBEX) > OBEX Client
Core OS > CEBASE > Applications and Services Development > Object Exchange
Protocol(OBEX) > OBEX Server > OBEX File Browser
Core OS > CEBASE > Applications and Services Development > Object Exchange
Protocol(OBEX) > OBEX Server −> OBEX Inbox

Bluetooth Driver

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

7-2 Freescale Semiconductor

The Catalog Items in Table 7-1 should be included in the OS design in order to provide Bluetooth Profiles.
When Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > Bluetooth >
CSR Bluetooth is selected, other catalog items are selected automatically.

7.2 Supported Functionality
The Bluetooth driver enables the 3-Stack board to provide the following software and hardware support:

• Drives Bluetooth module in APM6628 chip

• Provides communication between Bluetooth module and UART2 driver with serial baudrate up to
921.6kbps

• Supports A2DP SOURCE (Advanced Audio Distribution Profile)

• Supports AVRCP (Audio Video Remote Control Profile)

• Supports FTP (File Transfer Profile)

7.3 Hardware Operation
The Bluetooth driver exchanges data and commands between the BCHS (BlueCore Host Software) stack
and Bluetooth hardware via UART2 port.

SYSGEN Dependency SYSGEN_BTH=1
SYSGEN_DOTNETV2=1
SYSGEN_OBEX_FILEBROWSER=1
SYSGEN_OBEX_CLIENT=1
SYSGEN_OBEX_INBOX=1

BSP Environment Variables BSP_CSR_BLUETOOTH =1
BSP_SERIAL_UART2 =1

Bluetooth Driver

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 7-3

7.3.1 Conflicts with Other Peripherals and Catalog Items

7.3.1.1 Conflicts with SoC Peripherals

7.3.1.2 Conflicts with 3-Stack Peripherals

7.4 Software Operation
The overall software architecture with existing Microsoft Bluetooth stack and CSR BCHS stack is shown
in Figure 7-1

Figure 7-1. Software Architecture of Bluetooth Driver and Protocol

The BCHS is an embedded Bluetooth software package complementing the already existing Microsoft
Bluetooth profiles delivered as part of the Microsoft Windows CE OS. BCHS is developed to operate on
top of the native Microsoft Bluetooth stack and not as a replacement of the Microsoft Bluetooth stack.

Bluetooth Driver

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

7-4 Freescale Semiconductor

7.4.1 Registry Settings

7.5 Unit Test
Bluetooth test includes CETK test and manual tests for A2DP, AVRCP and FTP.

7.5.1 Unit Test Hardware

Table 7-2 lists the required hardware to run the unit tests.

Table 7-2. Hardware Requirements

7.5.2 Unit Test Software

Table 7-3 lists the required software to run the unit tests.

7.5.3 Running the Unit Tests

7.5.3.1 Running Bluetooth CETK

7.5.3.1.1 Running the CETK Bluetooth API Test

The API test requires two Bluetooth boards: one for the client and one for the server. The test steps are as
follows:

1. Bootup the two 3-Stack boards

Requirement Description

 Bluetooth Headset Bluetooth Headset which supports SBC decoder for testing A2DP and AVRCP feature. HT820
headset is used

 Mobile phone or PC with Bluetooth feature. Nokia mobile phone and laptop DELL D610 is used

 Two 3-stack boards CETK for Bluetooth needs two Bluetooth boards on TCP/IP networking

Table 7-3. Software Requirements

Requirement Description

Tux.exe Tux text harness, which is required for executing the test.

Kato.dll Kato logging engine, which is required for logging test data.

Tooltalk.dll Application required by Tux.exe and Kato.dll. Handles the transport between the target
device and the development workstation.

Netall.dll Provides functions that generate random numbers, output data, and parse command lines

Btwsvr22.exe, Btw22.exe CETK MS Bluetooth Test

bthapitst.dll CETK Bluetooth API Test

Perflog.dll, Perf_bluetooth.dll CETK Bluetooth Performance Test

hciqa_con.dll,ddlx.dll CETK Bluetooth HCI Transport Driver Test

Bluetooth Driver

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 7-5

2. Copy Kato.dll, Tooltalk.dll, Netall.dll and bthapitst.dll into the Windows directory in client board

3. In the client board, open Run from START and enter tux -o -d bthapitst.dll -c“-s server_bt_addr”
command to execute this test. Where server_bt_addr is the Bluetooth address of the Windows
Embedded CE based device running as a server. For example, if the server address is
0123456789ab, the command line should read: tux -o -d bthapitst.dll -c“-s 0123456789ab”.

7.5.3.1.2 Running the CETK Bluetooth Performance Test

The performance test requires two Bluetooth boards: one for the client and one for the server. The test steps
are as follows:

1. Bootup two 3-Stack boards.

2. Copy Kato.dll, Tooltalk.dll, Perflog.dll and Perf_bluetooth.dll into the Windows directory in both
boards

3. In the server board, open Run from START and enter tux -o -d perf_bluetooth -c “-i
NumberOfIteraions -b NumberOfBuffers -p ServerChannelNumber” command to execute this test.
Such as tux -o -d perf_bluetooth -c “-i 10 -p 6 -b 163840”

4. In the client board, open Run from START and enter tux -o -d perf_bluetooth -c “-s
server_bt_addr -i NumberOfIteraions -b NumberOfBuffers -p ServerChannelNumber” command
to execute this test. Such as tux -o -d perf_bluetooth -c “-s 0123456789ab -i 10 -p 6 -b 163840”

To view the test results:

1. Copy the .log file to the development workstation.

2. From <Platform Builder installation path>\Cepb\Wcetk\Ddtk\Desktop, copy Pparse.exe to the
directory that contains the log file.

3. In the directory that contains the log file, run the following command: pparse log_filename
parsed_filename, where log_filename is the name of the log file and parsed_filename is the name
of the .csv file that you want to create to store the parsed test results.

4. In Excel, open the .csv file.

7.5.3.1.3 Running the CETK Bluetooth HCI Transport Driver Test

The HCI transport driver test requires two Bluetooth boards: one for the client and one for the server. The
test steps are as follows:

1. Bootup two 3-Stack boards.

2. Copy Kato.dll, Tooltalk.dll, hciqa_con.dll and ddlx.dll into the Windows directory in both boards.

3. In the server board, open Run from START and enter tux -o -d ddlx.dll -c “-d hciqa_con.dll -i 2
-c /accept /class 0x010000” command to execute this test.

4. In the client board, open Run from START and enter tux -o -d ddlx.dll -c “-d hciqa_con.dll -i 2
-c /class 0x010000” command to execute this test.

NOTE
Refer to http://msdn.microsoft.com/en-us/library/bb203069.aspx for
detailed CETK information.

Bluetooth Driver

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

7-6 Freescale Semiconductor

7.5.3.2 Manual Test Bluetooth

NOTE
Follow the steps shown below exactly, otherwise there may be unexpected
results.

7.5.3.2.1 Running the Bluetooth A2DP Test

The purpose of the A2DP test is to listen to stereo music played by MediaPlayer from the Bluetooth
headset. The test steps are as follows:

1. Make Bluetooth headset entering pairing mode

2. Open the Bluetooth Device Properties tools in the control panel and click scan device icon

3. The 3-stack board sets up the audio connection with Bluetooth headset. Music played by Media
Player, may be listened from your Bluetooth headset.

7.5.3.2.2 Running the Bluetooth AVRCP Test

1. After A2DP has been setup, play a music file with the MediaPlayer. Long-press the volume-up or
volume-down button on the headset and the music volume from headset changes accordingly.

2. Click PLAY/PAUSE/STOP button, the MediaPlayer pauses the music. Then re-click this button,
and the MediaPlayer plays the music again. Long-press this button, and the MediaPlayer stops.

7.5.3.2.3 Running the Bluetooth FTP Test

1. Open the Bluetooth Device Properties tools in the control panel and click the scan device icon

2. If you open the Bluetooth Neighborhood folder under My Device, the paired Bluetooth device
(phone or PC) is asked to permit the 3-stack board access. After you click OK and input the default
password (0000), also input 0000 in the window in the 3-Stack board. A shared folder of the paired
Bluetooth device appears and you may get/put files from/to this shared folder

Bluetooth Driver

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 7-7

.

Figure 7-2. Bluetooth FTP Test

NOTE
Make sure you use the correct Bluetooth A2DP and FTP icons, and do not
use other icons.

7.5.4 Operation Attention Items and Tips

You must strictly follow the Bluetooth manual test steps given above. This section reaffirms the items to
pay close attention to.

• Ensure that the Bluetooth headset is in pairing mode, then begin to scan the device from the
Bluetooth Manager Window

• After the Bluetooth headset is scanned, a password window appears. Quickly input the default
password ‘0000’. If the headset icon in Bluetooth Manager window is a question mark and headset
is not in pair mode, the password was inputted to slow. Set the headset in pair mode and re-scan.
If the headset icon in the Bluetooth Manager window is a question mark, and headset is in pair
mode, the password is incorrect. In this case, trust the headset icon in the manager window, then

Bluetooth Driver

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

7-8 Freescale Semiconductor

un-trust it to delete the headset password information. Then set the headset in pair mode and
re-scan it and input the correct password.

• Pay attention to the A2DP and FTP icon which may refer to
WINCE600\PUBLIC\COMMON\OAK\DRIVERS\NETUI and use the right icon.

• It is better to use non-activing than deleting, because after deleting, you must re-pair the Bluetooth
device if you want to reuse it.

7.5.5 Known Issues
• If you move the Bluetooth headset from the right block to the left block before the headset is

activated, do not again move the headset to the right block. This confuses the Bluetooth. The
correct operation is the following steps after headset is removed into left block

— Ensure headset in pair mode

— Rescan and input password

— Move headset into right block and active it.

The reason is that the Bluetooth Property Application provided by Microsoft deletes the trusted
Bluetooth headset security register.

• When scan is running, do not reopen the Bluetooth Property Application in the control panel,
otherwise the Bluetooth Property Application will be in an unexpected state, such as cannot stop
or cannot reopen if you close this window. This reason is that Bluetooth Property Application
provided by Microsoft is not handled well for unique instance.

• Bluetooth API CETK fails in hold mode test, because CSR Bluetooth protocol does not support
this mode. CSR fixes this in a later version.

Camera Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 8-1

Chapter 8
Camera Driver
The camera driver is based on the Windows CE 6.0 Camera Device Driver Interface. This interface
provides basic support for video and still image capture devices. The camera driver conforms to the
architecture for Windows CE stream interface drivers and allows applications to use the middleware layer
provided by the DirectShow video capture infrastructure to communicate with and control the camera.
This module is designed to be compatible with the OV2640 camera sensor modules.

At the lower layer, the camera driver performs several tasks including:

• Communicating with and configuring a camera sensor through the I2C interface

• Interfacing with the Image Processing Unit (IPU) to perform pre-processing tasks on captured
images

• Configuring the IPU Synchronous Display Controller (SDC) for direct display of video preview
data

8.1 Camera Driver Summary
Table 8-1 provides a summary of source code location, library dependencies and other BSP information.

Table 8-1. Camera Driver Summary

8.2 Supported Functionality
The camera driver enables the 3-Stack board to provide the following software and hardware support:

• Supports the Windows CE Camera Device Driver Interface

• Supports Preview, Capture, and Still pins

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 SOC Driver Path ..\PLATFORM\COMMON\SRC\SOC\freescale\mxarm11_fsl_v1\ipu\camera

SOC Driver Path N/A

SOC Static Library camera_mxarm11_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\IPU\CAMERA

Import Library N/A

Driver DLL camera.dll

Catalog Items Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device Drivers >
Camera > Camera

SYSGEN Dependency SYSGEN_DSHOW_CAPTURE=1

BSP Environment Variables BSP_CAMERA=1

Camera Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

8-2 Freescale Semiconductor

• Supports a Direct-to-Display preview mode

• Supports the OV2640 camera sensors

• Supports power management operations

8.3 Hardware Operation
Several hardware modules are involved in the operation of the camera driver. The OV2640 camera sensor
captures external image data. All other hardware elements of the camera driver are within the IPU. The
IPU Camera Sensor Interface (CSI) receives data from the sensor and converts the data into a format
understood by the IPU. This data is subsequently pre-processed by the IPU Image Converter (IC) module.
There are two pre-processing paths: one for encoding and one for viewfinding. The pre-processed image
data is then transferred by the IPU DMA module to one of two destinations: system memory (encoding or
viewfinding data) or the IPU Synchronous Display Controller (SDC) for display (viewfinding data).

For detailed operation and programming information, refer to the chapter on the Image Processing Unit
(IPU) in the hardware specification document.

8.4 Software Operation

8.4.1 Communicating with the Camera

Communication with the camera driver is accomplished through camera APIs defined by Microsoft for
Windows CE 6.0. Applications may access these APIs directly or through the DirectShow video capture
support.

8.4.1.1 Using the Windows CE Camera Device Driver Interface

The Windows CE Camera Device Driver Interface provides basic support for video and still image capture
devices. Refer to the following Windows CE 6.0 Help Documentation section for information on using
these Camera APIs:

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers > Camera Driver
Reference.

8.4.1.2 Using DirectShow for Video Capture

DirectShow provides support for the creation of filter graphs for video capture. Information on using
DirectShow for video capture can be found in the following Windows CE 6.0 Help Documentation section:

Windows Embedded CE Features > Encoded Media > DirectShow > DirectShow Application
Development > DirectShow Architecture > Audio and Video Capture Support > Video Capture.

8.4.2 Camera Registry Settings

Two sets of registry settings are needed for proper camera driver operation: One for the camera sensor and
another for the camera driver.

Camera Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 8-3

The following registry keys are required to properly load the camera driver.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Camera]
 "Prefix"="CAM"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:1
 "CameraId"=dword:3
 "IClass"=multi_sz:
 "{CB998A05-122C-4166-846A-933E4D7E3C86}","{A32942B7-920C-486b-B0E6-92A702A99B35}"

The CameraId registry key selects among the available camera sensor modules. Table 8-2 shows the valid
values and the corresponding camera sensors.

Table 8-2. CameraId Registry Key Settings

[HKEY_LOCAL_MACHINE\Software\Microsoft\DirectX\DirectShow\Capture]
 "Prefix"="PIN"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:1
 "PinCount"=dword:3 ;Pin count. Max = 3; default = 2
 "MemoryModel"=dword:1 ; Pin memory mode.
 "IClass"=multi_sz:"{C9D092D6-827A-45E2-8144-DE1982BFC3A8}",
 "{A32942B7-920C-486b-B0E6-92A702A99B35}"

8.4.3 Power Management

The camera driver consumes power primarily through the operation of various IPU sub-modules, such as:

• CSI which synchronizes and receives image data from the camera sensor

• IC which performs pre-processing operations on captured image data

The CSI and IC modules are enabled when the camera is set to a running state. Support for transition to
the Suspend and Resume states is provided through the IOCTL_POWER_SET IOCTL.

8.4.3.1 PowerUp

This function is not implemented for the camera driver.

8.4.3.2 PowerDown

This function is not implemented for the camera driver.

Value Camera Sensor

0 iMagic IM8803

1 iMagic IM8201

2 Magna521DA

3 OV2640

Camera Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

8-4 Freescale Semiconductor

8.4.3.3 IOCTL_POWER_SET

The camera driver implements the IOCTL_POWER_SET IOCTL API with support for the D0, D1, D2
(Full on) and the D3, D4 (Off) power states. These states are handled in the following manner:

• D0-D2 – Action is only taken when resuming from the D4 state. If the camera was running when
the transition to the D4 state occurred, the camera returns to a running state, re-enabling the CSI
and IC modules.

• D3-D4 – Action is only taken if the camera is running when the request to transition to the D4 state
occurs.

8.5 Unit Test
The camera driver is subject to the following test suites provided with the Windows CE Test Kit (CETK):

• Camera Driver Data Structure Verification Test - queries the driver for the various properties and
formats, and verifies that the data structures returned are valid

• Camera Driver I/O Test - verifies the functionality of the preview and capture streams on the
camera driver

• Camera and DirectShow Integration Test - verifies the functionality of the camera driver when used
under DirectShow

• Camera Performance Test - gathers performance data for a number of DirectShow capture
scenarios

Additionally, for Windows CE 6.0, a Camera Application written by Microsoft may be used to preview
and capture still images.

8.5.1 Unit Test Hardware

Table 8-3 lists the required hardware to run the Windows CE 6.0 Camera CETK test and the camera
application.

Table 8-3. Hardware Requirements

8.5.2 Unit Test Software

8.5.2.1 Custom Camera CETK Test

Table 8-4 lists the required software to run the Camera CETK Test.

Table 8-4. Camera CEKT Test Software Requirements

Requirements Description

Camera functionality The device must have camera functionality, currently OV2640 sensor is used

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Camera Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 8-5

SYSGEN_DSHOW_CAPTURE (DirectShow capture) is also required. In addition, the configuration file
“capconfig.ini” is required for CameraPerfTests.dll.

8.5.2.2 Freescale Camera Application

Table 8-5 lists the required software to run the custom camera application.

Table 8-5. Custom Camera Application Software Requirements

8.5.2.3 Camera Application

No additional actions are required to include the Windows CE 6.0 camera application in an OS image
beyond the required registry keys.

8.5.3 Building the Camera Tests

8.5.3.1 Camera CETK Test

All the above mentioned tests come pre-built as part of the CETK. No steps are required to build these
tests. These test files can be found alongside the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

8.5.3.2 Freescale Camera Application

The following steps can be used to build the custom camera application:

1. Build an OS image for the desired configuration

2. Add a new folder named “APP” under the folder “\WINCE600\PLATFORM\imx313ds\src\”

3. Copy the folder of “Camapp” under the folder “APP”

4. Setup a new blank dirs file under the folder “Camapp”

5. Enter the build command at the prompt and press build camapp

6. Find the “camapp.exe” file in “obj\release” or “obj\debug” folder under folder “camapp”

CameraGraphTests.dll Library containing the camera and directshow integration test cases

CamTestProperties.dll Library containing the camera driver data structure verification test cases

CamIOTests.dll Library containing the camera driver I/O test cases

CameraPerfTests.dll Library containing the camera performance test cases

CameraGrabber.dll Filter required by many command line parameters to track and output information
about media samples

Requirements Description

Camapp.exe Executable file for the camera application

Requirements Description

Camera Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

8-6 Freescale Semiconductor

8.5.4 Running the Camera Tests

8.5.4.1 Running the Camera CETK Test

The following are the tests available and the test procedures for each of the tests. For detailed information
on the these tests see the relevant subsections under “CETK Tests” in the Windows CE 6.0 Help
Documentation section: Windows Embedded CE Test Kit > CETK Tests and Test Tools > CECETK
Tests > Camera Tests.

• The command line tux -o -d CameraGraphTests.dll runs the camera and directshow integration
test

• The command line tux -o -d CamTestProperties.dll runs the Camera Driver Data Structure
Verification Test

• The command line tux -o -d CamIOTests.dll runs Camera Driver I/O Test

• The command line tux -o -d cameraperftests.dll -c "-p \release\capresults.csv -c
\release\capconfig.ini" runs the Camera Performance Test. Note that this test requires the
“capconfig.ini” configuration file which specifies what is to be tested, copying the file under the
corresponding folder such as “\release” before testing from the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

NOTE
The tests that involve audio capture are skipped due to a hardware audio
recording limitation. For more information, see Chapter 4, “Audio Driver.”

8.5.4.2 Running the Freescale Camera Application

In the target control command prompt, use the following command to execute the custom camera
application:

s camapp.exe

8.6 Camera Driver API Reference
Documentation for the camera driver APIs can be found within the latest Windows CE 6.0 Documentation.

Reference information on basic camera driver functions, methods, and structures can be found at the
following location in the Windows CE 6.0 Help Documentation:

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers > Camera Driver
Reference

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-1

Chapter 9
Chip Support Package Driver Development Kit (CSPDDK)
The BSP includes a component called the Chip Support Package Driver Development Kit (CSPDDK)
which provides an interface to access peripheral features and SoC configuration shared by the system. The
CSPDDK executes as a device driver DLL and exports functions for the following SCC components:

• System clocking (CCM)

• GPIO

• DMA (SDMA)

• Pin multiplexing and pad configuration (IOMUX)

9.1 CSPDDK Driver Summary
Table 9-1 provides a summary of source code location, library dependencies and other BSP information.

Table 9-1. CSPDDK Driver Summary

9.2 Supported Functionality
The CSPDDK enables the 3-Stack board to provide the following software and hardware support:

• Supports an interface that allows synchronized inter-process access to the following set of shared
SoC resources:

— GPIO (DDK_GPIO)

— SDMA (DDK_SDMA)

— IOMUX (DDK_IOMUX)

— CCM (DDK_CLK)

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXARM11_FSL_V1\
CSPDDK

CSP Driver Path \PLATFORM\COMMON\SRC\SOC\FREESCALE\MX31_FSL_v1\CSPD
DK

CSP Static Library ddk_mx31_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\CSPDDK

Import Library cspddk.lib

Driver DLL cspddk.dll

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables Remove BSP_NOCSPDDK=1

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-2 Freescale Semiconductor

• Exposes exported functions that can be invoked without incurring a system call (i.e. not a stream
driver)

9.3 Hardware Operation
Refer to the hardware specification document for detailed operation and programming information.

9.3.1 Conflicts with Other Peripherals

No conflicts.

9.4 Software Operation

9.4.1 Communicating with the CSPDDK

Similar to the CEDDK DLL, the CSPDDK DLL does not require any special initialization. All of the
initialization required by the CSPDDK is performed when the DLL is loaded into the respective process
space. Drivers that want to utilize the CSPDDK simply need to link to the CSPDDK export library and
invoke the exported functions.

9.4.2 Compile-Time Configuration Options

The CSPDDK exposes compile-time options for configuring the SDMA support. In some cases, these
compilation variables are also leveraged by driver code to expose a central point of controlling SDMA
functionality. Table 9-2 describes the available CSPDDK compile options.

Table 9-2. CSPDDK Compile Options

Compilation Variable
Header

Location
Description

IMAGE_WINCE_DDKSDMA_IRAM_PA_START image_cfg.h Physical starting address in internal RAM
(IRAM) where the shared SDMA data structures
will be located

IMAGE_WINCE_DDKSDMA_IRAM_OFFSET image_cfg.h Offset in bytes from the base of IRAM for the
SDMA data structures

IMAGE_WINCE_DDKSDMA_IRAM_SIZE image_cfg.h Size in bytes of the IRAM reserved for SDMA
data structures

IMAGE_WINCE_DDKSDMA_RAM_PA_START image_cfg.h Physical starting address in external RAM
where the shared SDMA data structures will be
located. This address must correspond to the
region reserved in config.bib

IMAGE_WINCE_DDKSDMA_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for
SDMA data structures. This size must
correspond to the region reserved in config.bib.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-3

The CSPDDK manages the allocation of buffer descriptor chains for drivers and applications. The
allocation scheme first attempts to allocate the buffer descriptor chain from a fixed memory pool within
the region specified by BSP_SDMA_MC0PTR. If the CSPDDK is unable to allocate enough storage from
this fixed pool, it dynamically allocates the necessary storage from external memory.

To decrease power consumption in cases such as audio playback, it is beneficial to configure
BSP_SDMA_MC0PTR to point to a reserved internal RAM (IRAM) region and allocate the audio buffers
in IRAM. This configuration does not require external memory cycles in the data flow from the audio
buffers to the SSI and allows the CSPDDK to utilize EMI clock gating to significantly reduce the power
consumption. Refer to the audio chapter in the Reference Guide for more information on configuring audio
DMA support.

9.4.3 Registry Settings

There are no registry settings that need to be modified to use the CSPDDK driver. Since most drivers need
to use CSPDDK functionality, the CSPDDK should be one of the first DLLs loaded by device manager.

9.4.4 Power Management

The CSPDDK exposes interfaces that allow drivers to self-manage power consumption by controlling
clocking and pin configuration. The CSPDDK executes as a shared DLL and does not implement the
power manager driver IOCTLs or the PowerUp/PowerDown stream interface. However, the CSPDDK
functions are invoked by other drivers during power state transitions.

9.5 CSPDDK DLL Reference

9.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference

The DDK_CLK interface allows device drivers to configure and query system clock settings.

9.5.1.1 DDK_CLK Enumerations
Table 9-3. DDK_CLK Enumerations

BSP_SDMA_MC0PTR bsp_cfg.h Starting address for the shared SDMA data
structures. Set to
IMAGE_SHARE_IRAM_SDMA_PA_START to
use internal RAM. Set to
IMAGE_SHARE_SDMA_PA_START to use
external RAM.

BSP_SDMA_CHNPRI_xxx bsp_cfg.h Assigns a SDMA channel priority to the
respective peripheral. Refer to the individual
driver chapters for more information on the
specific priorities.

BSP_SDMA_SUPPORT_xxx bsp_cfg.h Boolean to specifies if SDMA-based transfers
are enabled for each respective peripheral.
Refer to the individual driver chapters for more
information on the DMA support provided.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-4 Freescale Semiconductor

9.5.1.2 DDK_CLK Functions

9.5.1.2.1 DDKClockSetGatingMode

This function sets the clock gating mode of the peripheral.
BOOL DDKClockSetGatingMode(

DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE mode)

Parameters

index [in] Index for referencing the peripheral clock gating control bits.

mode [in] Requested clock gating mode for the peripheral.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.1.2.2 DDKClockGetGatingMode

This function retrieves the clock gating mode of the peripheral.
BOOL DDKClockGetGatingMode(

DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE *pMode)

Parameters

index [in] Index for referencing the peripheral clock gating control bits.

pMode [out] Current clock gating mode for the peripheral.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.1.2.3 DDKClockGetFreq

This function retrieves the clock frequency in Hz for the specified clock signal.
BOOL DDKClockGetFreq(

DDK_CLOCK_SIGNAL sig,
UINT32 *freq)

Parameters

Programming Element Description

DDK_CLOCK_SIGNAL Clock signal name for querying/setting clock configuration

DDK_CLOCK_GATE_INDEX Index for referencing the corresponding clock gating control bits within the CCM

DDK_CLOCK_GATE_MODE Clock gating modes supported by CCM clock gating registers

DDK_CLOCK_BAUD_SOURCE Input source for baud clock generation

DDK_CLOCK_CKO_SRC Clock output source (CKO) signal selections

DDK_CLOCK_CKO_DIV Clock output source (CKO) divider selections

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-5

sig [in] Clock signal.

freq [out] Current frequency in Hz.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.1.2.4 DDKClockConfigBaud

This function configures the input source clock and dividers for the specified CCM peripheral baud clock
output.
BOOL DDKClockConfigBaud(

DDK_CLOCK_SIGNAL sig,
DDK_CLOCK_BAUD_SOURCE src,
UINT32 preDiv,
UINT32 postDiv)

Parameters

sig [in] Clock signal to configure.

src [in] Selects the input clock source.

preDiv [in] Specifies the value programmed into the baud clock predivider.

postDiv [in] Specifies the value programmed into the baud clock postdivider.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.1.2.5 DDKClockSetCKO

This function configures the clock output source (CKO) signal.
BOOL DDKClockSetCKO(

BOOL bEnable,
DDK_CLOCK_CKO_SRC src,
DDK_CLOCK_CKO_DIV div)

Parameters

bEnable [in] Set to TRUE to enable CKO output. Set to FALSE to disable CKO output.

src [in] Selects the CKO source signal.

div [in] Specifies the CKO divide factor.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.1.2.6 DDKClockSetpointRequest

This function requests the specified setpoint optionally blocks until the setpoint.
BOOL DDKClockSetpointRequest(

DDK_DVFC_SETPOINT setpoint,
BOOL bBlock)

Parameters

setpoint [in] - Specifies the setpoint to be requested.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-6 Freescale Semiconductor

bBlock [in] - Set TRUE to block until the setpoint has been granted. Set FALSE to return
immediately after request has submitted.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.1.2.7 DDKClockSetpointRelease

This function releases a setpoint previously requested using DDKClockSetpointRequest.
BOOL DDKClockSetpointRelease(

DDK_DVFC_SETPOINT setpoint)

Parameters

setpoint [in] Specifies the integer ration used to scale the AHB bus clock.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.1.3 DDK_CLK Examples

Example 9-1. Example: CSPDDK Clock Gating

#include “csp.h” // Includes CSPDDK definitions

// Enable keypad peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_KPP, DDK_CLOCK_GATE_MODE_ENABLED_ALL);

// Disable keypad peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_KPP, DDK_CLOCK_GATE_MODE_DISABLED);

Example 9-2. Example: CSPDDK Clock Rate Query

#include “csp.h” // Includes CSPDDK definitions

UINT32 freq;

// Query the current bus clock
DDKClockGetFreq(DDK_CLOCK_SIGNAL_AHB, &freq);

9.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference

The DDK_GPIO interface allows device drivers to utilize the GPIO ports. Each GPIO port has a single
interrupt request line that is shared for all port pins. In addition, configuration, status, and data registers
are shared. The DDK_GPIO provides safe access to the shared GPIO resources.

9.5.2.1 DDK_GPIO Enumerations
Table 9-4. DDK_GPIO Enumerations

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-7

9.5.2.2 DDK_GPIO Functions

9.5.2.2.1 DDKGpioSetConfig

This function sets the GPIO configuration (direction and interrupt) for the specified pin.
goodBOOL DDKGpioSetConfig(

DDK_GPIO_PORT port,
UINT32 pin,
DDK_GPIO_DIR dir,
DDK_GPIO_INTR intr)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

dir [in] Direction for the pin.

intr [in] Interrupt configuration for the pin.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.2.2 DDKGpioBindIrq

This function binds the specified GPIO line with an IRQ that is registered with the OAL to receive
interrupts.
BOOL DDKGpioBindIrq(

DDK_GPIO_PORT port,
UINT32 pin,
DWORD irq)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

irq [in] Specifies the hardware IRQ that is translated into a registered SYSINTR
within OEMInterruptHandler when the configured interrupt condition for the
GPIO line occurs.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

Programming Element Description

DDK_GPIO_PORT Specifies the GPIO module instance

DDK_GPIO_DIR Specifies the direction the GPIO pins

DDK_GPIO_INTR Specifies the detection logic used for generating GPIO interrupts

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-8 Freescale Semiconductor

9.5.2.2.3 DDKGpioUnbindIrq

This function unbinds the specified GPIO line from an IRQ that is registered with the OAL to receive
interrupts.
BOOL DDKGpioUnbindIrq (

DDK_GPIO_PORT port,
UINT32 pin)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.2.4 DDKGpioWriteData

This function writes the GPIO port data to the specified pins.
BOOL DDKGpioWriteData(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 data)

Parameters

port [in] GPIO module instance.

portMask [in] Bit mask for data port pins to be written.

data [in] Data to be written.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.2.5 DDKGpioWriteDataPin

This function writes the GPIO port data to the specified pin.
BOOL DDKGpioWriteDataPin(

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 data)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

data [in] Data to be written [0 or 1].

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.2.6 DDKGpioReadData

This function reads the GPIO port data from the specified pins.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-9

BOOL DDKGpioReadData(
DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 *pData)

Parameters

port [in] GPIO module instance.

portMask [in] Bit mask for data port pins to be read.

pData [out] Points to buffer for data read.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.2.7 DDKGpioReadDataPin

This function reads the GPIO port data from the specified pin.
BOOL DDKGpioReadDataPin (

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 *pData)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

pData [out] Points to buffer for data read. Data is shifted to the LSB.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.2.8 DDKGpioReadIntr

This function reads the GPIO port interrupt status for the specified pins.
BOOL DDKGpioReadIntr(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 *pStatus)

Parameters

port [in] GPIO module instance.

portMask [in] Bit mask for interrupt status bits to be read.

pStatus [out] Points to buffer for interrupt status.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.2.9 DDKGpioReadIntrPin

This function reads the GPIO port interrupt status from the specified pin.
BOOL DDKGpioReadIntrPin(

DDK_GPIO_PORT port,
UINT32 pin,

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-10 Freescale Semiconductor

UINT32 *pStatus)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

pStatus [out] Points to buffer for interrupt status. Status is shifted to the LSB.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.2.10 DDKGpioClearIntrPin

This function clears the GPIO interrupt status for the specified pin.
BOOL DDKGpioClearIntrPin(

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 *pStatus)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.2.3 DDK_GPIO Examples

Example 9-3. Example: CSPDDK GPIO Configuration

#include “csp.h” // Includes CSPDDK definitions

// Configure GPIO1_3 as a level-sensitive interrupt input
DDKGpioSetConfig(DDK_GPIO_PORT1, 3, DDK_GPIO_DIR_IN, DDK_GPIO_INTR_HIGH_LEV);

// Clear interrupt status for GPIO1_3
DDKGpioClearIntrPin(DDK_GPIO_PORT1, 3);

// Bind the GPIO interrupt request to the keypad IRQ registered with the OAL.
// An assertion of the GPIO1_3 interrupt will cause keypad IST to be signaled just
// as if the keypad IRQ was asserting.
DDKGpioBindIrq(DDK_GPIO_PORT1, 3, IRQ_KPP);

9.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference

The DDK_IOMUX interface allows device drivers to configure signal multiplexing and pad configuration.
This control resides inside the IOMUX registers and is shared for the entire system. The DDK_IOMUX
support allows drivers to dynamically update and query their signal multiplexing and pad configuration.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-11

9.5.3.1 DDK_IOMUX Enumerations
Table 9-5. DDK_IOMUX Enumerations

9.5.3.2 DDK_IOMUX Functions

9.5.3.2.1 DDKIomuxSetPinMux

This function sets the IOMUX configuration for the specified IOMUX pin.
BOOL DDKIomuxSetPinMux(

DDK_IOMUX_PIN pin,
DDK_IOMUX_OUT outMux,
DDK_IOMUX_IN inMux)

Parameters

pin [in] Functional pin name used to select the IOMUX output/input path to be
configured.

outMux [in] Output path configuration.

inMux [in] Input path configuration.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.3.2.2 DDKIomuxGetPinMux

This function gets the IOMUX configuration for the specified IOMUX pin.
BOOL DDKIomuxGetPinMux(

DDK_IOMUX_PIN pin,
DDK_IOMUX_OUT *pOutMux,
DDK_IOMUX_IN *pInMux)

Programming Element Description

DDK_IOMUX_PIN Specifies the functional pin name used to configure the IOMUX. The enum value
corresponds to the bit offset within the SW_MUX_CTL registers.

DDK_IOMUX_OUT Specifies the muxing on the output path for a signal

DDK_IOMUX_IN Specifies the muxing on the input path for a signal

DDK_IOMUX_GPR Specifies the general purpose register (GPR) bits within the IOMUX used to
control various muxing features within the SoC

DDK_IOMUX_PAD Specifies the functional pad name used to configure the IOMUX. The enum value
corresponds to the bit offset within the SW_PAD_CTL registers.

DDK_IOMUX_PAD_SLEW Specifies the slew rate for a pad

DDK_IOMUX_PAD_DRIVE Specifies the drive strength for a pad

DDK_IOMUX_PAD_MODE Specifies the CMOS/open drain mode for a pad

DDK_IOMUX_PAD_TRIG Specifies the trigger for a pad

DDK_IOMUX_PAD_PULL Specifies the pull-up/pull-down/keeper configuration for a pad

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-12 Freescale Semiconductor

Parameters

pin [in] Functional pin name used to select the IOMUX output/input path to be
configured.

pOutMux [out] Output path configuration.

pInMux [out] Input path configuration.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.3.2.3 DDKIomuxSetPadConfig

This function sets the IOMUX pad configuration for the specified IOMUX pin.
BOOL DDKIomuxSetPadConfig(

DDK_IOMUX_PAD pad,
DDK_IOMUX_PAD_SLEW slew,
DDK_IOMUX_PAD_DRIVE drive,
DDK_IOMUX_PAD_MODE mode,
DDK_IOMUX_PAD_TRIG trig,
DDK_IOMUX_PAD_PULL pull)

Parameters

pad [in] Functional pad name used to select the pad to be configured.

slew [in] Slew rate configuration.

drive [in] Drive strength configuration.

mode [in] CMOS/open-drain output mode configuration.

trig [in] Trigger configuration.

pull [in] Pull-up/pull-down/keeper configuration.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.3.2.4 DDKIomuxGetPadConfig

This function gets the IOMUX pad configuration for the specified IOMUX pad.
BOOL DDKIomuxGetPadConfig(

DDK_IOMUX_PAD pad,
DDK_IOMUX_PAD_SLEW *pSlew,
DDK_IOMUX_PAD_DRIVE *pDrive,
DDK_IOMUX_PAD_MODE *pMode,
DDK_IOMUX_PAD_TRIG *pTrig,
DDK_IOMUX_PAD_PULL *pPull)

Parameters

pad [in] Functional pad name used to select the pad to be configured.

pSlew [in] Slew rate configuration.

pDrive [in] Drive strength configuration.

pMode [in] CMOS/open-drain output mode configuration.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-13

pTrig [in] Trigger configuration.

pPull [in] Pull-up/pull-down/keeper configuration.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.3.2.5 DDKIomuxSetGpr

This functions writes a value into the IOMUX GPR register. The GPR is used to control the muxing of
signals within the SoC.
BOOL DDKIomuxSetGpr(

UINT32 mask,
UINT32 data)

Parameters

mask [in] Bit mask for GPR bits to be written.

data [in] Data to be written.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.3.2.6 DDKIomuxSetGprBit

This function writes a value into the specified IOMUX GPR bit. These GPR bits are used to control the
muxing of signals within the SoC.
BOOL DDKIomuxSetGprBit(

DDK_IOMUX_GPR bit,
UINT32 data)

Parameters

bit [in] GPR bit to be configured.

data [in] Value for the GPR bit [0 or 1].

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.3.3 DDK_IOMUX Examples

Example 9-4. Example: CSPDDK IOMUX Signal Multiplexing

#include “csp.h” // Includes CSPDDK definitions

// Configure the signal multiplexing for GPIO1_3. Route the internal input and
// output path of the GPIO1_3 pin to the GPIO module
DDKIomuxSetPinMux(DDK_IOMUX_PIN_GPIO1_3, DDK_IOMUX_OUT_GPIO, DDK_IOMUX_IN_GPIO);

Example 9-5. Example: CSPDDK IOMUX Pad Configuration

#include “csp.h” // Includes CSPDDK definitions

// Configure the GPIO1_3 pad for the following configuration: slow slew rate,

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-14 Freescale Semiconductor

// normal drive strength, CMOS, Schmitt trigger, 100K pull-up.
DDKIomuxSetPadConfig(DDK_IOMUX_PIN_GPIO1_3, DDK_IOMUX_PAD_SLEW_SLOW,
 DDK_IOMUX_PAD_DRIVE_NORMAL, DDK_IOMUX_PAD_MODE_CMOS, DDK_IOMUX_PAD_TRIG_SCHMITT,
 DDK_IOMUX_PAD_PULL_UP_100K);

9.5.4 CSPDDK DLL SDMA (DDK_SDMA) Reference

The DDK_SDMA interface allows device drivers to allocate, configure, and control shared SDMA
resources.

9.5.4.1 DDK_SDMA Enumerations
Table 9-6. DDK_SDMA Enumerations

9.5.4.2 DDK_SDMA Functions

9.5.4.2.1 DDKSdmaOpenChan

This function attempts to find an available virtual SDMA channel that can be used to support a
memory-to-memory, peripheral-to-memory, or memory-to-peripheral transfers.
UINT8 DDKSdmaOpenChan(

DDK_DMA_REQ dmaReq,
UINT8 priority,
LPTSTR lpName,
DWORD irq)

Parameters

dmaReq [in] Specifies the DMA request to be bound to a virtual channel.

priority [in] Priority assigned to the opened channel.

lpName [in] Not currently used. Set to NULL.

irq [in] Only used if lpName is set to NULL. Specifies the hardware IRQ to be
translated into a registered SYSINTR within OEMInterruptHandler when a
transfer interrupt occurs. Set to IRQ_NONE if no interrupt should be generated by
the channel.

Return Values: Returns a non-zero virtual channel index if successful, otherwise returns 0.

Programming Element Description

DDK_DMA_ACCESS Specifies width of the data for a peripheral DMA transfer

DDK_DMA_FLAGS Specifies mode flags within the DMA buffer descriptor

DDK_DMA_REQ Specifies DMA request used to trigger SDMA channel execution

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-15

9.5.4.2.2 DDKSdmaUpdateSharedChan

This function allows a channel that has multiple DMA requests combined into a shared DMA event to be
reconfigured for one of the alternate DMA requests.
BOOL DDKSdmaUpdateSharedChan(

UINT8 chan,
DDK_DMA_REQ dmaReq)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

dmaReq [in] Specifies the DMA request to be bound to a virtual channel.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.3 DDKSdmaCloseChan

This function closes a virtual DMA channel previously opened by DDKSdmaOpenChan.
BOOL DDKSdmaCloseChan(

UINT8 chan)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan function.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.4 DDKSdmaAllocChain

This function allocates a chain of buffer descriptors for a virtual DMA channel.
BOOL DDKSdmaAllocChain(

UINT8 chan,
UINT32 numBufDesc)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

numBufDesc [in] Number of buffer descriptors to allocate for the chain.

Return Values: Returns TRUE if the chain allocation was successful, otherwise returns FALSE.

9.5.4.2.5 DDKSdmaFreeChain

This function frees a chain of buffer descriptors previously allocated with DDKSdmaAllocChain.
BOOL DDKSdmaFreeChain(

UINT8 chan)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-16 Freescale Semiconductor

9.5.4.2.6 DDKSdmaSetBufDesc

This function configures a buffer descriptor for a DMA transfer.
BOOL DDKSdmaSetBufDesc(

UINT8 chan,
UINT32 index,
UINT32 modeFlags,
UINT32 memAddr1PA,
UINT32 memAddr2PA,
DDK_DMA_ACCESS dataWidth,
UINT16 numBytes)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

index [in] Index of buffer descriptor within the chain to be configured.

modeFlags [in] Specifies the buffer descriptor mode word flags that control the “continue”,
“wrap”, and “interrupt” settings.

memAddr1PA [in] For memory-to-memory transfers, this parameter specifies the physical
memory source address for the transfer. For memory-to-peripheral transfers, this
parameter specifies the physical memory source address for the transfer. For
peripheral-to-memory transfers, this parameter specifies the physical memory
destination address for the transfer.

memAddr2PA [in] Used only for memory-to-memory transfers to specify the physical memory
destination address for the transfer. Ignored for memory-to-peripheral and
peripheral-to-memory transfers.

dataWidth [in] Used only for memory-to-peripheral and peripheral-to-memory transfers to
specify the width of the data for the peripheral transfer. Ignored for
memory-to-memory transfers.

numBytes [in] Virtual channel returned by DDKSdmaOpenChan.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.7 DDKSdmaGetBufDescStatus

This function retrieves the status of the “done” and “error” bits from a single buffer descriptor within of a
chain.
BOOL DDKSdmaGetBufDescStatus(

UINT8 chan,
UINT32 index,
UINT32 *pStatus)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

index [in] Index of buffer descriptor within the chain.

pStatus [in] Points to a buffer to be filled with the status of the buffer descriptor.

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-17

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.8 DDKSdmaGetChainStatus

This function retrieves the status of the “done” and “error” bits from all of the buffer descriptors of a chain.
BOOL DDKSdmaGetChainStatus(

UINT8 chan,
UINT32 *pStatus)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

pStatus [in] Points to an array to be filled with the status of each buffer descriptor in the
chain.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.9 DDKSdmaClearBufDescStatus

This function clears the status of the “done” and “error” bits within the specified buffer descriptor.
BOOL DDKSdmaClearBufDescStatus(

UINT8 chan,
UINT32 index)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

index [in] Index of buffer descriptor within the chain.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.10 DDKSdmaClearChainStatus

This function clears the status of the “done” and “error” bits within all of the buffer descriptors of a chain.
BOOL DDKSdmaClearChainStatus(

UINT8 chan)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.11 DDKSdmaInitChain

This function initializes a buffer descriptor chain and the context for a channel. It should be invoked when
before a virtual DMA channel is initially started, and when the DMA channel is stopped and restarted.
BOOL DDKSdmaInitChain(

UINT8 chan,
UINT32 waterMark)

Chip Support Package Driver Development Kit (CSPDDK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-18 Freescale Semiconductor

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

waterMark [in] Specifies the watermark level used by the peripheral to generate a DMA
request. This parameter tells the DMA how many transfers to complete for each
assertion of the DMA request. Ignored for memory-to-memory transfers.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.12 DDKSdmaStartChan

This function starts the specified channel.
BOOL DDKSdmaStartChan(

UINT8 chan)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

9.5.4.2.13 DDKSdmaStopChan

This function stops the specified channel.
BOOL DDKSdmaStopChan(

UINT8 chan,
BOOL bKill)

Parameters

chan [in] Virtual channel returned by DDKSdmaOpenChan.

bKill [in] Set TRUE to terminate the channel if it is actively running. Set FALSE to
allow the channel to continue running until it yields.

Return Values: Returns TRUE if successful, otherwise returns FALSE.

Display Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 10-1

Chapter 10
Display Driver
The Windows CE 6.0 BSP display driver is based on the Microsoft DirectDraw Graphics Primitive Engine
(DDGPE) classes and supports the Microsoft DirectDraw interface. This driver combines the functionality
of a standard LCD display with DirectDraw support. The display driver interfaces with the Image
Processing Unit (IPU). For dumb displays, the IPU Synchronous Display Controller (SDC) combines
graphics and video planes and generates display controls with programmable timing.

The display driver supports the following display types:

• EPSON L4F00242T03 VGA LCD panel

• PAL and NTSC TV through the Chrontel CH7024 TV encoder chip

10.1 Display Driver Summary
Table 10-1 provides a summary of source code location, library dependencies and other BSP information.

Table 10-1. Display Driver Summary

10.2 Supported Functionality
The display driver enables the 3-Stack board to provide the following software and hardware support:

• Supports EPSON 2.8" VGA Display With Touch Screen (L4F00242T03)

• Supports VGA portrait display resolution(480x640)

• Supports RGB565 interface

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path N/A

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\IPU\DISPLAY\DLL

Import Library ddgpe.lib, gpe.lib

Driver DLL ddraw_ipu.dll

Catalog Items Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device Drivers > Display
> EPSON L4F00242T03 (VGA)
Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device Drivers > TV
Output > TV Output CH7023/CH7024

SYSGEN Dependency SYSGEN_DDRAW=1

BSP Environment Variables BSP_PP=1
BSP_DISPLAY_EPSON_L4F00242T03 = 1 for Epson LCD Panel
BSP_TVOUT_CHRONTEL_CH702X = 1 for TV Output

Display Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

10-2 Freescale Semiconductor

• Supports the DirectDraw Hardware Abstraction Layer (DDHAL)

• Supports overlay surface

• Supports video overlays containing image data in the FOURCC UYVY & YV12 pixel format

• Supports hardware-accelerated color space conversion in video overlays

• Supports hardware-accelerated image resizing in video overlays

• Supports overlay surface color key feature

• Supports overlay surface alpha blending feature

• Supports two power management modes, full on and full off

• Supports system suspend

• Supports screen rotation

• Supports dynamic switch between TV and LCD display

10.3 Hardware Operation
Refer to the chapter on the image processing unit (IPU) in the hardware specification document for
detailed operation and programming information.

10.3.1 Rotation Control

Application rotate.exe provides a way to change the screen orientation while the Windows Embedded CE
6.0 image is running. Clicking rotate application toggles the orientation of the screen between a 0 and 270
degree rotation angle. The default path of rotate.exe is “\windows”.

NOTE
Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw (see the Windows CE Help documentation, stating that “GDI
screen rotation cannot be used with DirectDraw”), a DirectDraw display
driver with rotation support enabled may yield more failures in the
GDI/DIRECTDRAW CETK test suite. It is recommended to run these
CETK tests with rotation support disabled or under 0 rotation degree.

10.3.2 TV Output Mode

Application tvout.exe provides a way to switch between LCD and TV Output mode (PAL standard).
Clicking tvout application toggles between these two modes. The default path of tvout.exe is “\windows”.
The tvout application sets the TV output mode to PAL or NTSC standards by receiving one parameter:
“tvout.exe 0” sets TV output mode to PAL, “tvout.exe 1” sets to NTSC.

The display driver always ensures the output is LCD mode, when responding the power management to
enter the power states D0 (Full On) and D4 (Off). TV output mode requires an 270 degree rotation so that
the primary surface can fit to the physical resolution 640x480 that TV can support.

Display Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 10-3

NOTE
Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw (see the Windows CE Help documentation, stating that “GDI
screen rotation cannot be used with DirectDraw”), a DirectDraw display
driver with rotation support enabled may yield more failures in the
GDI/DIRECTDRAW CETK test suite. It’s recommended to run these
CETK tests with rotation support disabled or under 0 rotation degree.

An application tvhotkey.exe is provided. It is a startup application after bootup and listens to the hot key
event (ALT + SPACE) to allow switching between LCD and NTSC display modes. This feature can be
disabled by setting environment variable "BSP_NOTVHOTKEY" to “1”.

10.4 Software Operation

10.4.1 Communicating with the Display

Communication with the display driver is accomplished through Microsoft-defined APIs. A framework
for accessing the display driver is provided through the Graphics Device Interface (GDI) and DirectDraw.

10.4.1.1 Using the GDI

The Graphics Device Interface provides basic controls for the display of text and graphics. Refer to the
following help section for information on using the GDI:

Windows Embedded CE Features > Shell, GWES and User Interface > Graphics, Windowing and
Events(GWES) > GWES Application Development > Graphics Device Interface.

10.4.1.2 Using DirectDraw

The DirectDraw API provides support for hardware-accelerated 2-D graphics offering fast access to
display hardware while retaining compatibility with the GDI. Information on using the DirectDraw API
can be found in the following help section:

Windows Embedded CE Features > Graphics > DirectDraw

The following DirectDraw features are supported in the display driver by the IPU hardware:

• Page flipping with one backbuffer

• Overlay surfaces using RGB or YUV pixel format

• Overlaying using a color key for the overlay surface for RGB colors

• Overlaying using a color key for the non-overlay graphics surface for RGB colors

• Stretching of overlay surfaces

The IPU contains Post-Processing hardware, which is used within the display driver to accelerate the
following operations:

• Color space conversion of YUV overlay data to RGB. This conversion is required in order to
combine the overlay data with RGB graphics plane data in the IPU SDC.

Display Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

10-4 Freescale Semiconductor

• Resizing of the overlay surface

• Rotation of the overlay surface (used when the screen orientation is rotated)

• Resizing and rotation of the primary graphics surface when TV Output mode is enabled and active.
This is required to obtain a 640x480 resolution image for output to a TV.

NOTE
Setting environment variable "BSP_DISPLAY_DELAYFLIP" to 1 enables
the feature to support delay flip (which is synchronous) for overlay surfaces.
Other than this environment variable, application should explicitly set
DDFLIP_WAITNOTBUSY flag when flipping.

10.4.1.3 Using Display Driver Escape Codes

In some cases, applications might need to communicate directly with a display driver. To make this
possible, an escape code mechanism is provided as part of the display driver. A detailed description of
standard display driver escape codes can be found at the following location in the CE Help documentation:

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Drivers
Development Concepts >Display Driver Escape Codes.

10.4.2 Configuring the Display

The display is configured based on the PanelType registry key, which is described in Section 10.4.2.2,
“Display Registry Settings. The PanelType registry key indicates the display panel that is being used.
There is only one supported display panel: The EPSON L4F00242T03 VGA LCD panel.

10.4.2.1 Rotation Support

The DirectDraw display driver may be configured to allow screen rotation through a parameter in the
bsp_cfg.h file. If the BSP_DIRECTDRAW_SUPPORT_ROTATION parameter is set to TRUE, the
DirectDraw display driver supports rotation. If it is set to FALSE, it does not support rotation.

NOTE
Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw (see the Windows CE Help documentation, stating that “GDI
screen rotation cannot be used with DirectDraw”), a DirectDraw display
driver with rotation support enabled may yield more failures in the
GDI/DIRECTDRAW CETK test suite. It is recommended to run these
CETK tests with rotation support disabled or under 0 rotation degree.

10.4.2.2 Display Registry Settings

The following registry keys are optionally included, depending on the display panel catalog item included
in the OS design.

If the Epson VGA panel is selected, the following registry keys are included:

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]

Display Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 10-5

 "Bpp"=dword:10 ; 16bpp
 "VideoBpp"=dword:10 ; RGB565
 "PanelType"=dword:1 ; Epson VGA dumb Panel

If TV Output is included in the OS design, the following registry keys are also included:

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]
 "TVSupported"=dword:1 ; Flag indicates TV out mode is supported

10.4.3 Power Management

The display driver consumes power primarily through the operation of various IPU sub-modules, such as
the SDC which combines and displays video and graphics data, and through the operation of the display
panel. To facilitate management of these modules, the display driver implements the power management
I/O Control (IOCTL) codes like IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY,
IOCTL_POWER_GET and IOCTL_POWER_SET.

10.4.3.1 PowerUp

This function is not implemented for the display driver.

10.4.3.2 PowerDown

This function is not implemented for the display driver.

10.4.3.3 IOCTL_POWER_SET

The display driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full On)
and D4 (Off) power states. These states are handled in the following manner:

• D0 – The display panel is enabled. The IPU’s Display Interface (DI) and SDC modules are enabled.

• D4 – The DI and SDC modules of the IPU are disabled. The display panel is disabled.

10.5 Unit Test
The display driver is subject to two test suites provided with the Windows CE Test Kit (CETK): the
Graphics Device Interface (GDI) Test and the DirectDraw Test. Additionally, video playback may be
verified using the Windows Media Player application. The GDI Test is designed to test a graphics device
interface. This test verifies that basic shapes, including rectangles, triangles, circles, and ellipses, are
drawn correctly. The test also examines the color palette of the display, verifies that the display is correctly
divided into multiple regions, and tests whether a device context can be properly created, stored, retrieved,
and destroyed.

The DirectDraw Test analyzes basic DirectDraw functionality including block image transfers (blits),
scaling, color keying, color filling, flipping, and overlaying. Windows Media Player may be used to play
back WMV video files and visually verify correct operation of video overlays, accelerated color space
conversion, and accelerated image resizing.

Display Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

10-6 Freescale Semiconductor

10.5.1 Unit Test Hardware

Table 10-2 lists the required hardware to run the GDI and DirectDraw tests.
Table 10-2. Hardware Requirements

10.5.2 Unit Test Software

10.5.2.1 GDI Tests

Table 10-3 lists the required software to run the GDI tests.

Table 10-3. GDI Test Software Requirements

10.5.2.2 DirectDraw Tests

Table 10-4 lists the software required to run the DirectDraw tests.
Table 10-4. Direct Draw Test Software Requirements

10.5.2.3 Windows Media Player Tests

Table 10-5 lists the software required to perform WMV playback with Windows Media Player.
Table 10-5. Windows Media Player Test Software Requirements

Requirements Description

EPSON L4F00242T03 VGA Panel Display panel required for display of graphics data

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Gdiapi.dll Main test .dll file

Ddi_test.dll Graphics Primitive Engine (GPE)–based display driver that the GDI API uses to
verify the success of each test case.
If Ddi_test.dll is unavailable, run the test with manual verification.

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

DDrawTK.dll Test .dll file

Requirements Description

Ceplayer.exe Windows Media Player sample application

*.wmv sample video files Sample windows media files

Display Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 10-7

10.5.3 Building the Display Tests

The GDI and DirectDraw tests come pre-built as part of the CETK. Ensure you are using the latest CETK
suite. No steps are required to build these tests. Refer to the help documentation for more detailed
information:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Display Tests.

For Windows Media Player testing, there are no build steps required. The Windows Media Player catalog
item must be added to the OS image to ensure that ceplayer.exe is included in the image. Additionally,
sample WMV files must be included in the image to demonstrate playback.

10.5.4 Running the Display Tests

10.5.4.1 Running the GDI Tests

The command line for running the GDI tests is tux –o –d gdiapi.dll.

For detailed information on the GDI tests and command line options for these tests, see Windows
Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Display Tests > Graphics
Device Interface Test in the CE Help documentation.

10.5.4.2 Running the DirectDraw Tests

The command line for running the DirectDraw tests is tux –o –d ddrawtk.

For detailed information on the DirectDraw tests and command line options for these tests, see Windows
Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Display Tests > DirectDraw
Test in the CE Help documentation.

10.5.4.3 Running the Windows Media Player Tests

The command line for starting playback of a WMV test video clip in Windows Media Player is ceplayer
[wmv test file] (e.g. “ceplayer motocross_208x160_30fps.wmv”). If audio support is not included in the
current BSP, a dialog box reading “Audio hardware is missing or disabled” pops up when the WMV file
is being loaded. Select OK to continue to WMV playback.

Correct operation of this test is confirmed by observing the application and verifying that the video clip is
playing at a smooth rate (it should not be dropping frames or otherwise appearing jerky) with a clear image,
normal coloring, and correct image sizing.

10.6 Display Driver API Reference
Documentation for the display driver APIs can be found within the CE Help documentation. No additional
custom API information is required for the features currently supported in the display driver. Reference
information on basic display driver functions, methods, and structures can be found at the following
location in the CE Help documentation:

Display Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

10-8 Freescale Semiconductor

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Reference

Reference information on DirectDraw functions, callbacks, and structures can be found at the following
location in the CE Help documentation:

Windows Embedded CE Features > Graphics > DirectDraw

Windows Embedded CE Features > Shell, GWES, and User Interface > Graphics, Windowing and
Events (GWES) > GWES Reference > GDI Reference

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 11-1

Chapter 11
Dynamic Voltage and Frequency Control (DVFC) Driver
The BSP includes a component called the Dynamic Voltage and Frequency Control (DVFC) driver that
provides combined support for DVFS (Dynamic Voltage Frequency Scaling) and APM (Advanced Power
Management). The DVFC driver plays an important role in the reduction of i.MX31 CPU power
consumption by dynamically adjusting the voltage and frequency settings of the system. The DVFC driver
responds to DVFS that is monitoring CPU loading and process performance of i.MX31 ARM platform.
The APM algorithm monitors clock tree changes in the system, and applies most adapting performance
level to system.

11.1 DVFC Driver Summary
Table 11-1 provides a summary of source code location, library dependencies and other BSP information.

Table 11-1. DVFC Driver Summary

11.2 Supported Functionality
The DVFC driver enables the 3-Stack board to provide the following software and hardware support:

• Supports APM that depends on clock tree state change

• Supports DVFS and bus scale for power conservation

• Provides integrated voltage control supplied from MC13783

• Exposes interface for CE6 power manager

• Supports D0, D1, D2, and D4 driver power states

• Supports APM and DVFS use MPLL/SPLL switching

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path N/A

CSP Driver Path ..\platform\common\src\soc\freescale\mx31_fsl_v1\dvfc

CSP Static Library dvfc_mx31_fsl_v1.lib

Platform Driver Path ...\PLATFORM\<TGTPLAT>\SRC\DRIVERS\DVFC\MC13783

Import Library pmicSdk_mc13783.lib

Driver DLL dvfc_mc13783.dll

Catalog Item Third Party > BSPs > Freescale <TGTPLAT> > Device Drivers > DVFC >
MC13783 DVFC

SYSGEN Dependency N/A

BSP Environment Variables BSP_PMIC_MC13783 = 1
BSP_DVFC_ MC13783 = 1

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

11-2 Freescale Semiconductor

11.3 Hardware Operation
The DVFC driver is dependent upon the MC13783 interface for dynamic voltage control. The MC13783
chip must be present on the i.MX31 3-stack CPU board. The i.MX31 CPU board must be configured to
source power from the MC13783. Refer to the Windows CE BSP for i.MX31 3-Stack User’s Guide for
the proper board configuration.

11.3.1 Pin Settings and Conflicts

11.3.1.1 Peripheral Conflicts

The signals used for the dynamic voltage control interface between i.MX31 and MC13783 cannot be used
for other purposes. In particular, the i.MX31 GPIO1_5 pin is connected to the PMIC power ready
notification signal and is used by the DVFS hardware to determine when the voltage setting is reached.
This pin should not be configured for GPIO purposes.

11.3.1.2 PMIC and DVS Pin settings

The signals of DVS0 and DVS1 are configured in combination mode. MC13783 switches SW1 and SW2
that are connected together provide four voltage selection.

11.4 Software Operation

11.4.1 Loading and Initialization

The DVFC driver is loaded by the device manager in the kernel space. As part of the loading procedure of
stream drivers, the device manager invokes the corresponding stream initialization function exported by
the DVFC driver. The initialization sequence includes a call to platform-specific code (BSPDvfcInit) to
allow the OEM to configure and tune the DVFC driver operation.

11.4.2 Clock Tree Dependency

The DVFC driver uses APM algorithm to control and regulate system performance. All the clock modules
are mapped to an unique request system setpoint. With manipulating clock tree changing event, DVFC
driver is able to select the best satisfied setpoint to all BSP modules with optimized performance and
power.

11.4.3 Processor Workload Tracking

The DVFC driver utilizes the hardware load tracking available within the i.MX31 DVFS logic. The load
tracking hardware monitors the CPU activity and notifies the system to adjust the DVFS setting to meet
the required CPU performance. By adjusting parameters of the load tracking hardware, DVFS hardware
can control the CPU loading characteristics that trigger DVFS transitions. The DVFS can trigger system
to raise or lower setpoint based on CPU workload.

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 11-3

11.4.4 Setpoint Consideration

There are four setpoints defined in the DVFC driver to select processor work performance. Table 11-2
describe the setpoint definition and power conservation schema in DVFC driver.

11.4.5 Lock and Performance

Since system clock tree status can be changed at any time, DVFC driver holds a exclusion lock to DDK
threads when it is updating system setpoint.

The setpoint updating performance depends on six factors:

• Communication efficiency to PMIC

• Regulator speed in PMIC for voltage ready

• PLL lock and switch time

• Mutex lock of DDK threads

• Critical section of Shared CSPI to PMIC

• Bus ready time

DVFS hardware also triggers asynchronous events to request setpoint change. The DVFC daemon thread
synchronizes to DVFS with mutex protection to change the system state. Because the APM algorithm
priority is higher than DVFS, DVFS gives up the mutex lock if it conflicts with APM setpoint turning.

11.4.6 DDK Interface

The DVFC driver allows other drivers/applications to control some aspects of the DVFS operation. Due
to the tight coupling with the system clock configuration, this interface is exposed within CSPDDK
clocking support. Refer to the CSPDDK documentation for the following functions:

• DDKClockSetpointRequest

• DDKClockSetpointRelease

11.4.7 Power Management

The DVFC is an integral part of the power management supported by the BSP. However, since the DVFC
runs as a driver on the system, it also supports the power manager device driver interface. This allows the
DVFC driver to be notified when the system is suspending/resuming and configure the processor
performance accordingly.

Table 11-2. DVFC Setpoint Definition

Name
Performance

(MHz)
Voltage

(V)
Power Target

TURBO 528/132/66 1.600 Fastest for speed, high voltage

HIGH 396/132/66 1.350 Reduced speed and voltage to save power for most uses case

MEDIUM 132/66/66 1.300 System bus scale

LOW 132/33/33 1.250 Peripheral bus scale

Dynamic Voltage and Frequency Control (DVFC) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

11-4 Freescale Semiconductor

11.4.7.1 PowerUp

This function is not implemented for the DVFC driver.

11.4.7.2 PowerDown

This function is not implemented for the DVFC driver.

11.4.7.3 IOCTL_POWER_CAPABILITIES

The DVFC driver advertises that D0-D4 device power states are supported.

11.4.7.4 IOCTL_POWER_SET

The DVFC driver supports requests to enter D0-D4 device power state.

11.4.7.5 IOCTL_POWER_GET

The DVFC driver reports the current device power state (D0, D1, D2 or D4).

11.5 Unit Test
No unit test cases provided.

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 12-1

Chapter 12
FM Radio Driver
The FM radio driver is used to control the Si4702 chip, and is compatible with the Stream Interface driver
framework. This chapter provides information about developing the FM radio application, which
interfaces directly to the hardware component Si4702 chip.

12.1 Radio Driver Summary
Table 12-1 provides a summary of source code location, library dependencies and other BSP information.

Table 12-1. Radio Driver Summary

12.2 Supported Functionality
The radio driver enables the 3-Stack board to provide the following software and hardware support:

• Conforms to the Device Manager streams interface

• Supports the Si4702 chip

• Supports the main functions of FM radio: power on/off, set frequency, set volume, muted, auto scan

12.3 Hardware Operation
The driver uses I2C to interact with Si4702 hardware. Details refer to Silicon Laboratories Si4702.pdf.

12.4 Software Operation
The only interface to control the radio driver is IOCTLs.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\RADIO

Import Library N/A

Driver DLL fm_radio.dll

Catalog Item Third Party − BSP > Freescale i.MX31 3DS:ARMV4I > Device Drivers >
Radio Driver > Si4702 FM Radio

SYSGEN Dependency N/A

BSP Environment Variables BSP_RADIO=1

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

12-2 Freescale Semiconductor

12.4.1 Radio Driver Registry Settings

The following registry keys are required to properly load Radio driver.
; These registry entries load the FM Radio driver. The IClass value be GUID for generic ;
power-managed devices.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\RADIO]
 "Prefix"="RDO"
 "Dll"="fm_radio.dll"
 "Index"=dword:1
 "Order"=dword:30
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

12.4.2 Power Management

The primary method for limiting power consumption in the radio module is to power down the chip when
no longer using the FM radio driver. The application can call IOCTL_SET_POWER with parameter
POWER_OFF to power down the chip.

12.4.2.1 PowerUp

This function is not implemented for the radio driver.

12.4.2.2 PowerDown

This function is not implemented for the radio driver.

12.4.2.3 IOCTL_POWER_CAPABILITIES

The power management capabilities are advertised with power manager through this IOCTL. The radio
module supports only two power states: D0 and D4.

12.4.2.4 IOCTL_POWER_SET

This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE in the radio driver. Any request that is not D0 is changed to a
D4 request and results in the system entering into a suspend state, while for a value of D0 the system
resumes.

12.4.2.5 IOCTL_POWER_GET

This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

12.5 Unit Test
The Radio CETK test cases verify the functionality of the radio driver for Si4702 chip. Also the FM Radio
Application can be used to verify the radio driver. Refer to FM Radio Application section of user guide.

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 12-3

12.5.1 Unit Test Hardware

The i.MX31 3-Stack board is required.

12.5.2 Building the Radio Tests

In order to build the radio tests, complete the following steps:

Build an OS image for the desired configuration.

1. Within Platform Builder, go to the Build menu option and select the Open Release Directory
menu option. This opens a DOS prompt.

2. Change to the Radio Tests directory. (\WINCE600\SUPPORT\MX31\TESTS\RADIO)

3. Enter set WINCEREL=1 on the command prompt and hit return. This copies the built DLL to the
flat release directory.

4. Enter the build command (build -c) at the prompt and press return.

After the build completes, the radio_test.dll file is located in the $(_FLATRELEASEDIR) directory.

12.5.3 Running the Radio Tests

The command line for running the radio tests is tux –o –d radio_test. You can provide an additional option
–f if you wish to redirect the test results to a file. Radio tests do not contain any test specific command line
options.

12.6 Radio IOCTL Reference
This section consists of descriptions for the RADIO I/O control codes (IOCTLs). These IOCTLs are used
in calls to DeviceIoControl to issue commands to the radio device modules. Only relevant parameters for
the IOCTL have a description provided. Most of the IOCTLs are explained in the specific sections where
they are most relevant.

12.6.1 Radio Driver IOCTLS

12.6.1.1 RADIO_IOCTL_GET_CAPS

This DeviceIoControl request gets capability of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn NULL

pBufOut pointer to RADIO_CAPS type data return to caller

12.6.1.2 RADIO_IOCTL_GET_TUNER

This DeviceIoControl request gets tuner data of hardware.

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

12-4 Freescale Semiconductor

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn NULL

pBufOut pointer to RADIO_TUNER type data return to caller

12.6.1.3 RADIO_IOCTL_SET_TUNER

This DeviceIoControl request sets tuner data of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn pointer to RADIO_TUNER type data filled by caller

pBufOut NULL

12.6.1.4 RADIO_IOCTL_GET_AUDIO

This DeviceIoControl request gets audio data of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn NULL

pBufOut pointer to RADIO_AUDIO type data return to caller

12.6.1.5 RADIO_IOCTL_SET_AUDIO

This DeviceIoControl request sets audio data of hardware such as volume or muted.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn pointer to RADIO_AUDIO type data filled by caller

pBufOut NULL

12.6.1.6 RADIO_IOCTL_GET_FREQ

This DeviceIoControl request gets the current frequency of the hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn NULL

pBufOut pointer to the current frequency return to caller

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 12-5

12.6.1.7 RADIO_IOCTL_SET_FREQ

This DeviceIoControl request tunes to the frequency.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn pointer to the frequency filled by caller

pBufOut NULL

12.6.1.8 RADIO_IOCTL_GET_POWER

This DeviceIoControl request gets the power state of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn NULL

pBufOut pointer to RADIO_POWER type data return to caller

12.6.1.9 RADIO_IOCTL_SET_POWER

This DeviceIoControl request sets power state of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn pointer to RADIO_POWER type data filled by caller

pBufOut NULL

12.6.1.10 RADIO_IOCTL_AUTO_TUNE

This DeviceIoControl request auto scan all available channels.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn pointer to RADIO_AUTOTUNE type data filled by caller.

pBufOut NULL

12.6.1.11 RADIO_IOCTL_GET_LAST_ERROR

This DeviceIoControl returns the last return code.

Parameters

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

12-6 Freescale Semiconductor

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufIn NULL

pBufOut pointer to the current return code returned to the caller

12.6.2 Radio Driver Structures

12.6.2.1 Radio Tuner Structure
typedef struct
{
 TCHAR name[32]; // i.e "FM"
 INT32 band_id;
 UINT32 range_low; //KHZ
 UINT32 range_high; //KHZ
 UINT32 signal;
 UINT32 normal_signal; //acceptable signal
 UINT32 mode; //MONO, STEREO
 UINT32 reserved;
} RADIO_TUNER;

12.6.2.2 Radio Caps Structure
typedef struct
{
 TCHAR driver[32];// i.e. "Radio"
 TCHAR chip[32]; // i.e. "Silicon Laboratories Si4702"
 UINT32 version; //
 UINT32 caps; // Device capabilities
 UINT32 bands;
 UINT32 reserved;
} RADIO_CAPS;

12.6.2.3 Radio Audio Structure
typedef struct
{
 UINT32 volume;
 UINT32 muted;
} RADIO_AUDIO;

12.6.2.4 Radio Power State Structure
typedef enum
{
 RADIO_POWER_OFF = 0,
 RADIO_POWER_ON
} RADIO_POWER;

12.6.2.5 Radio Auto Tune Structure
typedef enum

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 12-7

{
 RADIO_AUTOTUNE_FROM_BEGIN = 0,
 RADIO_AUTOTUNE_FROM_CUR,
 RADIO_AUTOTUNE_FROM_END
} RADIO_AUTOTUNE_POS;

typedef enum
{
 RADIO_AUTOTUNE_SEEKUP = 0,
 RADIO_AUTOTUNE_SEEKDOWN
} RADIO_AUTOTUNE_DIR;

typedef struct
{
 RADIO_AUTOTUNE_POS pos;
 RADIO_AUTOTUNE_DIR dir;
} RADIO_AUTOTUNE;

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

12-8 Freescale Semiconductor

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-1

Chapter 13
General Purpose Timer (GPT) Driver
The general purpose timer is a multipurpose module used to measure intervals or generate periodic output.
The timer counter value can be captured in a register using an event on an external pin. The GPT can also
generate an event on a chip boundary signal and an interrupt when the timer reaches a programmed value.
There is only one general purpose timer supported in i.MX31.

13.1 GPT Driver Summary
Table 13-1 provides a summary of source code location, library dependencies and other BSP information.

Table 13-1. GPT Driver Summary

13.2 Supported Functionality
The GPT driver enables the 3-Stack board to provide the following software and hardware support:

• Configured as a loadable .dll module so that other drivers can use the interface of the GPT driver

• Supports clock source selection, including external clock source

• Supports both reset and free-run mode count operation

• Supports two power management modes, power on and power off

• Supports the SDK interface

• The unit test cases are created for testing the GPT driver

13.3 Hardware Operation
Refer to the chapter on General Purpose Timer in the hardware specification document for detailed
hardware operation and programming information.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path ..\SOC\FREESCALE\MXARM11_FSL_V1\GPT

CSP Driver Path N/A

CSP Static Library gpt_mxarm11_fsl_v1.lib

Platform Driver Path ..\PLATFORM\IMX313DS\SRC\DRIVERS\GPT

Import Library N/A

Driver DLL gpt.dll

Catalog Item Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device
Drivers > Timers > GPT

SYSGEN Dependency N/A

BSP Environment Variables BSP_GPT=1

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-2 Freescale Semiconductor

13.3.1 Conflicts with Other Peripherals

No conflicts.

13.4 Software Operation
NOTE

If Platform Builder profiling support is to be used, the GPT driver cannot be
included in the workspace

13.4.1 Communicating with the GPT

The GPT driver controls the General Purpose Timer. This timer is used to provide high resolution
(microsecond) timing functionality to other platform modules. The GPT is a stream interface driver and is
accessed through the file system APIs. To communicate using the GPT, a handle to the device must first
be obtained using the GptOpenHandle function. Subsequent commands to the device are issued using
various APIs supported by this driver. It is necessary to include the gptsdk_mxarm11_fsl_v1.lib library to
use this API.

13.4.2 Creating a Handle to the GPT

To communicate with the GPT, a handle to the device must first be created using the GptOpenHandle
API. The default GPT port is 1.

To open a handle to the GPT:
// Global data
// Handle to the GPT device
HANDLE g_hGpt = NULL;

// opening the default GPT port.
g_hGpt = GptOpenHandle();

For more information on this API, see the GptOpenHandle section under the GPT API reference.

13.4.3 Configuring the GPT

Configuring the GPT for communications involves selecting timer source by:

• Calling GptSetTimerSrc API

• Starting the timer and enabling the timer event trigger by calling GptStart API

• Showing the current timer source by calling GptShowTimerSrc API

Before this action can be taken, a handle to the GPT port must already be opened.

Call the GptSetTimerSrc API to select timer source.
// selecting the GPT source
GptSetTimerSrc(g_hGpt, pGptTimerSrcPkt) ;

Call the GptStart API to enable and start the timer.

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-3

// configuring and starting the GPT, the second parameter contains timer mode and
// timer length
GptStart(g_hGpt, pTimerConfig) ;

Call the GptShowTimerSrc API to show current timer source.
// showing current GPT timer source
GptShowTimerSrc(g_hGpt) ;

For more information on this API, see the GptStart section under the GPT API reference.

13.4.4 Write Operations

The Write operations for the GPT involve setting the time through the GptSetTimer API. Before this
action can be taken, a handle to the GPT must already be opened.

The timer mode can be either, timerModeFreeRunning or timerModePeriodic. The period has the unit of
microsecond.

// Name to create the named event for Timer
#define GPT_EVENT_NAME L"GptTest1"
// GPT Timer packet
GPT_TIMER_SET_PKT gptTimerDelayPkt;

// create an event for the timer interrupt
hGptIntr = GptCreateTimerEvent(hGpt, GPT_EVENT_NAME);

gptTimerDelayPkt.timerMode = timerModePeriodic;
gptTimerDelayPkt.period = 10000000;

// Setting the GPT timer
GptSetTimer(g_hGpt, &gptTimerDelayPkt);

For more information on this API, see GptSetTimer section of the GPT API reference.

13.4.5 Closing the Handle to the GPT

To close the GPT handle, call the GptCloseHandle API. Before performing the close operation, stop the
timer using GptStop API. It is always advised to call GptReleaseTimerEvent to release any pending
timer events before closing the handle.

Before these actions can be taken, a handle to the GPT must already be opened.

To close the GPT Handle,
// Name to create the named event for Timer
#define GPT_EVENT_NAME L"GptTest1"

// releasing the Timer Event.
GptReleaseTimerEvent(g_hGpt, eventString);
GptStop(g_hGpt)
GptCloseHandle(g_hGpt);

For more information on these APIs, see the GptReleaseTimerEvent, GptStop and GptCloseHandle
section under the GPT API reference.

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-4 Freescale Semiconductor

13.4.6 Power Management

The primary method for limiting power consumption in the GPT module is to gate off all clocks to the
module when GPT is not used. The clock is enabled when an application calls GPT_Open(). This clock
then remains enabled as long device is kept open. The GPT clock is turned off when the application closes
the device using GPT_Close().

13.4.6.1 PowerUp

This function restores the state of the GPT clocks back to the state before entering suspend. If the GPT was
counting before suspend, GPT continues to count from the place where it was stopped.

13.4.6.2 PowerDown

This function disables the clock to the GPT module. If the GPT was counting, then the count value freezes
at the point when the clock is removed.

13.4.6.3 IOCTL_POWER_CAPABILITIES

N/A

13.4.6.4 IOCTL_POWER_SET

N/A

13.4.6.5 IOCTL_POWER_GET

N/A

13.4.7 GPT Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GPT]
 "Prefix"="GPT"
 "Dll"="gpt.dll"
 "Index"=dword:1

13.5 Unit Test
The GPT tests verify that the GPT driver properly initializes and controls the general purpose timer.

13.5.1 Unit Test Hardware

Table 13-2 lists the required hardware to run the unit tests.
Table 13-2. Hardware Requirements

Requirements Description

No additional hardware required

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-5

13.5.2 Unit Test Software

Table 13-3 lists the required software to run the unit tests.
Table 13-3. Software Requirements

13.5.3 Building the GPT Tests

In order to build the GPT tests, complete the following steps:

Build an OS image for the desired configuration:

1. Within Platform Builder, go to the Build menu option and select the Open Release Directory
menu option. This opens a DOS prompt.

2. Change to the GPT Tests directory: \WINCE600\SUPPORT\MX31\TESTS\GPT

3. Enter set WINCEREL=1 on the command prompt and hit return. This copies the built DLL to the
flat release directory.

4. Enter the build command at the prompt and press return.

After the build completes, the GPTTEST.dll file is located in the $(_FLATRELEASEDIR) directory.

13.5.4 Running the GPT Tests

The command line for running the GPT tests is tux –o –d gpttest. The GPT tests do not contain any test
specific command line options.

To add the GPT test to CETK, perform the following steps:

1. Go to the Tests menu and select User Defined.

2. Follow the wizard and add the GPTTEST.dll located in the release folder as the test module.

3. Follow the wizard until it finishes.

Table 13-4 describes the test cases contained in the GPT tests.

Table 13-4. GPT Test Cases

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

GPTTEST.dll Test .dll file

Test Case Description

1: TST_StartBeforeCfg Attempt to start the GPT timer without setting the timer period (expected failure)

2: TST_OpenMultipleHandle Attempt to open multiple GPT Handles (expected failure)

3: TST_ComparewithSysTick Check timer accuracy with system clock

4:TST_ChangeClockSrc Run the timer with different timer source

5:TST_PeriodicMode Periodic mode test

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-6 Freescale Semiconductor

13.6 GPT Driver API Reference

13.6.1 GPT Driver Functions

13.6.1.1 GptOpenHandle

This API creates a handle to the GPT stream driver.
HANDLE GptOpenHandle(

void
);

Parameters This API accepts no parameters.

Return Values: An open handle to the specified file indicates success.
INVALID_HANDLE_VALUE indicates failure.

Remarks Use the GptCloseHandle function to close the handle returned by
GptOpenHandle().

13.6.1.2 GptCreateTimerEvent

This API is used to create the GPT Timer event.
HANDLE GptCreateTimerEvent(

HANDLE hGpt,
LPTSTR eventName

);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

eventName [in] Pointer to a null-terminated string that specifies the name of the object.

Return Values: A non-null handle to the specified event indicates success. NULL indicates
failure.

Remarks Use the GptReleaseTimerEvent function to close the event. The system closes
the handle automatically when the process terminates. The event object is
destroyed when its last handle has been closed.

13.6.1.3 GptShowTimerSrc

This API show the current timer source for the GPT.
BOOL GptShowTimerSrc(

HANDLE hGpt
);

6: TST_FreerunMode Free run mode test

7: TST_StopAndResume Stop and resume test

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-7

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

Return Values: TRUE on success and FALSE indicates a failure.

Remarks Prints a message indicating which clock source is selected.

13.6.1.4 GptSetTimerSrc

This API show the current timer source for the GPT.
BOOL GptSetTimerSrc(

HANDLE hGpt,
PGPT_TIMER_SRC_PKT pGptTimerSrcPkt

);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

pGptTimerSrcPkt [in] An object of the PGPT_TIMER_SRC_PKT structure

Return Values: TRUE on success and FALSE indicates a failure.

Remarks Select clock source between CLK_HIFRQ, CLK_32K, CLK_IPG, CLK_EXT

13.6.1.5 GptStart

This API enables the GPT interrupt and starts the GPT timer.
BOOL GptStart(

HANDLE hGpt,
pGPT_Config pTimerConfig

);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

pTimerConfig [in] An object of the pGPT_Config structure.

Return Values: TRUE on success and FALSE indicates a failure.

Remarks Set desired event trigger time and start GPT.

13.6.1.6 GptUpdatePeriod

This API updates the counter compare value on regarding to the current counter value and the new time
length submitted.
BOOL GptUpdatePeriod(

HANDLE hGpt,
DWORD period

);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

period [in] new time length (in micorsecond) submitted.

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-8 Freescale Semiconductor

13.6.1.7 GptGetCounterValue

This API gets the current counter register value.
BOOL GptGetCounterValue(

HANDLE hGpt,
PDWORD pTimerCount

);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

pTimerCount [in] point to the variable which receives current counter value

13.6.1.8 GptResume

This API reactivates the GPT.
BOOL GptResume(

HANDLE hGpt
);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

Remarks Often called after a stop.

13.6.1.9 GptStop

This API disables the GPT interrupt and stops the GPT timer.
BOOL GptStop(

HANDLE hGpt
);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

Return Values TRUE on success and FALSE indicates a failure.

13.6.1.10 GptReleaseTimerEvent

This API closes the currently open GPT Timer Event.
BOOL GptReleaseTimerEvent(

HANDLE hGpt,
LPTSTR eventName

);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

eventName [in] Pointer to a null-terminated string that specifies the name of the object

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-9

Return Values Nonzero indicates success. Zero indicates failure. To get extended error
information, call GetLastError().

13.6.1.11 GptCloseHandle

This API closes a handle to the GPT driver.
BOOL GptCloseHandle(

HANDLE hGpt
);

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

Return Values Nonzero indicates success. Zero indicates failure. To get extended error
information, call GetLastError().

13.6.2 GPT Driver Structures

13.6.2.1 GPT_Config
typedef struct
{

 timerMode_c timerMode;
 UINT32 period;

} GPT_Config, *pGPT_Config;

Members

timerMode Selects between two supported modes: reset or periodic mode
(timerModePeriodic) and free-running mode (timerModeFreeRunning).

period Counter period (in microsecond)

13.6.2.2 GPT_TIMER_SRC_PKT
typedef struct
{

 timerSrc_c timerSrc;
}GPT_TIMER_SRC_PKT, *PGPT_TIMER_SRC_PKT;

Members

timerSrc Selects between 4 supported timer source, GPT_IPGCLK, GPT_HIGHCLK,
GPT_EXTCLK and GPT_32KCLK

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-10 Freescale Semiconductor

Global Positioning System Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 14-1

Chapter 14
Global Positioning System Driver
The global positioning system (GPS) enables a GPS receiver to determine its location, speed/direction, and
time. This 3-Stack platform supports the BroadCom BCM4750 Single Chip A-GPS Solution. BCM4750
is an A-GPS solution that integrates a high performance A-GPS baseband signal processor with a
low-noise GPS RF Tuner into a single CMOS die. BCM4750 delivers exceptional sensitivity (-162 dBm),
low power consumption and fast time-to-first-fix (TTFF) in a small, inexpensive package.

The external GPS module is supported using the UART port and GPIO resources. Because the chipset
features a host-based architecture, certain software components must be loaded onto the platform in order
to enable full operation.

14.1 GPS Driver Summary
Most GPS software modules are provided in binary form only. This application also provides source code
format for the driver that supports access to the hardware. To enable the GPS module, select the
corresponding elements from the platform builder catalog for the current OS design. The binary files and
the registry settings that correspond to the elements selected are included in the OS run-time image.

The GPS module uses UART on the 3-Stack platform. Reset and power on/ power off to the GPS module
are controlled by the GPIO pins of the i.MX31. The GPS module functionality is segmented into
subsystems. Not all of the subsystems need to be selected in order to enable GPS on the platform.

Table 14-1 provides a summary of source code location, library dependencies and other BSP information.
Table 14-1. GPS Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path N/A

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path ..\PLATFORM\<tgtplat>\SRC\DRIVERS\GPS
..\PLATFORM\<tgtplat>\SRC\DRIVERS\GPSCTRL

Import Library N/A

Driver DLL Gpsct.exe;GpsNavigationLauncher.exe;GpsctServiceLauncher.exe;GpsctService.dll;
GlvcDriver.dll;gpscontroldriver.dll
LtoManager.exe, LtoManager.exe.config, LtoManagerLauncher.exe, log4net.dll,
OpenNetCF_GL.dll, OpenNetCF.Net_GL.dll,
OpenNetCF.Windows.Forms_GL.dll

Catalog Items Third Party > BSPs > Freescale <tgtplat> > Device Drivers > GPS > GPS core drivers
Third Party > BSPs > Freescale <tgtplat> > Device Drivers > GPS > GPS control
driver

Global Positioning System Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

14-2 Freescale Semiconductor

Figure 14-1 shows the architecture of GPS driver, showing the following layers in the GPS software
system:

• Application layer

• GPS core driver layer

• GPS HAL driver layer

14.1.1 Application layer

Handset applications, TCP/IP stack, and GSM layer3 in Figure 14-1 belong to application layer. Handset
applications, such as VisualGpsce.exe or any other mapping software, can receive standard NMEA data to
show position with a friendly user interface. TCP/IP stack and GSM layer3 can provide A-GPS navigation
service to enhance GPS functionality even when satellite signal is not strong enough to get fix.

Figure 14-1. Software Architecture of GPS Driver

SYSGEN Dependency N/A

BSP Environment Variables BSP_GPS_COREDRIVER = 1
BSP_GPS_CONTROL_DRIVER= 1
BSP_SERIAL_UART3 = 1

Global Positioning System Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 14-3

14.1.2 GPS Core Driver Layer

The middle section of Figure 14-1 shows the Global Local Library (GLL) which belongs to GPS core
driver layer. The GPS core driver runs at host and communicates with GPS chip by calling GPS HAL
driver. The driver is used for position calculation and assistance data management.

14.1.3 GPS HAL driver layer

GPS HAL drivers provide hardware related resource, such as serial port driver, non-volatile storage, and
GPIO functions. Only GPIO functions are provided here to control GPS power state and reset. The driver
is called gpscontroldriver.dll, and source code is available at
..\PLATFORM\<tgtplat>\SRC\DRIVERS\GPSCTRL.

14.2 Supported Functionality
The GPS driver enables the 3-Stack board to provide the following software and hardware support:

• Integrates the BCM4750 GPS module from BroadCom company

• Supports power management mode full on/full off

14.3 Hardware Operation

14.3.1 UART Port

For i.MX31-3DS board, UART3 is used to communicate with the GPS module. If a different UART is used
for this purpose, then the following registry should be changed correspondingly:

..\PLATFORM\<tgtplat>\SRC\DRIVERS\GPS\GlobalLocate-Gpsct-flatrom.reg:

"GpsComPort"="COMx:"

Here “x” should be specified according to the UART actually used ("COM3:").

14.3.2 GPIO Control

Some GPIO pins of the 3-Stack platform are used to control the GPS module (Table 14-2). If different pins
are used for such purpose, then some source code must be updated to reflect the difference. Refer to the
following source file for details: ..\PLATFORM\<tgtplat>\SRC\DRIVERS\GPS\GpsCtlPdd.cpp

Table 14-2. GPIO Control

GPIO Name PIN Value Description

BSP_GPIO_GPS_RESET MCU2_15 0: Reset of GPS module is asserted
1: Reset of GPS module is de-asserted

BSP_GPIO_PWR_EN_GPS MCU3_2 1: GPS module is powered on
0: GPS module is powered off

FM_CLK_EN MCU2_3 Must be 1 to enable 32KHz RTC

Global Positioning System Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

14-4 Freescale Semiconductor

14.3.3 Conflicts with Other Peripherals

No conflicts.

14.4 Software Operation

14.4.1 Communicating with the GPS Module

Software applications communicate with the GPS module through a virtual COM port (i.e. COM8). The
virtual COM port is a standard stream interface driver, and is thus accessed through the file system APIs.
For example, the Win32 API CreateFile() call can be used to obtain a handle and ReadFile() can be used
to read the NMEA data stream output by the GPS module.

14.4.2 Power Management

The 3-Stack platform functions GPS_PowerUp and GPS_PowerDown are used to bring the GPS module
into and out of standby mode. The code is designed to keep the power consumption of the GPS module at
a minimal level when the standby power state is invoked.

14.4.3 GPS Driver Registry Settings

14.4.3.1 Configuration Registry Keys

Contact BroadCom for details.

14.5 Unit Test
A navigation application is necessary to test GPS driver. Freescale does not provide a navigation
application. The user is responsible for providing a navigation application (contact BroadCom for more
information).

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-1

Chapter 15
Inter-Integrated Circuit (I2C) Driver
The Inter-Integrated Circuit (I2C) module provides the functionality of a standard I2C slave and master.
The I2C module is designed to be compatible with the standard Phillips I2C bus protocol.

15.1 I2C Driver Summary
The following table provides a summary of source code location, library dependencies and other BSP
information:

Table 15-1. I2C Driver AttributesI

15.2 Requirements
The I2C driver should meet the following requirements:

1. Support the I2C communication protocol.

2. Support multiple I2C controllers.

3. Support the I2C master mode of operation.

4. Not support the I2C slave mode of operation.

5. Function as a stream interface driver implementing the programming interface defined in this
document.

6. Support two power management modes, full on and full off.

15.3 Hardware Operation
Refer to the chapter on I2C in the hardware specification document for detailed operation and
programming information.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path ..\PLATFORM\common\src\soc\freescale\mxarm11_fsl_v1\i2c

CSP Driver Path ..\PLATFORM\common\src\soc\freescale\<TGTSOC>\DRIVERS\I2C

CSP Static Libraries i2c_mxarm11_fsl_v1.lib, i2c_<TGTSOC>.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\I2C

Import Library N/A

Driver DLL i2c.dll

Catalog Item Third Party −> BSP −> Freescale i.MX31 3DS:ARMV4I −> Device Drivers −>
I2C Bus

SYSGEN Dependency N/A

BSP Environment Variables BSP_I2CBUS=1

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-2 Freescale Semiconductor

15.3.1 Conflicts with other SoC peripherals

15.3.1.1 i.MX31 Peripheral Conflicts

The i.MX31 platform contains three I2C modules, but only one of these modules may be used on the
i.MX31 PDK board, the I2C1 module. I2C2 does not have any allocated pins, and I2C3 shares pins with
the CSPI2 module. The CSPI2 signals are selected in the IOMUX, as they are required for proper
communication with the MC13783 PMIC.

15.4 Software Operation

15.4.1 Communicating with the I2C

The I2C is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the I2C, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. If preferred, the DeviceIoControl function calls can be replaced with macros that hide
the DeviceIoControl call details. The basic steps are detailed below.

15.4.2 Creating a Handle to the I2C

Call the CreateFile function to open a connection to the I2C device. An I2C port must be specified in this
call. The format is “I2CX”, with X being the number indicating the I2C port. This number should not
exceed the number of I2C instances on the platform. If an I2C port does not exist, CreateFile returns
ERROR_FILE_NOT_FOUND.

To open a handle to the I2C, complete the following steps:

1. Insert a colon after the I2C port for the first parameter, lpFileName.

— For example, specify I2C1: as the I2C port.

2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple
handles to an I2C port are supported by the driver.

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter.

— This flag is required.

4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open an I2C port.
 // Open the serial port.
 hI2C = CreateFile (CAM_I2C_PORT, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

Before writing to or reading from an I2C port, configure the port.

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-3

When an application opens an I2C port, it uses the default configuration settings, which might not be
suitable for the device at the other end of the connection.

15.4.3 Configuring the I2C

Configuring the I2C port for communications involves 2 main operations:

• Setting the I2C frequency

• Setting the Self Address (the address for the I2C port on the platform).

Before these actions can be taken, a handle to the I2C port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the I2C port handle, appropriate IOCTL
code, and other input and output parameters are required.

To configure an I2C port, complete the following steps:

1. Set the hDevice parameter to the previously acquired I2C port handle.

2. Set the dwIoControlCode to one of the following IOCTL codes:

• I2C_IOCTL_SET_FREQUENCY

• I2C_IOCTL_SET_SELF_ADDR

3. Set the lpInBuffer to point to the variable that you are wishing to use for the I2C port setting. Set
nInBufferSize to the size of that variable.

4. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

The following code example shows how to configure the I2C port.
 // Clock frequency set at 1MHz
 DWORD dwFrequency = 1000000; // I2C frequency
 BYTE bySelf = 0x20; // Self address value

 // Set I2C frequency
 DeviceIoControl(hI2C, // file handle to the driver
 I2C_IOCTL_SET_FREQUENCY, // I/O control code
 (PBYTE) &dwFrequency, // in buffer
 sizeof(dwFrequency), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // number of bytes returned
 NULL); // ignored (=NULL)

 // Set I2C self address
 DeviceIoControl(hI2C, // file handle to the driver
 I2C_IOCTL_SET_SELF_ADDR, // I/O control code
 (PBYTE) &bySelf, // in buffer
 sizeof(bySelf), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // number of bytes returned
 NULL); // ignored (=NULL)

As a substitute for the DeviceIoControl calls above, macros may be used to simplify the code. The
following are examples:

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-4 Freescale Semiconductor

 I2C_MACRO_SET_FREQUENCY(hI2C, dwFrequency);
 I2C_MACRO_SET_SELF_ADDR(hI2C, bySelf);

15.4.4 Data Transfer Operations

The I2C driver provides one command, Transfer, that facilitates performing both reads and writes through
the I2C. The basic unit of data transfer in the I2C driver is the I2C_PACKET, which contains a buffer for
reading or writing data and a flag that specifies whether the desired operation is a Read or a Write. An array
of these packets makes up an I2C_TRANSFER_BLOCK object, which is needed to perform a Transfer
operation. The steps below detail the process of performing write and read operations through the I2C.

Before these actions can be taken, a handle to the I2C port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the I2C port handle, appropriate IOCTL
code, and other input and output parameters are required.

To perform an I2C transfer, complete the following steps:

1. Create an array of I2C_PACKET objects and initialize the fields of each packet as follows:

a) Set the byRW field to I2C_RW_WRITE to specify that the I2C operation is a Write, or
I2C_RW_READ to specify that the I2C operation is a Read.

b) Set the byAddr field to the 7-bit I2C slave address of the device to which the data will be
written.

NOTE
The byAddr field requires the 7-bit I2C slave address, aligned to the least
significant 7 bits. This address will be shifted left one bit and ORed with the
read/write bit to compose the 8-bit value sent out during the I2C slave
address cycle. In older versions of this driver, the slave address was entered
as the most significant 7 bits of the 8-bit value.

c) If byRW is set to I2C_RW_WRITE, create a buffer of bytes and fill it with the data to write to
the slave device. Set the pbyBuf field to point to this buffer. If is set to I2C_RW_READ, create
a buffer of bytes to hold the data which will be read from the slave device.

d) Set the wLen field to size, in bytes, of the read or write buffer. This will indicate the number of
bytes to write or read.

e) Set the lpiResult field to point to an integer that will hold the return value from the write
operation.

2. Set the hDevice parameter to the previously acquired I2C port handle.

3. Set the dwIoControlCode to the I2C_IOCTL_TRANSFER IOCTL code.

4. Set the lpInBuffer to point to the I2C_TRANSFER_BLOCK object created in step 1. Set
nInBufferSize to the size of that packet object.

5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

6. After calling the DeviceIoControl function, check the lpiResult field to ensure that the operation
was successful. If lpiResult points to the I2C_NO_ERROR value, the operation was successful.
Otherwise, there was an error.

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-5

The following code example demonstrates how to perform a transfer that contains one write and one read
packet. The write is performed before the read operation.

 I2C_TRANSFER_BLOCK I2CXferBlock;
 I2C_PACKET I2CPacket[2];
 BYTE byAddr = 0x2D; // Slave Address
 BYTE byOutData = 0x39; // Data to write
 BYTE byInData; // Read buffer

 // Packet 0 contains write operation
 I2CPacket[0].pbyBuf = (PBYTE) &byOutData;
 I2CPacket[0].wLen = sizeof(byOutData);

 I2CPacket[0].byRW = I2C_RW_WRITE;
 I2CPacket[0].byAddr = byAddr;
 I2CPacket[0].lpiResult = lpiResult;

// Packet 1 contains read operation
 I2CPacket[1].pbyBuf = (PBYTE) &byInData;
 I2CPacket[1].wLen = sizeof(byInData);

 I2CPacket[1].byRW = I2C_RW_READ;
 I2CPacket[1].byAddr = byAddr;
 I2CPacket[1].lpiResult = lpiResult;

 I2CXferBlock.pI2CPackets = I2CPacket;
 I2CXferBlock.iNumPackets = 2;

 // Transfer data through I2C
 DeviceIoControl(hI2C, // file handle to the driver
 I2C_IOCTL_WRITEREG, // I/O control code
 (PBYTE) &I2CXferBlock, // in buffer
 sizeof(I2CXferBlock), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // number of bytes returned
 NULL); // ignored (=NULL)

As a substitute for the DeviceIoControl call above, macros may be used to simplify the code. The
following is an example:

I2C_MACRO_TRANSFER(hI2C, &I2CXferBlock);

Repeated Start

The array of I2C_PACKET objects passed to the Transfer command is guaranteed to be performed
sequentially, without interruption or preemption by another driver that is attempting to access the I2C
module. An I2C START command initiates the transmission of the first packet in the
I2C_TRANSFER_BLOCK array. For subsequent packets, a change in the direction of communication
(from Read to Write or Write to Read) or a change in the target slave address triggers a REPEATED
START command before the transmission of the packet. Thus, if a REPEATED START is required
between data transfers with a target I2C device, all of those data transfers should be contained within a

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-6 Freescale Semiconductor

single I2C_TRANSFER_BLOCK. The final packet in the I2C_TRANSFER_BLOCK is succeeded by an
I2C STOP command.

15.4.5 Closing the Handle to the I2C

Call the CloseHandle function to close a handle to the I2C when an application is done using it.

CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the I2C port.

There is a two-second delay after CloseHandle is called before the port is closed and resources are freed.
This delay allows pending operations to complete.

15.4.6 Power Management

The primary method for limiting power consumption in the I2C module is to gate off all clocks to the
module when those clocks are not needed. This is accomplished through the DDKClockSetGatingMode
function call. In the Windows CE 6.0 <TGTPLAT> BSP, the I2C module always operates in master mode
and never in slave mode. As a result, the I2C module can be disabled, and its clocks turned off, whenever
the module is not processing I2C packets. By contrast, were the I2C module to operate in slave mode, the
module would have to be enabled, and have its clocks turned on, at all times in order to properly receive
the interrupt that signals the start of a data transfer from another I2C master device.

As described in the Data Transfer Operations section, I2C data transfer operations are handled in
I2C_TRANSFER_BLOCK objects, which contain one or more packets of I2C data. The I2C driver turns
on the I2C clocks and enables the I2C module before processing an I2C_TRANSFER_BLOCK, and then
disables and turns off clocks to the I2C module after the block of packets has been processed. This limits
the time during which the I2C module is consuming power to the time during which the I2C is actively
performing data transfers.

15.4.6.1 PowerUp

This function is not implemented for the I2C driver. Power to the I2C module is managed as I2C transfer
operations are processed. There are no additional power management steps needed for the I2C.

15.4.6.2 PowerDown

This function is not implemented for the I2C driver.

15.4.6.3 IOCTL_POWER_SET

This function is not implemented for the I2C driver.

15.4.7 I2C Registry Settings

The following registry keys are required to properly load the I2C1 module.
IF BSP_I2CBUS
; @XIPREGION IF PACKAGE_OEMDRIVERS

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-7

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C1]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:1
 "Order"=dword:4

ENDIF

15.5 Unit Test
No CETK Test for I2C.

NOTE
The camera module uses the I2C interface to control its setting, so the I2C
function can be verifed by the camera module.

15.6 I2C Driver API Reference

15.6.1 I2C Driver IOCTLS

This section consists of descriptions for the I2C I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceIoControl to issue commands to the I2C device. Only relevant parameters for the IOCTL
have a description provided.

15.6.1.1 I2C_IOCTL_GET_CLOCK_RATE

This DeviceIoControl request retrieves the clock rate divisor. Note that the value is not the absolute
peripheral clock frequency. The value retrieved should be compared against the I2C specifications to
obtain the true frequency.

Parameters

lpOutBuffer Pointer to the divisor index. The true clock frequency is platform dependent. Refer
to I2C specification for more information.

nOutBufferSize Size in bytes of the divisor index.

15.6.1.2 I2C_IOCTL_GET_SELF_ADDR

This DeviceIoControl request retrieves the address of the I2C device. Note that this macro is only
meaningful if it is currently in Slave mode.

Parameters

lpOutBuffer Pointer to the current I2C device address. The valid range of the address is [0x00,
0x7F].

nOutBufferSize Size in bytes of the I2C device address.

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-8 Freescale Semiconductor

15.6.1.3 I2C_IOCTL_IS_MASTER

This DeviceIoControl request determines whether the I2C is currently in Master mode.

Parameters

lpOutBuffer Pointer to a BYTE that will contain the return value from the Master mode inquiry.
TRUE if currently in Master mode; FALSE if currently in Slave mode.

nOutBufferSize Size in bytes of the return value. This should be one byte.

15.6.1.4 I2C_IOCTL_IS_SLAVE

This DeviceIoControl request determines whether the I2C is currently in Slave mode.

Parameters

lpOutBuffer Pointer to a BYTE that will contain the return value from the Slave mode inquiry.
TRUE if currently in Slave mode; FALSE if currently in Master mode.

nOutBufferSize Size in bytes of the return value. This should be one byte.

15.6.1.5 I2C_IOCTL_RESET

This DeviceIoControl request performs a hardware reset. Note that the I2C driver will still maintain all of
the current information of the device, including all of the initialized addresses.

15.6.1.6 I2C_IOCTL_SET_CLOCK_RATE

This DeviceIoControl request initializes the I2C device with the given clock rate. Note that this IOCTL
does not expect to receive the absolute peripheral clock frequency. Rather, it will be expecting the clock
rate divisor index stated in the I2C specification. If absolute clock frequency must be used, use the macro
I2C_MACRO_SET_FREQUENCY.

Parameters

lpInBuffer Pointer to the divisor index. Refer to the I2C specification to obtain the true clock
frequency.

nInBufferSize Size in bytes of the divisor index.

15.6.1.7 I2C_IOCTL_SET_FREQUENCY

This DeviceIoControl request estimates the nearest clock rate acceptable for the I2C device and initializes
the I2C device to use the estimated clock rate divisor. If the estimated clock rate divisor index is required,
refer to the macro I2C_MACRO_GET_CLOCK_RATE to determine the estimated index.

Parameters

lpInBuffer Pointer to the desired I2C frequency.

nInBufferSize Size in bytes of the I2C frequency requested.

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-9

15.6.1.8 I2C_IOCTL_SET_MASTER_MODE

This DeviceIoControl request sets the I2C device to Master mode.

15.6.1.9 I2C_IOCTL_SET_SELF_ADDR

This DeviceIoControl request initializes the I2C device with the given address.

Parameters

lpInBuffer Pointer to the expected I2C device address. The valid range of addresses is [0x00,
0x7F].

nInBufferSize Size in bytes of the I2C device address.

Remarks The device will be expected to respond when any master on the I2C bus wishes to
proceed with any transfer. Note that this IOCTL will have no effect if the I2C
device is in Master mode.

15.6.1.10 I2C_IOCTL_SET_SLAVE_MODE

This DeviceIoControl request sets the I2C device to Slave mode.

15.6.1.11 I2C_IOCTL_TRANSFER

This DeviceIoControl request performs the transfer (read or write) of one or more packets of data to a
target device. An I2C_TRANSFER_BLOCK object is expected, which contains an array of I2C_PACKET
objects to be executed sequentially. All of the required information should be stored in the
I2C_TRANSFER_BLOCK passed in the lpInBuffer field.

Parameters

lpInBuffer Pointer to an I2C_TRANSFER_BLOCK structure containing a pointer to an array
of I2C_PACKET objects specifying all of the information required to perform the
requested Read and Write operations.

nInBufferSize Size in bytes of the I2C_TRANSFER_BLOCK.

15.6.2 I2C Driver Macros

15.6.2.1 I2C_MACRO_GET_CLOCK_RATE

This macro will retrieve the clock rate divisor.

I2C_MACRO_GET_CLOCK_RATE(
 HANDLE hDev,
 WORD wClkRate
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-10 Freescale Semiconductor

wClkRate Contains the divisor index. Refer to I2C specification to obtain the true clock
frequency.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

Remarks Note that the value is not the absolute peripheral clock frequency. The value
retrieved should be compared against the I2C specification to obtain the true
frequency.

15.6.2.2 I2C_MACRO_GET_SELF_ADDR

This macro will retrieve the current I2C device address. Note that this macro is only meaningful if it is
currently in Slave mode.

I2C_MACRO_GET_SELF_ADDR(
 HANDLE hDev,
 WORD bySelfAddr
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

dwSelfAddr The current I2C device address. The valid range of address is [0x00, 0x7F].

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.3 I2C_MACRO_IS_MASTER

This macro determines whether the I2C is currently in Master mode.
I2C_MACRO_IS_MASTER(
 HANDLE hDev,
 BOOL bIsMaster
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

bIsMaster TRUE if the I2C device is in Master mode.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.4 I2C_MACRO_IS_SLAVE

This macro determines whether the I2C is currently in Slave mode.

I2C_MACRO_IS_SLAVE(
 HANDLE hDev,
 BOOL bIsSlave
);

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-11

Parameters

hDev The I2C device handle retrieved from CreateFile().

bIsSlave TRUE if the I2C device is in Slave mode.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.5 I2C_MACRO_RESET

This macro perform a hardware reset. Note that the I2C driver will still maintain all of the current
information of the device, including the initialized addresses.

I2C_MACRO_RESET(
 HANDLE hDev,
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.6 I2C_MACRO_SET_CLOCK_RATE

This macro will initialize the I2C device with the given clock rate.
I2C_MACRO_SET_CLOCK_RATE(
 HANDLE hDev,
 WORD wClkRate
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

wClkRate Contains the divisor index. Refer to the I2C specification to obtain the true clock
frequency.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

Remarks Note that this macro does not expect to receive the absolute peripheral clock
frequency. Rather, it will be expecting the clock rate divisor index stated in the I2C
specification. If absolute clock frequency must be used, use the macro
I2C_MACRO_SET_FREQUENCY.

15.6.2.7 I2C_MACRO_SET_FREQUENCY

This macro will estimate the nearest clock rate acceptable for the I2C device and initialize the I2C device
to use the estimated clock rate divisor. If the estimated clock rate divisor index is required, refer to the
macro I2C_MACRO_GET_CLOCK_RATE to determine the estimated index.

I2C_MACRO_SET_FREQUENCY (
 HANDLE hDev,
 DWORD dwFreq

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-12 Freescale Semiconductor

);

Parameters

hDev The I2C device handle retrieved from CreateFile().

dwFreq The desired frequency.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.8 I2C_MACRO_SET_MASTER_MODE

This macro set the I2C device to Master mode.
I2C_MACRO_SET_MASTER_MODE(
 HANDLE hDev
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.9 I2C_MACRO_SET_SELF_ADDR

This macro initializes the I2C device with the given address.
I2C_MACRO_SET_SELF_ADDR(
 HANDLE hDev,
 BYTE bySelfAddr
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

bySelfAddr The expected I2C device address. The valid range for the address is [0x00, 0x7F].

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

Remarks The device will be expected to respond when any master on the I2C bus wishes to
proceed with any transfer. Note that this macro will have no effect if the I2C
device is in Master mode.

15.6.2.10 I2C_MACRO_SET_SLAVE_MODE

This macro sets the I2C device to Slave mode.
I2C_MACRO_SET_SLAVE_MODE(
 HANDLE hDev
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-13

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.11 I2C_MACRO_TRANSFER

This macro performs a sequence of data transfers to a target device. All of the required information should
be stored in the I2C_TRANSFER_BLOCK object passed in the pI2CTransferBlock field.

I2C_MACRO_TRANSMIT(
 HANDLE hDev,
 PI2C_TRANSFER_BLOCK pI2CTransferBlock
);

Parameters

hDev The I2C device handle retrieved from CreateFile().

pI2CTransferBlock

pI2CPackets [in] Pointer to an array of packets to be transferred sequentially.

iNumPackets [in] The number of packets pointed to by pI2CPackets (the number of packets
to be transferred).

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.3 I2C Driver Structures

15.6.3.1 I2C_PACKET

This structure contains the information needed to write or read data using an I2C port.
typedef struct {
 BYTE byAddr;
 BYTE byRW;
 PBYTE pbyBuf;
 WORD wLen;
 LPINT lpiResult;
} I2C_PACKET, *PI2C_PACKET;

Members

byAddr This 7-bit slave address specifies the target I2C device to or from which data will
be read or written.

byRW Determines whether the packet is a read or a write packet. Set to I2C_RW_READ
for reading and I2C_RW_WRITE for writing.

pbyBuf A pointer to a buffer of bytes. For a Read operation, this is the buffer into which
data will be read. For a Write operation, this buffer contains the data to write to
the target device.

wLen If the operation is a Read, wLen specifies the number of bytes to read into pbyBuf.
If the operation is a Write, wLen specifies the number of bytes to write from
pbyBuf.

lpiResult Pointer to an int that contains the return code from the transfer operation.

Inter-Integrated Circuit (I2C) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-14 Freescale Semiconductor

15.6.3.2 I2C_TRANSFER_BLOCK

This structure contains an array of packets to be transferred using an I2C port.
typedef struct {
 I2C_PACKET *pI2CPackets;
 INT32 iNumPackets;
} I2C_TRANSFER_BLOCK, *PI2C_TRANSFER_BLOCK;

Members

pI2CPackets A pointer to an array of I2C_PACKET objects.

iNumPackets The number of I2C_PACKET objects pointed to by pI2CPackets.

Keypad Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 16-1

Chapter 16
Keypad Driver
The Keypad Port (KPP) module is used for keypad matrix scanning. This module is capable of detecting,
debouncing, and decoding one or two keys pressed simultaneously in the keypad.

The keypad driver converts input from the KPP into keyboard events that the driver enters into the input
system.

16.1 Keypad Driver Summary
The following table provides a summary of source code location, library dependencies and other BSP
information:

Table 16-1. Keypad Driver Attributes

16.2 Requirements
The keypad driver should meet the following requirements:

1. Conform to the Microsoft Layout Manager Interface.

2. Support multiple simultaneous key presses.

3. Support two power management modes, full on and full off.

16.3 Hardware Operation
Refer to the chapter on the KPP in the hardware specification document for detailed operation and
programming information.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXARM11_FSL_V1\K
EYBD

CSP Driver Path N/A

CSP Static Library Keypad_mxarm11_fsl_v1.lib
PddList_mxarm11_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\KEYBD

Import Library N/A

Driver DLL Kbdmouse.dll

Catalog Item Third Party −> BSP −> Freescale i.MX31 3DS: ARMV4I −> Device
Drivers −> Input Devices −> Keyboard/Mouse > 3DS Keypad

SYSGEN Dependency N/A

BSP Environment Variables BSP_KBDMOUSE_EVBKPD=1

Keypad Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

16-2 Freescale Semiconductor

16.3.1 The Keypad

The keypad driver interfaces with the Windows CE Keyboard Driver Architecture to provide key input
support.

The 9-key keypad is located in the personality board and the mapping is as follows:

Table 16-2. Keypad Labels and Key Values

The ALT key provides the user with greater ability to navigate Windows CE. The following key
combinations make use of the ALT key to perform specific tasks in Windows CE:

Table 16-3. ALT Keystroke Combinations

16.3.2 Conflicts with other SoC peripherals

No conflicts.

16.4 Software Operation
The keypad driver follows the Microsoft-recommended architecture for keyboard drivers. The details of
this architecture and its operation can be found in the CE help documentation at the following location:
“Developing a Device Driver −> Windows Embedded CE Drivers −> Keyboard Drivers −>
Keyboard Driver Development Concepts”

Label Key value

S7(up) UP

S8(down) DOWN

S10(left) LEFT

S9(right) RIGHT

S11(enter) ENTER

S12(menu 1) ALT

S15(menu 2) TAB

S16(menu 3) SPACE

S17(menu 4) ESC

Press To

ALT + TAB Switch between open items.

ALT + underlined letter in a
menu name

Display the corresponding menu.

ALT + Enter Open the properties for the selected
object.

Keypad Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 16-3

16.4.1 Keypad Scan Codes and Virtual Keys

Each key on the keypad has a unique scan code, which is added to a buffer whenever that key is pressed
or released. These scan codes, which are hardware-specific, are first converted to intermediate PS/2
keyboard scan code values and then converted into virtual keys, which are hardware-independent numbers
that identify the key. On the other hand, if a key is pressed from the keyboard, the generated scan code is
directly converted into virtual keys. For alphabetic keys, the ASCII code for the capitalized letter is the
virtual key. For other keys, the virtual key is defined by Microsoft and starts with “VK_”.

The following table shows the scan code to virtual key mapping :
Table 16-4. Keypad Scan Codes and Virtual Keys

16.4.2 Power Management

The primary method for limiting power consumption in the keypad module is to gate off all clocks to the
module when those clocks are not needed. This is accomplished through the DDKClockSetGatingMode
function call. In this module, the clocks are enabled only when it is required to access any keypad register.
Once done using the registers, the clocks are brought back to their previous state.

16.4.2.1 BSPKppPowerOn

This function is used to power up the keypad. This function will do the necessary configuration settings in
the registers to bring up the keypad and then the clocks are brought back to their original state as it was
just before the module was powered down.

16.4.2.2 BSPKppPowerOff

This function powers down the keypad. But before turning off the module, the current state of the clock
settings for this module is saved and then there is a delay until the keypad does not report any
key-down/key-up event. Then the clocks to this module are turned off.

Key Keypad Scan Code Virtual Key

UP 0 VK_UP

DOWN 3 VK_DOWN

LEFT 4 VK_LEFT

RIGHT 1 VK_RIGHT

ENTER 7 VK_RETURN

ALT 2 VK_MENU

ESC 11 VK_ESCAPE

TAB 5 VK_TAB

SPACE 8 VK_SPACE

Keypad Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

16-4 Freescale Semiconductor

16.4.2.3 IOCTL_POWER_CAPABILITIES

N/A

16.4.2.4 IOCTL_POWER_SET

N/A

16.4.2.5 IOCTL_POWER_GET

N/A

16.4.3 Keypad Registry Settings

The following registry keys are required to properly load the keypad device layout and input language.
[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\KEYBD]
 "CalVKey"=dword:0
 "ContLessVKey"=dword:0
 "ContMoreVKey"=dword:0
 "TaskManVKey"=dword:2E
 "Keyboard Type"=dword:4
 "Keyboard SubType"=dword:0
 "Keyboard Function Keys"=dword:0
 "Keyboard Layout"="00000409"
 "DriverName"="kbdmouse.dll"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Layouts\00000409]
 "Layout File"="kbdmouse.dll"
 "Layout Text"="US-Keypad"
 "KPPLayout"="kbdmouse.dll"

[HKEY_CURRENT_USER\Keyboard Layout\Preload\4]
 @="00000409"

16.5 Unit Test
As the keypad has only 9 keys, it is not a full-function keypad and it cannot pass the Keyboard Test
included as part of the Windows Embedded CE 6.0 Test Kit (CETK). A specific procedure is designed to
test all keys.

16.5.1 Unit Test Hardware

N/A

16.5.2 Unit Test Software

N/A

Keypad Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 16-5

16.5.3 Building the Keyboard Tests

N/A

16.5.4 Running the Keyboard Tests

The procedure for keyboard tests is as follows:

1. Run the application "Microsoft WordPad".

2. Input "Tab".

3. Input "Space".

4. Input "Alt" to open the menu bar.

5. Run the application "Internet Explorer".

6. Open the help document by click the question mark on the "Internet Explorer" application.

7. Input the "ESC" to quit from help document.

8. Input the "Alt + Tab" to call the "Task Manager".

9. Quit the application "Microsoft WordPad". In the pop up dialog box, click the "Yes" button.

16.6 Keypad Driver API Reference
Detailed reference information for the keypad driver may be found in CE help documentation at the
following location:

Developing a Device Driver −> Windows Embedded CE Drivers −> Keyboard Drivers −>
Keyboard Driver Reference

16.6.1 Keypad PDD Functions

The following table shows a mapping of keyboard PDD functions to the functions used in the keypad
driver:

Table 16-5. Keypad PDD Pointers and Driver Functions

PDD Function Pointer Keypad Driver Function

PFN_KEYBD_PDD_ENTRY KPP_Entry

PFN_KEYBD_PDD_GET_KEYBD_EVENT KeybdPdd_GetEventEx2

PFN_KEYBD_PDD_POWER_HANDLER KPP_PowerHandler

Keypad Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

16-6 Freescale Semiconductor

LAN9217 Product Ethernet Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 17-1

Chapter 17
LAN9217 Product Ethernet Driver
The LAN9217 Product Ethernet driver is used for connectivity with an IEEE 802.3 Ethernet using the
SMSC LAN9217 Ethernet Controller. The driver provides support to communicate with the Ethernet at
10/100 Mbps speed, as the LAN9217 Ethernet Controller is a 10Base-T/100 Base-TX Ethernet controller.
The driver makes use of the LAN9217 internal MII-compatible transceiver.

The LAN9217 Product Ethernet driver is a NDIS 5.0-compliant miniport driver.

17.1 LAN9217 Product Ethernet Driver Summary
The following table provides a summary of source code location, library dependencies, and other BSP
information:

Table 17-1. LAN9217 Product Ethernet Driver Attributes

17.2 Requirements
The LAN9217 Product Ethernet driver should meet the following requirements:

• Conform to the Microsoft Network Driver Interface Specification (NDIS) architecture in Windows
Embedded CE. 6.0

• Support IEEE 802.3 Ethernet protocols for communication.

• Support two power management modes, full on and full off.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path N/A

<TGTPLAT> CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\LAN9217

Import Library ndis.lib

Driver DLL lan9217.dll

Catalog Item Catalog −> Third Party −> BSP −> Freescale <TGTPLAT>: ARMV4I
−> Device Drivers −> Ethernet LAN9217 Driver

SYSGEN Dependency SYSGEN_NDIS=1
SYSGEN_TCPIP=1
SYSGEN_WINSOCK=1

BSP Environment Variables BSP_ETHER_LAN9217=1

LAN9217 Product Ethernet Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

17-2 Freescale Semiconductor

17.3 Hardware Operation
The LAN9217 chip is an on-board peripheral which is connected to the processor through the PBC
(Peripheral Bus Controller). Refer to the Peripheral Bus Controller CPLD document and LAN9217
data sheet for detailed operation and programming information.

17.3.1 Conflicts with other SoC peripherals

17.3.1.1 i.MX31 Peripheral Conflicts

No conflicts. (Refer to Peripheral Bus Controller CPLD document for details).

17.4 Software Operation
The Product Ethernet driver follows the Microsoft-recommended architecture for NDIS miniport drivers.
The details of this architecture and its operation can be found in the Platform Builder Help at the following
location: Developing a Device Driver −> Windows Embedded CE Drivers −> Network Drivers −>
Network Driver Development Concepts −> Miniports, Intermediate Drivers, and Protocol Drivers.

17.4.1 Power Management

The power management is currently not implemented for the LAN9217 Product Ethernet driver.

17.4.2 Product Ethernet Registry Settings

The following registry keys are required to properly load the LAN9217 Product Ethernet driver and to
configure the TCP/IP for Ethernet interface. In the following specimen, a dynamic IP address is assigned
using DHCP, the variable EnableDHCP should be set to 1.
[HKEY_LOCAL_MACHINE\Comm\lan9217]
 "DisplayName"="lan9217 Ethernet Driver"
 "Group"="NDIS"
 "ImagePath"="lan9217.dll"

[HKEY_LOCAL_MACHINE\Comm\lan9217\Linkage]
 "Route"=multi_sz:"lan9217"

[HKEY_LOCAL_MACHINE\Comm\lan9217]
 "DisplayName"="lan9217 Ethernet Driver"
 "Group"="NDIS"
 "ImagePath"="lan9217.dll"

[HKEY_LOCAL_MACHINE\Comm\lan9217\Parms]
 "BusNumber"=dword:0
 "BusType"=dword:0
 "InterruptNumber"=dword:1; pio interrupt
 "IoBaseAddress"=dword:B6000000 ; ETHERNET_BASE (Physical Addr)
 "PhyAddress"=dword:FF ; PHY address (0x20:Auto, 0xFF:Internal)
 "RxDMAMode"=dword:0 ; 1-DMA, 0-PIO
 "TxDMAMode"=dword:0 ; 1-DMA, 0-PIO
 "FlowControl"=dword:1 ; 1-Enabled, 0-Disabled

LAN9217 Product Ethernet Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 17-3

 ; LinkMode will replace Duplex, Speed and FlowControl
 ; bit7: RESERVED, bit6: ANEG, bit5: ASymmetric Pause, bit4: Symmetric Pause
 ; bit3: 100FD, bit2: 100HD, bit1: 10FD, bit0: 10HD
 "LinkMode"=dword:7F

[HKEY_LOCAL_MACHINE\Comm\lan9217\Parms\TcpIp]
 "EnableDHCP"=dword:1
 "IpAddress"="0.0.0.0"
 "Subnetmask"="0.0.0.0"
 "DefaultGateway"="0.0.0.0"
 "UseZeroBroadcast"=dword:0

17.5 Unit Test
The LAN9217 Product Ethernet driver is tested using the following:

1. Network utilities/operations: Ping to and from the 3DS device, FTP transfers (file put and get) with
3DS device as FTP server and Internet browsing with Pocket Internet Explorer on the 3DS device.

2. Winsock CETK test cases: Winsock 2.0 Test (v4/v6) and Winsock Performance Test with 3DS
device as client.

17.5.1 Unit Test Hardware

The following table lists the required hardware to run the unit tests.

Table 17-2. Unit Test Hardware Requirements

17.5.2 Unit Test Software

The following table lists the required software to run the unit tests.

Table 17-3. Unit Test Software Requirements

Requirements Description

3DS board with LAN9217 Board that hosts the LAN9217 Product Ethernet driver

PC/machine To act as counterpart for network operation

An Ethernet or a cross-Ethernet cable To form an Ethernet

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Ws2bvt.dll Test .dll file for Winsock 2.0 Test (v4/v6)

Perflog.dll Module that contains functions that monitor and log performance for Winsock
Performance Test

Perf_winsock2.dll Test .dll file for Winsock Performance Test

Perf_winsockd2.exe Test .exe file (server program) for Winsock Performance Test

LAN9217 Product Ethernet Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

17-4 Freescale Semiconductor

17.5.3 Building the LAN9217 Product Ethernet Tests

17.5.3.1 Network utilities related tests

The following registry entries need to be enabled to allow get/put of files using the anonymous FTP
upload, and to be able to access all the files and folders under the root directory on the target:

[HKEY_LOCAL_MACHINE\COMM\FTPD]
"AllowAnonymousUpload" = dword:1
"DefaultDir" = "\\"

For minimum network support and ping to work, the following components need to be enabled in the OS
design:
Under Core OS −> CEBASE −> Communication Services and Networking −> Networking - General:
Network Driver Architecture (NDIS)
TCP/IP
TCP/IP −> IP Helper API
Winsock Support
Network Utilities (IpConfig, Ping, Route)

For FTP to work, the following components need to be enabled in the OS design:
Under Core OS −> CEBASE > Communication Services and Networking > Servers:
FTP Server

For Video streaming to work, the following components need to be enabled in the OS design:
Under Core OS −> CEBASE −> Graphics and Multimedia Technologies −> Media:
Media Formats −> AVI Filter
Streaming Media Playback
Video Codecs and Renderers −> Video/Image Compression Manager
Video Codecs and Renderers −> WMV/MPEG-4 Video Codec
Windows Media Player −> Windows Media Player
Windows Media Player −> Windows Media Player OCX
Windows Media Player −> Windows Media Technologies
Windows Media Player −> Windows Media Technologies −> Windows Media Multicast and Multi-Bit
Rate
Windows Media Player −> Windows Media Technologies −> Windows Media Streaming from Local
Storage
Windows Media Player −> Windows Media Technologies −> Windows Media Streaming over HTTP

It will be helpful to add the command line shell and console support:
Shell and User Interface > Shell > Command Shell:
Command Processor
Command Window

Ndt.dll Protocol driver for One-card network card miniport driver test

Ndt_1c.dll Test .dll for One-card network card miniport driver test

Ndp.dll MS_NDP protocol driver for NDIS performance test

Perf_ndis.dll Test .dll file NDIS performance test

LAN9217 Product Ethernet Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 17-5

17.5.3.2 Winsock 2.0 Test (v4/v6)

The Winsock 2.0 Test (v4/v6) comes pre-built as part of the CETK. No steps are required to build these
tests. The Ws2bvt.dll can be found alongside the other required CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

17.5.3.3 One-Card Network Card Miniport Driver Test

The one-card network card miniport driver test comes pre-built as part of the CETK. No steps are required
to build these tests. The ndt.dll and ndt_1c.dll can be found alongside the other required CETK files in the
following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

17.5.4 Running the LAN9217 Product Ethernet Tests

17.5.4.1 Network utilities-related tests

17.5.4.1.1 Ping tests

The ping tests can be run as usual from the 3DS device as well as from the PC side.

17.5.4.1.2 Browsing

The network browsing tests can be done after setting the following on the device front panel:

— DNS servers in the TCP/IP properties of LAN9217 network interface (Control Panel −>
Network and Dial-up Connections)

— Proxy server, if used in the network used for test, on the Pocket Internet explorer.

17.5.4.1.3 FTP tests

For running FTP tests, the FTP service needs to be started on the <TGTSOC> device using the following
command on the DOS prompt:

services start FTP0:

17.5.4.2 Video streaming tests

This can be done by accessing the web sites which provide video clips. An example is:
http://www.smartvideo.com. The set-up for internet browsing (as mentioned above) is mandatory.

17.5.4.3 Winsock 2.0 Test (v4/v6)

The test can be executed on the <TGTSOC> device using tux –o –d Ws2bvt.dl in the command line on the
<TGTSOC>.

LAN9217 Product Ethernet Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

17-6 Freescale Semiconductor

For detailed information on the Winsock 2.0 Test (v4/v6) tests, see Debugging and Testing −> Tools for
Debugging and Testing −> Windows CE Test Kit −> CETK Tests −> Winsock 2.0 Test (v4/v6) in the
Platform Builder Help.

17.5.4.4 One-Card Network Card Miniport Driver Test

This test can be done by including ndt.dll and ndt_1c.dll in the image, and starting the test by entering tux
–o –d ndt_1c.dll –c “-t LAN9217” on the command line on the <TGTSOC>.

For detailed information on the Winsock Performance tests, see Debugging and Testing −> Tools for
Debugging and Testing −> Windows CE Test Kit −> CETK Tests −> One-card Network Card
Miniport Driver Test in the Platform Builder Help.

17.6 LAN9217 Product Ethernet Driver API Reference
The LAN9217 Product Ethernet driver conforms to NDIS 5.0 specification by Microsoft for the miniport
network drivers.

MBX Direct3D Mobile/OpenGL ES Drivers

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 18-1

Chapter 18
MBX Direct3D Mobile/OpenGL ES Drivers
The MBX Lite graphics processor is an IP wrapper for 2D/3D hardware acceleration, and is designed for
ultra-low-power cost-sensitive system-on-chip (SoC) applications such as mainstream mobile phones,
PDAs, and handheld gaming devices.

The MBX D3DM and OpenGL ES drivers interface with the i.MX31 Image Processing Unit (IPU)
Synchronous Display Controller (SDC) to combine graphics and video planes, and to generate display
controls with programmable timing. This module is compatible with the Epson L4F00242T03 panel.

The MBX Direct3D® Mobile (D3DM) driver provides the actual drawing services that Microsoft
Direct3D Mobile middleware uses. The middleware is a thin layer of software that handles call transport,
synchronization, and OS integration issues; the driver manages the memory for display surfaces.

OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D graphics on embedded
systems. OpenGL ES 1.X is for fixed function hardware and offers acceleration, image quality, and
performance.

The i.MX31 MBX supports the D3DM and OpenGL ES in Windows Embedded CE 6.0.

18.1 Direct3D Mobile/OpenGL ES Drivers Summary

The following table identifies the source code location, library dependencies, and other BSP information.

Table 18-1. Direct3D Mobile/OpenGL ES Drivers Attributes

Driver Attribute Definition

Target Platform (TGTPLAT) IMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path ..\PLATFORM\<tgtplat>\SRC\DRIVERS\MBX

Import Library ddgpe.lib, gpe.lib

Driver DLL Clcdckmif.dll, sdc_display.dll, ddi_powervr.dll, gxdma.dll, libGLES_CM.dll,
libpvrWCEWSEGL.dll, IMGEGL.dll, pvr_d3dm.dll, pvr_kernel.dll, um3partyif.dll

Catalog Item Third Party BSPs Freescale <tgtplat> Device Drivers Display
Epson L4F00242T03
Third Party BSPs Freescale <tgtplat> Device Drivers MBX
MBX i.MX31 Base Driver
Third Party BSPs Freescale <tgtplat> Device Drivers MBX
MBX i.MX31 D3DM Core
Third Party BSPs Freescale <tgtplat> Device Drivers MBX
MBX i.MX31 Ogles Core

MBX Direct3D Mobile/OpenGL ES Drivers

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

18-2 Freescale Semiconductor

18.2 Supported Functionality
The MBX D3DM and OpenGL ES drivers enable the 3-Stack board to provide the following software and
hardware support:

• Drivers derive from the Graphics Primitive Engine (GPE) class

• Drivers support the DirectDraw Hardware Abstraction Layer (DDHAL), support overlay surface
for pixel format RGB565, UYVY, YV12, Overlay surface color key feature

• Driver support TVout

• Drivers support the Epson L4F00242T03 panels

• Direct3D Mobile supports Microsoft Direct3D Mobile Specification

• OpenGL ES supports OpenGL ES 1.1 Specification

• MBX driver uses VFP for hardware accelerate

18.3 Hardware Operation
Refer to the chapter on the MBX in the MCIMX31 and MCIMX31L Applications Processors Reference
Manual for detailed operation and programming information.

18.3.1 Conflicts with other Peripherals

MBX does not have conflicts with any other module.

18.4 Software Operation
The MBX D3DM driver follows the Microsoft-recommended architecture for Direct3D Mobile drivers.
For details of this architecture and its operation, see the Platform Builder Help:

Developing a Device Driver > Windows Embedded CE Drivers> Direct3D Mobile Display Drivers

The MBX driver uses a standalone DirectDraw driver. If MBX is included in the OS image, the IPU
DirectDraw driver will be replaced by the MBX DirectDraw driver.

If VFP accelerate is used for MBX, VFP is setted to runfast mode. A mathematical operation may fail
when it involves a NaN operation. For further information, see the ARM VFP v2 Floating Point Support
Library for Microsoft Windows Embedded CE 6.0 Release Note.

18.4.1 Application / User Interface to MBX Drivers

Communications with the MBX drivers are provided through Microsoft-defined APIs or OpenGL ES
APIs. The MBX Direct3D Mobile driver uses the local hooking model. The application's process space

SYSGEN Dependency SYSGEN_DDRAW=1
SYSGEN_D3DM=1

BSP Environment Variable BSP_MBX
BSP_DISPLAY_EPSON_L4F00242T03 = 1 for epson LCD Panel

MBX Direct3D Mobile/OpenGL ES Drivers

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 18-3

includes both the Microsoft Direct3D Mobile middleware (d3dm.dll) and the MBX Direct3D Mobile
driver.

Because the locally hooked drivers are not loaded into the Graphics, Windowing, and Event Subsystem
(GWES), they do not have direct access to the hardware. As a result, these drivers must rely on some other
graphics technology, such as DirectDraw, to present rendered output to the user.

18.4.2 Configuring the LCD Display Panels

The display configuration is based on the PanelType registry key, which is described in the
DisplayRegistry Settings section below. The PanelType registry key indicates the display panel that is
being used. The supported display panel is the Epson L4F00242T03 LCD panel.

18.4.2.1 LCD Display Registry Settings

The following registry keys are optionally included, depending on the display panel catalog item included
in the OS design. If the Epson L4F00242T03 VGA panel is selected, the following registry keys are
included:
[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU_SDC]
"Bpp"=dword:10 ; 16bpp
"PanelType"=dword:1 ; Epson VGA Panel

18.4.2.2 Power Management

Power management is currently supported in the D3DM and OpenGL ES drivers.

18.4.2.3 Direct3D Mobile and OpenGL ES Registry Settings

The following registry keys are required to properly load the MBX D3DM and OpenGL ES drivers.

; Disable Power Management

[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Power\Timeouts]

"ACUserIdle"=dword:00000000

"ACSystemIdle"=dword:00000000

"ACSuspend"=dword:00000000

"BattUserIdle"=dword:00000000

"BattSystemIdle"=dword:00000000

"BattSuspend"=dword:00000000

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PVRKernel]

"Prefix"="PKM"

"Dll"="pvr_kernel.dll"

 "Order"=dword:10

 "Keep"=dword:1

“BM_POOL0_PHY_BASE”=dword:86700000

 ; Indicate PKM is a generic power manageable interface

 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PVR3rdPartyKernel]

 "Prefix"="P3P"

 "Dll"="clcdckmif.dll"

MBX Direct3D Mobile/OpenGL ES Drivers

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

18-4 Freescale Semiconductor

 "Order"=dword:10

 "Keep"=dword:1

“CLCDC_MEM_BASE”=dword:87200000

“CLDC_MEM_SIZE”=dword: 500000

 ; Indicate P3P is a generic power manageable interface

 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

[HKEY_CURRENT_USER\ControlPanel\Keybd]

 "Contrast"=dword:80

[HKEY_LOCAL_MACHINE\System\GDI\Drivers]

 "Display"="ddi_powervr.dll"

[HKEY_LOCAL_MACHINE\Drivers\Display\PowerVR]

 "IsrDll"="GIISR.DLL"

 "IsrHandler"="ISRHandler"

; Screen rotation control

"DisableDynamicScreenRotation"=dword:0

“Width”=dword: 1E0

“Height”=dword: 280

“BitsPerPixel”=dword:010

[HKEY_LOCAL_MACHINE\Drivers\Display\PowerVR]

 "HWRecoveryTimeout"="350"

[HKEY_LOCAL_MACHINE\Drivers\Display\PowerVR\MBX1\Game Settings\OpenGLES]

[HKEY_LOCAL_MACHINE\Drivers\Display\PowerVR\MBX1\Game Settings\D3DM]

[HKEY_LOCAL_MACHINE\system\gdi\rotation]

 "Angle"=dword:0

[HKEY_LOCAL_MACHINE\System\D3DM\Drivers]

 "LocalHook"="pvr_d3dm.dll"

18.4.3 Float Pointing Acceleration using the ARM VFP Library

Because the i.MX31 includes a VFP module, the MBX and other applications or drivers can use VFP to
accelerate the mathematical algorithm. You can download the ARM VFP library release for Windows
Embedded CE 6.0 from the ARM website and use the information in the release notes to enable the OEM
floating point library support.

According to the ARM release document, this VFP library is implemented only in the runfast mode.
However, the actual arm sample code does not set the VFP to runfast mode. You may refer to the
following code and then add it in the ARM library init function to enable the runfast mode.

; in float_assem.s file
EXPORT |_setFPSCR|
EXPORT |_getFPSCR|
AREA MX31_VFP, CODE, READONLY

|_setFPSCR| PROC
FMXRFPSCR, r0
MOVPC, LR; Return
ENDP

|_getFPSCR|
FMRXr0, FPSCR
MOVPC, LR; Return

MBX Direct3D Mobile/OpenGL ES Drivers

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 18-5

ENDP

 END

; in VFP library init function
_setFPSCR(_getFPSCR() | 0x03000000); //use runfast mode

18.5 Unit Test
To add all MBX-related drivers on Windows Embedded CE 6.0 to the image, including D3DM, OpenGL
ES, DirectDraw, LCD, and IPU SDC, add the following three MBX modules from the catalog:

• MBX MX31 Base driver

• MBX MX31 D3DM Core

• MBX MX31 Ogles Core

To add all MBX-related drivers on Windows Mobile/SmartPhone to the image, uncomment the MBX
macros in MX31.bat, and ensure that the macros related to the LCD and IPU SDC are available in MX31.bat.

The sections below focus on the D3DM Windows CETK test and the D3DM/OpenGL ES demo test. For
further information about the DirectDraw/GDI CETK and Windows Media Player tests, see Chapter 10,
“Display Driver”.

18.5.1 Unit Test Hardware

The Epson L4F00242T03 VGA Panel is needed to run the unit tests. The panel displays the graphics data.

18.5.2 Unit Test Software

18.5.2.1 Direct3D Mobile Interface Tests

The following table lists the required software to run the D3DM Interface tests.
Table 18-2. Direct3D Mobile Interface Test Software Requirements

To run the Direct3D Mobile Interface Test, follow these steps:

1. In your OS design, set the SYSGEN_D3DM variable from:

Core OS->CEBASE->Graphics and Multimedia Technologies->Graphics->Direct3D Mobile
2. Include a Direct3D Mobile driver in your OS design.

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

D3DM_Interface.dll Library containing the test cases

MBX Direct3D Mobile/OpenGL ES Drivers

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

18-6 Freescale Semiconductor

18.5.3 Building the Direct3D Mobile Tests

The D3DM Interface Tests, D3DM Driver Verification Tests and D3DM Driver Comparison Tests come
with the CETK. No steps are required to build these tests. The tests are in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

18.5.4 Running the Direct3D Mobile Tests

18.5.4.1 Running the Direct3D Mobile Interface Tests

The command line for running the D3DM Interface tests is:
tux –o –d d3dm_interface.dll

For detailed information on the D3DM Interface tests and command line options, see the Platform Builder
Help:

Windows Embedded CE Test Kit -> CETK Tests and Test Tools -> Display Tests -> Direct3D Mobile
Interface Test

The following table describes the test cases in the D3DM Interface test suite.
Table 18-3. Direct3D Mobile Interface Test Cases

18.5.5 Direct3D Mobile/OpenGL ES Application Samples/Demos

In order to reduce the OS image size, a limited number of pre-built demos have been included in the BSP
package.

18.5.6 Direct3D Mobile Application Samples

There are seven D3DM application samples located in \WINCE600\PUBLIC\DIRECTX\SDK\SAMPLES\D3DM,
which will be built when BSP_MBX is enabled. The table that follows identifies these tests.

Table 18-4. Direct3D Mobile Application Samples

Test Case Description

1-99 Tests the methods for the IDirect3DMobile interface.

101-199 Tests the methods for the IDirect3DMobileDevice interface.

201-299 Tests the methods for the IDirect3DMobileIndexBuffer interface

301-399 Tests the methods for the IDirect3DMobileSurface interface

401-499 Tests the methods for the IDirect3DMobileTexture interface

501-599 Tests the methods for the IDirect3DMobileVertexBuffer interface.

2001-2099 Tests the security of a Direct3D Mobile driver

MBX Direct3D Mobile/OpenGL ES Drivers

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 18-7

18.5.6.1 Direct3D Mobile/OpenGL ES Demos

See the MX31 MBX SDK package for additional demo applications in source code and binary code.

18.5.7 Known Issues for MBX CE6 Driver

The following are known issues for the MBX CE6 driver:

• For directdraw cetk, in TVout mode, 9 cases (102/200/210/220/300/310/320/1200/1300) failed.

• After suspending the system, you need to click the panel to resume it.

• While running overlay application, like mosquito or media play, if you rotate or switch between
LCD and TV, the application fails to run. To re-run, exit and reopen the application.

• D3DM comparision test 5192 case failed.

• MBX driver only supports suspend/resume from keypad when in tvout mode.

18.6 Drivers API Reference

18.6.1 Direct3D Mobile

For documentation for the Direct3D driver APIs, see the Platform Builder Help. No additional custom API
information is required for the features currently supported in the Direct3D Mobile driver. For reference
information on basic Direct3D Mobile driver functions, methods, and structures, see the Platform Builder
Help:

Developing a Device Driver- > Windows Embedded CE Drivers- > Direct3D Mobile Display Drivers-
>Direct3D Mobile Driver Reference

For reference information on Direct3D Mobile functions, callbacks, and structures, see the Platform
Builder Help:

Tests Pass

D3dm_createdevice.exe Y

D3dm_fixedpoint.exe Y

D3dm_lights.exe Y

d3dm_matrices.exe Y

d3dm_textures.exe Y

d3dm_twotri.exe Y

d3dm_vertices.exe Y

Tests Pass

D3DMEvilSkull.exe Y

OGLESVase.exe Y

MBX Direct3D Mobile/OpenGL ES Drivers

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

18-8 Freescale Semiconductor

Windows Embedded CE Features -> Graphics -> Direct3D Mobile

18.6.2 OpenGL ES

Documentation for the OpenGL driver APIs can be found at http://www.khronos.org/opengles

NAND Flash Media Driver (FMD)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 19-1

Chapter 19
NAND Flash Media Driver (FMD)

19.1 NAND FMD Summary
Windows CE provides driver support for flash media devices using FMD (Flash Media Driver) and FAL
(Flash Abstraction Layer) software architecture. The FMD and FAL allow NAND flash storage to be
exposed as a block driver that is accessed using file system. The FMD software layers ported to the MX31
NAND flash controller are responsible for the actual I/O with the corresponding NAND flash devices
respectively. The NAND FMD driver included in the MX31 BSP is targeted for the NAND flash device
shipped with the MX31 PDK, But these drivers can be easily ported to other NAND flash devices.

The NAND flash device can be sorted as two categories: a small page size (page size is 512 bytes) NAND
device and a large page size (page size is 2048 bytes) NAND device. For the MX31 PDK, the large page
NAND device K9F2G08R0A is supported.

The following table provides a summary of source code location, library dependencies and other BSP
information.

Table 19-1. NAND Flash Media Driver Attributes

19.2 Requirements
The NAND FMD should meet the following requirements:

• Support the Windows CE FMD interface.

• Support both large page and small page NAND.

• Support EMI clock gating for power management.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 SOC Driver Path N/A

SOC Driver Path N/A

SOC Static Library N/A

Platform Driver Path \WINCE600\PLATFORM\<TGTPLAT>\SRC\COMMON\NANDFMD
\WINCE600\PLATFORM\<TGTPLAT>\SRC\DRIVERS\BLOCK\NANDFMD

Import Library fal.lib, fmdhooklib.lib

Driver DLL nandfmd.dll

Catalog Item Third Party −> BSP −> Freescale i.MX31 3DS: ARMV4I −> Storage Drivers −> MSFlash
Drivers −> Samsung K9F2G08R0A NAND Flash.

SYSGEN Dependency N/A

BSP Environment Variables BSP_NAND_FMD=1 &
BSP_NAND_K9F2G08R0A=1

NAND Flash Media Driver (FMD)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

19-2 Freescale Semiconductor

19.2.1 Conflicts with other SoC peripherals

19.2.1.1 MX31 Peripheral Conflicts

The NAND flash controller interface consists of shared EMI signals and NAND-specific signals. The
NAND-specific signals (NFWE_B, NFRE_B, NFALE, NFCLE, NFWP_B, NFCE_B, NFRB) can be
configured for alternate functionality (ATA, USB H2, GPIO) using the MX31 IOMUX. The configuration
supported by the BSP does not use this alternate functionality and dedicates these signals for NAND flash
controller use. Changing this configuration would result in a conflict and prevent proper operation of the
NAND FMD.

19.3 Software Operation
The development concepts for flash media drivers are described in the Windows CE 6.0 Help
Documentation section under the topic Developing a Device Driver > Windows Embedded CE
Drivers > Flash Drivers. The NAND FMD supported in the MX31 PDK BSPs implements the required
FMD functions for interfacing to NAND flash devices.

19.3.1 Compile-Time Configuration Options

The NAND FMD driver abstracts the details of the NAND flash memory device to a single header file.
This header file is found in the \WINCE600\PLATFORM\<TGTPLAT>\SRC\COMMON\NANDFMD
directory and named according to the NAND device.

To support a different NAND device, create a new header using one of the existing NAND device headers
as a template and update the device-specific information. Then update the reference to the device-specific
header in \WINCE600\PLATFORM\<TGTPLAT>\SRC\COMMON\NANDFMD\nandfmd.h and
recompile the NAND FMD driver for the new device.

19.3.2 Registry Settings

The registry keys implemented for the NAND FMD provides basic support for loading and configuring
the NAND as a file system mount. Many more configuration options are available and are discussed in
Windows CE 6.0 Help Documentation section under the topic Windows Embedded CE Features > File
Systems and Data Store > File Systems and Data Store Registry Settings.

19.3.3 DMA Support

The NAND FMD currently does not provide DMA support.

19.3.4 Power Management

The power management support provided by the NAND FMD leverages clock gating features available
within the hardware. The NAND flash controller is a component of the EMI (External Memory
Interface). The clock gating for the EMI is managed globally for all EMI components. This implies that

NAND Flash Media Driver (FMD)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 19-3

while the NAND flash controller does not have individual clock gating capability, the clocks to the
NAND flash controller will be disabled when the EMI is clock gated.

19.4 Unit Test
The NAND FMD was testing using Windows CE 6.0 Test Kit and additional system use cases. This section
will describe the test scenarios that were used to verify the operation of the NAND FMD.

19.4.1 CETK Testing

The CETK includes Storage Device tests that can be used to exercise the NAND FMD. The following table
lists the CETK tests that were performed and provides the test configuration necessary to target the NAND
FMD.

NOTE
Depending on the state of the NAND flash memory, it may be necessary to
format and partition the NAND device using Storage Manager prior to
running the CETK tests that do not reformat the device automatically.

Table 19-2. CETK Tests and Command Lines

NOTE:
>Read/Write test can recognize the parameter /Profile with QFE04. CETK cases #2001,

#2002 failed can be safely ignored.

> API test: CETK cases #4006, #4007, #4012, #4013, #4022, #4023 can be safely skipped.

> Flash Memory Read/Write and Performance Test do support the 2K sector size with
QFE04 and can recognize parameter /Profile

CETK Test Command Line

Storage Device > Storage Device Block Diver Read/Write Test tux -o -d rwtest -c "-z"

Note: This test does not recognize the storage device
profile parameter. You may need to remove other
storage devices from the image so that the device
targeted for the test appears as DSK1 on the system.

Storage Device > Storage Device Block Diver Benchmark Test tux -o -d rw_all -c "-p FlashDisk -z"

Storage Device > Storage Device Block Diver API Test tux -o -d disktest -c "-p -store FlashDisk -z"

Storage Device > Flash Memory Read/Write and Performance Test For WinCE CETK:
tux -o -d flshwear -c "-disk DSK1: -z"

For Mobile CETK:
tux -o -d flshwear -c “-z /profile FlashDisk”
Note: For 2K sector size format, don’t run the test
because the CETK doesn’t supports 2K sector size.

Storage Device >Storage Device Block Driver Performance Test tux -o -d disktest_perf -c "-disk DSK1: -z"

Storage Device > File System Driver Test tux -o -d fsdtst -c "-p FlashDisk -z"

NAND Flash Media Driver (FMD)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

19-4 Freescale Semiconductor

> File System Driver test: CETK cases #5019,#5022 can be safely skipped.

19.4.2 System Testing

The following system tests were performed to verify the operation of the NAND FMD:

Use Start −> Settings −> Control Panel −> Storage Manager to format and create partitions on the mounted
NAND device.

Establish ActiveSync connection over USB and transfer files to/from the NAND storage.

Write media files to NAND storage. Use Windows Media Player to playback media files from NAND
storage.

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-1

Chapter 20
Postfilter Driver
The Postfilter Driver provides an API to access to hardware acceleration for H.264 deblocking and
MPEG4 deblocking and deringing. The Postfilter driver interfaces with the Image Processing Unit (IPU)
Postfilter (PF) submodule. The Postfilter driver conforms to the architecture for Windows CE stream
interface drivers.

20.1 Postfilter Driver Summary
The following table provides a summary of source code location, library dependencies and other BSP
information.

Table 20-1. Postfilter Driver Attributes

20.2 Requirements
The Postfilter driver should meet the following requirements:

• Support 3 postfiltering modes: H.264 deblocking, MPEG4 deblocking, and MPEG4 deblocking
and deringing.

• Support pause functionality for H.264 deblocking, allowing the programmer to specify a pause row
on which the operation will be paused. The paused operation may then be resumed at any time.

• Function as a stream interface driver implementing the programming interface defined in this
document.

• Support two power management modes, full on and full off.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXARM11_FSL_V1\I
PU\PF

CSP Static Library pf_mxarm11_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\IPU\PF

Import Library N/A

Driver DLL pf.dll

Catalog Items N/A

SYSGEN Dependency N/A

BSP Environment Variables BSP_PF=1

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-2 Freescale Semiconductor

20.3 Hardware Operation
Refer to the chapter on IPU in the hardware specification document for detailed operation and
programming information.

20.3.1 Conflicts with other SoC peripherals

20.3.1.1 Peripheral Conflicts

There are no peripheral conflicts on this SoC.

20.4 Software Operation

20.4.1 Communicating with the Postfilter Driver

The Postfilter is a stream interface driver, and is thus accessed through the file system APIs. To
communicate using the Postfilter, a handle to the device must first be obtained using the PFOpenHandle
function. Subsequent commands to the device are issued using various APIs supported by this driver.

20.4.2 Creating a Handle to the Postfilter Driver

To communicate with the PF driver, a handle to the device must first be created using the PFOpenHandle
API. The default PF port is 1.

To open a Handle to the PF:
// Handle to the PF device
HANDLE g_hPF = NULL;

// opening the default PF port.
g_hPF = PFOpenHandle();

For more information on this API, see the PFOpenHandle section under the PF API reference.

20.4.3 Configuring the Postfilter Driver

The PFConfigure API must be called to configure several important settings for the Postfilter driver. The
pfConfigData data structure must be filled out and passed as a parameter to PFConfigure.

Following are important pieces of information needed to configure a Postfilter operation:

• The postfiltering mode (for example, H.264 deblocking or MPEG4 deblocking).

• The input frame parameters, including width, height, and stride.

• Parameters for the input buffer containing quantization parameter and boundary strength data,
including the physical address and size of the buffer.

Note: The Postfiltering hardware requires the physical address of a physically contiguous buffer.
PFAllocPhysMem() API is provided to allow a user mode Postfilter application to allocate a
physically contiguous buffer on Windows CE 6.0.

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-3

The following code example shows how to configure the Postfilter driver.

 // Configure Postfilter for MPEG4 deblocking
 pfConfigData configData;
 UINT32 iWidth, iHeight;

 iWidth = 176;
 iHeight = 144;
 iQPBytesPerFrame = iHeight / 16 * iWidth / 16;

 // Set up configuration data
 configData.mode = pfMode_MPEG4Deblock;
 configData.frameSize.width = iWidth;
 configData.frameSize.height = iHeight;
 configData.frameStride = iWidth;

 configData.qpBuf = pQPPhysAddr; // Start address of a physically contiguous buffer
 configData.qpSize = iQPBytesPerFrame;

 PFConfigure(hPF, &configData);

20.4.4 Executing Postfilter Operations

Once the Postfilter driver has been configured, a postfiltering task can be commenced. A call to the
PFStart function will begin the configured operation. PFStart takes as parameters information about the
input and output buffers for the current postfiltering task. This information includes the size of the buffer,
a pointer the physical address of the start of the Y data buffer, and offsets to the U and Y data buffers (Note:
For the planar YUV data provided as input for postfiltering, the Y, U, and V data buffers must be physically
contiguous in memory). Additionally, for the case of H.264 deblocking operations, a pause row may be
specified. When the pause row is reached during the deblocking operation, the task will be paused, and
will not resume until the PFResume API is called. To disable pausing, the pause row should be set to 0.
 //---
 // Set up Start Data Structure for MPEG4 deblocking operation
 //---
 pfStartParams startData;
 pfBuffer inBuf, outBuf;
 DWORD iYUVBytesPerFrame = iWidth * iHeight * 3/2;

 // Set up input and output buffers.
 inBuf.size = iYUVBytesPerFrame;
 inBuf.yBufPtr = pInputFramePhysAddr; // Physical address of input buffer
 inBuf.uOffset = iWidth * iHeight;
 inBuf.vOffset = inBuf.uOffset * 5/4;

 outBuf.size = iYUVBytesPerFrame;
 outBuf.yBufPtr = pOutputFramePhysAddr; // Physical address of output buffer
 outBuf.uOffset = inBuf.uOffset;
 outBuf.vOffset = inBuf.vOffset;

 startData.in = &inBuf;
 startData.out = &outBuf;
 startData.h264_pause_row = 0;

 // Start PF

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-4 Freescale Semiconductor

 PFStart(hPF, &startData);

Three different events are signaled, representing the completion of 3 different phases of the Postfilter task:
the completion of the Y component, the completion of the Cr componment, and the completion of the Cb
component, which corresponds to the End-Of-Frame (EOF) of the Postfilter task. These events are
signaled through named Windows CE Event objects. A WinCE Handle must be created, using either
PF_Y_EVENT_NAME, PF_CR_EVENT_NAME or PF_EOF_EVENT_NAME strings defined in the
pf.h header file, so that the application may be signaled when the postfilter task has completed. This
handle will be used in a call to the WaitForSingleObject function.

The following sample code creates a handle to the Postfilter EOF event, and waits for that event to be
signaled.
 HANDLE g_hPFEOFEvent;

 // Create event for Postfilter EOF
 g_hPFEOFEvent = CreateEvent(NULL, FALSE, FALSE, PF_EOF_EVENT_NAME);

 // Wait for End of Frame
 WaitForSingleObject(g_hPFEOFEvent, INFINITE);

20.4.5 Closing the Handle to the Postfilter Driver

Call the PFCloseHandle function to close a handle to the Postfilter driver when an application is done
using it.

20.4.6 Postfilter Registry Settings

The following registry keys are required to properly load the Postfilter driver module.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PF]
 "Prefix"="POF"
 "Dll"="pf.dll"
 "Order"=dword:20
 "Index"=dword:1

20.4.7 Power Management

The Postfilter driver consumes power primarily through the operation of the Postfilter IPU sub-module. If
the Postfilter driver is included in the OS image, the Postfilter submodule will be enabled during boot-up,
and will remain enabled until the system is shut down. No additional power management is supported at
this time.

20.4.7.1 PowerUp

This function is not implemented for the Postfilter driver.

20.4.7.2 PowerDown

This function is not implemented for the Postfilter driver.

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-5

20.4.7.3 IOCTL_POWER_SET

This function is not implemented for the Postfilter driver.

20.5 Unit Test
The Postfilter driver unit tests verify the proper operation of the Postfilter driver modes of operation.

For H.264 deblocking mode, a full set of input and output reference data are provided to perform a
bitmatch verification of the Postfilter operation. For MPEG4 operations, input data is provided, but no
reference output data is provided. Thus, for MPEG4 postfiltering modes, an output YUV file is generated
(and may be viewed using a YUV viewer too), but no bitmatching is performed.

20.5.1 Unit Test Software

The following table lists the required software to run the Postfilter driver tests.

Table 20-2. Unit Test Software Requirements

20.5.2 Building the Postfilter Tests

20.5.2.1 Unit Test in Windows CE

To build the Postfilter unit test, complete the following steps.

Build an OS image for the desired configuration:

• Within Microsoft Visual Studio, go to the “Build” menu option and select the “Open Release
Directory in Build Window” menu option. This will open a DOS prompt.

• Change to the Postfilter test directory (“\WINCE600\SUPPORT\MX31\TESTS\PF”).

• Enter “set WINCEREL=1” on the command prompt and hit <return>. This will copy the generated
“.exe” to the flat release directory.

• Enter “build –c” at the prompt, and then press <return>. The pftest.dll file will be located in the
$(_FLATRELEASEDIR) directory.

• Copy all test data files (CIF_six_frames_h264.bs, CIF_six_frames_h264.qp,
CIF_six_frames_h264.yuv, H264RefOutput.yuv, QCIF_twenty_frames_mpeg4.qp,
QCIF_twenty_frames_mpeg4.yuv) from “\WINCE600\SUPPORT\MX31\TESTS\PF” to the
$(_FLATRELEASEDIR) directory.

20.5.3 Running the Postfilter Tests

After downloading an OS image to the board, the unit test can be executed from the “Target Control” shell
with the following command:

 “s \release\pftest.exe”

Requirements Description

pftest.exe Postfilter test execution file.

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-6 Freescale Semiconductor

20.6 Postfilter Driver API Reference

20.6.1 Postfilter Driver Functions

20.6.1.1 PFOpenHandle

This API creates a handle to the Postfilter stream driver:
HANDLE PFOpenHandle(

void
);

Parameters

This API accepts no parameters.

Return Values

An open handle to the specified file indicates success. INVALID_HANDLE_VALUE indicates
failure.

Remarks

A handle returned successfully from this function call is required in all subsequent calls to other
PF API functions. Use the PFCloseHandle function to close the handle returned by
PFOpenHandle.

20.6.1.2 PFCloseHandle

This API function closes a handle to the PF driver:
BOOL PFCloseHandle(

HANDLE hPF
);

Parameters

hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

Return Values

TRUE indicates success.

FALSE indicates failure.

To get extended error information, call GetLastError.

An open handle to the specified file indicates success.

Remarks

None.

20.6.1.3 PFConfigure

This API configures the Postfilter driver:
void PFConfigure(

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-7

HANDLE hPF,
pPfConfigData pConfigData

);

Parameters

hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

pConfigData

[in] An object of the pfConfigData structure.

Return Values

None.

Remarks

This function performs configuration steps that are required before starting a Post-Filtering
operation. Calling PFStart without previously calling PFConfigure will result in an error.

20.6.1.4 PFStart

This API function starts a Postfilter operation.
void PFStart(

HANDLE hPF,
pPfStartParams pStartParms

);

Parameters

hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

pStartParms

[in] An object of the pfStartParams structure. For H.264 Postfilter mode, no output buffer is
required, as the input buffer is used for input and output.

Return Values

None.

Remarks

Calling PFStart without previously calling PFConfigure will result in an error.

Completion of the Postfilter operation is signaled through a named event using the name
PF_EOF_EVENT_NAME. A user can call CreateEvent and WaitForSingleObject to create and
wait on the PostFilter end-of-frame event.

20.6.1.5 PFStart2

This API function starts a Postfilter operation.
void PFStart2(
 HANDLE hPP,
 pPfStartParams pStartParms,

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-8 Freescale Semiconductor

 unsigned int VirtualFlag,
 unsigned int yOffset
);

Parameters

hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

pStartParms

[in] An object of the pfStartParams structure. For H.264 Postfilter mode, no output buffer is
required, as the input buffer is used for input and output.

VirtualFlag
[in] Flag to indicate if virtual memory pointer.

yOffset
[in] offset to the pointer, in byte.

Return Values

None.

Remarks

PFStart2 extends PFStart by passing two more parameters.

20.6.1.6 PFSetAttributeEx

This API modifies the attributes of virtual memory in upper layer applicas’s context:
BOOL PFSetAttributeEx(
 HANDLE hPF,
 pPfSetAttributeExData pData
);

Parameters

hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

pData

[in] An object of the pPfSetAttributeExData structure.

Return Values

TRUE indicates success.

FALSE indicates failure.

Remarks

This function gives the upper layer applications a chance to change their virtual memory’s
attributes.

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-9

20.6.1.7 PFResume

This API function resumes an H.264 deblocking operation that was previously started with a pause row
specified. A new pause row may be specified, or the operation may be allowed to run to completion.

DWORD PFResume(
HANDLE hPF,
UINT32 h264_pause_row

);

Parameters

hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

h264_pause_row

[in] Integer indicating the Y row at which to pause the operation. Should be set to 0 to disable an
additional pause.

Return Values

If successful, PF_SUCCESS.

If failure, one of the following:

PF_ERR_NOT_RUNNING – The Postfilter operation is not running.

PF_ERR_PAUSE_NOT_ENABLED – The H.264 pause is not enabled.

PF_ERR_INVALID_PARAMETER – The pause row parameter is not in a valid

range.

Remarks

Calling PFResume without previously calling PFStart with the pause row enabled will result in
an error.

20.6.1.8 PFAllocPhysMem

This API function allocates physically contiguous memory.
BOOL PFAllocPhysMem(

HANDLE hPF,
UINT32 size,

 pPfAllocMemoryParams pBitsStreamBufMemParams
);

Parameters

hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

size

[in] Number of bytes to be allocated.

pBitsStreamBufMemParams

[out] Pointer to a pPfAllocMemoryParams struct that stores the memory parameters of the memory
allocation.

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-10 Freescale Semiconductor

Return Values

If successful, return TRUE.

If failure, return FALSE.

Remarks

None.

20.6.1.9 PFFreePhysMem

This API function frees the memory allocated by PFAllocPhysMem.
BOOL PFFreePhysMem(

HANDLE hPF,
pPfAllocMemoryParams bitsStreamBufMemParams

);

Parameters

hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

bitsStreamBufMemParams

[in] Virtual memory address parameters returned by PFAllocPhysMem API.

Return Values

If successful, return TRUE.

If failure, return FALSE.

Remarks

None.

20.6.2 PF Driver Enumerations

20.6.2.1 pfMode

Enumeration of Postfilter operation modes.
typedef enum pfModeEnum
{
 pfType_Disabled, // No post-filtering
 pfType_MPEG4Deblock, // MPEG4 Deblock only
 pfType_MPEG4Dering, // MPEG4 Dering only
 pfType_MPEG4DeblockDering, // MPEG4 Deblock and Dering
 pfType_H264Deblock, // H.264 Deblock
} pfMode;

Elements

pfType_Disabled

Postfiltering disabled.

pfType_MPEG4Deblock

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-11

Postfiltering operation is MPEG4 Deblock only.

pfType_MPEG4Dering

Postfiltering operation is MPEG4 Dering only.

pfType_MPEG4DeblockDering

Postfiltering operation is MPEG4 Deblock and Dering.

pfType_H264Deblock

Postfiltering operation is H.264 Deblock.

Remarks

None.

20.6.3 PF Driver Structures

20.6.3.1 pfBuffer

Structure to describe the YUV buffers used in Postfilter operations.
typedef struct pfBufferStruct
{
 int size;
 UINT32 *yBufPtr;
 UINT32 uOffset;
 UINT32 vOffset;
} pfBuffer, *pPfBuffer;

Members

size

Size of the allocated buffer, in bytes.

yBufPtr

Pointer to the start of the Y buffer.

uBufOffset

Offset, in bytes, of the U buffer, relative to the start of the Y buffer. If set to 0, a default calculation will be
made based on the height and stride of the frame.

vBufOffset

Offset, in bytes, of the V buffer, relative to the start of the Y buffer. If set to 0, a default calculation
will be made based on the height and stride of the frame.

20.6.3.2 pfConfigData

Structure used to configure the Postfilter driver for an operation.
typedef struct pfConfigDataStruct
{
 pfMode mode;

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-12 Freescale Semiconductor

 pfFrameSize frameSize;
 UINT32 frameStride;
 UINT32 *qpBuf;
 UINT32 qpSize;
} pfConfigData, *pPfConfigData;

Members

mode

The Postfilter operation desired.

frameSize

The dimensions of the frame for Postfiltering.

frameStride

The stride of the frame, in bytes.

qpBuf

A pointer to a buffer containing, sequentially, the quantization parameter (QP) and boundary
strength (BS) data for the Postfilter operation.

qpSize

The size of the buffer containing the QP and BS data.

Remarks

For H.264 deblocking, there is one 32-bit quantization parameter word for each 16x16 pixel
macroblock. Additionally, there is one 8-bit boundary strength word for each 4x4 pixel block.

For MPEG4 deblocking and deringing, there is one 8-bit quantization parameter word for each
16x16 pixel macroblock. No boundary strength data is needed for MPEG4 deblocking and
deringing.

20.6.3.3 pfFrameSize

Structure for the Postfiltering frame size.
typedef struct pfFrameSizeStruct {
 UINT16 width;
 UINT16 height;
} pfFrameSize, *pPfFrameSize;

Members

width

Frame width, in pixels.

height

Frame height, in pixels.

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-13

20.6.3.4 pfStartParams

This structure is used in calls to PFStart to provide information needed to start the Postfilter operation.
typedef struct PfStartParamsStruct
{

pPfBuffer in;
pPfBuffer out;
UINT32 h264_pause_row;
void* qp_buf;
void* bs_buf;
int qp_size;

} pfStartParams, *pPfStartParams;

Members

in

Pointer to the input buffer.

out

Pointer to the output buffer.

h264_pause_row

Row to pause at for H.264 mode. Set to 0 to disable pause. For more information, refer to the
Postfilter Flow Control section of the MX31/MX32 hardware specification.

qp_buf
Pointer to current qb buffer

bs_buf
Pointer to current bs buffer

qp_size
qb and bs buffer size

20.6.3.5 pfAllocMemoryParams

This structure is used in calls to PFAllocPhysMem/PFFreePhysMem to allocate/free physically
contiguous memory in Windows CE 6.0.
typedef struct pfFrameSizeStruct {
 UINT physAddr;
 UINT userVirtAddr;
 UINT driverVirtAddr;
 UINT size;
} pfAllocMemoryParams, *pPfAllocMemoryParams;

Members

physAddr

A physical memory address of the memory allocation.

userVirtAddr

A virtual memory address of the memory allocation.

Postfilter Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-14 Freescale Semiconductor

driverVirtAddr

A virtual memory address to be used in the kernel mode inside the driver.

size

A memory size to be allocated.

20.6.3.6 pfSetAttributeExData

This structure is used in calls to PFSetAttributeEx.
typedef struct pfSetAttributeExDataStruct {
 LPVOID lpvAddress;
 DWORD cbSize;
} pfSetAttributeExData, *pPfSetAttributeExData;

Members

lpvAddress

The starting address of virtual memory.

cbSize

The size of virtual memory.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-1

Chapter 21
Power Management IC (PMIC)
This chapter provides the information that you need to:

• Develop device drivers that interface directly with the hardware components provided by Freescale
Semiconductor’s power management ICs (PMICs). The PMIC that is specifically referenced in this
document is the MC13783.

• Develop applications that make use of the special hardware capabilities that are provided by the
PMIC (for example, audio I/O and USB on-the-go connectivity).

This chapter fully describes the API provided by Freescale which allows complete access to the full
functionality of the PMICs.

This document is intended for device driver and application developers who need to understand and gain
access to the functionality provided by the PMICs.

21.1 PMIC Driver Summary
The following table provides a summary of source code location, library dependencies and other BSP
information.

Table 21-1. PMIC Driver Attributes

21.2 Requirements
The PMIC device driver framework for Windows CE is a stream interface driver and a SDK DLL. A
description of the stream interface driver may be found in the Windows CE Platform Builder
documentation at Developing a Device Driver Windows Embedded CE Drivers Stream
Interface Drivers.

 Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Driver Path ..\PLATFORM\common\src\soc\freescale\pmic\mc13783_fsl_v1

CSP Static Library pmicPdk_mc13783_fsl_v1.lib
pmicSdk_mc13783_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\PMIC\MC13783\PDK
..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\PMIC\MC13783\SDK

Import Library N/A

Driver DLL pmicPdk_MC13783.dll
pmicSdk_MC13783.dll

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables BSP_PMIC_MC13783=1

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-2 Freescale Semiconductor

The PMIC Stream Interface driver controls the PMIC hardware directly through the SPI bus. The Stream
Interface driver provides an IOCTL interface for SDK DLLs. The SDK DLL provide APIs for Windows
CE drivers and applications.

The API covers the PMIC functionality of the following areas:

• Register Access

• Audio

• Battery

• Regulators

• Keys (Power, PTT)

• ADC /Touch

• End of Life comparator

• Power Fail

• Battery Charger

• GPIO

• CE Bus

21.2.1 PMIC API Framework

The API framework and the APIs defined in this document are intended to be reused for all Freescale
power management ICs. The current implementation of the APIs supports the MC13783 power
management IC.

The APIs presented in this document were developed to provide a unified interface to all of the functions
and features provided by the power management ICs. When a specific function exists on all of the power
management ICs, then the API will behave identically (for example, selecting the USB connectivity
operating mode).

A device driver and API framework for Windows Embedded CE 6.0 has already been implemented for the
MC13783 PMIC. The existing MC13783 framework will be reused as-is, but the APIs will be redefined
so that a single unified set of APIs can be used to access the features and functions provided by both the
MC13783 PMICs. The key objectives and benefits of this new generic PMIC API are as follows:

• Provide the ability to easily accommodate additional PMICs in the future (perhaps with additional
features or configuration options) without breaking existing software.

• Provide a uniform API for accessing all Freescale PMICs so that device drivers and applications
can be ported to different hardware platforms with little or no changes.

• Provide the ability to access all of the underlying hardware capabilities provided by a specific
PMIC. Of course, any software that makes use of PMIC-specific functions or configurations will
only work if the appropriate PMIC hardware is actually available. However, the software should
still provide appropriate error codes and “fail gracefully” if it is used on a platform for which the
requested function or configuration is not supported.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-3

21.3 Hardware Operation
Refer to the MC13783 datasheet for details on the MC13783 PMIC.

21.3.1 MX31 Peripheral Conflicts

There are no MX31 pin conflicts on the 3-Stack. The CSPI2 is used to communicate with the MC13783
PMIC on the MX31 platform; the CSPI2 signals are selected in the IOMUX.

21.4 Software Operation

21.4.1 Configuring the PMIC

The PMIC modules can be used by applications or device drivers. For example, battery APIs of the PMIC
will be used by the battery driver.

Configuring the PMIC port for communications involves some basic operations:

A handle to the desired PMIC port must be opened prior to accessing the module registers. This handle is
required to call the DeviceIoControl function. The function parameters include the PMIC port handle,
appropriate IOCTL code, and other input and output parameters.

21.4.2 Creating a Handle to the PMIC

Before calling any of the PMIC APIs, make sure that the PMIC device is attached by calling the
CreateFile function which opens a file and returns a handle that can be used to access the MC13783
hardware. If the MC13783 hardware does not exist, CreateFile returns ERROR_FILE_NOT_FOUND.

To open a handle to the PMIC, complete the following steps:

1. Insert a colon after the PMI1 port for the first parameter, lpFileName. For example, specify PMI1:
as the PMIC port.

2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple
handles to a PMIC port are supported by the driver.

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.

4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter. The
following code example shows how to open a PMIC port.

hPMI = CreateFile(TEXT("PMI1:"), GENERIC_READ | GENERIC_WRITE, access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, sharing mode
 FILE_FLAG_RANDOM_ACCESS, NULL); security attributes
 if ((hPMI == NULL) || (hPMI == INVALID_HANDLE_VALUE))
 {
 ERRORMSG(1, (_T("Failed in create File()\r\n")));
 }

NOTE
All the steps specified above are performed when PMIC device is attached.
If hPMI handle is null, then perform the above steps.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-4 Freescale Semiconductor

21.4.3 Write Operations

The PMIC driver does not provide an interface to write through the PMIC_Write (stream write) function
in the PMIC driver, and PMIC_Write is a stub function and always returns success.

21.4.4 Read Operations

Like the write operation, the PMIC driver does not provide for reading through the PMIC_Read function
in the PMIC driver; this is a stub function and always returns success.

21.4.5 Closing the Handle to the PMIC

Call the CloseHandle function to close a handle to the PMIC when an application is finished using it.

CloseHandle has one parameter, which the handle is returned by the CreateFile function call that opened
the PMIC port.

21.4.6 Power Management

The primary method for limiting power consumption in the PMIC module is to gate off all clocks to the
module when those clocks are not needed. This is accomplished through the DDKClockSetGatingMode
function call. The PMIC module clock is enabled whenever any of the PMIC registers needs to be accessed
and then disabled once it is finished.

21.4.6.1 PowerUp

This function is not implemented for the PMIC driver.

21.4.6.2 PowerDown

This function is not implemented for the PMIC driver.

21.4.6.3 IOCTL_POWER_CAPABILITIES

The power management capabilities are advertised with power manager through this IOCTL. The PMIC
module supports only two power states: D0 and D4.

21.4.6.4 IOCTL_POWER_SET

This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE values in the PMIC driver. Any request that is not D0 is
changed to a D4 request and will result in the system entering into suspend state, while for a value of D0
the system will again be resumed.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-5

21.4.6.5 IOCTL_POWER_GET

This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It will not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

21.4.7 PMIC Registry Settings

There are no registry settings that need to be modified to use the PMIC APIs.

21.4.8 A/D Converter and Touch

The ADC is a 16-channel, 10-bit converter with a state machine to control the various models of operation.
Read and write access to the A/D converter is accomplished through the SPI bus.

MC13783 has a touch screen interrupt. This interrupt occurs when a pen-down event is detected. The
Windows CE touch driver should handle these interrupt events. Refer to Section 21.6.2, “Interrupt
Handling” for a description of interrupt handling.

21.4.8.1 Data Types
typedef enum _PMIC_ADC_CONVERTOR_MODE
{

MC13783 A/D Channel Definition and Scanning Table

AD_SEL ADA[2:0] Signal Read

0 000 BATT

0 001 BATTISNS

0 010 BPSNS

0 011 CHRGRAW

0 100 CHRGISNS

0 101 ADIN5/PTHEN

0 110 ADIN6/LICELL

0 111 ADIN7/DTHEN

1 000 ADIN8

1 001 ADIN9

1 010 ADIN10

1 011 ADIN11

1 100 TSX1

1 101 TSX2

1 110 TSY1

1 111 TSY2

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-6 Freescale Semiconductor

 ADC_8CHAN_1X = 0, // RAND = 0, 8 channels
 ADC_1CHAN_8X // RAND = 1, reads 8 sequential values
} PMIC_ADC_CONVERTOR_MODE;
Touch Modes
typedef enum _MC13783_TOUCH_MODE {
 TM_INACTIVE = 0,
 TM_INTRUPT,
 TM_RESISTIVE,
 TM_POSITION,
} MC13783_TOUCH_MODE;

21.4.8.2 Functions

21.4.8.2.1 PmicADCGetSingleChannelOneSample

This function gets one channel and one sample.

Prototype PMIC_STATUS PmicADCGetSingleChannelOneSample(UINT16 channel, UINT16*

pResult);

Parameters: channel [in]

A selected channel.

pResult [out]

Pointer to the sampled value.

Returns: PMIC_STATUS

21.4.8.2.2 PmicADCGetSingleChannelEightSamples

This function gets one channel and eight samples.

Prototype PMIC_STATUS PmicADCGetSingleChannelEightSamples(UINT16 channel, UINT16*

pResult);

Parameters: channel [in]

A selected channel.

pResult [out]

Pointer to the sampled values (up to 8 sampled values).

Returns: PMIC_STATUS

21.4.8.2.3 PmicADCGetMultipleChannelsSamples

This function gets a sample for multiple channels.

Prototype PMIC_STATUS PmicADCGetMultipleChannelsSamples(UINT16 channels, UINT16*

pResult);

Parameters: channels [in]

Selected channels (up to 16 channels).

pResult [out]

Pointer to the sampled values (up to 16 sampled values).

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-7

Returns: PMIC_STATUS

21.4.8.2.4 PmicADCTouchRead

This function reads a touch screen sample.

Prototype PMIC_STATUS PmicADCTouchRead(UINT16* x, UINT16* y);

Parameters: x [out]

X-coordinate of the point.

y [out]

Y-coordinate of the point.

Returns: PMIC_STATUS

Remarks This function reads 3 pairs of samples for MC13783.

21.4.8.2.5 PmicADCTouchStandby

This function causes the PMIC touch screen controller to enter standby mode and wait for the next pen
down condition.

Prototype PMIC_STATUS PmicADCTouchStandby(bool intEna);

Parameters: intEna [in]

interrupt enable.

Returns: PMIC_STATUS

21.4.8.2.6 PmicADCSetComparatorThresholds

This function sets WHIGH and WLOW for automatic ADC result comparators.

Prototype PMIC_STATUS PmicADCSetComparatorThresholds(UINT16 whigh, UINT16 wlow);

Parameters: whigh [in]

a high comparator threshold.

wlow [in]

a low comparator threshold.

Returns: PMIC_STATUS

21.4.8.2.7 PmicADCGetHandsetCurrent

This function gets handset battery current measurement values.

Prototype PMIC_STATUS PmicADCGetHandsetCurrent(RR_ADC_CONVERTOR_MODE mode, UINT16

*pResult);

Parameters: mode [in]

An ADC converter mode: ADC_8CHAN_1X or ADC_1CHAN_8X

pResult [out]

Pointer to the handset battery current measurement value(s)

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-8 Freescale Semiconductor

Returns: PMIC_STATUS

Remarks ADC_8CHAN_1X Mode:

This function returns one sample for battery current channel (BATTISNS).

ADC_1CHAN_8X Mode:

For MC13783, this function returns the 8 samples for battery current channel
order like : ADA0=BATT; ADA1= BATT-BATTISNS; ADA2=BATT; ADA3=
BATT-BATTISNS; ADA4=BATT; ADA5= BATT-BATTISNS; ADA6=BATT;
ADA7= BATT-BATTISNS.

21.4.8.2.8 PmicADCInit

This function initializes PMIC ADC's resources.

Prototype PMIC_STATUS PmicADCInit(void);

Parameters: None.

Returns: PMIC_STATUS

21.4.8.2.9 PmicADCDeinit

This function deinitializes PMIC ADC's resources.

Prototype void PmicADCDeinit(void);

Parameters: None

Returns: PMIC_STATUS

21.4.8.3 Power Management

There is no additional power management implementation done specifically for Atlas ADC other than the
implementation described in the Power Management section of this document.

21.5 Unit Test
The PMIC CETK test cases verify the functionality of the various PMIC components.

21.5.1 Unit Test Hardware

The MX31 3-Stack board is required.

21.5.2 Unit Test Software

The following table lists the required software to run the unit tests.
Table 21-2. Unit Test Software Requirements

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-9

21.5.3 Building the PMIC Tests

In order to build the PMIC tests, complete the following steps:

Build an OS image for the desired configuration.

1. Within Platform Builder, go to the Build OS menu option and select the Open Release Directory
menu option. This will open a DOS prompt.

2. Change to the PMIC Tests directory. (\WINCE600\SUPPORT\MX31\TESTS\PMIC)

3. Enter set WINCEREL=1 on the command prompt and hit return. This will copy the built DLL to
the flat release directory.

4. Enter the build command (build -c) at the prompt and press return.

After the build completes, the pmictest.dll file will be located in the $(_FLATRELEASEDIR) directory.

21.5.4 Running the PMIC Tests

For testing PMIC, it is required to run the tux test suite in Kernel mode. In order to achieve this, copy the
‘ktux.dll’ file from Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i folder
into the release directory, and then run the test suite using the following command

s tux –o –n –d pmictest.dll

The following table describes the test cases contained in the PMIC tests.
Table 21-3. PMIC Test Cases

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, required for logging test data

PMICtest.dll Test .dll file

Test name Description

1 PMIC Register Access This test does read/write verification of IMR register on the PMIC.

2 PMIC Battery This test verifies the Battery Interface and control.

5 Power Control This test verifies the power control functionality on the PMIC.

6 AdcGetOneSample This test gets one sample from each of 16 channels by requesting the driver to
sample one channel at a time.

7 AdcGet8Samples This test gets 8 samples from each of 16 channels.

8 AdcGetMultiChannelSamples This test gets one sample from each of 16 channels by requesting the driver to
sample all 16 channels at once.

9 AdcGetHandsetCurrent This test gets samples of the handset current.

10 AdcTouchRead This test gets 3 (x,y) coordinates from the touch screen.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-10 Freescale Semiconductor

21.6 PMIC Reference API

21.6.1 PMIC Driver IOCTLS

This section consists of descriptions for the PMIC I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceIoControl to issue commands to the PMIC device modules. Only relevant parameters for
the IOCTL have a description provided. These IOCTLs are used within the APIs developed for specific
modules of the PMIC device. Most of the IOCTLs will be explained in the specific sections wherever they
are more relevant.

21.6.1.1 PMIC_IOCTL_LLA_READ_REG

This DeviceIoControl request reads the register content.

Parameters hPMI

[in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function.

lpInBuffer

index of the register.

lpOutBuffer

[out] Long pointer to a buffer that receives the output data for the operation. Set
to NULL if the dwIoControlCode parameter specifies an operation that does not
produce output data.

21.6.1.2 PMIC_IOCTL_LLA_WRITE_REG

This DeviceIoControl request writes the data to the said register of the PMIC device.

Parameters hPMI

[in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function.

lpInBuffer

index of the register.

lpOutBuffer

pointer to data which needs to be written to the said register.

21.6.1.3 PMIC_IOCTL_LLA_INT_REGISTER

This DeviceIoControl is used to register interrupt.

Parameters hPMI

[in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function.

lpInBuffer

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-11

index of the register.

lpOutBuffer

pointer to event name and interrupt id.

Code example:
param.int_id = int_id;
param.event_name = event_name;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_REGISTER, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);

21.6.1.4 PMIC_IOCTL_LLA_INT_DEREGISTER

This DeviceIoControl is used to deregister pmic interrupt.

Parameters hPMI

[in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function.

lpInBuffer

index of the register.

lpOutBuffer

null.

Code example:
param.int_id = int_id;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_DEREGISTER, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);

21.6.1.5 PMIC_IOCTL_LLA_INT_COMPLETE

Parameters hPMI

[in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function.

lpInBuffer

index of the register.

lpOutBuffer

pointer to interrupt id.

Code example:
param.int_id = int_id;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_COMPLETE, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);

21.6.1.6 PMIC_IOCTL_LLA_INT_ENABLE

This IOCTL is used to enable the interrupt.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-12 Freescale Semiconductor

Parameters hPMI

[in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function.

lpInBuffer

index of the register.

lpOutBuffer

pointer to interrupt id.

Code example :
param.int_id = int_id;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_COMPLETE, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);

21.6.1.7 PMIC_IOCTL_LLA_INT_DISABLE

This IOCTL is used to disable the interrupt.

Parameters hPMI

[in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function.

lpInBuffer

index of the register.

lpOutBuffer

pointer to interrupt id.

Code example :
param.int_id = int_id;
ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_COMPLETE, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);

21.6.2 Interrupt Handling

21.6.2.1 Interrupt handling Overview

The PMIC has interrupt generation capability to inform the CPU when events occur. This is signaled to
the processors driving the primary SPI and secondary SPI busses through the PRIINT and SECINT lines,
respectively. There is only one interrupt line connected to each processor, so the kernel can only know that
there is an interrupt from the PMIC, but without knowing exactly which module generated the interrupt.

There is one PMIC Interrupt Service Thread (IST) to handle all interrupts from the PMIC. The PMIC IST
will be invoked by the kernel once the kernel receives an interrupt from the PMIC.

This IST will first query the PMIC to determine the source of the interrupt. The IST maintains a table to
track if an interrupt has been registered by a driver or application. If the interrupt is registered, the IST
will then set a predefined event.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-13

For any drivers and applications that need notification of an interrupt, they must register the interrupt and
wait for the event. They also need to reset the event after handling the event.

21.6.2.2 Interrupt Events

Drivers or applications that wish to monitor an interrupt should create a named event for each interrupt.
The event name is passed to PMIC driver when registering the interrupt.

The PMIC IST will trigger the event when the corresponding interrupt occurs.

21.6.2.2.1 PMIC Interrupt Events

The table below shows the events and corresponding MC13783 interrupts.

Table 21-4. PMIC Interrupts

PMIC Interrupt Description

ADCDONEI ADC has finished requested conversions

ADCBISDONEI ADCBIS has finished requested conversions

TSI Touch screen wakeup

WHI A/D word read in ADC digital comparison mode exceeding the high limit

WLI A/D word read in ADC digital comparison mode reading below the low limit

CHGDETI Charger attach and removal

CHGOVI Charger over-voltage detection

CHGREVI Charger path reverse current

CHGSHORTI Charger path short circuit

CCCVI BP regulator current or voltage regulation. Indicates that the charger has switched its mode from
CC to CV or from CV to CC. Charger removal does not trigger this interrupt.

CHGCURRI Charge current has dropped below threshold

BPONI BP turn on threshold detection

LOBATLI End of lift/low battery detection

LOBATHI Low battery warning

USBI USB VBUS detection

IDI USB ID line detection

SE1I Single ended 1 detection

CKDETI Carkit detection

1HZI 1HZ timetick

TODAI Time of day alarm. Triggered when TOD counter is equal to the value is TODA and the DAY
counter is equal to the value in DAYA.

ONOFD1I ON1B event. Connection for a power on/off button.

ONOFD2I ON2B event. Connection for an accessory power on/off button

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-14 Freescale Semiconductor

21.6.2.3 Interrupt Data Structures
typedef enum _PMIC_MC13783_INT_ID {
 PMIC_MC13783_INT_ADCDONEI = 0,
 PMIC_MC13783_INT_ADCBISDONEI = 1,
 PMIC_MC13783_INT_TSI = 2,
 PMIC_MC13783_INT_WHI = 3,
 PMIC_MC13783_INT_WLI = 4,
 PMIC_MC13783_INT_CHGDETI = 6,
 PMIC_MC13783_INT_CHGOVI = 7,
 PMIC_MC13783_INT_CHGREVI = 8,
 PMIC_MC13783_INT_CHGSHORTI = 9,
 PMIC_MC13783_INT_CCCVI = 10,
 PMIC_MC13783_INT_CHGCURRI = 11,
 PMIC_MC13783_INT_BPONI = 12,
 PMIC_MC13783_INT_LOBATLI = 13,
 PMIC_MC13783_INT_LOBATHI = 14,
 PMIC_MC13783_INT_USBI = 16,
 PMIC_MC13783_INT_IDI = 19,
 PMIC_MC13783_INT_SE1I = 21,
 PMIC_MC13783_INT_CKDETI = 22,
 PMIC_MC13783_INT_1HZI = 32,
 PMIC_MC13783_INT_TODAI = 33,
 PMIC_MC13783_INT_ONOFD1I = 35,
 PMIC_MC13783_INT_ONOFD2I = 36,
 PMIC_MC13783_INT_ONOFD3I = 37,

ONOFD3I ON3B event. Connection for a third power on/off button.

SYSRSTI Indicates system reset has occurred

RTCRSTI Indicates RTC reset has occurred

PCI Indicates power cut has occurred

WARMI Warm start event. Indicates the application powered up from user off mode.

MEMHLDI Memory hold event. Indicates the application powered up from memory hold mode.

PWRRDYI Power gate and DVS power ready

THWARNLI Thermal warning lower threshold

THWARNHI Thermal warning higher threshold

CLKI Clock source change

SEMAFI Semaphore

MC2BI Microphone bias 2 detect

HSDETI Headset attach

HSLI Stereo headset detect

ALSPTHI Thermal shutdown Alsp. Maximum allowable junction temperature within Alsp is reached.

AHSSHORTI Short circuit on Ahs outputs

Table 21-4. PMIC Interrupts(Continued)

PMIC Interrupt Description

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-15

 PMIC_MC13783_INT_SYSRSTI = 38,
 PMIC_MC13783_INT_RTCRSTI = 39,
 PMIC_MC13783_INT_PCI = 40,
 PMIC_MC13783_INT_WARMI = 41,
 PMIC_MC13783_INT_MEMHLDI = 42,
 PMIC_MC13783_INT_PWRRDYI = 43,
 PMIC_MC13783_INT_THWARNLI = 44,
 PMIC_MC13783_INT_THWARNHI = 45,
 PMIC_MC13783_INT_CLKI = 46,
 PMIC_MC13783_INT_SEMAFI = 47,
 PMIC_MC13783_INT_MC2BI = 49,
 PMIC_MC13783_INT_HSDETI = 50,
 PMIC_MC13783_INT_HSLI = 51,
 PMIC_MC13783_INT_ALSPTHI = 52,
 PMIC_MC13783_INT_AHSSHORTI = 53,
 PMIC_INT_MAX_ID
} PMIC_MC13783_INT_ID;

21.6.2.4 Functions

21.6.2.4.1 PmicInterruptRegister

PmicInterruptRegister function registers an interrupt so that the interrupt event will be signaled when the
interrupt occurs.

All PMIC interrupts are masked at the initialization. A driver or an application must register the interrupt
if the interrupt is to be enabled.

Prototype PMIC_STATUS PmicInterruptRegister(PMIC_INT_ID int_id,

 LPTSTR name);

Parameters: int_id

[in] The interrupt to be registered

name

[in] The event name

Return Value Status code

Remarks:

In this function the PMIC_IOCTL_LLA_INT_REGISTER IOCTL code is used and below is the code
example.

 param.int_id = int_id;
 param.event_name = event_name;
 ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_REGISTER, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);
 if (ret)
 {
 return PMIC_SUCCESS;
 }
 else
 {
 return PMIC_ERROR;
 }

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-16 Freescale Semiconductor

21.6.2.4.2 PmicInterruptDeregister

PmicInterruptDeregister function deregisters an interrupt. If an interrupt is not registered by any driver or
application, it will be masked.

Prototype PMIC_STATUS PmicInterruptDeregister(PMIC_INT_ID int_id);

Parameters int_id

[in] The interrupt to be deregistered

Return Value Status code

Remarks

In this function the PMIC_IOCTL_LLA_INT_DEREGISTE call is used and below is the code example
param = int_id;

 ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_DEREGISTER, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);
 if (ret)
 {
 return PMIC_SUCCESS;
 }
 else
 {
 return PMIC_ERROR;
 }

21.6.2.4.3 PmicInterruptHandlingComplete

PmicInterruptHandlingComplete function notifies the PMIC stream interface driver completion of an
interrupt handling, so that the stream interface driver can enable that interrupt again.

Prototype PMIC_STATUS PmicInterruptHandlingComplete(PMIC_INT_ID int_id);

Parameters int_id

[in] The interrupt index.

Return Value Status code

Remarks

In this function the PMIC_IOCTL_LLA_INT_COMPLETE call is used. The code example is below:
 param = int_id;
 ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_COMPLETE, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);
 if (ret)
 {
 return PMIC_SUCCESS;
 }
 else
 {
 return PMIC_ERROR;

 }

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-17

21.6.2.4.4 PmicInterruptDisable

The PmicInterruptDisable function temporarily disables an interrupt. The interrupt is still registered. The
driver or application can enable the interrupt again by calling PmicInterruptEnable().

Prototype PMIC_STATUS PmicInterruptDisable(PMIC_INT_ID int_id);

Parameters int_id

[in] The interrupt index.

Return Value Status code

Remarks

In this function the PMIC_IOCTL_LLA_INT_DISABLE call is used. The code example is below.
 param = int_id;
 ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_DISABLE, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);
 if (ret)
 {
 return PMIC_SUCCESS;
 }
 else
 {
 return PMIC_ERROR;
 }

21.6.2.4.5 PmicInterruptEnable

The PmicInterruptEnable function re-enables an interrupt.

Prototype PMIC_STATUS PmicInterruptEnable(PMIC_INT_ID int_id);

Parameters int_id

[in] The interrupt index.

Return Value Status code

Remarks

In this function the PMIC_IOCTL_LLA_INT_ENABLE call is used. The code example is below.
 param = int_id;

 ret = DeviceIoControl(hPMI, PMIC_IOCTL_LLA_INT_ENABLE, ¶m,
 sizeof(param), NULL, 0, NULL, NULL);
 if (ret)
 {
 return PMIC_SUCCESS;
 }
 else
 {
 return PMIC_ERROR;
 }

Code example of registering PMIC pen down interrupts.
 if (PmicInterruptRegister(PMIC_MC13783_INT_TSI, _T("EVENT_TS"))
 != PMIC_SUCCESS)
 {
 ERRORMSG(1, (_T("PmicInterruptRegister failed\r\n")));

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-18 Freescale Semiconductor

 goto cleanUp;
 }

Deregister for PMIC pen down interrupts.
 PmicInterruptDeregister(PMIC_MC13783_INT_TSI);

21.6.3 Register Access API

The PMIC Low Level Access API allows drivers and/or applications to read and write PMIC registers.
There are some restrictions to prohibit drivers/applications from accessing some registers. Interrupt
registers is one example. The interrupt library functions will be in this Low Level Access DLL.

21.6.3.1 Functions

21.6.3.1.1 Read Register

This function reads a PMIC register.

Prototype PMIC_STATUS

PmicRegisterRead(unsigned char index, UINT32* reg);

Parameters index

[in] register index.

reg

[out] The contents of the register.

Return Value Status code

21.6.3.1.2 Write Register

This function writes a PMIC register.

Prototype PMIC_STATUS

PmicRegisterWrite(unsigned char index, UINT32 reg, UINT32 mask);

Parameters index

[in] register index.

reg

[in] data to be written.

mask

[in] bitmap mask to indicate which bits in parameter reg should be written to
PMIC register.

Return Value Status code

The following code example shows how to use PmicRegisterWrite / PmicRegisterRead function to
write/read to/from the PMIC module registers.
TESTPROCAPI PMICTest1(UINT uMsg, TPPARAM tpParam, LPFUNCTION_TABLE_ENTRY lpFTE)
{
 UINT32 reg;

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-19

 Validate that the shell wants the test to run
 if (uMsg != TPM_EXECUTE)
 {
 return TPR_NOT_HANDLED;
 }
 g_pKato−>Log(LOG_COMMENT, TEXT("PMICTest1() +\r\n"));
 Read IMR
 PmicRegisterRead(1, ®);
 g_pKato−>Log(LOG_COMMENT, TEXT("Register IMR is 0X%X\r\n"), (reg & 0xFFFFFF));
 g_pKato−>Log(LOG_COMMENT, TEXT("Now, try to change IMR to 0x0FF\r\n"));
 PmicRegisterWrite(1, 0x0FF, 0xFFFFFF);
 PmicRegisterRead(1, ®);
 g_pKato−>Log(LOG_COMMENT, TEXT("Register IMR is 0X%X\r\n"), (reg & 0xFFFFFF));
 Enter ISR loop
 if ((reg&0xFFFFFF) == 0xFF)
 {
 GPT_TEST_FUNCTION_EXIT();
 return TPR_PASS;
 }
 else
 {
 GPT_TEST_FUNCTION_EXIT();
 return TPR_FAIL;
 }
}

21.6.4 Power Control Reference

21.6.4.1 PwCtrl API

This section provides information about the API provided by PwCtrl API DLL.

Using the following APIs, the MC13783 power control module can be accessed.
Table 21-5. PwCtrl API Modules

Module Usage

PmicPwrctrlSetPowerCutTimer used to set the power cut timer duration

PmicPwrctrlGetPowerCutTimer used to get the power cut timer duration

PmicPwrctrlEnablePowerCut used to enable the power cut

PmicPwrctrlDisablePowerCut used to disable the power cut

PmicPwrctrlSetPowerCutCounter used to set the power cut counter

PmicPwrctrlGetPowerCutCounter used to get the power cut counter

PmicPwrctrlSetPowerCutMaxCounter used to set the maximum number of power cut counter

PmicPwrctrlGetPowerCutMaxCounter used to get the setting of maximum power cut counter

PmicPwrctrlEnableCounter function will set PC_COUNT_EN=1

PmicPwrctrlDisableCounter function will set PC_COUNT_EN=0

PmicPwrctrlSetMemHoldTimer used to set the duration of memory hold timer

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-20 Freescale Semiconductor

21.6.4.2 Functions and Data Structures

PMIC_STATUS PmicPwrctrlSetPowerCutTimer (UINT8 duration);
PMIC_STATUS PmicPwrctrlGetPowerCutTimer (UINT8* duration);
PMIC_STATUS PmicPwrctrlEnablePowerCut (void);
PMIC_STATUS PmicPwrctrlDisablePowerCut (void);
PMIC_STATUS PmicPwrctrlSetPowerCutCounter (UINT8 counter);
PMIC_STATUS PmicPwrctrlGetPowerCutCounter (UINT8* counter);
PMIC_STATUS PmicPwrctrlSetPowerCutMaxCounter (UINT8 counter);
PMIC_STATUS PmicPwrctrlGetPowerCutMaxCounter (UINT8* counter);
PMIC_STATUS PmicPwrctrlEnableCounter(void);
PMIC_STATUS PmicPwrctrlDisableCounter (void);
PMIC_STATUS PmicPwrctrlSetMemHoldTimer (UINT8 duration);
PMIC_STATUS PmicPwrctrlGetMemHoldTimer (UINT8* duration);
PMIC_STATUS PmicPwrctrlSetMemHoldTimerAllOn (void);
PMIC_STATUS PmicPwrctrlClearMemHoldTimerAllOn (void);
PMIC_STATUS PmicPwrctrlEnableClk32kMCU (void);
PMIC_STATUS PmicPwrctrlDisableClk32kMCU (void);
PMIC_STATUS PmicPwrctrlEnableUserOffModeWhenDelay (void);
PMIC_STATUS PmicPwrctrlDisableUserOffModeWhenDelay (void);
PMIC_STATUS PmicPwrctrlSetVBKUPRegulator (MC13783_PWRCTRL_REG_VBKUP,
MC13783_PWRCTRL_VBKUP_MODE);
PMIC_STATUS PmicPwrctrlSetVBKUPRegulatorVoltage (MC13783_PWRCTRL_REG_VBKUP, UINT8);
PMIC_STATUS PmicPwrctrlEnableWarmStart (void);
PMIC_STATUS PmicPwrctrlDisableWarmStart (void);

PmicPwrctrlGetMemHoldTimer Used to get the setting of memory hold timer

PmicPwrctrlSetMemHoldTimerAllOn Used to set the duration of the memory hold timer to infinity

PmicPwrctrlClearMemHoldTimerAllOn Used to clear the infinity duration of the memory hold timer

PmicPwrctrlEnableClk32kMCU Used to enable the CLK32KMCU

PmicPwrctrlDisableClk32kMCU Used to disable the CLK32KMCU

PmicPwrctrlEnableUserOffModeWhenDelay Used to place the phone in User Off Mode after a delay

PmicPwrctrlDisableUserOffModeWhenDelay Used to set not to place the phone in User Off Mode after a delay

PmicPwrctrlSetVBKUPRegulator Used to set the VBKUP regulator

PmicPwrctrlSetVBKUPRegulatorVoltage Used to set the VBKUP regulator voltage

PmicPwrctrlEnableWarmStart Used to set the phone to transit from the ON state to the User Off state
when either the USER_OFF pin is pulled high or the USER_OFF_SPI bit
is set

PmicPwrctrlDisableWarmStart Used to disable the warm start and set the phone to transit from the ON
state to the MEMHOLD ONLY state when either the USER_OFF pin is
pulled high or the USER_OFF_SPI bit is set

PmicPwrctrlEnableRegenAssig Used to enable the REGEN pin of selected voltage regulator

PmicPwrctrlDisableRegenAssig Used to disable the REGEN pin of selected voltage regulator

PmicPwrctrlGetRegenAssig Used to read the REGEN pin value for said voltage regulator

Module Usage

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-21

PMIC_STATUS PmicPwrctrlEnableRegenAssig (t_regulator regu);
PMIC_STATUS PmicPwrctrlDisableRegenAssig (t_regulator regu);
PMIC_STATUS PmicPwrctrlGetRegenAssig (t_regulator regu, UINT8* value);

 The backup regulators VBKUP1 and VBKUP2 provide two independent low power
 supplies during memory hold, user off and power cut operation.
typedef enum _MC13783_PWRCTRL_REG_VBKUP{
 VBKUP1,
 VBKUP2,
} MC13783_PWRCTRL_REG_VBKUP;

typedef enum _MC13783_PWRCTRL_VBKUP_MODE{
 VBKUP_MODE1, Backup Regulator Off in Non Power Cut Modes and Off in Power Cut Modes
 VBKUP_MODE2, Backup Regulator Off in Non Power Cut Modes and On in Power Cut Modes
 VBKUP_MODE3, Backup Regulator On in Non Power Cut Modes and Off in Power Cut Modes
 VBKUP_MODE4, Backup Regulator On in Non Power Cut Modes and On in Power Cut Modes
} MC13783_PWRCTRL_VBKUP_MODE;

/*!
 * This enumeration define all regulator enabled by regen
 */
typedef enum {
 /*!
 * VAudio
 */
 REGU_VAUDIO=0,
 /*!
 * VIOHI
 */
 REGU_VIOHI,
 /*!
 * VIOLO
 */
 REGU_VIOLO,
 /*!
 * VDIG
 */
 REGU_VDIG,
 /*!
 * VGEN
 */
 REGU_VGEN,
 /*!
 * VRFDIG
 */
 REGU_VRFDIG, /*5*/
 /*!
 * VRFREF
 */
 REGU_VRFREF,
 /*!
 * VRFCP

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-22 Freescale Semiconductor

 */
 REGU_VRFCP,
 /*!
 * VSIM
 */
 REGU_VSIM,
 /*!
 * VESIM
 */
 REGU_VESIM,
 /*!
 * VCAM
 */
 REGU_VCAM, /*10*/
 /*!
 * VRFBG
 */
 REGU_VRFBG,
 /*!
 * VVIB
 */
 REGU_VVIB,
 /*!
 * VRF1
 */
 REGU_VRF1,
 /*!
 * VRF2
 */
 REGU_VRF2,
 /*!
 * VMMC1
 */
 REGU_VMMC1,
 /*!
 * VMMC2
 */
 REGU_VMMC2,
 /*!
 * GPO1
 */
 REGU_GPO1,
 /*!
 * GPP2
 */
 REGU_GPO2,
 /*!
 * GPO3
 */
 REGU_GPO3,
 /*!
 * GPO4

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-23

 */
 REGU_GPO4,
 /*!
 * REGU_NUMBER
 */
 REGU_NUMBER,
} t_regulator;
/*!
 * This tab define bit for regen of all regulator
 */
int REGULATOR_REGEN_BIT[REGU_NUMBER]={
 0, /* VAUDIO */
 1, /* VIOHI */
 2, /* VIOLO */
 3, /* VDIG */
 4, /* VGEN */
 5, /* VRFDIG */
 6, /* VRFREF */
 7, /* VRFCP */
 -1, /* VSIM */
 -1, /* VESIM */
 8, /* VCAM */
 9, /* VRFBG */
 -1, /* VVIB */
 10, /* VRF1 */
 11, /* VRF2 */
 12, /* VMMC1 */
 13, /* VMMC2 */
 16, /* VGPO1 */
 17, /* VGPO2 */
 18, /* VGPO3 */
 19, /* VGPO4 */

};

21.6.4.2.1 PmicPwrctrlSetPowerCutTimer

Prototype PMIC_STATUS PmicPwrctrlSetPowerCutTimer (UINT8 duration);

This function is used to set the power cut timer duration.

Parameters: duration [in]

The value to set to power cut timer register, it's from 0 to 255.
The timer will be set to a duration of 0 to 31.875 seconds, in 125 ms increments.

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks

21.6.4.2.2 PmicPwrctrlGetPowerCutTimer

Prototype PMIC_STATUS PmicPwrctrlGetPowerCutTimer (UINT8* duration);

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-24 Freescale Semiconductor

Parameters: duration [out]

The duration to set to power cut timer

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure.

21.6.4.2.3 PmicPwrctrlEnablePowerCut

Prototype PMIC_STATUS PmicPwrctrlEnablePowerCut (void);

This function is used to enable the power cut.

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure.

21.6.4.2.4 PmicPwrctrlDisablePowerCut

Prototype PMIC_STATUS PmicPwrctrlDisablePowerCut (void)

This function is used to disable the power cut.

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.5 PmicPwrctrlSetPowerCutCounter

Prototype PMIC_STATUS PmicPwrctrlSetPowerCutCounter (UINT8 counter);

This function is used to set the power cut counter.

Parameters: counter [in]

The counter number value to be set to the register. It's value from 0 to 15. The
power cut counter is a 4 bit counter that keeps track of the number of rising edges
of the UV_TIMER (power cut events) that have occurred since the counter was
last initialized.

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.6 PmicPwrctrlGetPowerCutCounter

Prototype PMIC_STATUS PmicPwrctrlGetPowerCutCounter (UINT8* counter);

This function is used to get the power cut counter.

Parameters: counter [out]

This function is used to get the counter number

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-25

21.6.4.2.7 PmicPwrctrlSetPowerCutMaxCounter

Prototype PMIC_STATUS PmicPwrctrlSetPowerCutMaxCounter (UINT8 counter);

This function is used to set the maximum number of power cut counter.

Parameters: counter [in]

Maximum counter number to set. It's value from 0 to 15. The power cut register
provides a method for disabling power cuts if this situation manifests itself.

If PC_COUNT >= PC_MAX_COUNT, then the number of resets that have
occurred since the power cut counter was last initialized exceeds the established
limit, and power cuts will be disabled.

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.8 PmicPwrctrlGetPowerCutMaxCounter

Prototype PMIC_STATUS PmicPwrctrlGetPowerCutMaxCounter (UINT8* counter);

This function is used to get the setting of maximum power cut counter.

Parameters: counter [out]

To get the maximum counter number

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.9 PmicPwrctrlEnableCounter

Prototype PMIC_STATUS PmicPwrctrlEnableCounter(void);

The power cut register provides a method for disabling power cuts if this situation
manifests itself. If PC_COUNT >= PC_MAX_COUNT, then the number of resets
that have occurred since the power cut counter was last initialized exceeds the
established limit, and power cuts will be disabled.

This function can be disabled by setting PC_COUNT_EN=0. In this case, each
power cut event will increment the power cut counter, but power cut coverage will
not be disabled, even if PC_COUNT exceeds PC_MAX_COUNT.

This PmicPwrctrlEnableCounter function will set PC_COUNT_EN=1.

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.10 PmicPwrctrlDisableCounter

Prototype PMIC_STATUS PmicPwrctrlDisableCounter (void);

The power cut register provides a method for disabling power cuts if this situation
manifests itself. If PC_COUNT >= PC_MAX_COUNT, then the number of resets

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-26 Freescale Semiconductor

that have occurred since the power cut counter was last initialized exceeds the
established limit, and power cuts will be disabled.

This function can be disabled by setting PC_COUNT_EN=0. In this case, each
power cut event will increment the power cut counter, but power cut coverage will
not be disabled, even if PC_COUNT exceeds PC_MAX_COUNT. This
PmicPwrctrlEnableCounter function will set PC_COUNT_EN=0.

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.11 PmicPwrctrlSetMemHoldTimer

Prototype PMIC_STATUS PmicPwrctrlSetMemHoldTimer (UINT8 duration);

This function is used to set the duration of memory hold timer.

Parameters: duration [in]

The value to set to memory hold timer register. It's from 0 to 15. The resolution of
the memory hold timer is 32 seconds for a maximum duration of 512 seconds.

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.12 PmicPwrctrlGetMemHoldTimer

Prototype PMIC_STATUS PmicPwrctrlGetMemHoldTimer (UINT8* duration);

This function is used to get the setting of memory hold timer

Parameters: duration [out]

To get the duration of the timer

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.13 PmicPwrctrlSetMemHoldTimerAllOn

Prototype PMIC_STATUS PmicPwrctrlSetMemHoldTimerAllOn (void);

This function is used to set the duration of the memory hold timer to infinity

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.14 PmicPwrctrlClearMemHoldTimerAllOn

Prototype PMIC_STATUS PmicPwrctrlClearMemHoldTimerAllOn (void);

This function is used to clear the infinity duration of the memory hold timer

Parameters: None

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-27

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.15 PmicPwrctrlEnableClk32kMCU

Prototype PMIC_STATUS PmicPwrctrlEnableClk32kMCU (void);

This function is used to enable the CLK32KMCU

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.3 PmicPwrctrlDisableClk32kMCU

Prototype PMIC_STATUS PmicPwrctrlDisableClk32kMCU (void);

This function is used to disable the CLK32KMCU

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.4 PmicPwrctrlEnableUserOffModeWhenDelay

Prototype PMIC_STATUS PmicPwrctrlEnableUserOffModeWhenDelay (void);

This function is used to place the phone in User Off Mode after a delay.

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.5 PmicPwrctrlDisableUserOffModeWhenDelay

Prototype PMIC_STATUS PmicPwrctrlDisableUserOffModeWhenDelay (void);

This function is used to set not to place the phone in User Off Mode after a delay.

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.6 PmicPwrctrlSetVBKUPRegulator

Prototype PMIC_STATUS PmicPwrctrlSetVBKUPRegulator (MC13783_PWRCTRL_REG_VBKUP reg,

MC13783_PWRCTRL_VBKUP_MODE mode);

This function is used to set the VBKUP regulator

Parameters: reg [in]

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-28 Freescale Semiconductor

the backup regulator to set

mode [in]

the mode to set to backup regulator

VBKUP_MODE1 - VBKUPxEN = 0, VBKUPxAUTO = 0

Backup Regulator Off in Non Power Cut Modes and Off in Power Cut Modes

VBKUP_MODE2 - VBKUPxEN = 0, VBKUPxAUTO = 1

Backup Regulator Off in Non Power Cut Modes and On in Power Cut Modes

VBKUP_MODE3 - VBKUPxEN = 1, VBKUPxAUTO = 0

Backup Regulator On in Non Power Cut Modes and Off in Power Cut Modes

VBKUP_MODE4 - VBKUPxEN = 1, VBKUPxAUTO = 1

Backup Regulator On in Non Power Cut Modes and On in Power Cut Modes

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.7 PmicPwrctrlSetVBKUPRegulatorVoltage

Prototype PMIC_STATUS PmicPwrctrlSetVBKUPRegulatorVoltage

(MC13783_PWRCTRL_REG_VBKUP reg, UINT8 volt);

This function is used to set the VBKUP regulator voltage

Parameters: reg [in]

the backup regulator to set

volt [in]

the voltage to set to backup regulator

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.8 PmicPwrctrlEnableWarmStart

Prototype PMIC_STATUS PmicPwrctrlEnableWarmStart (void);

This function is used to set the phone to transit from the ON state to the User Off
state when either the USER_OFF pin is pulled high or the USER_OFF_SPI bit is
set (after an 8ms delay in the Memwait state).

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.9 PmicPwrctrlDisableWarmStart

Prototype PMIC_STATUS PmicPwrctrlDisableWarmStart (void);

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-29

This function is used to disable the warm start and set the phone to transit from the
ON state to the MEMHOLD ONLY state when either the USER_OFF pin is pulled
high or the USER_OFF_SPI bit is set (after an 8ms delay in the Memwait state).

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.10 PmicPwrctrlEnableRegenAssig

Prototype PMIC_STATUS PmicPwrctrlEnableRegenAssig (t_regulator regu);

This function enables the REGEN pin of selected voltage regulator. The REGEN
function can be used in two ways. It can be used as a regulator enable pin as with
SIMEN where the SPI programming is static and the REGEN pin is dynamic. It
can also be used in a static fashion where REGEN is maintained high while the
regulators get enabled and disabled dynamically through SPI. In that case REGEN
functions as a master enable.

Parameters: t_regulator regu

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.11 PmicPwrctrlDisableRegenAssig

Prototype PMIC_STATUS PmicPwrctrlDisableRegenAssig (t_regulator regu);

This function Disable the REGEN pin of selected voltage regulator.

Parameters: t_regulator regu

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.12 PmicPwrctrlGetRegenAssig

Prototype PMIC_STATUS PmicPwrctrlGetRegenAssig (t_regulator regu , UINT8* value);

This function reads the REGEN pin value for said voltage regulator.

Parameters: t_regulator regu , value

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.5 PowerCutTimer Functions

The maximum duration of a power cut is determined by the power cut timer PCT[7:0]. By SPI this timer
is set to a preset value. When a power cut occurs, the timer will internally be decremented until it expires,
meaning counted down to zero. The contents of PCT[7:0] does not reflect the actual counted down value
but will keep the programmed value and therefore does not have to be reprogrammed after each power cut.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-30 Freescale Semiconductor

Using the following functions enable/disable/maximum duration of a power cut is determined
PMIC_STATUS PmicPwrctrlSetPowerCutTimer (UINT8 duration);
PMIC_STATUS PmicPwrctrlGetPowerCutTimer (UINT8* duration);
PMIC_STATUS PmicPwrctrlEnablePowerCut (void);
PMIC_STATUS PmicPwrctrlDisablePowerCut (void);

The following code example shows how to use the power control functions of PMIC module.

int MC13783_power_cut_conf(struct t_power_cut_conf *pc)
{

if(!pc−>pc_counter_en)
{
PmicPwrctrlDisablePowerCut();
}
else
PmicPwrctrlEnablePowerCut();

if(!pc−>pc_auto_user_off)
{
PmicPwrctrlDisableUserOffModeWhenDelay();
}
else
PmicPwrctrlEnableUserOffModeWhenDelay();

if(!pc−>pc_auto_user_off)
{
PmicPwrctrlDisableClk32kMCU();
}
else
PmicPwrctrlEnableClk32kMCU();

if(pc−>pc_timer)
PmicPwrctrlSetPowerCutTimer (pc−>pc_timer);
if(pc−>pc_counter)
PmicPwrctrlSetPowerCutCounter(pc−>pc_counter);
if(pc−>pc_max_nb_pc)
PmicPwrctrlSetPowerCutMaxCounter(pc->pc_max_nb_pc);
if(pc->pc_ext_timer)
PmicPwrctrlSetMemHoldTimer (pc->pc_ext_timer);
if(pc->pc_ext_timer_inf)
PmicPwrctrlSetMemHoldTimerAllOn();
else
PmicPwrctrlClearMemHoldTimerAllOn();
return 0;

}

21.6.6 Memory Hold Operation functions

The Memory Hold circuit provides power to the memory during a power cut through VBKUP1. To avoid
leakage from the VBKUP1 into circuitry connected to BP during a power cut, an external PMOS should
be placed between the memory supplies.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-31

Following functions are used to set/get the duration of memory hold timer.
PMIC_STATUS PmicPwrctrlSetMemHoldTimer (UINT8 duration)
PMIC_STATUS PmicPwrctrlGetMemHoldTimer (UINT8* duration)

Following functions are used to set/clear the duration of the memory hold timer to infinity
PMIC_STATUS PmicPwrctrlSetMemHoldTimerAllOn (void)
PMIC_STATUS PmicPwrctrlClearMemHoldTimerAllOn (void)

The following code example shows how to use the power controller memory hold operation functions of
PMIC module.

int MC13783_power_cut_get_conf(struct t_power_cut_conf *pc)
{

UINT8 duration;
UINT8 counter;
UINT32 reg;
unsigned char index;
PmicPwrctrlGetPowerCutTimer (&duration);
pc->pc_timer = duration;

PmicPwrctrlGetPowerCutCounter (&counter);
pc->pc_counter = counter;

PmicPwrctrlGetPowerCutMaxCounter(&duration);
pc->pc_max_nb_pc = duration;
PmicPwrctrlGetMemHoldTimer (&duration);
pc->pc_ext_timer = duration;
index = 0x0E;MC13783_PWR_CTL1_ADDR
PmicRegisterRead(index, ®);
if((reg &0x00100000))
pc->pc_ext_timer_inf = 1;((reg &0x00100000) >> 20);
else
pc->pc_ext_timer_inf = 0;

pc->pc_max_nb_pc = ((reg &0x0000F800) >> 11);

PmicPwrctrlGetMemHoldTimer (&duration);
pc->pc_ext_timer=duration;

index = 0x0D;MC13783_PWR_CTL0_ADDR
PmicRegisterRead(index, ®);
if((reg &0x00000002))
pc->pc_counter_en = 1;
else
pc->pc_counter_en = 0;

if((reg &0x00000008))
pc->pc_auto_user_off =1;
else
pc->pc_auto_user_off =0;

if((reg &0x00000020))

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-32 Freescale Semiconductor

pc->pc_user_off_32k_en=1;
else
pc->pc_user_off_32k_en=0;

return 0;
}

21.6.7 Power Cut Counter Functions

PwCtrl provides a method for disabling power cuts if this situation manifests itself. If PC_COUNT >=
PC_MAX_COUNT, then the number of resets that have occurred since the power cut counter was last
initialized exceeds the established limit, and power cuts will be disabled. PwCtrl counters can be disabled
by setting PC_COUNT_EN=0. In this case, each power cut event will increment the power cut counter,
but power cut coverage will not be disabled, even if PC_COUNT exceeds PC_MAX_COUNT.

The following functions are used to set/get the power cut counter values.
PMIC_STATUS PmicPwrctrlSetPowerCutCounter (UINT8 counter)
PMIC_STATUS PmicPwrctrlGetPowerCutCounter (UINT8* counter)
PMIC_STATUS PmicPwrctrlSetPowerCutMaxCounter (UINT8 counter)
PMIC_STATUS PmicPwrctrlGetPowerCutMaxCounter (UINT8* counter)

The following functions are used to enable/disable the duration of the power cut counters.
PMIC_STATUS PmicPwrctrlEnablePowerCut (void)
PMIC_STATUS PmicPwrctrlDisablePowerCut (void)

The following code example shows how to use the power controller power cut counter functions of PMIC
module. Some the functions are used in the above examples.

int MC13783_power_cut_get_conf(struct t_power_cut_conf *pc)
{

UINT8 duration;
UINT8 counter;
UINT32 reg;
unsigned char index;
PmicPwrctrlGetPowerCutTimer (&duration);
pc->pc_timer = duration;

PmicPwrctrlGetPowerCutCounter (&counter);
pc->pc_counter = counter;

PmicPwrctrlGetPowerCutMaxCounter(&duration);
pc->pc_max_nb_pc = duration;
PmicPwrctrlGetMemHoldTimer (&duration);
pc->pc_ext_timer = duration;
index = 0x0E;MC13783_PWR_CTL1_ADDR
PmicRegisterRead(index, ®);
if((reg &0x00100000))
pc->pc_ext_timer_inf = 1;((reg &0x00100000) >> 20);
else
pc->pc_ext_timer_inf = 0;

pc->pc_max_nb_pc = ((reg &0x0000F800) >> 11);

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-33

PmicPwrctrlGetMemHoldTimer (&duration);
pc->pc_ext_timer=duration;

index = 0x0D;MC13783_PWR_CTL0_ADDR
PmicRegisterRead(index, ®);
if((reg &0x00000002))
pc->pc_counter_en = 1;
else
pc->pc_counter_en = 0;

if((reg &0x00000008))
pc->pc_auto_user_off =1;
else
pc->pc_auto_user_off =0;

if((reg &0x00000020))
pc->pc_user_off_32k_en=1;
else
pc->pc_user_off_32k_en=0;
return 0;

}

21.6.8 Power Management

There is no additional power management implementation done specifically for Atlas Power Control other
than the implementation described in the Power Management section of this document.

21.6.9 Voltage Regulator

The ARM11/ARM9 processor cores and memories are supposed to be supplied by the switchers. All other
building blocks are supplied either directly from the battery or through a linear regulator.

For convenience these regulators are labeled to indicate their intended purpose. This concerns VRF1 and
VRF2 for the transceiver transmit and receive supplies; VRFREF, VRFBG and VRFCP as the transceiver
references; VRFDIG, VDIG and VGEN for the different digital sections of the platform; VIOHI, VIOLO
for the different interfaces; VCAM for the camera module; VSIM1 for the SIM card; VESIM1 for the
eSIM card; and VMMC1 and VMCC2 for dual multimedia card support or peripheral supply such as
Bluetooth PA.

21.6.10 Data Structures
// switch mode regulator
typedef enum _MC13783_REGULATOR_SREG{
 SW1A = 0,
 SW1B,
 SW2A,
 SW2B,
 SW3,
} MC13783_REGULATOR_SREG;

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-34 Freescale Semiconductor

typedef MC13783_REGULATOR_SREG PMIC_REGULATOR_SREG;

typedef UINT8 PMIC_REGULATOR_SREG_VOLTAGE;

/*************************************
 * Switch regulator voltage settings type:
 *
 * SW_VOLTAGE_NORMAL
 * SW_VOLTAGE_DVS
 * SW_VOLTAGE_STBY
 *
 *************************************/
typedef enum _RR_REGULATOR_SREG_VOLTAGE_TYPE{
 SW_VOLTAGE_NORMAL=0,
 SW_VOLTAGE_DVS,
 SW_VOLTAGE_STBY,
 } RR_REGULATOR_SREG_VOLTAGE_TYPE;
typedef RR_REGULATOR_SREG_VOLTAGE_TYPE PMIC_REGULATOR_SREG_VOLTAGE_TYPE;

// standby input state H/L
typedef enum _MC13783_REGULATOR_SREG_STBY{
 LOW = 0,
 HIGH,
}MC13783_REGULATOR_SREG_STBY;
typedef MC13783_REGULATOR_SREG_STBY PMIC_REGULATOR_SREG_STBY;

/***
// switch regulator modes:
// 1. OFF
// 2. PWM mode and no Pulse Skipping
// 3. PWM mode and pulse Skipping Allowed
// 4. Low Power PFM mode
**/
typedef enum _MC13783_REGULATOR_SREG_MODE{
 SW_MODE_OFF,
 SW_MODE_PWM,
 SW_MODE_PULSESKIP,
 SW_MODE_PFM,
}MC13783_REGULATOR_SREG_MODE;
typedef MC13783_REGULATOR_SREG_MODE PMIC_REGULATOR_SREG_MODE;

// linear voltage regulator
typedef enum _MC13783_REGULATOR_VREG{
 VIOHI = 0,
 VIOLO,
 VDIG,
 VGEN,
 VRFDIG,
 VRFREF,

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-35

 VRFCP,
 VSIM,
 VESIM,
 VCAM,
 V_VIB,
 VRF1,
 VRF2,
 VMMC1,
 VMMC2,
} MC13783_REGULATOR_VREG;
typedef MC13783_REGULATOR_VREG PMIC_REGULATOR_VREG;

/**
// LOW_POWER
// VxMODE=1, Set Low Power no matter of VxSTBY and STANDBY pin
//
// LOW_POWER_CTL_BY_PIN
// VxMODE=0, VxSTBY=1, Low Power Mode is controlled by STANDBY pin
//
// LOW_POWER_DISABLED
// VxMODE=0, VxSTBY=0, Low Power Mode is disabled
***/
typedef enum _MC13783_REGULATOR_VREG_POWER_MODE{
 LOW_POWER_DISABLED = 0,
 LOW_POWER,
 LOW_POWER_CTRL_BY_PIN,
} MC13783_REGULATOR_VREG_POWER_MODE;
typedef MC13783_REGULATOR_VREG_POWER_MODE PMIC_REGULATOR_VREG_POWER_MODE;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VIOHI{
 VIOHI_2_775 = 0, //output 2.775V,
 } MC13783_REGULATOR_VREG_VOLTAGE_VIOHI;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VIOLO{
 VIOLO_1_20V = 0, //output 1.20V,
 VIOLO_1_30V, //output 1.30V,
 VIOLO_1_50V, //output 1.50V,
 VIOLO_1_80V, //output 1.80V,
} MC13783_REGULATOR_VREG_VOLTAGE_VIOLO;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VRFDIG{
 VRFDIG_1_20V = 0, //output 1.20V,
 VRFDIG_1_50V, //output 1.50V,
 VRFDIG_1_80V, //output 1.80V,
 VRFDIG_1_875V, //output 1.875V,
} MC13783_REGULATOR_VREG_VOLTAGE_VRFDIG;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VDIG{
 VDIG_1_20V = 0, //output 1.20V,
 VDIG_1_30V, //output 1.30V,
 VDIG_1_50V, //output 1.50V,

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-36 Freescale Semiconductor

 VDIG_1_80V, //output 1.80V,
} MC13783_REGULATOR_VREG_VOLTAGE_VDIG;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VGEN{
 VGEN_1_20V = 0, //output 1.20V,
 VGEN_1_30V, //output 1.30V,
 VGEN_1_50V, //output 1.50V,
 VGEN_1_80V, //output 1.80V,
} MC13783_REGULATOR_VREG_VOLTAGE_VGEN;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VRF{
 VRF2_1_875V = 0, //output 1.875V,
 VRF2_2_475V, //output 2.475V,
 VRF2_2_700V, //output 2.700V,
 VRF2_2_775V, //output 2.775V,
} MC13783_REGULATOR_VREG_VOLTAGE_VRF;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VRFCP{
 VRFCP_2_700V = 0, //output 2.700V,
 VRFCP_2_775V, //output 2.775V,
} MC13783_REGULATOR_VREG_VOLTAGE_VRFCP;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VRFREF{
 VRFREF_2_475V = 0, //output 2.475V,
 VRFREF_2_600V, //output 2.600V,
 VRFREF_2_700V, //output 2.700V,
 VRFREF_2_775V, //output 2.775V,
} MC13783_REGULATOR_VREG_VOLTAGE_VRFREF;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_CAM{
 // 1st silicon, 2nd silicon
 VCAM_1 = 0, //output 1.50V, 1.5V.
 VCAM_2, //output 1.80V, 1.80V
 VCAM_3, //output 2.50V, 2.50V
 VCAM_4, //output 2.80V, 2.55V
 VCAM_5, //output - 2.60V
 VCAM_6, //output - 2.80V
 VCAM_7, //output - 3.00V
 VCAM_8, //output - TBD
} MC13783_REGULATOR_VREG_VOLTAGE_CAM;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_SIM{
 VSIM_1_8V = 0, //output = 1.80V
 VSIM_2_9V, //output = 2.90V
} MC13783_REGULATOR_VREG_VOLTAGE_SIM;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_ESIM{
 VESIM_1_8V = 0, //output = 1.80V
 VESIM_2_9V, //output = 2.90V
} MC13783_REGULATOR_VREG_VOLTAGE_ESIM;

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-37

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_MMC{
 // 1st silicon, 2nd silicon
 VMMC_1, //output 1.60V, 1.60V
 VMMC_2, //output 1.80V, 1.80V
 VMMC_3, //output 2.00V, 2.00V
 VMMC_4, //output 2.20V, 2.60V
 VMMC_5, //output 2.40V, 2.70V
 VMMC_6, //output 2.60V, 2.80V
 VMMC_7, //output 2.80V, 2.90V
 VMMC_8, //output 2.90V, 3.00V
} MC13783_REGULATOR_VREG_VOLTAGE_MMC;

typedef enum _MC13783_REGULATOR_VREG_VOLTAGE_VIB{
 V_VIB_1_3V = 0, //output = 1.30V
 V_VIB_1_8V, //output = 1.80V
 V_VIB_2_0V, //output = 2.0V
 V_VIB_3_0V, //output = 3.0V
} MC13783_REGULATOR_VREG_VOLTAGE_VIB;

typedef union {
 MC13783_REGULATOR_VREG_VOLTAGE_VIOHI viohi;
 MC13783_REGULATOR_VREG_VOLTAGE_VIOLO violo;
 MC13783_REGULATOR_VREG_VOLTAGE_VRFDIG vrfdig;
 MC13783_REGULATOR_VREG_VOLTAGE_VDIG vdig;
 MC13783_REGULATOR_VREG_VOLTAGE_VGEN vgen;
 MC13783_REGULATOR_VREG_VOLTAGE_VRF vrf;
 MC13783_REGULATOR_VREG_VOLTAGE_VRFCP vrfcp;
 MC13783_REGULATOR_VREG_VOLTAGE_VRFREF vrfref;
 MC13783_REGULATOR_VREG_VOLTAGE_CAM vcam;
 MC13783_REGULATOR_VREG_VOLTAGE_SIM vsim;
 MC13783_REGULATOR_VREG_VOLTAGE_ESIM vesim;
 MC13783_REGULATOR_VREG_VOLTAGE_MMC vmmc;
 MC13783_REGULATOR_VREG_VOLTAGE_VIB v_vib;
} MC13783_REGULATOR_VREG_VOLTAGE;
typedef MC13783_REGULATOR_VREG_VOLTAGE PMIC_REGULATOR_VREG_VOLTAGE;

typedef enum _MC13783_REGULATOR_ENABLE{
 DISABLE = 0,
 ENABLE = 1,
} MC13783_REGULATOR_ENABLE;

21.6.11 Switch mode regulator API’s

21.6.11.1 PmicSwitchModeRegulatorOn

Prototype PMIC_STATUS PmicSwitchModeRegulatorOn (PMIC_REGULATOR_SREG regulator);

Parameters: regulator [in]

Which switch mode regulator to turn on

Returns: status

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-38 Freescale Semiconductor

PMIC_SUCCESS for success and PMIC_ERROR for failureThis function is used
to turn on the switch mode regulator.

21.6.11.2 PmicSwitchModeRegulatorOff

Prototype PMIC_STATUS PmicSwitchModeRegulatorOff (PMIC_REGULATOR_SREG regulator);

This function is used to turn off the switch regulator

Parameters: regulator [in]

Which switch mode regulator to turn off

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.3 PmicSwitchModeRegulatorSetVoltageLevel

Prototype PMIC_STATUS PmicSwitchModeRegulatorSetVoltageLevel (PMIC_REGULATOR_SREG

regulator,

PMIC_REGULATOR_SREG_VOLTAGE_TYPE voltageType,

PMIC_REGULATOR_SREG_VOLTAGE voltage);

This function is to set the voltage level for the switch regulator.

Parameters: regulator [in]

The regulator to be set

voltageType [in]

SW_VOLTAGE_NORMAL/SW_VOLTAGE_LVS/SW_VOLTAGE_STBY

SW1 offers support for Dynamic Voltage-Frequency scaling. If this feature is
activated, then assertion of the STANDBY input will automatically configure
SW1 to output the voltage defined by the 3-bit field SW1X_STBY. If
STANDBY=LOW, then assertion of the LVS input will automatically configure
SW1 to output the voltage defined by the 3-bit field SW1X_LVS. These
alternative bit fields would normally be programmed to a voltage lower than that
encoded in the SW1X bit field. When STANDBY and LVS are both de-asserted,
the output voltage will revert the that encoded by the SW1X field.

SW2 offers limited support for Dynamic Voltage-Frequency scaling. If this feature
is activated, then assertion of the STANDBY input will automatically configure
SW2 to output the voltage defined by the 3-bit field SW2_STBY.

If STANDBY=LOW, then assertion of the LVS2 input will automatically
configure SW2 to output the voltage defined by the 3-bit SW2X_LVS field. When
STANDBY and LVS2 are both de-asserted, the output voltage will revert to that
encoded by the SW2X 3-bit field.

voltage [in]

The voltage to be set, it depends on different regulator.

Returns: status

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-39

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.4 PmicSwitchModeRegulatorGetVoltageLevel

Prototype PMIC_STATUS PmicSwitchModeRegulatorGetVoltageLevel (PMIC_REGULATOR_SREG

regulator, PMIC_REGULATOR_SREG_VOLTAGE_TYPE voltageType,

PMIC_REGULATOR_SREG_VOLTAGE* voltage);

This function is to get the voltage settings.

Parameters: regulator [in]

The regulator to get voltage from

voltageType [in]

SW_VOLTAGE_NORMAL/SW_VOLTAGE_LVS/SW_VOLTAGE_STBY

voltage [out]

the pointer to get the value

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.5 PmicSwitchModeRegulatorSetMode

Prototype PMIC_STATUS PmicSwitchModeRegulatorSetMode (PMIC_REGULATOR_SREG

regulator, PMIC_REGULATOR_SREG_STBY standby, PMIC_REGULATOR_SREG_MODE

mode);

This function is to set the switch mode regulator into synchronous rectifier mode
or pulse-skipping mode. The synchronous rectifier can be disabled (and
pulse-skipping enabled) to improve low current efficiency. Software should
disable synchronous rectifier / enable the pulse-skipping for average loads less
than approximately 30 mA, depending on the quiescent current penalty due to
synchronous mode.

Parameters: regulator [in]

The regulator to be set

mode [in]

Synchronous rectifier mode or pulse skipping mode.

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.6 PmicSwitchModeRegulatorGetMode

Prototype PMIC_STATUS PmicSwitchModeRegulatorGetMode (PMIC_REGULATOR_SREG

regulator, PMIC_REGULATOR_SREG_MODE* mode);

This function gets the current setting of regulator mode

Parameters: regulator [in]

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-40 Freescale Semiconductor

The regulator to get voltage value from

mode [out]

Synchronous rectifier mode or pulse skipping mode.

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.7 PmicSwitchModeRegulatorEnableSTBYDVFS

Prototype PMIC_STATUS PmicSwitchModeRegulatorEnableSTBYDVFS (PMIC_REGULATOR_SREG

regulator);

This function is used to enable the standby or Dynamic Voltage-Frequency
scaling.

Parameters: regulator [in]

The regulator to be set

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.8 PmicSwitchModeRegulatorDisableSTBYDVFS

Prototype PMIC_STATUS PmicSwitchModeRegulatorDisableSTBYDVFS (PMIC_REGULATOR_SREG

regulator);

This function is used to disable the standby or Dynamic Voltage-Frequency
scaling.

Parameters: regulator [in]

The regulator to be set

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.9 PmicSwitchModeRegulatorSetDVSSpeed

Prototype PMIC_STATUS PmicSwitchModeRegulatorSetDVSSpeed (PMIC_REGULATOR_SREG

regulator, UINT8 dvsspeed);

This function is to set the DVS speed the regulator.

Parameters: regulator [in]

The regulator to be set

dvsspeed [in]

The speed settings for DVS

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: This function is only applicable to MC13783; it is a stub function here.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-41

21.6.11.10 PmicSwitchModeRegulatorEnablePanicMode

Prototype PMIC_STATUS PmicSwitchModeRegulatorEnablePanicMode(PMIC_REGULATOR_SREG

regulator);

This function is used to enable the panic mode.

Parameters: regulator [in]

The regulator to be set

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: This is a stub function here.

21.6.11.11 PmicSwitchModeRegulatorDisablePanicMode

Prototype PMIC_STATUS PmicSwitchModeRegulatorDisablePanicMode(PMIC_REGULATOR_SREG

regulator);

This function is used to disable the panic mode.

Parameters: regulator [in]

the regulator to be set

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: This is a stub function here.

21.6.11.12 PmicSwitchModeRegulatorEnableSoftStart

Prototype PMIC_STATUS PmicSwitchModeRegulatorEnableSoftStart(PMIC_REGULATOR_SREG

regulator);

This function is used to enable soft start.

Parameters: regulator [in]

The regulator to be set

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: This is a stub function here.

21.6.11.13 PmicSwitchModeRegulatorDisableSoftStart

Prototype PMIC_STATUS PmicSwitchModeRegulatorDisableSoftStart(PMIC_REGULATOR_SREG

regulator);

This function is used to disable soft start.

Parameters: regulator [in]

The regulator to be set

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-42 Freescale Semiconductor

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: This is a stub function here.

21.6.12 Linear Voltage Regulator API’s

21.6.12.1 PmicVoltageRegulatorOn

Prototype PMIC_STATUS PmicVoltageRegulatorOn (PMIC_REGULATOR_VREG regulator);

This function is used to turn on the voltage regulator

Parameters: regulator [in]

Which voltage regulator to turn on

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: MMC does not have on/off, just directly set the voltage level.

0V=OFF will return PMIC_INVALID_PARAMETER.

21.6.12.2 PmicVoltageRegulatorOff

Prototype PMIC_STATUS PmicVoltageRegulatorOff (PMIC_REGULATOR_VREG regulator);

This function is used to turn off the regulator

Parameters: regulator [in]

Which voltage regulator to turn off

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: MMC don't have on/off, just directly set the voltage level. 0V=OFF will return
PMIC_INVALID_PARAMETER.

21.6.12.3 PmicVoltageRegulatorSetVoltageLevel

Prototype PMIC_STATUS PmicVoltageRegulatorSetVoltageLevel (PMIC_REGULATOR_VREG

regulator, PMIC_REGULATOR_VREG_VOLTAGE voltage);

This function is used to set voltage level for the voltage regulator.

Parameters: regulator [in]

Which switch mode regulator to be set

voltage [in]

The voltage value to be set to the register

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-43

21.6.12.4 PmicVoltageRegulatorGetVoltageLevel

Prototype PMIC_STATUS PmicVoltageRegulatorGetVoltageLevel (PMIC_REGULATOR_VREG

regulator, PMIC_REGULATOR_VREG_VOLTAGE* voltage);

This function is to get the current voltage settings of the regulator.

Parameters: regulator [in]

Which switch mode regulator to get the value from

voltage [out]

the pointer to storage the return value

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.12.5 PmicVoltageRegulatorSetPowerMode

Prototype PMIC_STATUS PmicVoltageRegulatorSetPowerMode (PMIC_REGULATOR_VREG

regulator, PMIC_REGULATOR_VREG_POWER_MODE powerMode);

This function is used to set low power mode for the regulator and whether to enter
low power mode during STANDBY assertion or not.

Parameters: regulator [in]

Which switch mode regulator to be set

powerMode[in]

LOW_POWER

VxMODE=1, Set Low Power no matter of VxSTBY and STANDBY pin

LOW_POWER_CTL_BY_PIN

VxMODE=0, VxSTBY=1, Low Power Mode is controlled by STANDBY pin
LOW_POWER_DISABLED

VxMODE=0, VxSTBY=0, Low Power Mode is disabled.

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.12.6 PmicVoltageRegulatorGetPowerMode

Prototype PMIC_STATUS PmicVoltageRegulatorGetPowerMode (PMIC_REGULATOR_VREG

regulator, PMIC_REGULATOR_VREG_POWER_MODE* powerMode);

This function is to get the current power mode for the regulator

Parameters: regulator [in]

Which switch mode regulator to get the value from

powerMode [out]

Pointer to storage the powerMode get from the register

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-44 Freescale Semiconductor

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure.

21.6.13 Power Management

There is no additional power management implementation done specifically for Atlas Voltage Regulator
other than the implementation described in the Power Management section of this document.

21.6.14 Battery Charger

21.6.15 Data Structures
typedef enum {
 BATT_MAIN_CHGR = 0, // Main battery charger
 BATT_CELL_CHGR, // CoinCell battery charger
 BATT_TRCKLE_CHGR // Trickle charger
} BATT_CHARGER;

typedef enum {
 DUAL_PATH = 0,
 SINGLE_PATH,
 SERIAL_PATH,
 DUAL_INPUT_SINGLE_PATH,
 DUAL_INPUT_SERIAL_PATH,
 INVALID_CHARGER_MODE
}CHARGER_MODE;

typedef enum {
 LOW = 0, //GND
 OPEN, //HI Z
 HIGH //VMC13783
}CHARGERMODE_PIN;

21.6.16 Battery Charger API (Compatible with SC55112 API)

21.6.16.1 PmicBatterEnableCharger

This function is used to start charging a battery. For different chargers, different voltage and current ranges
are supported.

The main battery charger supports a settable voltage and current. The coincell supports only a settable
voltage. The trickle charger only a settable current.

Prototype PMIC_STATUS PmicBatterEnableCharger(BATT_CHARGER chgr, UINT8 c_voltage,

UINT8 c_current);

Parameters: chgr [in]

Charger as defined in BATT_CHARGER

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-45

c_voltage [in]

Charging voltage. (main and coincell)

c_current [in]

Charging current. (main and trickle)

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.2 PmicBatterDisableCharger

This function turns off the selected charger. This is done by setting the current level to zero for the main
and trickle chargers. The coincell charger is disabled.

Prototype PMIC_STATUS PmicBatterDisableCharger(BATT_CHARGER chgr)

Parameters: chgr [in]

Charger as defined in BATT_CHARGER.

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.3 PmicBatterSetCharger

This function is used to change the charger setting.

Prototype PMIC_STATUS PmicBatterSetCharger(BATT_CHARGER chgr, UINT8 c_voltage,

UINT8 c_current);

 Parameters: chgr [in]

Charger as defined in BATT_CHARGER

c_voltage [in]

Charging voltage (main and coincell)

c_current [in]

Charging current (main and trickle)

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.4 PmicBatterGetChargerSetting

This function is used to retrieve what the charger settings are for the selected charger, not what is measured.

Prototype PMIC_STATUS PmicBatterGetChargerSetting(BATT_CHARGER chgr, UINT8*

c_voltage, UINT8* c_current);

Parameters: chgr [in]

Charger as defined in BATT_CHARGER

*c_voltage [out]

A pointer to what the charging voltage is set to (main and coincell)

*c_current [out]

A pointer to what the charging current is set to (main and trickle)

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-46 Freescale Semiconductor

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.5 PmicBatterGetChargeCurrent

This function retrieves the main charger current. This value is obtained by reading a voltage between
CHRGISNSP – CHRGISNSN. This corresponds to ADC channel 4.

Prototype PMIC_STATUS PmicBatterGetChargeCurrent(UINT16* c_current);

Parameters: *c_current [out]

A pointer to what the measured charger current

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.6 PmicBatterEnableEol

This function enables End-of-Life comparator.

Prototype PMIC_STATUS PmicBatterEnableEol(void);

Parameters: None

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.7 PmicBatterDisableEol

This function disables End-of-Life comparator.

Prototype PMIC_STATUS PmicBatterDisableEol (void);

Parameters: None

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.8 PmicBatterLedControl

This function controls charge LED.

Prototype PMIC_STATUS PmicBatterLedControl(BOOL on);

Parameters: on [in]

If on is true, LED will be turned on, or otherwise the LED will be turned off.

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.9 PmicBatterSetReverseSupply

This function sets reverse supply mode.

Prototype PMIC_STATUS PmicBatterSetReverseSupply(BOOL enable);

Parameters: enable [i]

If enable is true, reverse supply mode is enable or otherwise the reverse supply
mode is disabled.

Returns: This function returns PMIC_SUCCESS if successful.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-47

21.6.16.10 PmicBatterSetUnregulated

This function sets limited charging mode on the main battery charger. If this mode is selected, the current
is no longer controlled, and it is only limited by what the charger can supply.

Prototype PMIC_STATUS PmicBatterSetUnregulated(BOOL enable);

Parameters: enable [in]

If enable is true, unregulated charging mode is enabled; otherwise it is disabled.

Returns: This function returns PMIC_SUCCESS if successful.

21.6.17 Battery Charger API (MC13783 Native For Compatibility with
SC55112)

These functions are available for compatibility with the SC55112 API. This is an effort to maintain one
PMIC API, regardless of which PMIC is being used. These are implemented as a stubs returning a
PMIC_STATUS of PMIC_SUCCESS.

21.6.17.1 PmicBatteryEnableAdChannel5

 This function enables use of AD channel 5 to read the charge current on the SC55112 PMIC.

Prototype PMIC_STATUS PmicBatteryEnableAdChannel5();

Parameters: None.

Returns: PMIC_SUCCESS

21.6.17.2 PmicBatteryDisableAdChannel5

This function disables use of AD channel 5 to read the charge current on the SC55112 PMIC.

Prototype PMIC_STATUS PmicBatteryDisableAdChannel5();

Parameters: None.

Returns: PMIC_SUCCESS;

21.6.17.3 PmicBatterySetCoincellCurrentlimit

This function limits the output current level of coincell charger on the SC55112 PMIC.

Prototype PMIC_STATUS PmicBatterySetCoincellCurrentlimit (UINT8

coincellcurrentlevel);

Parameters: coincellcurrentlevel [IN]

coincell current level

Returns: PMIC_SUCCESS;

21.6.17.4 PmicBatteryGetCoincellCurrentlimit

This function returns the output current limit of coincell charger on the SC55112 PMIC.

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-48 Freescale Semiconductor

Prototype PMIC_STATUS PmicBatteryGetCoincellCurrentlimit (UINT8*

coincellcurrentlevel);

Parameters: coincellcurrentlevel [OUT]

Pointer to coincell current level

Returns: PMIC_SUCCESS;

21.6.17.5 PmicBatterySetEolTrip

This function sets the end-of-life threshold on the SC55112 PMIC.

Prototype PMIC_STATUS PmicBatterySetEolTrip (UINT8 eoltriplevel);

Parameters: eoltriplevel [IN]

eol trip level

Returns: PMIC_SUCCESS;

21.6.17.6 PmicBatteryGetEolTrip

This function returns the end-of-life threshold on the SC55112 PMIC.

Prototype PMIC_STATUS PmicBatteryGetEolTrip (UINT8* eoltriplevel);

Parameters: eoltriplevel [OUT]

pointer to eol trip level

Returns: PMIC_SUCCESS;

21.6.18 Battery Charger API (MC13783 Native)

21.6.18.1 PmicBatterySetChargeVoltage

This function programs the output voltage of the charge regulator.

Prototype PMIC_STATUS PmicBatterySetChargeVoltage(UINT8 chargevoltagelevel);

Parameters: chargevoltagelevel [IN]

voltage level

level 0 = 4.05V

 1 = 4.10V

 2 = 4.15V

 3 = 4.20V

 4 = 4.25V

 5 = 4.30V

 6 = 3.80V ... lowest setting

 7 = 4.50V

Returns: PMIC_STATUS

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-49

21.6.18.2 PmicBatteryGetChargeVoltage

This function returns the output voltage of the charge regulator.

Prototype PMIC_STATUS PmicBatteryGetChargeVoltage(UINT8* chargevoltagelevel);

Parameters: chargevoltagelevel [OUT]

pointer to voltage level

Returns: PMIC_STATUS

21.6.18.3 PmicBatterySetChargeCurrent

This function programs the charge current limit level to the main battery.

Prototype PMIC_STATUS PmicBatterySetChargeCurrent (UINT8 chargecurrentlevel);

Parameters: chargecurrentlevel [IN]

current level

level 0 = 0 mA (max value)

1 = 100 mA (max value)

... (in increment of 100 mA)

13 = 1300 mA (max value)

14 = 1800 mA (max value)

15 = disables the current limit

Returns: PMIC_STATUS

21.6.18.4 PmicBatteryGetChargeCurrent

This function returns the charge current setting of the main battery.

Prototype PMIC_STATUS PmicBatteryGetChargeCurrent (UINT8* chargecurrentlevel);

Parameters: chargecurrentlevel [OUT]

pointer to current level

Returns: PMIC_STATUS

21.6.18.5 PmicBatterySetTrickleCurrent

This function programs the current of the trickle charger.

Prototype PMIC_STATUS PmicBatterySetTrickleCurrent(UINT8 tricklecurrentlevel);

Parameters: tricklecurrentlevel [IN]

trickle current level

level 0 = 0 mA

1 = 12 mA

... (in addition of 12 mA per level)

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-50 Freescale Semiconductor

6 = 72 mA

7 = 84 mA

Returns: PMIC_STATUS

21.6.18.6 PmicBatteryGetTrickleCurrent

This function returns the current of the trickle charger.

Prototype PMIC_STATUS PmicBatteryGetTrickleCurrent (UINT8* tricklecurrentlevel);

Parameters: tricklecurrentlevel [OUT]

pointer to trickle current level

Returns: PMIC_STATUS

21.6.18.7 PmicBatteryFETControl

This function programs the control mode and setting of BPFET and FETOVRD BATTFET and BPFET to
be controlled by FETCTRL bit or hardware.

Prototype PMIC_STATUS PmicBatteryFETControl(UINT8 fetcontrol);

Parameters: fetcontrol [IN]

BPFET and FETOVRD control mode and setting

input = 0 (BATTFET and BPFET outputs are controlled by hardware)

= 1 (BATTFET and BPFET outputs are controlled by hardware)

= 2 (BATTFET low and BATTFET high, controlled by FETCTRL)

= 3 (BATTFET high and BATTFET low, controlled by FETCTRL)

Returns: PMIC_STATUS

21.6.18.8 PmicBatteryReverseDisable

This function disables the reverse mode.

Prototype PMIC_STATUS PmicBatteryReverseDisable();

Parameters: None

Returns: PMIC_STATUS

21.6.18.9 PmicBatteryReverseEnable

This function enables the reverse mode.

Prototype PMIC_STATUS PmicBatteryReverseEnable();

Parameters: None

Returns: PMIC_STATUS

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-51

21.6.18.10 PmicBatterySetOvervoltageThreshold

This function programs the overvoltage threshold value.

Prototype PMIC_STATUS PmicBatterySetOvervoltageThreshold(UINT8 ovthresholdlevel);

Parameters: ovthresholdlevel [IN]

overvoltage threshold level

High to low, Low to High (5.35V)

Returns: PMIC_STATUS

21.6.18.11 PmicBatteryGetOvervoltageThreshold

This function returns the overvoltage threshold value.

Prototype PMIC_STATUS PmicBatteryGetOvervoltageThreshold (UINT8*

ovthresholdlevel);

Parameters: ovthresholdlevel [OUT]

pointer to overvoltage threshold level

Returns: PMIC_STATUS

21.6.18.12 PmicBatteryUnregulatedChargeDisable

This function disables the unregulated charge path. The voltage and current limits will be controlled by the
charge path regulator.

Prototype PMIC_STATUS PmicBatteryUnregulatedChargeDisable();

Parameters: None

Returns: PMIC_STATUS

21.6.18.13 PmicBatteryUnregulatedChargeEnable

This function enables the unregulated charge path. The settings of the charge path regulator (voltage and
current limits) will be overruled.

Prototype PMIC_STATUS PmicBatteryUnregulatedChargeEnable();

Parameters: None

Returns: PMIC_STATUS

21.6.18.14 PmicBatteryChargeLedDisable

This function disables the charging LED.

Prototype PMIC_STATUS PmicBatteryChargeLedDisable();

Parameters: None

Returns: PMIC_STATUS

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-52 Freescale Semiconductor

21.6.18.15 PmicBatteryChargeLedEnable

This function enables the charging LED.

Prototype PMIC_STATUS PmicBatteryChargeLedEnable();

Parameters: None

Returns: PMIC_STATUS

21.6.18.16 PmicBatteryEnablePulldown

This function enables the 5k pull-down resistor used in the dual path charging.

Prototype PMIC_STATUS PmicBatteryEnablePulldown();

Parameters: None.

Returns: PMIC_STATUS.

21.6.18.17 PmicBatteryDisablePulldown

This function disables the 5k pull-down resistor used in the dual path charging.

Prototype PMIC_STATUS PmicBatteryDisablePulldown();

Parameters: None.

Returns: PMIC_STATUS.

21.6.18.18 PmicBatteryEnableCoincellCharger

This function enables the coincell charger.

Prototype PMIC_STATUS PmicBatteryEnableCoincellCharger();

Parameters: None

Returns: PMIC_STATUS

21.6.18.19 PmicBatteryDisableCoincellCharger

This function disables the coincell charger.

Prototype PMIC_STATUS PmicBatteryDisableCoincellCharger();

Parameters: None

Returns: PMIC_STATUS

21.6.18.20 PmicBatterySetCoincellVoltage

This function programs the output voltage level of the coincell charger.

Prototype PMIC_STATUS PmicBatterySetCoincellVoltage (UINT8 coincellvoltagelevel);

Parameters: votlagelevel [IN]

voltage level

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-53

level 0 = 2.7V

1 = 2.8V

2 = 2.9V

... (in 100mV increment)

6 = 3.3V

Returns: PMIC_STATUS

21.6.18.21 PmicBatteryGetCoincellVoltage

This function returns the output voltage level of the coincell charger.

Prototype PMIC_STATUS PmicBatteryGetCoincellVoltage (UINT8* coincellvoltagelevel);

Parameters: voltagelevel [OUT]

pointer to voltage level

Returns: PMIC_STATUS

21.6.18.22 PmicBatteryEnableEolComparator

This function enables the end-of-life function instead of the LOBAT.

Prototype PMIC_STATUS PmicBatteryEnableEolComparator();

Parameters: None

Returns: PMIC_STATUS

21.6.18.23 PmicBatteryDisableEolComparator

This function disables the end-of-life comparator function.

Prototype PMIC_STATUS PmicBatteryDisableEolComparator();

Parameters: None

Returns: PMIC_STATUS

21.6.18.24 PmicBatteryGetChargerMode

This function returns the charger mode (ie. Dual Path, Single Path, Serial Path, Dual Input Single Path and
the Dual Input Serial Path).

Prototype PMIC_STATUS PmicBatteryGetChargerMode(CHARGER_MODE *mode);

Parameters: mode [OUT]

pointer to charger mode

Returns: PMIC_STATUS

Power Management IC (PMIC)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-54 Freescale Semiconductor

21.6.19 Power Management

There is no additional power management implementation done specifically for Atlas Battery other than
the implementation described in the Power Management section of this document.

Power Manager

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 22-1

Chapter 22
Power Manager
The Power Manager module is used to help control the power efficiency of the system. Power Manager
provides a framework that provides interface to application programs, control of peripheral device power
states and allows peripheral devices to self manage their power state.

22.1 Power Manager Summary
The following table provides a summary of source code location, library dependencies and other BSP
information.

Table 22-1. Power Manager Driver Attributes

22.2 Requirements
Include and test the power manager provided in the Platform Builder public directory.

22.3 Hardware Operation
Power Manager does not interface directly to peripheral devices.

22.4 3-Stack Software Operation
The Platform Builder helps documents the power manager framework and sample power manager. See
Windows Embedded CE Features > Power Management.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path N/A

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path N/A

Import Library N/A

Driver DLL Pm.dll

Catalog Item Core OS −>CEBase−>Core OS Services −>Power
Management −> Power Management (Full)

SYSGEN Dependency SYSGEN_PM

BSP Environment Variables N/A

Power Manager

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

22-2 Freescale Semiconductor

For information about the system power states implemented in the sample power manager, see Platform
Builder help:

Windows Embedded CE Features > Power Management > Power States > System Power States >
Example System Power States

22.4.1 Power Management

Power Manager can export the stream interface and register as a generic power-manageable device driver.
It can receive IO_POWER_XX notification and configure PMIC and wakeup source in thread context.
The following table describes the power consumption goal and the actions that can be taken to achieve that
goal.

22.4.2 Image Configuration

To build the audio playback power consumption image, follow these steps:

1. Remove kernel debug and KITL from the NK image.

2. Remove ATA, Camera, TV-Out and USB high-speed Host 2 driver module from the workspace,
because the power supply for those items has been gated in power policy enable.

3. Replace Microsoft WMA and MWV codec with Freescale codec.

4. Add the DVFC module to the image.

Table 22-2. Power Consumption Goals

Mode Action

suspend (1) keep power supply to memory, set SW2A work in low power
mode

(2) low down the voltage to ARM and QPER, set SW1 work in lower
power mode

(3) Set all PMIC regulators and GPO control by standby pin

(4) Close PMIC SW3 supply

audio placyback (1) keep power supply to memory

(2) Close PIMC regulators that not been used

(3) Close GPO 1,2,3

(4) Close PMIC SW3 supply

(5) replace MSFT WMA codec with FSL codec

(6) Add DVFC mode to NK image

video playback (1) same as audio playback

Power Manager

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 22-3

5. Perform a sysgen.

To enable optimization for the audio playback power consumption function, follow these steps:

1. Build an "Optimization audio playback power consumption image".

2. Bootup the device and enter the eboot menu.

— Set Power Policy to Enable.

— Save the changes and boot up the device.

NOTE
The 3-Stack power policy only recognizes NAND audio/video playback
files. Modules that were not called by the audio and video playback may not
work well when power policy is enabled.

22.4.3 Registry Settings

In this system power state, the user is interacting actively with the system.

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\On]
 "Default"=dword:0 ; D0
 "Flags"=dword:10000 ; POWER_STATE_ON

 In this system power state, the user may be interacting with the
 system, but not actively. For instance, they might be looking at
 the screen or they might not. In this power state the system is
 "idle" but still in use by the user, so all devices still be
 operational (but possibly with some latency).

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\UserIdle]
 "Default"=dword:1 ; D1
 "Flags"=dword:0

 In this system power state, the user is not considered to be using
 the system, even passively. However, the system is not suspended
 and system programs may be doing work on the user's behalf. In this
 power state the system is "idle" but might still be used by system
 programs. Devices that aren't actively doing work might be powered
 down.

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\SystemIdle]
 "Default"=dword:2 ; D2
 "Flags"=dword:0

 In this system power state, the system is suspended. Devices are turned
 off, interrupts are not being serviced, and the CPU is stopped.
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\Suspend]
 "Default"=dword:3 ; D3
 "Flags"=dword:200000 ; POWER_STATE_SUSPEND

 Entering this system power state reboots the system with a clean object
 store. If an OEM includes this state in their platform, they must
 support KernelIoControl() with IOCTL_HAL_REBOOT.

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\ColdReboot]

Power Manager

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

22-4 Freescale Semiconductor

 "Default"=dword:4 ; D4
 "Flags"=dword:800000 ; POWER_STATE_RESET

 Entering this system power state reboots the system. If an OEM includes this state in
 their platform, they must support KernelIoControl() with IOCTL_HAL_REBOOT.

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\Reboot]
 "Default"=dword:4 ; D4
 "Flags"=dword:800000 ; POWER_STATE_RESET

 Entering this system power state shuts down the system. All devices are powered off,
 resuming may require user intervention. The system will cold boot on resume.
 Supporting this power state requires that the OEM customize the Power Manager
 to recognize POWER_STATE_OFF and take platform-specific action to remove
 power.
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\State\ShutDown]
 "Default"=dword:4 ; D4
 "Flags"=dword:20000 ; POWER_STATE_OFF

Default Activity Timers

 These registry values set up activity timers inside the Power Manager.
 GWES and/or other system components need to reset them periodically
 to keep the associated inactivity event from being set.

 Defining timers causes the PM to create a set of named events for resetting
 the timer and for obtaining its activity status. See the PM documentation
 for more information.

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\ActivityTimers\UserActivity]
 "Timeout"=dword:1 ; in seconds

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Power\ActivityTimers\SystemActivity]
 "Timeout"=dword:1 ; in seconds

[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Power\Timeouts]
 "ACUserIdle"=dword:00000000 ; in seconds
 "ACSystemIdle"=dword:00000000 ; in seconds
 "BattUserIdle"=dword:00000000 ; in seconds
 "BattSystemIdle"=dword:00000000 ; in seconds

22.5 Unit Test
The power applet in the control panel is used to test power manager. The timer settings to transition
between system power states can be adjusted and proper behavior can be observed.

22.6 Power Manager API Reference
The Power Manager interfaces with applications and device drivers. The following sections provide
reference to the definition of these program interfaces.

22.6.1 Application Interface

The power manager API’s for applications are documented in help at:

Power Manager

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 22-5

• Windows Embedded CE Features > Power Management > Power Manager Interfaces >
Application Interface

• Windows Embedded CE Features > Power Management > Power Manager Interfaces>
Notification Interface

• Windows Embedded CE Features > Power Management > Power Management Reference

22.6.2 Device Driver Interface

The interface for device drivers is documented in help at:

• Windows Embedded CE Features > Power Management > Power Manager Interfaces >
Device Driver Interface

• Windows Embedded CE Features > Power Management > Power Management Reference

Power Manager

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

22-6 Freescale Semiconductor

Secure Digital Host Controller Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 23-1

Chapter 23
Secure Digital Host Controller Driver
The Secure Digital Host Controller (SDHC) module supports Multimedia Cards (MMC), Secure Digital
Cards (SD) and Secure Digital I/O and Combo Cards (SDIO). The i.MX31 device has two SDHC
hardware modules. EAch host controller supports connection to only one card. On the 3-Stack board, only
host1 is connected to the SD card socket. The SDHC driver provides the interface between Microsoft’s SD
Bus driver and the SDHC hardware.

23.1 SDHC Driver Summary
Table 23-1 provides a summary of source code location, library dependencies and other BSP information.

Table 23-1. SDHC Driver Summary

23.2 Supported Functionality

The SDHC driver enables the 3-Stack board to provide the following software and hardware support:
• Supports the i.MX31 Secure Digital Host Controllers

• Supports two Host Controllers to be functional at the same time

• Supports SD cards

• Supports Power Management modes, full on and full off only

23.3 Hardware Operation
Refer to the chapter on the Secure Digital Host Controller (SDHC) in the hardware specification document
for detailed operation and programming information.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 SOC Driver Path ..\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXARM11_FSL_V1\SDHC

SOC Driver Path N/A

SOC Static Library mxarm11_sdhc.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\SDHC

Import Library N/A

Driver DLL sdhc.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > SD Controller >
SD Host Controller 1
Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > SD Controller >
SD Host Controller 2

SYSGEN Dependency SYSGEN_SD_MEMORY=1

BSP Environment Variables BSP_SDHC1=1 and BSP_SDHC2=1

Secure Digital Host Controller Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

23-2 Freescale Semiconductor

23.3.1 Conflicts with Other Peripherals

In Alternate Mode 1, SDHC1 conflicts with Memory Stick (MS1). Configure the pins in Functional Mode
to activate SDHC1 signals. In Functional Mode, SDHC2 conflicts with PCMCIA. Configure the pins in
Alternate Mode 1 to activate SDHC2 signals.

23.4 Software Operation

The SDHC driver follows the Microsoft recommended architecture for Secure Digital Host Controller
drivers. The details of this architecture and its operation can be found in the Platform Builder Help under
the heading “Secure Digital Card Driver Development Concepts”, or in the online Microsoft documenta-
tion at the following URL:

http://msdn2.microsoft.com/en-us/library/aa925967.aspx

23.4.1 Required Catalog Items

23.4.1.1 SD and MMC memory card support

Catalog > Device Drivers > SDIO > SD Memory.

23.4.2 SDHC Registry Settings

The following registry keys are required to properly load the SDHC driver.
#if (defined BSP_SDHC1 || defined BSP_SDHC2)
[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Class\SDMemory_Class]
 "BlockTransferSize"=dword:100 ; Overwrite from default 64 blocks.
; "SingleBlockWrites"=dword:1 ; alternatively force the driver to use single block
access

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Class\MMC_Class]
 "BlockTransferSize"=dword:100 ; Overwrite from default 64 blocks.
; "SingleBlockWrites"=dword:1 ; alternatively force the driver to use single block
access

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\MMC]
 "Name"="MMC Card"
 "Folder"="MMC"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\SDMemory]
 "Name"="SD Memory Card"
 "Folder"="SD Memory"
#endif

IF BSP_SDHC1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SDHC_ARM11_1]
 "Order"=dword:21
 "Dll"="sdhc.dll"
 "Prefix"="SDH"
 "ControllerISTPriority"=dword:FB
 "Index"=dword:1
ENDIF ;BSP_SDHC1

Secure Digital Host Controller Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 23-3

IF BSP_SDHC2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SDHC_ARM11_2]
 "Order"=dword:21
 "Dll"="sdhc.dll"
 "Prefix"="SDH"
 "ControllerISTPriority"=dword:FB
 "Index"=dword:2
ENDIF ;BSP_SDHC2

23.4.3 DMA Support

SDHC driver supports DMA mode and non-DMA mode of data transfer. The driver defaults to DMA mode
of transfer. The driver does not allocate or manage DMA buffers internally. All buffers are allocated and
managed by the upper layers, the details of which are given in the request submitted to the driver. For every
request submitted to it, the driver attempts to build a DMA Scatter Gather Buffer Descriptor list for the
buffer passed to it by the upper layer. For cases where this list cannot be built, the driver falls back to the
non-DMA mode of transfer. The default configuration is maintained in the file bsp_cfg.h using the
parameters BSP_SDMA_SUPPORT_SDHC1 and BSP_SDMA_SUPPORT_SDHC2. A value of TRUE
means DMA is the default mode, and for cases where DMA cannot be used, the driver falls back to a
non-DMA mode. A value of FALSE means non-DMA mode is the default and DMA mode is not
attempted.

For the driver to attempt to build the Scatter Gather DMA Buffer Descriptors, the upper layer should
ensure that the buffer meets the following criteria:

• Start of the buffer should be a word aligned address

• Number of bytes to transfer should be word aligned

Due to cache coherency issues arising from processor and SDMA access of the memory, the above criteria
is further restricted for the read or receive operation (it is not applicable for write or transmit):

• Start of the buffer should be a cache line size (32 bytes) aligned address

• Number of bytes to transfer should be cache line size (32 bytes) aligned

23.4.4 Power Management

The primary methods for limiting power in the SDHC module is to gate off all clocks to the controllers
and to cut off power to the card slot when no cards are inserted. When a card is inserted into any of the
slots, that slot alone is powered and the clocks to that controller alone are gated on. While using memory
cards, the clock to the host controller and the clock to memory cards are gated off when ever the controller
is idle. For SDIO cards, both the clocks stay on all the time.

SDHC driver supports the full power on and full power off states. In full power off state, the clocks to the
controllers and the power to the inserted cards are turned off. When powered on, all cards inserted before
and after the power down is detected and mounted.

Secure Digital Host Controller Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

23-4 Freescale Semiconductor

23.4.4.1 PowerUp

This function is implemented to support resuming a memory card operation that was previously terminated
by calling PowerDown() API. When using this function, power to the card is restored and clocks to the
pertaining controller is restarted.

The SDHC driver is notified of a device status change. This results in signaling the SD bus driver of a card
removal followed by a card insertion. The card is re-initialized and is mounted so that all the operations
scheduled during a power down resume. SDIO cards is initialized on resume.

The details of this architecture and its operation can be found in the Platform Builder Help under the
heading “Power On and Off Notifications for Secure Digital Card Drivers”, or in the online Microsoft
documentation at the following URL:

http://msdn2.microsoft.com/en-us/library/aa910129.aspx

Note that this function is intended to be called only by the Power Manager.

23.4.4.2 PowerDown

This function has been implemented to support suspending all currently active SD operations just before
the entire system enters the low power state. Note that this function is intended to be called only by the
Power Manager. This function gates off all clocks to the controllers and powers down all the card slots.

23.4.4.3 IOCTL_POWER_CAPABILITIES

N/A

23.4.4.4 IOCTL_POWER_GET

N/A

23.4.4.5 IOCTL_POWER_SET

N/A

23.5 Unit Test
The SDHC driver is tested using the following tests included as part of the Windows CE 6.0 Test Kit
(CETK).

• Storage Device Block Driver Read/Write Test

• Storage Device Block Driver API Test

• File System Driver Test

• Partition Driver Test

23.5.1 Unit Test Hardware

Table 23-2 lists the required hardware to run the unit tests.

Secure Digital Host Controller Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 23-5

Table 23-2. Hardware Requirements

23.5.2 Unit Test Software

Table 23-3 lists the required software to run the unit tests.

Table 23-3. Software Requirements

23.5.3 Building the Tests

All the above mentioned tests come pre-built as part of the CETK. No steps are required to build these
tests. These test files can be found in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

23.5.4 Running the Tests

The following are the tests available and the test procedures for each of the tests. For detailed information
on the below tests see the relevant sub sections under “CETK Tests” in the Platform Builder Help, or view
the Microsoft online documentation at the following URL:

http://msdn2.microsoft.com/en-us/library/aa934353.aspx

23.5.4.1 Storage Device Block Driver Read/Write Tests

Use the command line tux –o –d rwtest –c “-z” to run the tests. Note that this test only tests one card at a
time.

Requirements Description

SD Cards SanDisk (128MB, 256MB, 512MB)
Kingston (256MB)
NCP (128MB, 256MB, 512MB)
Transcend (128MB, 256MB, 512MB)
Toshiba (1GB)

MMC Cards Not supported on 3DS board.

Requirements Description

tux.exe Tux test harness, which is needed for executing the test

kato.dll Kato logging engine, which is required for logging test data

rwtest.dll Storage Device Block Driver Read/Write Test dll file

disktest.dll Storage Device Block Driver API Test dll file

fsdtst.dll File System Driver Test dll file

msparttest.dll Partition Driver Test dll file

perflog.dll Test dll for log performance data

Secure Digital Host Controller Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

23-6 Freescale Semiconductor

23.5.4.2 Storage Device Block Driver API Tests

Use the command line tux –o –d disktest –c “-z” to run the tests. Note that this test only tests one card at
a time. CETK cases #4006, #4007, #4012, #4013, and #4021 can be safely skipped

23.5.4.3 File System Driver Test

Use command line tux –o –d fsdtst –c “-p SDMemory –z” to run the tests on an SD card. For MMC cards,
use tux –o –d fsdtst –c “-p MMC –z”.

Note that this function tests all the cards inserted and requires the cards to be formatted prior to running
the test. For higher capacity cards, the test takes a long time to complete. Therefore it is recommended that
the system power management (from control panel) be configured so that the system does not enter
suspend state during test execution. CETL case #50119 can be safely skipped

23.5.4.4 Partition Driver Test

Use command line tux –o –d msparttest –c “-z” to run the tests.

Note that cards should be of size 256MB and higher. For higher capacity cards, the test takes long time to
complete. Therefore it is recommended that the system power management (from control panel) be
configured so that the system does not enter suspend state during test execution.

23.5.5 System Testing

The following system tests can be performed to verify the operation of the SD and MMC memory cards.

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on the
mounted memory cards

• Establish ActiveSync connection over USB and transfer files to/from the memory cards

• Write media files to memory storage. Use Windows Media Player to playback media files from
memory storage

23.6 Secure Digital Card Driver API Reference
Detailed reference information for the Secure Digital Card driver may be found in Platform Builder Help
under the heading “Secure Digital Card Driver Reference”, or in the online Microsoft documentation at
the following URL:

http://msdn2.microsoft.com/en-us/library/aa912994.aspx

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 24-1

Chapter 24
Serial Driver

24.1 Serial Driver Summary
The i.MX31 device has five internal UARTs (Universal Asynchronous Receiver Transmitters): UART1,
UART2, UART3, UART4 and UART5. UART5 supports serial and slow infrared communication and
other UARTs support only serial communication. All the UART modules are capable of standard RS-232
non-return-to-zero (NRZ) encoding formats and UART5 in addition supports slow infrared modes.

The serial port driver is implemented as a stream interface driver and supports all the standard I/O control
codes and entry points. The serial port driver handles all the internal UARTs and the infrared I/O ports.

In the Windows CE 6.0 BSP implementation, the hardware-specific code that corresponds to the serial port
driver's lower layer is implemented as the platform-dependent driver (PDD). This PDD links with
Microsoft provided public serial MDD library (com_mdd2.lib) to form the complete serial port driver.

Table 24-1 provides a summary of source code location, library dependencies and other BSP information.
Table 24-1. Serial Driver Summary

24.2 Supported Functionality
The serial port driver enables the 3-Stack board to provide the following software and hardware support:

• Conforms to RS232 protocol standard

• Supports RTS/CTS hardware flow control function

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 SOC Driver Path ..\PLATFORM\COMMON\SRC\SOC\freescale\mxarm11_fsl_v1\SERIAL

SOC Driver Path ..\PLATFORM\COMMON\SRC\SOC\freescale\mx31_fsl_v1\SERIAL

SOC Static Library serial_mx31_fsl_v1.lib
serial_mxarm11_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\SERIAL

Import Library com_mdd2.lib

Driver DLL csp_serial.dll

Catalog Item for MGN Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device Drivers >
Serial > UART2 serial port
Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device Drivers >
Serial > UART3 serial port

SYSGEN Dependency N/A

BSP Environment Variables for MGN BSP_SERIAL_UART2 =1
BSP_SERIAL_UART3=1

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-2 Freescale Semiconductor

• Supports up to 115200 BaudRate

• Supports internal UART controller

• Supports power management mode full on / full off

24.3 Hardware Operation
Refer to the chapter on the UART in the hardware specification document for detailed operation and
programming information.

24.3.1 Conflicts with Other Peripherals

UART1 and UART2 do not have conflicts with any other module and are configured in functional mode.
UART3 has conflicts with SOCI1 and SOCI3 modules and must be configured in alternate mode 1.
UART4 has conflicts with ATA and USB OTG modules and must be configured in alternate mode 1.
UART5 has conflicts with PCMCIA and USB modules and must be configured in alternate mode 2.
Table 24-2 shows pins to be configured for serial driver for different UARTs.

Table 24-2. UART Setting for the Serial Driver

24.4 Software Operation
The serial driver follows the Microsoft recommended architecture for serial drivers. The details of this
architecture and its operation can be found in the Platform Builder Help at the following location:
Developing a Device Driver > Windows CE EmbeddedDrivers > Serial Drivers > Serial Driver
Development Concepts.

24.4.1 Serial Registry Settings

The following registry keys are required to properly load the Serial driver.
IF BSP_SERIAL_UART3
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM3]
 "DeviceArrayIndex"=dword:0
 "IoBase"=dword:5000C000
 "IoLen"=dword:D4

UART
Port

Pins To Be Configured I/O MUX Settings Comment

UART1
RXD1 TXD1 RTS1 CTS1

Functional Mode No support
DTR_DCE1 DSR_DCE1 RI_DCE1 DCD_DCE1

UART2 RXD2 TXD2 RTS2 CTS2 Functional Mode Connect to DMB

UART3 SOCI3_MOSI SOCI3_MISO SOCI3_SCLK SOCI3_SPI_RDY Functional Mode No support

UART4 ATA_CS0 ATA_CS1 ATA_DIOR ATA_DIOW Alternate Mode1 No support

UART5 PC_VS2 PC_BVD1 PC_BVD2 PC_RST Alternate Mode 2 Connect to GPS
and SIR

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 24-3

 "Prefix"="COM"
 "Dll"="csp_serial.dll"
 "Index"=dword:3
 "Order"=dword:9
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM3\Unimodem]
 "Tsp"="Unimodem.dll"
 "DeviceType"=dword:0
 "FriendlyName"="MGN COM3 UNIMODEM"
 "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 08, 00, 00,
00,00,00,00
ENDIF; BSP_SERIAL_UART3

IF BSP_SERIAL_UART2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2]
 "DeviceArrayIndex"=dword:0
 "IoBase"=dword:43F94000
 "IoLen"=dword:D4
 "Prefix"="COM"
 "Dll"="csp_serial.dll"
 "Index"=dword:2
 "Order"=dword:9
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2\Unimodem]
 "Tsp"="Unimodem.dll"
 "DeviceType"=dword:0
 "FriendlyName"="MGN COM2 UNIMODEM"
 "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 08, 00, 00,
00,00,00,00
ENDIF ; BSP_SERIAL_UART2

24.4.2 DMA Support

The serial driver uses the SDMA controller to transfer the data and minimize the processing that is required
by the ARM core. The serial driver supports both DMA mode and Non-DMA mode of operation. DMA
can be enabled/disabled using the Boolean variable present in the file
WINCE600\PLATFORM\<TGTPLAT>\SRC\INC\bsp_cfg.h.

Individual UARTs can be configured for DMA using the variables and it is possible that some UARTs
operate in one mode and the others in different mode (for example, UART1 in DMA mode, UART3 in
non-DMA mode). To enable DMA, set the Boolean variable to TRUE and for Non-DMA set the variable
to FALSE. Table 24-3 shows the variables used to enable/disable the DMA:

Table 24-3. UART DMA Variables

When SDMA is enabled, buffers for Tx and Rx are allocated using HalAllocateCommonBuffer() in the
initialization of the SIR driver. These buffers are used during the data transfer using SDMA.

DMA buffer size, both Rx and Tx, can be configured using the two variables defined in bsp_cfg.h. By
default DMA buffer size is configured as
#define SERIAL_SDMA_RX_BUFFER_SIZE 0x200

UART Port Variable

UART2 BSP_SDMA_SUPPORT_UART2

UART3 BSP_SDMA_SUPPORT_UART3

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-4 Freescale Semiconductor

#define SERIAL_SDMA_TX_BUFFER_SIZE 0x400

where SERIAL_SDMA_RX_BUFFER_SIZE is the receive DMA buffer size and
SERIAL_SDMA_TX_BUFFER_SIZE is the transmit DMA buffer size.

24.5 Unit Test
The serial driver is tested using the Serial Port Driver Test and Serial Communications Test included as
part of the Windows CE 6.0 Test Kit (CETK). The Serial Port Test assesses whether the driver supports
configurable device parameters, such as baud rate and data bits. The test also assesses additional
functionality such as COM port events, escape functions and time-outs.

24.5.1 Unit Test Hardware

Table 24-4 lists the required hardware to run the unit tests.

Table 24-4. Hardware Requirements

24.5.2 Unit Test Software

Table 24-5 lists the required software to run the unit tests.
Table 24-5. Software Requirements

24.5.3 Building the Serial Port Driver Tests

The serial port driver tests come pre-built as part of the CETK. No steps are required to build these tests.
The Pserial.dll file can be found with the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

24.5.4 Running the Serial Port Driver Test

To run the Serial Driver Test use the following command line:

tux –o –d serdrvbvt -c "-p COM3:".

Requirements Description

<TGTSOC> PDK board with serial port to be tested Serial ports can be attached as COM1 through COMX.

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

SerDrvBvt.dll Test .dll file for Serial Port Driver Test

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 24-5

For detailed information on the Serial Port tests, see Windows Embedded CE 6.0 > Windows Embedded
CE Test Kit > CETK Tests and Test Tools > CETK Tests > Serial Port Tests > Serial Port Driver Test
in the Windows CE 6.0 Help Documentation section.

NOTE
Due to hardware connections with the Bluetooth chip, COM2 fails test cases
16 and 18. COM3 should pass all the serial port tests.

Serial port tests are designed to test that the serial port driver works properly and that the APIs behave
correctly. It should pass all of the test cases.

Table 24-6 describes the Serial Port driver test cases.

Table 24-6. Serial Port Driver Test Cases

24.6 Serial Driver API Reference
Detailed reference information for the serial driver may be found in Platform Builder Help at the following
location:

Test Case Description

11 Configures the port and writes data to the port at all possible baud rates, data bits, parities, and
stop bits. This test fails if it cannot send data on the port with a particular configuration.

12 Tests the SetCommEvent and GetCommEvent functions. This test fails if the driver does not
properly support the SetCommEvent or GetCommEvent functions.

13 Tests the EscapeCommFunction function. This test fails if the driver does not support one of
the Microsoft Win32 EscapeCommFunction functions.

14 Tests the WaitCommEvent function on the EV_TXEMPTY event. The test creates a thread to
send data and waits for the EV_TXEMPTY event to occur when the thread finishes sending data.
This test fails if the WaitCommEvent function behaves improperly or if the EV_TXEMPTY event
does not signal appropriately.

15 Tests the SetCommBreak and ClearCommBreak functions. This test fails if the driver does not
properly support the SetCommBreak or ClearCommBreak functions.

16 Makes the WaitCommEvent function return a value when the handle for the current COM port
is cleared. This test fails if the WaitCommEvent function behaves improperly.

17 Makes the WaitCommEvent function return a value when the handle for the current COM port
is closed. This test fails if the WaitCommEvent function behaves improperly.

18 Tests the SetCommTimeouts function and verifies that the ReadFile function properly times out
when no data is received. This test fails if the COM timeouts do not function correctly.

19 Verifies that previous Device Control Block (DCB) settings are preserved when the
SetCommState function call fails with DCB settings that are not valid. This test fails if the serial
port driver does not keep previous DCB settings when DCB settings that are not valid are passed
to the driver.

20 Tests Open/Close on port share. Calls the createfile for the COMX: port with sharedmode set to
FILE_SHARE_READ and FILE_SHARE_WRITE.

21 Tests the power management abilities of a serial port. Verifies if the power management IOCTLs
and function calls are supported.

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-6 Freescale Semiconductor

Developing a Device Driver > Windows CE Embedded Drivers > Serial Port Drivers > Serial Port
Driver Reference

24.6.1 Serial PDD Functions

Table 24-7 shows a mapping of Serial PDD functions to the functions used in the Serial driver.

Table 24-7. PDD and Serial Driver Function Mapping

PDD Function Pointer Serial Driver Function

HWInit SerSerialInit

HWPostInit SerPostInit

HWDeinit SerDeinit

HWOpen SerOpen

HWClose SerClose

HWGetIntrType SL_GetIntrType

HWRxIntrHandler SL_RxIntrHandler

HWTxIntrHandler SL_TxIntrHandler

HWModemIntrHandler SL_ModemIntrHandler

HWLineIntrHandler SL_LineIntrHandler

HWGetRxBufferSize SL_GetRxBufferSize

HWPowerOff SerPowerOff

HWPowerOn SerPowerOn

HWClearDTR SL_ClearDTR

HWSetDTR SL_SetDTR

HWClearRTS SL_ClearRTS

HWSetRTS SL_SetRTS

HWEnableIR SerEnableIR

HWDisableIR SerDisableIR

HWClearBreak SL_ClearBreak

HWSetBreak SL_SetBreak

HWXmitComChar SL_XmitComChar

HWGetStatus SL_GetStatus

HWReset SL_Reset

HWGetModemStatus SL_GetModemStatus

HWGetCommProperties SerGetCommProperties

HWPurgeComm SL_PurgeComm

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 24-7

24.6.2 Serial Driver Macros

N\A

24.6.3 Serial Driver Structures

24.6.3.1 UART_INFO

This structure contains information about the UART Module.
typedef struct {
 volatile PSOC_UART_REG pUartReg;
 ULONG sUSR1;
 ULONG sUSR2;
 BOOL bDSR;
 uartType_c UartType;
 ULONG ulDiscard;
 BOOL UseIrDA;
 ULONG HwAddr;
 EVENT_FUNC EventCallback;
 PVOID pMDDContext;
 DCB dcb
 COMMTIMEOUTS CommTimeouts;
 PLOOKUP_TBL pBaudTable;
 ULONG DroppedBytes;
 HANDLE FlushDone;
 BOOL CTSFlowOff;
 BOOL DSRFlowOff;
 BOOL AddTXIntr;
 COMSTAT Status;
 ULONG CommErrors;
 ULONG ModemStatus;
 CRITICAL_SECTION TransmitCritSec;
 CRITICAL_SECTION RegCritSec
 ULONG ChipID;
 } UART_INFO, * PUART_INFO;

Table 24-8 shows the members of the UART module.
Table 24-8. UART Module Members

HWSetDCB SL_SetDCB

HWSetCommTimeouts SL_SetCommTimeouts

Member Description

pUartReg Pointer to UART Hardware registers

sUSR1 This value contains the UART status register

sUSR2 This value contains the UART status register

bDSR This Boolean value keeps the DSR state

PDD Function Pointer Serial Driver Function

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-8 Freescale Semiconductor

24.6.3.2 SER_INFO

This is a private structure contains the information about Serial.
typedef struct __SER_INFO {
 UART_INFO uart_info;
 BOOL fIRMode;
 DWORD dwDevIndex;
 DWORD dwIOBase;
 DWORD dwIOLen;
 PSOC_UART_REG pBaseAddress;
 UINT8 cOpenCount;
 COMMPROP CommProp;
 PHWOBJ pHWObj;

BOOL useDMA;
 DDK_DMA_REQ SerialDmaReqTx;
 DDK_DMA_REQ SerialDmaReqRx;
 PHYSICAL_ADDRESS SerialPhysTxDMABufferAddr;
 PHYSICAL_ADDRESS SerialPhysRxDMABufferAddr;
 PBYTE pSerialVirtTxDMABufferAddr;

UartType This value contains the type of UART like DCE or DTE

UlDiscard This is used to discard the echo characters in IrDa Mode

UseIrDA This Boolean value determines the driver is in IR mode or not

HwAddr This value contains the hardware address of the UART Module

EventCallback This is a callback to the Model Device Driver

pMDDContext This contains the context of the UART, which is the first parameter to the callback function

dcb This value contains the copy of Device Control Block

CommTimeouts This contains the copy of CommTimeouts structure used to get and set the timeout
parameters for a communication device

pBaudTable Pointer to baud rate table

DroppedBytes This value contains the number of bytes dropped

FlushDone Handle to the flush done event

CTSFlowOff This Boolean value is used to store the CTS flow control state

DSRFlowOff This Boolean value is used to Store the DSR flow control state

AddTXIntr This Boolean value is used to fake a Tx interrupt

Status This value contains the comm status

CommErrors This value contains Win32 comm error status

ModemStatus This value shows the Win32 Modem status

TransmitCritSec This value is used as Critical Section for UART registers

RegCritSec This value is used as Critical Section for UART

ChipID This value contains Chip identifier (CHIP_ID_16550 or CHIP_ID_16450)

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 24-9

 PBYTE pSerialVirtRxDMABufferAddr;
 UINT8 SerialDmaChanRx;
 UINT8 SerialDmaChanTx;
 UINT8 currRxDmaBufId;
 UINT8 currTxDmaBufId;
 UINT dmaRxStartIdx;
 UINT availRxByteCount;
 UINT32 awaitingTxDMACompBmp;
 UINT32 dmaTxBufFirstUseBmp;
 UINT16 rxDMABufSize;
 UINT16 txDMABufSize;
} SER_INFO, *PSER_INFO;

Table 24-9 shows the members of the Serial module.
Table 24-9. Serial Module Members

Member Description

uart_info This structure contains information about UART

fIRMode This Boolean value determines the module is FIR or serial

dwDevIndex This static value contains the device index value which is read from registry

dwIOBase This static value contains the IO Base address of UART module which is read from
registry

dwIOLen This static value contains the IO length of UART Module which is read from registry

pBaseAddress Pointer to the start address of the UART registers mapped

cOpenCount This value contains count of the concurrent open

CommProp Pointer to CommProp structure

pHWObj Pointer to PDDs HWObj structure

useDMA This Boolean flag indicates if SDMA is to be used for transfers through this UART

SerialDmaReqTx SDMA request line for Tx

SerialDmaReqRx SDMA request line for Rx

SerialPhysTxDMABufferAddr Physical address of Tx SDMA address

SerialPhysRxDMABufferAddr Physical address of Rx SDMA address

pSerialVirtTxDMABufferAddr Virtual address of Tx SDMA address

pSerialVirtRxDMABufferAddr Virtual address of Rx SDMA address

SerialDmaChanRx SDMA virtual channel indices for Rx

SerialDmaChanTx SDMA virtual channel indices for Tx

currRxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in the Rx SDMA
buffer descriptor chains

currTxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in the Tx SDMA
buffer descriptor chains

dmaRxStartIdx This variables keep the start index of byte to be delivered to MDD for Read

availRxByteCount This variable keeps the remaining bytes in the Rx SDMA buffer

Serial Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-10 Freescale Semiconductor

awaitingTxDMACompBmp This indicates if an SDMA request is in progress on Tx SDMA buffer descriptor

dmaTxBufFirstUseBmp Indicator for first time use of a Tx SDMA buffer descriptor (First use)

rxDMABufSize Receive DMA buffer size

txDMABufSize Transfer DMA buffer size

Touch Panel Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 25-1

Chapter 25
Touch Panel Driver
The touch screen interface provides all the circuitry required for the readout of a four-wire resistive touch
screen. The touch screen X plate is connected to TSX1 and TSX2, and the Y plate is connected to TSY1
and TSY2. A local supply ADREF serves as reference.

25.1 Touch Panel Driver Summary
Table 25-1 provides a summary of source code location, library dependencies and other BSP information.

Table 25-1. Touch Panel Driver Summary

25.2 Supported Functionality
The touch panel driver enables the 3-Stack board to provide the following software and hardware support:

• Conforms to the standards described in the Platform Builder documentation: Developing a Device
Driver > Windows Embedded CE Drivers > Touch Screen Drivers

25.3 Hardware Operations
The hardware consists of a LCD Panel. Proper functioning requires an ADC module, which is used to
generate the touch samples. After calculations are performed, the touch samples are converted to the x,y
coordinates. The ADC module and the Touch Interrupt are part of the PMIC. For additional information,
see Chapter 21, “Power Management IC (PMIC)”.

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path ..\ PLATFORM\common\src\soc\freescale\common_fsl_v1\touch

CSP Driver Path N/A

CSP Static Library touch_common_fsl_v1.lib

Platform Driver Path ..\PLATFORM\<TGTPLAT>\SRC\DRIVERS\TOUCH

Import Library N/A

Driver DLL touch.dll

Catalog Item Third Party > BSP > Freescale i.MX31 3DS:ARMV4I > Device Drivers
> TOUCH > MC13783 Touch Driver

SYSGEN Dependency SYSGEN_Touch = 1

BSP Environment Variables BSP_PMIC_MC13783=1,BSP_TOUCH_MC13783=1

Touch Panel Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

25-2 Freescale Semiconductor

25.3.1 Conflicts with Peripherals

The conflicts occur only with the GPIO Pin with which the PMIC Interrupt is routed. Therefore, those pins
cannot be used as standard GPIO. For PMIC Interrupt routing and conflicts, see Chapter 21, “Power
Management IC (PMIC)”.

25.3.2 Conflicts with i.MX31 3-Stack

The touch driver requires a timer to obtain the time measurements among the different ADC samples. The
EPIT2 timer is dedicated for use with the touch panel and cannot be used by any other module.

25.4 Software Operation
The touch screen driver reads user input from the touch screen hardware and converts it to touch events
that are sent to the Graphics, Windowing, and Events Subsystem (GWES). The driver also converts
uncalibrated coordinates to calibrated coordinates. Calibrated coordinates compensate for any hardware
anomalies, such as skew or nonlinear sequences.

For the touch screen driver to work properly, it must submit “points” while the user's finger or stylus is
touching the touch screen. When the user's finger or stylus is removed from the screen, the driver must
submit at least one final event indicating that the user's finger or stylus tip was removed. The calibrated
coordinates must be reported to the nearest one-quarter of a pixel.

The basic algorithm uses the following calls to sample and calibrate the screen with the touch screen
driver:

• Calls the TouchPanelEnable function to start the screen sampling

• Calls the TouchPanelGetDeviceCaps function to request the number of sampling points

To test every calibration point, use the following steps:

1. Call the TouchPanelGetDeviceCaps to obtain a calibration coordinate. A crosshair appears on the
screen. Touching the crosshair starts the calibration.

2. Call the TouchPanelReadCalibrationPoint function to obtain the calibration data

3. Call the TouchPanelSetCalibration function to calculate the calibration coefficients

25.4.1 Touch Driver Registry Settings
IF BSP_NOTOUCH !

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]
 "DriverName"="touch.dll"
 "MaxCalError"=dword:7
IF BSP_PRECAL
 "CalibrationData"="539,520 280,259 280,778 793,781 794,259"

 ; Welcome.exe: Disable tutorial and calibration pages because we already
 ; have the necessary calibration data.
 ; Touch calibration (0x02), Stylus (0x04), Popup menu (0x08),
 ; Timezone (0x10), Complete (0x20)
[HKEY_LOCAL_MACHINE\Software\Microsoft\Welcome]

Touch Panel Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 25-3

 "Disable"=dword:FFFFFFFF
ENDIF ; BSP_PRECAL

; For double-tap default setting
[HKEY_CURRENT_USER\ControlPanel\Pen]
 "DblTapDist"=dword:18
 "DblTapTime"=dword:637

[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]
 "CalibrationData"="517,526 788,249 785,801 261,799 250,255 "

; For launching the TouchPanel calibration application on boot.
[HKEY_LOCAL_MACHINE\init]
 "Launch80"="touchc.exe"
 "Depend80"=hex:14,00,1e,00 ; Wait for standard initialization
 ; modules to load first (GWES.dll and
 ; Device.exe).

ENDIF ; BSP_NOTOUCH !

25.5 Unit Tests

25.5.1 Unit Test Hardware

Table 25-2 lists the required hardware to run the unit tests.
Table 25-2. Hardware Requirements

25.5.2 Unit Test Software

Table 25-3 lists the required software to run the unit tests.

Table 25-3. Software Requirements

The following errors are reported after the CETK Touch Panel test is performed:

• The Touch driver does not work after the CETK Touch Panel Test is performed. This is an MSFT
CETK error. After the CETK Touch Panel Test is complete, the process shell.exe generates a
"prefetch abort" exception on the touch.dll module and the touch panel driver does not work. This
is the reason for this error are as follows:

— GWES calls TouchPanelEnable to register a callback function when the OS is brought up

Requirements Description

EPSON L4F00242T03 VGA LCD Panel Display panel required for display of graphics data.

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Touchtest.dll Library containing the test

Touch.dll Touch Panel Driver

Touch Panel Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

25-4 Freescale Semiconductor

— When CETK runs, it also calls TouchPanelEnable to register its own callback function, and
then the callback from the original GWES is lost

— When CETK ends, it does not call TouchPanelDisable. So the touch ISR is still running, and
the CETK callback function memory has been free. When you click the panel, the ISR thread
calls the callback function, which causes a "prefetch abort" exception.

• Case 8011, 9001-9003 fail. The touch panel displays lines even if you are drawing a circle or arc.
This is also an MSFT CETK issue. The points are actually captured, but not painted in the allotted
time.

• Case 8011 cannot draw on the right side of the screen after the screen is rotated 90 degrees. The
executable ethca.exe works well after rotation. The CETK also works well when you run the case
for the second time.

25.5.3 Building the Touch Panel Tests
To run the touch test cases, enter the following command:

tux -o -n -d touchtest.dll -x <Test case id>

This test must run in Kernel mode (-n option). To Run the CETK in kernel mode you must copy the ktux.dll
from the CETK install directory to the release directory of your image.

For information about the test case IDs, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Touch Panel Tests
> Touch Panel Test

25.6 Touch Panel API Reference
To obtain the complete API reference, see the Platform Builder documentation:

Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers > Touch
Screen Driver Reference

USB Boot and KITL

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 26-1

Chapter 26
USB Boot and KITL
USB Boot and KITL are supported by implementing the RNDIS client device over USB on the target
board. This feature configures the USB OTG port as a USB device and implements the RNDIS USB
function driver. The USB RNDIS device acts as a standard Ethernet device and connects to the PC over a
USB cable. Once connected, EBOOT and KITL can use the RNDIS Ethernet device.

26.1 USB Boot and KITL Summary
Table 26-1 identifies the source code location, library dependencies, and other BSP information.

Table 26-1. USB Boot and KITL Summary

26.2 Supported Functionality
The USB Boot and KITL enables the 3-Stack board to provide the following software and hardware
support:

• Supports image downloading over USB

• Supports KITL over USB

• Provides menu options to determine whether to enable USB Boot and/or USB KITL

Driver Attribute Definition

Target Platform (TGTPLAT) IMX313DS

Target SoC (TGTSOC) MX31_FSL_V1

MXARM11 SoC Driver Path N/A

SoC Driver Path N/A

SoC Static Library N/A

Platform Driver Path \WINCE600\PLATFORM\<TGTPLAT>\SRC\COMMON\USBFN
\WINCE600\PLATFORM\<TGTPLAT>\SRC\KITL

Import Library fsl_usbfn_rndiskitl.lib

Driver DLL kitl.dll

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables N/A

USB Boot and KITL

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

26-2 Freescale Semiconductor

26.3 Hardware Operation

26.3.1 Conflicts with Other Peripherals

The USB Boot and KITL do not have conflicts with any other module. However, because the USB KITL
and USB OTG drivers in the OS share the same USB OTG hardware, the USB OTG drivers should be
disabled in the catalog item when USB KITL is enabled. The USB Boot does not have this limitation.

26.4 Software Operation

26.4.1 Software Architecture

USB Boot and KITL are part of the EBOOT and KITL subsystem. An RNDIS client device is
implemented to support USB Boot and KITL. Figure 26-1 illustrates the USB Boot and KITL software
architecture.

Figure 26-1. USB Boot and KITL Software Architecture Block Diagram

Microsoft has implemented the RNDIS client MDD driver in Windows Embedded CE 6.0. The code is in
following location:

%_WINCEROOT%\Public\Common\Oak\Drivers\Ethdbg\Rne_mdd

It generates static library Rne_mdd.lib.

The USB function controller PDD driver is ported to EBOOT and KITL to support the USB Boot and
KITL. For details of the USB function controller PDD driver, see the Platform Builder for Microsoft
Windows CE 6.0 Help:

Developing a Device Driver > Windows CE Drivers > USB Function Drivers > USB Function
Controller Drivers > USB Function Controller Driver Reference > USB Function Controller PDD
Functions.

Windows Embedded CE 6.0 provides an example of USB Boot in the following location:

USB Boot, KITL or other APP

MDD (RNDIS)

PDD
(Porting from USB Function Controller PDD Driver

USB OTG Hardware

USB Boot and KITL

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 26-3

%_WINCEROOT%\Platform\MainstoneIII\Src\Common\Usbfn

26.4.2 Source Code Layout

The following files have been modified or added to support USB Boot and KITL.

• The following files add the USB function controller and RNDIS PDD driver:
— %_WINCEROOT%\Platform\<Target Platform>\Src\Common\Usbfn
— %_WINCEROOT%\Platform\<Target Platform>\Src\Common\dirs

• The following file adds the RNDIS device to the EBOOT Ethernet initialization routines:
— %_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\ether.c

• The following file is used to set up the KITL device LogicalLoc and PhysicalLoc to USBOTG
physical address if USB KITL option in EBOOT menu is selected by user:
— %_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\main.c

• The following file implements the private NKCreateStaticMapping() function. This function is
defined in OS by Microsoft. It is not defined for EBOOT while USB Boot requires this function.
So it is manually defined.This function calls only OALPAtoUA().
— %_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\utils.c

• The following file adds the USB and KITL options to the EBOOT menu:
— %_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\menu.c

• The following file adds fsl_usbfn_rndiskitl.lib and rne_mdd.lib:
— %_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\sources

• The following files add the USB RNDIS KITL device in the KITL initialization routines:
— %_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\kitl.c
— %_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\sources

26.4.3 IOMUX and Pinout

The i.MX31 3-Stack board system uses external ULPI PHY for USB OTG. There are IOMUX settings for
USB OTG with external ULPI PHY. See the following file for information about the IOMUX settings of
the external ULPI PHY:

%_WINCEROOT%\Platform\<Target Patform>\Src\Common\Usbfn\rndiskitl\hwinit.c

26.4.4 Power Management

Power management is not yet implemented in USB Boot and KITL.

26.4.5 Registry Settings

There are no related register settings for the USB Boot and KITL.

26.4.6 DMA Support

Physical contiguous memory is required to support USB DMA. This memory region is hard coded in the
following:

USB Boot and KITL

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

26-4 Freescale Semiconductor

%_WINCEROOT%\Platform\<Target Patform>\Src\Common\Usbfn\Rndiskitl\rndis_pdd.c

It uses the BSP reserved USB image region (Start from IMAGE_SHARE_USBKITL_RAM_OFFSET).
This region is dedicated for USB Boot and KITL.

26.5 Unit Test

26.5.1 Building the USB Boot and KITL

There are no special configuration options for building USB Boot and USB KITL. Building the BSP with
the default configuration includes the USB Boot and KITL support. There is one exception: USB OTG
drivers should be de-selected from the catalog item view before building the NK image, in case the user
wants to use USB KITL. The reason for this is that USB KITL and OS USB drivers share the same USB
OTG hardware and they cannot exist simultaneously. As a result, USB KITL cannot be used to debug the
USB OTG drivers.

26.5.2 Testing USB Boot and KITL

To test USB Boot and KITL, use these steps:

1. Connect the target board to the PC with a USB cable, and then power on the board

2. At the EBOOT menu, change the boot configuration to match the following:
0) IP address: 192.168.0.2
1) Subnet Mask: 255.255.255.0
3) DHCP: Disabled
I) Kitl interrupt mode: Disable
P) Kitl passive mode: Disable
R) USB KITL: Enable

3. Press ‘u’ to download the image over USB. If this is the first time you have run the USB Boot or
KITL with the PC, the “Found New Hardware Wizard” dialog is displayed, and you will be
prompted to install the driver for Microsoft Windows CE RNDIS virtual adapter on the Windows
PC. For instructions on installing the driver, refer to:

WINCE600\PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\RNDISMINI\HOST\howto.txt

4. After the driver is installed successfully, the Microsoft Windows CE RNDIS virtual adapter should
be displayed in the Network Connections on the PC. Configure this network connection properly.
Use a static IP address (such as 192.168.0.3) in the same subnet as the target board.

5. Check the Platform Builder Target > Connectivity options to make sure the target device is
selected. Now you should be able to download the image in the same way as the normal EBOOT

6. To test USB KITL, press ‘r’ in EBOOT menu to enable USB KITL. After NK starts up, the KITL
works over the USB.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-1

Chapter 27
USB OTG Driver
The OTG USB driver provides High Speed USB 2.0 host and device support for the USB “On The Go”
(OTG) port of the i.MX31. The OTG driver automatically selects either host or device functionality at any
given time, depending on the USB cable/mini-plug configuration. This is achieved by the set of three
drivers: USB OTG host controller driver, USB client driver and USB transceiver controller (“Full
Function”) driver, which performs the host/function client switching.

The USB host driver can be configured for class support for mass storage, HID, printer, and RNDIS
peripherals. The device/client portion can be configured to provide one of mass storage, serial, or RNDIS
function.

The “Full Function” OTG transceiver driver automatically selects between the host or client driver. The
host or client can also be configured as the only mode for the OTG port, using the “Pure Host” or “Pure
Client” catalog item. All the OTG catalog items are exclusive. (See summary sections below).

27.1 USB OTG Driver Summary

27.1.1 OTG Client Driver Summary

Table 27-1 provides a summary of source code location, library dependencies and other BSP information
for the OTG Client Driver.

Table 27-1. OTG Client Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) IMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Driver Path ..\SOC\Freescale\MX31_FSL_V1\USBD
..\SOC\Freescale\MX31_FSL_V1\USBFN

CSP Static Library usbfn_mx31_fsl_v1.lib
ufnmddbase_mx31_fsl_v1.lib

Platform Driver Path \PLATFORM\IMX313DS\SRC\DRIVERS\USBD

Import Library N/A

Driver DLL usbfn.dll

Catalog Item High Speed OTG:
Third Party > BSP > Freescale i.MX31 3DS: ARMV4I > Device Drivers >
USB Devices > USB High Speed OTG Device
To support only client/device mode, choose .. > High Speed OTG Port Pure
Client Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable BSP_USB=1
BSP_USB_HSOTG_CLIENT=1

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-2 Freescale Semiconductor

NOTE
USB clients require a function driver to be loaded. A client can only present
one function. Only one of the function drivers (described in Section 27.4.5,
“Function Drivers) should be configured through drag and drop. If more
than one is configured, the serial function is the default unless the registry
is manually modified.

27.1.2 OTG Host Driver Summary

Table 27-2 provides a summary of source code location, library dependencies and other BSP information
for the OTG Host Driver.

Table 27-2. OTG Host Driver Summary

NOTE
The host driver requires a set of class drivers to be loaded. See
Section 27.4.6, “Class Drivers for more information.

27.1.3 OTG Transceiver Driver Summary (For HIGH-SPEED only)

Table 27-3 provides a summary of source code location, library dependencies and other BSP information
for the OTG Transceiver Driver.

Driver Attribute Definition

Target Platform (TGTPLAT) IMX313DS

Target SOC (TGTSOC) MX31

CSP Driver Path ..\SOC\Freescale\MX31_FSL_V1\USBH\EHCI
..\SOC\Freescale\MX31_FSL_V1\USBH\EHCIPDD
..\SOC\Freescale\MX31_FSL_V1\USBH\USB2COM

CSP Static Library Ehcdmdd_mx31_fsl_v1.lib
ehci_lib_mx31_fsl_v1.lib
hcd2lib_mx31_fsl_v1.lib

Platform Driver Path \PLATFORM\IMX313DS\SRC\DRIVERS\USBH\HSOTG

Import Library N/A

Driver DLL hcd_hsotg.dll

Catalog Item Third Party > BSP > Freescale i.MX31 3DS: ARMV4I > Device Drivers > USB
Devices > USB High Speed OTG Device
To support only host mode, choose .. > High Speed OTG Port Pure Host Function

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_USB=1
BSP_USB_HSOTG_HOST=1

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-3

Table 27-3. USB Transceiver Driver Summary

27.2 Supported Functionality
The OTG driver enables the 3-Stack board to provide the following software and hardware support:

• The High Speed OTG driver supports USB specification 2.0

• The driver is configured as client/peripheral by default, with one function driver defined as default.
When nothing is connected to the OTG port, the port does not drive Vbus and waits attachment to
a host by raising its D+ signal. On attachment of a mini-A plug, the driver switches to host mode.

• When a mini-B plug is connected to the OTG port, and the cable's opposite end is connected
through mini-A plug to another OTG device, or through A-type plug to a host, then the OTG
initiates operation as peripheral and responds to USB protocol from the host

• When a mini-A plug is connected to the OTG port and the cable's opposite end is connected
through mini-B plug to another OTG device, then the OTG initializes/re-initializes itself into host
mode and begins to act as a host. The OTG port remains in host mode whenever a mini-A plug is
mated to the OTG socket connector.

• The OTG port as client/peripheral supports mass storage, RNDIS and serial clients

• The OTG port as host supports mass storage, printer, HID and RNDIS classes

• When nothing is attached to the OTG port, the driver configures the controller and transceiver into
a low power state

• When the system is suspended with nothing attached to the OTG port, the system wakes upon
attachment of the port to a host or attachment of a device with mini-A plug

• When the system is suspended while the OTG port is connected to a host or to a device with a
mini-A plug, the system remains suspended when the OTG port connection is unplugged

Driver Attribute Definition

Target Platform (TGTPLAT) IMX313DS

Target SOC (TGTSOC) MX31

CSP Driver Path ..\SOC\Freescale\MX31_FSL_V1\USBXVR

CSP Static Library xvc_mx31_fsl_v1.lib

Platform Driver Path \PLATFORM\IMX313DS\SRC\DRIVERS\USBXVR

Import Library N/A

Driver DLL imx_xvc.dll

Catalog Item Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device Drivers > USB
Devices > USB High Speed OTG Device > High Speed OTG Port Full OTG
Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable BSP_USB=1
BSP_USB_HSOTG_CLIENT=1
BSP_USB_HSOTG_HOST=1
BSP_USB_HSOTG_XVC=1

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-4 Freescale Semiconductor

• When the system resumes after suspend, any attached devices are enumerated and their class
drivers are loaded appropriately

• Data transfer rates on the client port exceed 40 Mbits/sec in mass storage client mode

• Mass storage client mode passes USBCV1.3, which is the software part of USB Logo test suite

27.3 Hardware Operation
There is an OTG mini socket on the 3-Stack board (J10). The i.MX31 device contains a USB 2.0 core for
handling OTG, which is connected to the external transceivers through IO multiplexer (IOMUX). Options
are possible on i.MX31 hardware (such as routing signals on H1 signal port to OTG transceiver, with both
controllers “offline”). This allows external peripherals direct connection to a transceiver. The OTG driver
currently supports only one hardware MUX configuration.

The ID Pin Detect is supported through the Transceiver Driver (for High Speed OTG), and is constructed
as a stream interface driver. The sample reference implementation that is provided with WinCE 6.0
installation contains more detail on how the USB Host controller and USB Function controller driver are
structured. The i.MX31 processor supports speed translation within the USB 2.0 controller, a non-standard
EHCI implementation. As a result, the software does not currently support full/low speed devices (aside
from those non-FS hub devices directly connected to the OTG port).

The 3-Stack can supply a total of 100mA to attached devices on the OTG port and the default behavior
does not need to be modified. All bus powered hubs that have been tested require 500mA and therefore
are not supported for use with the 3-Stack. Self-powered hubs are required to expand the number of USB
sockets and also to support devices that require greater than 100mA (for example: Mini HDD devices
should be connected through self powered Hub).

27.3.1 Conflicts with Other Peripherals

The high speed OTG port conflicts with UART4. The USB controller drivers coordinate their management
of the USB peripheral block clock and processor core voltage, as described in Section 27.4.4.1, “Special
i.MX31 Vcore Requirements and Section 27.4.4.2, “Clock Gating.

27.3.2 Signal Quality Requirement

The USBCV test loads another USB host driver on the PC side. This one has more strict requirements for
signal quality than the original one. Therefore, the platform must pass the USB signal quality test before
the software test. The original board design has a defect. There is a 33 Ω resister on both the DP and DM
pins, which does not follow the standard and deteriorates the signal quality. They should be substituted
with 0 Ω resisters.

27.4 Software Operation

27.4.1 USB OTG Host Controller Driver

This driver enables the USB host functionality for the OTG port. It is part of the standard Windows USB
software architecture as shown in Figure 27-1.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-5

Figure 27-1. Windows USB Driver Architecture

For further details of the Windows CE USB driver architecture and usage, see Platform Builder Windows
CE 6.0 help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers

and

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Controller Driver Development Concepts

When transceiver mode is included, the host driver is activated when a USB Mini-A plug is connected to
the Mini USB OTG socket. When Pure Host mode only is selected, the host driver is always in control of
the relevant USB controller. When a USB device is connected to the Mini USB OTG socket of the 3-Stack,
the host controller driver enumerates and activates the appropriate class driver.

Windows CE 6.0 supports the following USB class drivers:

• Mass Storage – SD cards, MMC cards, CF cards, HDD drive, thumb drive (disk-on-key). Note that
some card reader firmware is not supported by the Microsoft standard Mass Storage class driver.

• HID – Keyboard and mouse

• Printer

• RNDIS – Network Device Interface communication class

Hubs are supported in all configurations with full and low speed peripherals.

Class Driver (e.g.
Mass Storage Class)

USB Host device
driver

Application or user
interface

USB Host controller
driver

MX31 USB
controller hardware
& PHY

device controller and
PHY

Client Device
(controller) Driver

Function controller
(client) driver

Function driver (e.g.
Mass Storage
Function)

Application or e.g.
storage device

USB cable physical
signalling

logical pipes /
endpoints

function/class
specific protocol

(IssueTransfer) (IssueTransfer)

USB packets USB packets

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-6 Freescale Semiconductor

This version of the host controller driver has been verified against the following USB 2.0 vendor devices:

• Various disk-on-key including Kingston and Memorex

• HP HS self-powered and bus-powered hub

• External self-powered HS hard drive

• HS and FS card reader with CF and MMC storage. Note: there are known issues formatting large
CF cards some FS card readers.

• HP Photosmart 7450 printer and Lexmark E232 Laser Printer

• A variety of cameras, including Sony Cybershot and HP717

• Logitech keyboard and mouse

27.4.1.1 User Interface

As described above, user access to the USB host driver is through class drivers. For further details on these
Host Client Drivers refer to Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers.

Where new class driver code is to be developed, refer to the Host client driver interface functions (for
example, IssueBulkTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers > Host Client Driver Reference.

27.4.1.2 Host Controller Configuration

The driver is configured into the BSP build by dragging & dropping the appropriate catalog item for USB
HS OTG. By default, host support is included along with peripheral/device and transceiver support.
Additional classes to be supported must also be selected from the Core OS catalog. See Section 27.4.1.5,
“Registry Settings for details on excluding OTG host support from the build.

The internal i.MX31 USB OTG signals can be multiplexed to a choice of pins on the device, as described
for the IOMUX in the hardware reference manual.

27.4.1.3 Memory Configuration

The USB Host drivers (for all USB host ports) use DMA to perform all USB transfers. The physical
memory for these transfer buffers is allocated as a pool at driver initialization. Unless physical addresses
are specified in API accesses at the class-driver interface, the driver copies data between the
user/class-provided data buffers and the DMA buffer from the driver physical memory pool.

The default DMA physical memory pool size is 128 kB. This value can be altered by the registry setting
PhysicalPageSize.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-7

27.4.1.4 Vbus/Configured Power

USB provides a means to monitor the configured power of devices attached to a USB host. The host driver
verifies that each attached device does not exceed the configured power limit.

This power limit is implemented through the platform-specific function BSPUsbhCheckConfigPower(),
which is described in Section 27.4.1.8.1, “BSPCheckConfigPower, and is located in the following
directory:

\PLATFORM\IMX313DS\SRC\DRIVERS\USBH\Common\hwinit.c

This function must be modified to correspond with the platform hardware capabilities.

The i.MX31 3-Stack can supply a total of 100mA to attached devices on the OTG port and the default
behavior does not need to be modified. All bus powered hubs that have been tested require 500mA and
therefore are not supported for use with the 3-Stack. Self-powered hubs are required to expand the number
of USB sockets and also to support devices that require greater than 100mA.

27.4.1.5 Registry Settings

The USB OTG host controller settings are values located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HCD_HSOTG]

The values under this registry key are automatically included in the image through platform.reg. They do
not normally require customization. Default values are contained in hsotg.reg. Table 27-4 shows the USB
OTG host controller registry values.

Table 27-4. USB OTG Host Controller Registry Settings

Value Type Content Description

Dll sz hcd_hsotg.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable host driver on the OTG. If no host
support is required (client only) then this value can be set to 0, though
the HCD_HSOTG key is not normally configured in the image at all when
pure Host function is selected.

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB
OTG instance. Only one instance of the OTG is actually supported
currently on the i.MX31 hardware.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword 20000 This value represents the number of bytes allocated for the physical
memory pool of the OTG host driver, and defaults to 128kB. From this
buffer, 75% are allocated for transfer descriptors and the remaining
buffer is available for allocation to simultaneous transfers. In most cases,
only one transfer is active at any time (for example, in the Mass Storage
Class). A good value will be at least 3x as large as the largest data buffer
transferred using IssueTransfer().

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-8 Freescale Semiconductor

27.4.1.6 Host USB Test Modes

The USB 2.0 specification defines PHY-level test modes for USB host ports (see definitions in USB 2.0
specification section 7.1.20).

The i.MX31 USB host drivers support “Packet” test mode. The test mode is configured by compiling the
BSP with the compilation flag OTG_TEST_MODE defined within bsp_cfg.h:

#define OTG_TEST_MODE

This configures the appropriate host controller within the platform-specific hardware initialization
function (ConfigOTG()), located in:

\PLATFORM\IMX313DS\SRC\DRIVERS\USBH\Common\hwinit.c

The test mode is entered upon initialization and cannot be exited. Normal USB operation is disabled when
test mode support is compiled into the image.

27.4.1.7 Unit Test

The USB driver has many devices to be tested. Tests are performed manually and include connecting the
devices, confirming the attach, detach (on unplug) re-attach (on subsequent plug in of device), and
transferring and verifying data (and/or functions).

To verify the RNDIS class device, a CEPC containing Netchip 2280 USB function is attached and used to
access a remote file server on the CEPC. To verify the low-level transport for Bulk, Interrupt and
Isochronous transfers, the CETK Host test kit is performed. This requires a CEPC configured with Netchip
2280 USB function and loopback driver.

27.4.1.7.1 USB Host Controller Driver Test

Documentation for the Windows CE 6.0 CETK USB Host tests is normally found under Platform Builder
Windows CE product documentation:

Debugging and Testing > Windows CE Test Kit > CE Test Kit

27.4.1.7.2 Build the Image to be Tested

The following steps are used to build the image to be tested:

1. Checkout the RTM to be tested or install the MSI provided

2. Add the following components from the catalog

— Freescale i.MX31 3DS: ARMV4I − Device Drivers − USB Devices − USB High Speed Host 2

— Core OS − Windows CE devices − Core OS Services − USB HOST Support and all the
sub-components of this catalog item (for example, USB Storage Class Driver)

— Core OS − Windows CE devices − File Systems And Data store − Storage Manager
(Sub-Components: FAT File System, Partition Driver, Storage Manager control panel applet)

— Device Drivers − USB Function − USB Function Clients − Serial

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-9

27.4.1.7.3 Abstract

This test suite can be used to test USB host controller drivers that provide the same interface as the Window
CE USB host controller driver. The test setup and scenario is shown in Figure 27-2.

Figure 27-2. Test Setup

This test suite acts as a client driver above USB bus driver (usbd.dll). It is loaded when the test device is
connected to the host through USB cable. The test device is a CEPC with a NetChip2280 USB function
controller card in it. After this CEPC is booted up and net2280lpbk.dll is loaded, the whole CEPC acts as
a generic USB data loopback device. The USB test suite (the test client driver on the host side) can then
stream data or issue device requests to and from this data loopback device. This is how the USB host
controller and its corresponding host controller drivers are exercised.

The NetChip2280 USB function PCI controller card is a USB2.0 compatible USB function device. It can
be used to test both USB2.0 and USB1.1 host controllers (EHCI/OHCI/UHCI) and corresponding drivers.

Netchip2280 controller has six endpoints besides endpoint 0. The data loopback driver (net2280lpback.dll)
configures these endpoints to be three pairs: one bulk IN/OUT pair, one Interrupt IN/OUT pair, and one
Isochronous IN/OUT pair. The data loopback tests are done by sending data from host side to device side
through OUT pipe, receiving it back through IN pipe, and then verifying the data.

Test platform with
USB controller

CEPC with
NetChip2280 USB
function controller

Hardware

Software

OHCI/UHCI/EHCI
Host Controller
Driver

USB Bus Driver
(usbd.dll)

USB Function
Bus Driver
(net2280.dll)

USB Test
Client Driver
(usbtest.dll)

Data loopback
Client Driver
(net2280lpbk.dll)

<Bus Level>

<Client Level>

Host Side Device Side

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-10 Freescale Semiconductor

27.4.1.7.4 Hardware Requirements

• Test platform

• Host Controller Card (if not onboard logic)

• CEPC

• Netchip2280 Card

• USB cable

27.4.1.7.5 Software Requirements

Host side:

• Tux.exe

• Ddlx.dll

• Usbtest.dll

• Kato.dll

• USB component (usbd.dll, EHCI/OHCI/UHCI host controller driver(s)) must be included in the
run time image.

 Device side:

• Lufldrv.exe

• Net2280lpbk.dll

• NetChip2280 USB function support (net2280.dll) must be included in the CEPC run time image.

27.4.1.7.6 Running the Test

The test procedure is as follows:

1. Download runtime image to CEPC with Netchip2280 card on it

2. After the system has booted up, run command s lufldrv, the tester should verify that
net2280lpbk.dll is loaded

3. Download the runtime image to test platform with USB host controller on it

4. After the system has booted up, make sure there is no connection between host side and device
through USB cable. Then launch command s tux –o –d ddlx –c “usbtest” “–xYYYY”, “YYYY”
is the test case(s) you want to run.

5. The test indicates that there should be no connection between host and device side

6. After seven seconds, the test asks to connect the two sides with USB cable and the main test body
starts to run

7. After the test(s) is(are) done and another test is to be run, do not disconnect the two sides of the
USB cable. Just type the next test command, and the test will start directly. If the USB connection
was disconnected before the next test, the test will ask to make the connection again before the test
begins.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-11

27.4.1.7.7 Test Cases

Table 27-5 shows the tests cases contained in the test suite.

Table 27-5. USB Host Controller Driver Test Cases

By default the data loopback device configures the endpoints with some often-used packet sizes; they are
DWORD aligned, neither too big nor too small. Having all the tests listed above pass under this
configuration is more than sufficient for a BVT-type test pass. However, testers can change the packet sizes
(these values are hard-coded in the source code for net2280lpbk.dll) for each endpoint and run the test
cases again for more comprehensive testing.

This test suite provides a way to change packet sizes of on NetChip2280 device on the fly as follows:

• Test case 3001: Using some very small packet sizes in NetChip2280 device’s full speed
configuration

• Test case 3002: Using some very small packet sizes in NetChip2280 device’s high speed
configuration

• Test case 3003: Using some irregular packet sizes (like non DWORD-aligned size) in
NetChip2280 device’s full speed configuration

Test Case ID Test Description

1001-1315, 1501-1515 Data loopback tests.
Concerning the transfer type, there are five categories:
1) Bulk pipe loopback tests (tests with ID end with 1, like xxx1),
2) Interrupt pipe loopback tests (tests with ID end with 2, xxx2),
3) Isochronous pipe loopback tests (tests with ID end with 3, xxx3),
4) All pipe transfer simultaneously (tests with ID end with 4, xxx4),
5) All three types of transfer carry on simultaneously (tests with ID end with 5, xxx5)1.

Concerning about how data is being transferred, there are also five categories:
1) Normal loopback tests (tests with ID start with 10, like 10),
2) loopback tests using physical memory (tests with ID start with 11, 11xx),
3) loopback tests using a part of allocated physical memory (tests with ID start with 12, 12xx),
4) Normal short transfer loopback tests ((tests with ID start with 13, 13xx),
5) Stress short transfer loopback tests ((tests with ID start with 15, 15xx),

Also, both synchronous and asynchronous transfer methods (test cases like xx1x using
asynchronous transfer method, test cases like xx0x using synchronous method) are
exercised.

Therefore, there are 5 × 5 × 2 = 50 test cases.

1 This category of tests is designed for testing some other USB function devices which have more endpoints than host
controller driver can handle. When using Netchip2280, it should be the same as category 4). Tester can just ignore this
category.

1401-1413 Some additional data loopback tests. They mainly focus on testing APIs like
GetTransferStatus(), AbortTransfer() and CloseTransfer().

2001-2013 Test related with Device requests.

9001-9004 These are some special tests that test APIs like SuspendDevice(), ResumeDevice() and
DisableDevice().

9005 This is a test that stresses EP0 transfer (Vendor Transfer)

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-12 Freescale Semiconductor

• Test case 3004: Using some irregular packet sizes (like non DWORD-aligned size) in
NetChip2280 device’s high speed configuration

• Test case 3005 (High Speed only): Using some very large packet sizes (like 2 × 1024 for
Isochronous endpoints) in NetChip2280 device’s full speed configuration. Note that in the real
world, Netchip2280 can not handle transfers using such large packet size because its onboard FIFO
buffer is small.

Run one of the test case above like running those normal tests, then after 15~20 seconds, through PB
usbtest.dll will be seen unloading and loading again automatically. This means the packets sizes on
netchip2280 side have already been changed. Then run those normal tests. You can use test case 3011 (for
full speed config) and 3012 (for high speed) to restore default packet sizes.

Another category test that is important for USB2.0 host controllers and drivers is called golden bridge
tests, which means USB2.0 host controller is connected with a full speed (USB1.1) device. This is the only
scenario that USB2.0 host controller performs split transfers.

NetChip2280 can be forced to be a full speed device. In the test setup stage, instead of run s lufldrv to load
loopback driver, run s lufldrv –f. This forces Netchip2280 to be configured as a full speed device.

Also testers are encouraged to do some manual tests. Following are some examples:

• Plug in a USB device, suspend system, and then resume. USB devices should still be there.

• Plug in a USB device, suspend system, unplug it, plug in another device, then resume. System
should enumerate the new device properly.

• Run one of the data transfer tests, in the middle of transfer stage, suspend the system (host side),
then resume. Tests may fail, but system should not crash.

• Run one of the data transfer tests, in the middle of transfer stage, disconnect the USB connection.
Tests should fail, but system should not crash.

27.4.1.8 Platform-Specific API

27.4.1.8.1 BSPCheckConfigPower

This function is used to evaluate whether a device can be supported on the specified USB port.

Parameters:

UCHAR bPort [in] Unused. Each USB controller has only one port

DWORD dwCfgPower [in] Power requirement (number of milliamps) requested by the device being
evaluated for attachment support on this port

DWORD dwTotalPower [in] current total power (number of milliamps) used by other previously
attached devices on this port

Return Value: Return TRUE if device requesting dwCfgPower can be safely attached. Return
FALSE if device can not be attached

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-13

27.4.1.8.2 BSPUsbSetWakeUp

This function does what is necessary to enable or disable wakeup on the USB port. For example, this
function does not actually enable wake-up when a device is currently attached to the port.

Parameters:

BOOL bEnable [in] TRUE to enable wakeup, FALSE to disable wakeup

27.4.1.8.3 BSPUsbCheckWakeUp

This function evaluates the wake-up condition for the relevant USB port, and clears the condition and
interrupt.

Parameters: None

Return Value: Return TRUE when a wake-up condition was detected. Return FALSE when no
wake-up condition was present

27.4.1.8.4 SetPHYPowerMgmt

This function is called by the USB driver when transitioning to or from the suspended state (for example,
during system suspend). The function does what is necessary to place the transceiver hardware into a
suspended (fSuspend == TRUE) or running (fSuspend == FALSE) state.

The standard implementation for i.MX31/3-Stack uses a ULPI-bus based ISP1504 transceiver for the HS
OTG port, and this function configures the ULPI-bus for sleep state. If the platform hardware uses other
transceivers, this function needs to be modified appropriately.

Parameters:

BOOL fSuspend [in] TRUE: system/controller is going to suspend mode. FALSE: resuming

27.4.2 USB Client Driver

This driver enables the USB device functionality for the i.MX31 device. It is activated when a USB Mini
B connector is connected to the Mini USB OTG socket. When the i.MX31 3-Stack board is connected to
a USB host system (ex: high speed or full speed port of PC), it is enumerated according to the current
configuration settings and the appropriate class driver is loaded on the PC. By default the 3-Stack board is
configured for USB serial class. The 3-Stack board can be configured as one of the following USB
functions by setting the appropriate environment variable during build (drag/drop from the catalog).

• Serial class − Serial ActiveSync

• Mass storage − expose local storage (ATA hard disk, RAMDISK or other store) as USB drive

• RNDIS class − Remote Network Driver Interface Specification

27.4.2.1 User Interface

The USB client driver provides a standard Windows CE USB driver implementation. For an overview see:

Developing a Device Driver > Windows CE Drivers > USB Function Drivers > USB Function
Controller Drivers.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-14 Freescale Semiconductor

User access to the USB client driver is through function drivers such as Mass Storage or RNDIS. For
further details on these USB Function drivers, refer to Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Client Drivers.

Where new function driver code is to be developed, refer to the Function controller driver interface
functions (for example, IssueTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Controller Drivers
> USB Function Controller Driver Reference.

27.4.2.2 Client Driver Configuration

The OTG client driver is configured into the BSP build by dragging & dropping the appropriate catalog
item (See Table 27-1). When the “Pure Client” functionality is selected, the OTG port acts only as a device.
When “Full OTG functionality” is selected, the OTG port can be either device or host (see transceiver
driver configuration).

27.4.2.3 Registry Settings

The USB OTG function/client settings are values located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UFN]

The values under this registry key are automatically included in the image through platform.reg. They do
not normally require customization. Table 27-6 shows the USB OTG client registry values.

Table 27-6. USB OTG Client Registry Settings

27.4.2.4 Device USB Test Modes

The USB 2.0 specification defines PHY-level test modes for USB device ports (see definitions in USB 2.0
specification section 7.1.20). This mechanism allows a host to configure a device into test mode by
commanding the device with a specific SET_FEATURE request. Once test mode is entered, the device
cannot leave test mode.

The device port does not by default support the USB test modes. Sample code for test mode support
(SET_FEATURE on the device) is included in:

SOC\FREESCALE\MX31_FSL_V1\DRIVERS\USBFN\CONTROLLER\MDD

Value Type Content Description

Dll sz usbfn.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable the function/client on the OTG. If
no client support is required (host only) then this value can be 0, though
the UFN key is not normally configured in the image at all when pure
Host function is selected.

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB
OTG instance. Only one instance of the OTG is actually supported
currently on the MX31 hardware.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-15

In addition, USBFN_TEST_MODE_SUPPORT must be defined during compilation of the CSP USBD
device driver library.

27.4.2.5 Unit Test

There is no CETK test case for USB client (function) drivers. The USB Function is tested by configuring
the i.MX31 3-Stack board as either USB Serial function or USB Mass storage or RNDIS function and
connecting it directly to a Host PC. The test verifies basic USB peripheral/client functionality, including
attach, detach, and data transfer.

Separate images must be built and downloaded for each of the three peripheral function tests. Refer to
Section 27.4.1.7.2, “Build the Image to be Tested for more information.

27.4.2.5.1 Unit Test Hardware

Table 27-7 lists the required hardware to run the unit tests.
Table 27-7. Hardware Requirements

27.4.2.5.2 Unit Test Software

Table 27-8 shows the software requirements for the USB Function controller driver test.
Table 27-8. Software Requirements

27.4.2.5.3 Running the USB Function Controller Driver Tests

Table 27-9 lists USB Function controller driver tests.

Requirements Description

Host system To test if control reaches the Host controller driver.

USB cable having Mini USB OTG plug A at one end
and Mini USB OTG plug B on the other side.

For connecting between the host and the device.

ATA drive configured in UDMA mode 2 as DSK1 This is required as a storage device when the board
is configured as mass storage class.

Requirements Description

ActiveSync 4.1 and above. This is the host side software that is required to be available for
testing the Serial class functionality.

USBCV1.3. This is the host side software that is required for software part of
USB Logo Test.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-16 Freescale Semiconductor

Table 27-9. USB Function Controller Driver Tests

Test Cases Entry Criteria/Procedure/Expected Results

Board configured as
USB Serial class and
connected to a host
system after the board
boots up completely.

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait
till the board boots-up completely.
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket.
2. Observe that the ActiveSync on the host side gets connected and is synchronized.
3. Copy files from Host system to the Mobile Device. Files are copied.
4. Copy files from the Mobile Device to the Host system. Files gets copied.
5. Unplug the mini USB OTG plug B from the i.MX31 mini USB OTG socket to unload the
Serial class driver.
Expected Result:
ActiveSync should get synchronized and copying of files should happen between the Host
and the 3-Stack board.

Board configured as
USB Mass storage
client, with ATA drive as
DSK1 mounted, and
connected to a host
system after the board
boots up completely.

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait
till the board boots-up completely.
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket.
2. Observe that a new disk in My Computer having as Removable Disk appearing in it.
3. Copy files from Host system to the new disk drive. Files are copied.
4. Copy files from the new disk drive to the Host system. Files gets copied.
5. Unplug the mini USB OTG plug B from the 3-Stack mini USB OTG socket to unload the
mass storage class driver.
Expected Result:
Files copied into mass storage client device match those copied out (when compared on
Windows XP PC using file compare utility). Note that files are not be visible from within the
3-Stack system until the system has been reset. The file system should not be used inside the
3-Stack when it is being accessed through USB as a mass storage client.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-17

27.4.2.6 Platform-Specific API

27.4.2.6.1 InitializeMux

This function is called to initialize the IOMUX connection within i.MX31, from USB controller to the
appropriate device pins for the transceiver.

This function is implemented for the Pure Client situation.

Parameters

int Speed [in] Unused

Return Value Return TRUE if device requesting dwCfgPower can be safely attached

27.4.2.6.2 HardwarePullupDP

This function is called by the USB client driver when D+ must be pulled-up, in preparation for connection
to a USB host. The standard code configures for ISP1504/ISP1301 transceiver. It is possible to modify this
routine to conditionally soft-disable USB connection.

Board configured as
USB RNDIS client and
connected to a host
system after the board
boots up completely.
Browsing the Internet.

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait
till the board boots-up completely. See to it that the NIC’s local area connection is not having
any IP address.
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket.
2. Observe that a new Local area connection in the Network and Dial up connections appears
on the Windows XP machine. Bridge the NIC’s local area connection and the RNDIS’s local
area connection.
3. Configure the bridge by giving IP address, Subnetmask, Default gateway, DNS, and so on.
4. On the 3-Stack board, a new Local area connection can be found in the Network and dial
up connections. Configure the local area connection by giving IP address, Subnetmask,
Default gateway, DNS, and so on.
5. In the Internet explorer on the 3-Stack board, configure the LAN settings as per the local
area settings.
Expected Result:
Browsing the Internet should be possible.

Board configured as
USB Mass storage
client, with SD drive as
DSK1 mounted, and
connected to a host
system after the board
boots up completely.

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait
till the board boots-up completely.
Procedure:
1. Run USBCV1.3 on PC side
2. Plug the mini USB OTG plug B to the mini USB OTG socket, connect it with PC.
3. Run Chap-9 Test on USBCV1.3, select our board as test target.
4. Run MSC Test on USBCV1.3, select our platform as test target.
5. Unplug the mini USB OTG plug B from the 3-Stack mini USB OTG socket to unload the
mass storage class driver.
Expected Result:
all test item should get passed.

Test Cases Entry Criteria/Procedure/Expected Results

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-18 Freescale Semiconductor

Parameters

CSP_USB_REGS *pRegs [in] pointer to the registers for the USB controller

Return Value Return TRUE if D+ signal was pulled-up

27.4.3 USB Transceiver Driver (ID Pin Detect Driver -- XCVR)

This driver is responsible for detecting the type of USB connector plugged into the Mini USB OTG socket
of 3-Stack. Upon detection the driver activates the USB host controller driver or USB function controller
driver.

27.4.3.1 User Interface

There is no user interface to the transceiver driver. This driver merely manages the USB host or client
drivers, which provide the appropriate programming API. The driver can be configured through its
platform-specific routines to provide different behavior for power management (wake-up, D+ soft
connect, and so on).

27.4.3.2 Transceiver Driver Configuration

The transceiver driver is configured into the BSP automatically upon dragging and dropping the USB HS
OTG catalog item. If transceiver functionality is not required, it can be disabled as described below.

27.4.3.3 Registry Settings

The USB OTG transceiver settings are values located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\XVC]

The values under this registry key are automatically included in the image through platform.reg. They do
not normally require customization.Table 27-10 shows the USB OTG transceiver registry values.

Table 27-10. USB OTG Transceiver Registry Settings

27.4.3.4 Unit Test

There is no CETK test case for USB Transceiver driver. The Transceiver driver is tested using the Mini
USB OTG plug A and Mini USB OTG plug B. The test is done by manually plugging in the Mini USB

Value Type Content Description

Dll sz imx_xvc.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable the transceiver-driven mode
switching on the OTG. If no transceiver support is required (host or client
only) then this value can be set to 0, though the XVC key will not
normally be configured in the image when OTG Pure Host or OTG Pure
Client is configured.

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB
OTG instance. Only one instance of the OTG is actually supported
currently on the MX31 hardware.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-19

OTG plug into the Mini USB OTG socket of 3-Stack board. The test verifies that the USB host or Function
controller driver is activated on cable plug-in.

27.4.3.4.1 Unit Test Hardware

Table 27-11 lists the required hardware to run the unit tests.

Table 27-11. USB Client Driver Hardware Requirements

27.4.3.4.2 Running the Transceiver Test

Table 27-12 lists Transceiver tests.

Table 27-12. Transceiver Tests

Requirements Description

3-Stack board to act as a device. 3-Stack board is configured as USB Mass storage class.

USB LS Mouse To test if control reaches the Host controller driver.

USB cable having A-type plug at one end and Mini USB
OTG plug B on the other side.
To plug in USB LS mouse, a USB extension cable having
mini-A at one end and USB A-type socket at the other end

For connecting between the host and the device.

Test Cases Entry Criteria/Procedure/Expected Results

Idle case when no
cable plugged in

Entry Criteria:
Make sure there is no mini USB OTG plug connected and the board is turned on and wait
till the board boots-up completely
Procedure:
When the board is powered and completely booted-up, the board should be idle (and as
mass storage client, not verifiable)
Expected Result:
Device boots up and is stable

Mass storage client
visible from PC

Entry Criteria:
Make sure there is no mini USB OTG plug connected and the board is turned on and wait
till the board boots-up completely
Procedure:
When the board is powered and completely booted-up, verify that board responds as a
mass storage client when plugged into PC
Expected Result:
New storage must be visible on PC

Mini USB OTG plug-A
connected to the mini
USB OTG socket of
3-Stack board and
mouse plugged into
OTG port through this
cable

Entry Criteria:
Unplug board from PC (in previous step)
Procedure:
1. Connect the USB HID device (Mouse) which has a Mini USB OTG plug-A to it. The
control goes to the USB Host controller driver.
2. The corresponding device gets enumerated and starts functioning. Foe example, if a
USB mouse is connected, on movement of the mouse, the pointer in the LCD screen is
seen moving.
Expected Result:
Device should start functioning

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-20 Freescale Semiconductor

27.4.3.5 Platform-Specific API

The transceiver driver library code contains all i.MX31 chip-specific implementation, and is located in:
SOC\Freescale\MX31_FSL_V1\Drivers\USBXVR

The transceiver driver operation can be customized through the platform-specific code located in:
PLATFORM\IMX313DS\SRC\Drivers\USBXVR

The standard implementation located in hwinit.c is provided for the 3-Stack with ISP1504 transceiver
attached to the High Speed OTG port. Customizations would permit different power management and
wake-up behavior, including when the device generates soft connect/disconnect (D+ pull-up) or what
wake-up conditions are supported when nothing is attached to the OTG port.

The library USB transceiver code communicates with the platform-specific code through callback
functions. Only one globally-defined specific routine (RegisterCallback) is required for using this
interface. Standard code is supplied for full transceiver operation using the 3-Stack hardware platform.

27.4.3.5.1 Structure BSP_USB_CALLBACK_FNS

Structure BSP_USB_CALLBACK_FNS is defined in MX31_usb.h. This is a structure containing all the
USB callback functions as called by the USB CSP drivers. Currently only the transceiver driver
(USBXVR) uses these callback functions. The callback functions are registered using RegisterCallback()
(Section 27.4.3.6.2, “RegisterCallback).
typedef struct {

// pfnUSBPowerDown - function pointer for platform to call during power down.
// pfnUSBPowerUp - function pointer for platform to call during power up.
// Parameter: 1) regs - USB registers
// 2) pUSBCoreClk - pointer to Boolean to indicate the status of USB Core Clk
// if it is on or off. Platform is responsible to update this value if they change
// the status of USBCoreClk. [TRUE - USBCoreClk ON, FALSE - USBCoreClk OFF]
// 3) pPanicMode - pointer to Boolean to indicate the status of panic mode
// if it is on or off. Platform is responsible to update this value if they change
// the status of panic mode. [TRUE - PanicMode ON, FALSE - USBCoreClk OFF]
void (*pfnUSBPowerDown)(CSP_USB_REGS *regs, BOOL *pUSBCoreClk, BOOL *pPanicMode);
void (*pfnUSBPowerUp)(CSP_USB_REGS *regs, BOOL *pUSBCoreClk, BOOL *pPanicMode);
// pfnUSBSetPhyPowerMode - function pointer for platform to call when they want to

suspend/resume the PHY
// Parameter: 1) regs - USB registers
// 2) bResume - TRUE - request to resume, FALSE - request suspend
void (*pfnUSBSetPhyPowerMode)(CSP_USB_REGS *regs, BOOL bResume);

} BSP_USB_CALLBACK_FNS;

27.4.3.5.2 pfnUSBPowerDown

This callback function is called during the Windows Embedded CE 6.0 power down sequence. The actual
platform specific power down routine should be registered as this callback function. This function is only
called if the system is in USB transceiver mode only (i.e. when nothing is attached to the OTG port).

There is no standard implementation for this callback, since by default the transceiver driver automatically
suspends the port when nothing is attached. This enables wake-up on device or host attachment, and
enables the D+ pull-up during the suspended condition.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-21

Parameters

CSP_USB_REGS *regs

[in] Mapped pointer to the USB registers in i.MX31, from physical address space
to a non-paged, process-dependent address space. This is mapped during the
transceiver initialization routine (XVC_Init).

BOOL *pUSBCoreClock

[in/out] Pointer to a Boolean variable in transceiver to indicate whether the USB
Core Clock has been stopped.

The platform-specific callback function must update this flag to reflect the current
USB Core Clock status, if the status of the USB Core Clock is changed within the
platform code (for example using DDKClockSetGatingMode()). This ensures
consistency of the clock status within the CSP transceiver driver.

TRUE – USB Core Clock is running

FALSE – USB Core Clock is stopped

BOOL *pPanicMode

[in/out] Pointer to a Boolean variable to indicate whether the USB has requested
for system voltage to remain in Panic Mode or not. The callback function must
update this flag to reflect the current Panic Mode status, if this status is changed
within the platform code (for example using DDKClockEnablePanicMode(). This
ensures consistency of the Panic Mode status within the CSP transceiver driver.

TRUE: Panic mode is currently requested for the USB.

FALSE: Panic mode is not currently requested for the USB

27.4.3.6 pfnUSBPowerUp

Similar to pfnUSBPowerDown, this is called during the Windows Embedded CE 6.0 power up sequence.
The actual platform specific power up (resume) routine should be registered to this pointer. This is only
called when USB is in transceiver mode (i.e. when nothing is attached to the OTG port).

There is no standard implementation for this callback, since by default the transceiver driver automatically
suspends the port when nothing is attached and the port need not perform any wake-up activity until a
device or host attachment is detected.

Parameters For parameter details Section 27.4.3.5.2, “pfnUSBPowerDown.

27.4.3.6.1 pfnUSBSetPhyPowerMode

This function is called when the system is in USB transceiver mode, with no USB activity. With standard
implementation on 3-Stack, if the system is in transceiver mode and there is no activity in USB port for
one second, the transceiver driver suspends the ULPI PHY (in this case, it is ISP1504, disable the USB
Clock gating, and set the system to non-panic mode allowing core voltage to drop).

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-22 Freescale Semiconductor

When there is USB activity (for example, device attach), the transceiver driver sets the system to panic
mode (requiring core voltage to stay high using DDKClockEnablePanicMode(), supported for i.MX31),
enables USB Clock gating and puts the ULPI PHY transceiver to resume.

This callback function is responsible for handling the suspend and resume of ULPI PHY transceiver. The
developer must register this pointer with the actual platform specific function for suspend and resume of
ULPI PHY transceiver. Custom wake-up conditions can be enabled here.

Parameters

CSP_USB_REGS *regs

[in] Mapped pointer to the USB registers in i.MX31, from physical address space
to a non-paged, process-dependent address space. This is mapped during the
transceiver initialization routine (XVC_Init).

BOOL resume [in] This Boolean variable indicates whether the callback function must resume or
suspend the ULPI PHY transceiver.

TRUE: callback function must resume transceiver activity.

FALSE: callback function must suspend transceiver activity

27.4.3.6.2 RegisterCallback

This is used to register all the callback functions defined in BSP_USB_CALLBACK_FNS. This function
is called by the USB driver during the initialization process of the transceiver driver (XVC_Init). The
developer must implement a function by this name in their platform directory.

A standard implementation is provided for the ISP1504 transceiver of the 3-Stack. When no callback
function is required, those elements of the BSP_USB_CALLBACK_FNS structure should be initialized
to NULL.

Parameters

BSP_USB_CALLBACK_FNS *pFn

[in/out] Pointer to BSP_USB_CALLBACK_FNS structure for the developer to
register the callback function inside the BSP_USB_CALLBACK_FNS. The
callback function inside this structure is used by the CSP transceiver code.

27.4.4 Power Management

The following are the aspects of power management for the USB device drivers:

• Special i.MX31 Vcore requirements

• Clock gating to the USB peripheral block within the i.MX31

• Setting the transceiver to a lower power mode or suspend

• Transceiver auto-power-down on inactivity

The USB device driver(s) support an ON and OFF/standby (low power) state, with wake-up capability.
The ON state is entered whenever a host or device is attached to the relevant USB port. The driver enters
the standby state automatically after timeout with no device or host attached to the USB port. As well, the

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-23

standby state is entered when the system suspends. In the latter case, system wake-up capability is enabled
for the port.

27.4.4.1 Special i.MX31 Vcore Requirements

When ULPI-bus transceivers are used with the USB controller (for example, ISP1504 transceivers for
High Speed OTG port and High Speed Host 2 port on i.MX31/3-Stack), normal DVFS scaling of the
i.MX31 Vcore must be suspended whenever there is potential of ULPI bus communication. This is the case
whenever a device is connected (in host mode) or the device is connected to a host (in client mode). The
USB OTG Transceiver driver and USB Host and Client drivers constrain the DVFS behavior by calling
DDKClockEnablePanicMode() whenever a device or host connection is detected and by calling
DDKClockDisablePanicMode() when a timeout period expires with no device or host connected to the
port. There is no user configuration required here; only the effect on DVFS (DVFC driver) behavior need
be noted.

27.4.4.2 Clock Gating

The USB driver(s) for the various USB ports automatically manage clock gating to the i.MX31 USB
controller cores. The drivers for the ports coordinate their use of the USB core clock, and when nothing is
connected on any of the ports (all drivers are in their lowest power state) the clock is gated on or off using:

DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_USBOTG, DDK_CLOCK_GATE_MODE_ENABLED_ALL)
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_USBOTG, DDK_CLOCK_GATE_MODE_DISABLED)

27.4.4.3 Transceiver Auto Power Down

The USB transceivers automatically enter a lower-power/suspended mode when no USB traffic is detected
for several milliseconds. This internally sets a suspended state for the USB port. Software timeout is used
to establish whether the driver power mode can be switched to its lowest power state (see Section 27.4.4.4,
“Transceiver Power Mode).

27.4.4.4 Transceiver Power Mode

Software timeout is used to establish whether the transceivers and their related bus (for example, ULPI-bus
for ISP1504 connection to i.MX31) needs to be set to a suspended condition. In the lowest-power state,
the transceiver is configured to generate wake-up signalling on attachment of devices or host (to the OTG
port). The transceiver driver provides callback routines to manage this transition.

27.4.4.5 PowerUp

Each of the OTG client, host and transceiver drivers have PowerUp routine associated. For the host driver,
this is referenced through the MDD to a function PowerMgmtCallback().

For the host, the routine does the following:

• Verify the wake-up conditions through the BSPUsbCheckWakeUp() platform routine

• Stop the host controller

• Suspend the relevant port

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-24 Freescale Semiconductor

• Set the PHY to low power mode using SetPHYPowerMgmt(TRUE) platform routine

• Disable panic mode for the core voltage (DDKClockDisablePanicMode())

• Gate the USB peripheral block clock

For the client, the routine does the following:

• Ungate the USB peripheral block clock

• Enable panic mode for the core voltage (DDKClockEnablePanicMode())

• Force the port to resume

• Disable the wake-up conditions

• Enable the interrupts and start the USB controller

For the transceiver driver, the PowerUp routine calls the relevant platform-specific callback routine,
pfnUSBPowerUp().

Under normal circumstances there is nothing to be done in this routine, since the OTG port is normally in
a suspended state within the transceiver mode. It is only in transceiver mode when nothing is connected to
the port, and thus has already been automatically suspended.

27.4.4.6 PowerDown

As with the PowerUp routine, OTG client, host and transceiver drivers have PowerDown routine
associated. For the host driver, this is referenced through the MDD to a function PowerMgmtCallback().

For the host, the routine does the following:

• Verify the wake-up conditions through the BSPUsbCheckWakeUp() platform routine

• Stop the host controller

• Suspend the relevant port

• Set the PHY to low power mode using SetPHYPowerMgmt(TRUE) platform routine

• Disable panic mode for the core voltage (DDKClockDisablePanicMode())

• Gate the USB peripheral block clock

For the client, the routine does the following:

• Stop the USB controller

• Clear any outstanding interrupts

• Enable appropriate wake-up condition

• Suspend the relevant port (suspends the PHY)

• Disable core voltage panic mode (DDKClockDisablePanicMode())

• Gate the USB peripheral block clock

For the transceiver driver, the PowerDown routine calls the relevant platform-specific callback routine,
pfnUSBPowerDown().

Under normal circumstances there is nothing to be done in this routine, since the transceiver remains in its
suspended state while nothing is connected to the port. Should any attachment be made, the transceiver
would wake through its wake-up mechanism and launch the appropriate (client or host) driver.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-25

27.4.4.7 Suspend / Resume Operations

• Mass Storage Host/Client: Device is mounted automatically, but any unfinished browse/copy is
terminated

• ActiveSync Client: Once browsing into the content of device. A system suspend/resume causes
device to not be mounted until unplug and plug cable again

• HID Host: client is recognized again automatically

27.4.5 Function Drivers

The function drivers can be configured into the image through the Windows CE 6.0 Platform Builder
catalog, and are located at:

Device Drivers > USB Function > USB Function Clients

The default function driver is launched when the USB device port is attached to a host. This default
function driver is selected by the registry key (the last instance of this value in reginit.ini applies):

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"=- ; erase previous default
[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"="Mass_Storage_Class"

or
 "DefaultClientDriver"="RNDIS"

or
 "DefaultClientDriver"="Serial_Class"

Unless the BSP is configured with persistent registry storage, it only makes sense to configure a single
function driver into the image and this one becomes default.

NOTE
When no USB client functionality is included in the image (No OTG port,
or OTG Pure Host only), then ensure that no function drivers have been
configured. If function drivers are configured, then USB client driver
libraries are also included in the image through logic in:
PUBLIC\CEBASE\OAK\Misc\winceos.bat

27.4.5.1 Mass Storage Function
Table 27-13. Mass Storage Function

Driver Attribute Definition

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path \PLATFORM\IMX313DS\SRC\DRIVERS\USBMSFN

Import Library USBMSFN_LIB.lib
UFNCLIENTLIB.LIB

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-26 Freescale Semiconductor

The Mass Storage function exposes a local data store as a USB peripheral storage device. This device uses
by default for this local data store is “DSK1”, and could be configured as ATA drive or RAMDISK or even
a USB drive attached to a different USB host port, depending on the BSP configuration.

The name DSK1 is associated with the Mass Storage function through the value “DeviceName” under the
key:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Mass_Storage_Class]

which is imported by default when SYSGEN_USBFN_STORAGE is defined, from:
PUBLIC\Common\OAK\Files\common.reg

For commercial products, this default registry entry must be copied into platform.reg and modified to
override the defaults. This allows customizing the following values which must be properly configured for
a commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Mass_Storage_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:FFFF
 "Product"="Generic Mass Storage (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

27.4.5.2 Serial Function

The primary use for Serial function is ActiveSync.
Table 27-14. Serial Function

Driver DLL usbmsfn.dll

Catalog Item Device Drivers −> USB Function −> USB Function Clients −> Mass Storage

SYSGEN Dependency SYSGEN_USBFN_STORAGE

Driver Attribute Definition

CSP Driver Path N/A

PUBLIC driver path PUBLIC\Common\OAK\Drivers\USBFN\CLASS\SERIAL

CSP Static Library N/A

Platform Driver Path N/A

Export Library serialusbfn.lib

Import Library com_mdd2.lib
serpddcm.lib
ufnclientlib.lib

Driver DLL SerialUsbFn.dll

Catalog Item Device Drivers −> USB Function −> USB Function Clients −> Serial Client

SYSGEN Dependency SYSGEN_USBFN_SERIAL

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-27

NOTE
ActiveSync has been tested using connection to PC with ActiveSync
version 4.1 installed. See microsoft.com to download the latest ActiveSync
software for the PC. In some cases, DEBUGCHK may be triggered during
attachment to ActiveSync in DEBUG builds.

When SYSGEN_USBFN_SERIAL is defined, the default registry entry is automatically included from:
PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Serial_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:00ce
 "Product"="Generic Serial (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

27.4.5.3 RNDIS Function

The RNDIS function allows communication over USB to be supplied to Ethernet NDIS interface of
protocol stack.

Table 27-15. RNDIS Function

Note: RNDIS function has been tested using PC RNDIS class driver as located at:
PUBLIC\Common\OAK\Drivers\ETHDBG\Rndismini\HOST\usb8023.inf
%WINDIR%\System32\drivers\usb8023.sys

When SYSGEN_USBFN_ETHERNET is defined, the default registry entry is automatically included
from:

PUBLIC\Common\OAK\FILES\common.reg

Driver Attribute Definition

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path N/A

PUBLIC Driver Path PUBLIC*\OAK\Drivers\USBFN\Class\RNDIS

Import Library ndis.lib

Driver DLL RNDISFN.DLL

Catalog Item Device Drivers −> USB Function −> USB Function Clients −> RNDIS Client

SYSGEN Dependency SYSGEN_USBFN_ETHERNET

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-28 Freescale Semiconductor

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\RNDIS]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
"idVendor"=dword:045E
"Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
"idProduct"=dword:0301
"Product"="Generic RNDIS (PROTOTYPE--Remember to change idVendor)"
"bcdDevice"=dword:0

27.4.6 Class Drivers

All host ports (OTG Host, High Speed Host (H2), and Full Speed Host (H1)) support the same class
drivers, and this configuration is common to all host ports. Class drivers must also be configured for the
USB host ports. Class driver configuration is common to all host ports; there is no port-specific
configuration to be completed on any class driver.

Table 27-16 shows the standard Microsoft-supplied drivers that are available by drag & drop from the
catalog.

Table 27-16. Class Drivers

Drag and drop all the class drivers required for the USB Host class.

NOTE
When no USB host ports are configured in the image, ensure that no class
drivers are selected, otherwise host libraries are included by default from
logic in: PUBLIC\CEBASE\OAK\Misc\winceos.bat

Class Driver Configuration Flag Catalog Item

HID SYSGEN_USB_HID Core OS−>Windows CE devices −>Core OS Services −> USB Host
Support
−> USB Human Input Device (HID) Class Driver

Printer SYSGEN_USB_PRINTER .. −> USB Printer Class Driver
(and see additional configuration in Section 27.4.6.1, “Printer)

Keyboard SYSGEN_USB_HID_KEYBOARD .. −> Keyboard HID Device
(and see additional configuration in Section 27.4.6.3, “HID Keyboard)

Mouse SYSGEN_USB_HID_MOUSE .. −> Mouse HID Device
(and see additional configuration in Section 27.4.6.2, “HID Mouse)

RNDIS SYSGEN_ETH_USB_HOST .. −> USB Remote NDIS Class Driver

Storage SYSGEN_USB_STORAGE .. −> USB (mass) Storage Class Driver

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-29

27.4.6.1 Printer

For printer support, printer driver/protocol support is required. For example, include PCL shown in
Table 27-17.

Table 27-17. Printer Class Driver

For more information, see Windows CE Platform Builder help topic:

Developing a Device Driver > Windows CE Drivers > USB Host Drivers > USB Host Client Drivers
> USB Host Printer Client Driver

27.4.6.2 HID Mouse

For mouse support, the cursor is required in order to test/use the mouse.
Table 27-18. HID Mouse Class Driver

27.4.6.3 HID Keyboard

The 3-Stack Keyboard key mapping conflicts with that used for the HID keyboard. When USB keyboard
support is included, remove the 3-Stack Keyboard (Table 27-19) and include the appropriate stub keyboard
and keyboard .dll (Table 27-20).

Table 27-19. HID Keyboard Driver to Remove

Table 27-20. HID Keyboard Driver to Include

Also include the appropriate keyboard .dll. For example, define SYSGEN_KBD_US and add the
following lines in your platform.bib (immediately before the FILES section):

IF BSP_KEYBD_NOP
 kbdmouse.dll $(_FLATRELEASEDIR)\KbdnopUs.dll NK SH
ENDIF; BSP_KEYBD_NOP

Catalog Item Configuration Flag Catalog Item

PCL SYSGEN_PCL Device Drivers −> Printer Devices −> PCL Printer Driver

Catalog Item Configuration Flag Catalog Item

HID SYSGEN_CURSOR Core OS −> Shell and User Interface −> User Interface −>
Customizable UI−> Mouse

Remove Item Remove Catalog Item

 Keyboard Third Party −> Freescale 3DS: ARMV4I−> Device Drivers −>
Input Devices −> Keyboard/Mouse −> EVB Keypad

Catalog Item Configuration Flag Catalog Item

NOP Stub Keyboard BSP_KEYBD_NOP Device Drivers −> Input Devices −> Keyboard/Mouse
−> NOP (Stub) Keyboard/Mouse English

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-30 Freescale Semiconductor

27.5 IRAM Patch
The USB link in the i.MX31 device uses very specific data structures, that is QH and TD. Data memory
is also prepared before a transfer is primed. In the original design, memory is allocated in DRAM. HC
locks the EMI AHB of DRAM when it performs the transfer. The lock prevents another module from
accessing the DRAM. This causes problem for IPU module, which has strict real-time requirements. If HC
occupies the DRAM AHB for too long, underflow occurs for the IPU module, which results in LCD
display flicker. The problem becomes serious when a complex codec is used, which gives the IPU very
high loadings. The IC should have wider bandwidth or a smarter arbiter to avoid such problem in the root.

A software workaround is to move all the USB related data structures and data memory to the IRAM area.
This way, USB and IPU do not create such conflicts. The trade-off is that, as IRAM areas total size is 16K,
all the data needed cannot be pulled into the IRAM simultaneously. Large transfers need to be split into
smaller ones and primed one by one. The limited size of the IRAM memory also restricts the number of
USB devices that can be used .

The detailed implementation of IRAM patch not in the scope of this document. To enable the patch, simply
add an environment variable “BSP_USB_IRAM_PATCH” = “1” in the project settings. As described,
attach two more devices in one USB port to weaken the effect of this patch.

27.6 Basic Elements for Driver Development
This section provides the details of the basic elements for driver development in the 3-Stack BSP.

27.6.1 BSP Environment Variables

Pin conflicts between default driver implementations for the i.MX31 pin muxing (platform-specific
implementation) mean certain configurations are mutually exclusive, as listed in the following table.

Table 27-21. 3-Stack BSP Environment Variables Summary

Names Definition

BSP_USB Set to configure USB in BSP

BSP_USB_HSOTG_XVC Set to enable Full OTG functionality (transceiver host-client switching) on
the High Speed OTG port

BSP_USB_HSOTG_CLIENT Set to include USB client functionality on High Speed OTG port

BSP_USB_HSOTG_HOST Set to include USB host functionality on High Speed OTG port.

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-31

27.6.2 Dependencies of Drivers

Table 27-23 summarizes the Microsoft defined environment variables used in the BSP.

Table 27-22. Mutual Exclusive Driver Summary

Functionality1

1 yes = Required, no = Not permitted, – = Don't care

B
S

P
_A

TA

B
S

P
_C

S
P

IB
U

S

B
S

P
_U

S
B

B
S

P
_U

S
B

_H
S

O
T

G
_X

V
C

B
S

P
_U

S
B

_H
S

O
T

G
_C

L
IE

N
T

B
S

P
_U

S
B

_H
S

O
TG

_H
O

S
T

ATA disk drive yes no

High Speed OTG Port full function (Host + Client) yes yes yes yes

High Speed OTG Port Pure Host only yes yes

High Speed OTG Port Pure Client only yes yes

Full Speed Host (H1) no no

High Speed Host (H2) no no

Table 27-23. . USB Driver

Names Definition

SYSGEN_USBFN_SERIAL Set to support serial class for USB Function controller

SYSGEN_USBFN_STORAGE Set to support mass storage class for USB Function controller

SYSGEN_USBFN_ETHERNET Set to support RNDIS class for USB Function controller

SYSGEN_CURSOR Set to support mouse cursor

SYSGEN_FATFS Set to support FAT16 file system

SYSGEN_PCL Set to support PCL printing

SYSGEN_PRINTING Set to support printer

SYSGEN_STOREMGR Set to support storage manager

SYSGEN_UDFS Set to support Universal Disc File System

SYSGEN_USB Set to support USB driver

SYSGEN_USB_HID Set to support Human Interface driver (HID) class

SYSGEN_USB_HID_CLIENTS Set to support HID clients

SYSGEN_USB_HID_KEYBOARD Set to support HID keyboards
(keyboard stub and associated .dll are required)

SYSGEN_USB_HID_MOUSE Set to support HID mouse

USB OTG Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-32 Freescale Semiconductor

SYSGEN_USB_PRINTER Set to support Printer
(printer driver support, such as PCL (SYSGEN_PCL), may be required)

SYSGEN_USB_STORAGE Set to support storage medium

Table 27-23. . USB Driver(Continued)

Names Definition

WLAN Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 28-1

Chapter 28
WLAN Driver
The WLAN driver is used to drive the APM6628 module to implement Wi-FI functionality. The WLAN
module exchanges data with the i.MX31 device through the SDHC 2 port. The APM6628 module adopts
Unifi V5 solution of Cambrige Silicon Radio company.

28.1 WLAN Driver Summary
WLAN driver is provided in binary form instead of source codes. Table 28-1 provides a summary of the
source code location, library dependencies, and other BSP information.

Table 28-1. WLAN Client Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path ..\PLATFORM\<TGTPLAT > \SRC\DRIVERS\wifi\csr

Import Library N.A

Driver DLL LoadDriveriMX31.exe loader.xbv sta.xbv ufmib.dat ufmp.dll ufsdio.dll

Catalog Item Third Party > BSPs -> Freescale i.MX31 3DS: ARMV4I > Device Drivers > WiFi. >
CSR > CSR APM6628 WiFi
Core OS > CE BASE > Communication Services and Networking > Networking
-Local Area Network [LAN] > Wireless LAN (802.11) STA - Automatic Configuration
and 802.1x
Core OS > CE BASE > Communication Services and Networking >
Networking-General > Extensible Authentication Protocol
Core OS > CE BASE > Security > Authentication Services (SSPI) > NTLM
Core OS > CE BASE > Security > Authentication Services (SSPI) > Schannel
(SSL/TLS)
Core OS > CE BASE > Security > Microsoft Certificate Enrollment Tool Sample
Core OS > CE BASE > Internet Client Services > Internet Explorer 6 for Windows
CE Embedded Components > Windows Internet Services
Core OS > CE BASE > Communication Services and Networking >
Networking-General > Network Utilities (IpConfig, Ping, Route)

SYSGEN Dependency SYSGEN_ETH_80211
SYSGEN_EAP
SYSGEN_AUTH_NTLM
SYSGEN_AUTH_SCHANNEL
SYSGEN_ENROLL
SYSGEN_WININET

BSP Environment Variable BSP_CSR_WIFI=1
BSP_SDHC2 =1

WLAN Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

28-2 Freescale Semiconductor

The Recommended Catalog Items listed in Table 28-1 should be included in the OS design in order to
provide Wi-FI functionality.

28.2 Supported Functionality
The Wi-FI driver enables the 3-Stack board to provide the following software and hardware support:

• Drives wifi module in APM6628 chip

• Supports scanning and connection to 802.11b AP with open security

• Supports scanning and connection to 802.11b/g AP with open security

• Supports scanning and connection to 802.11b/g AP with WEP(64/128/256) security

• Supports scanning and connection to 802.11b/g AP with WPA-PSK security

• Supports scanning and connection to adhoc laptop with open security

• Supports scanning and connection to adhoc laptop with WEP security

• Supports scanning and connection to 802.11g-only AP with open security

28.3 Hardware Operation
The Wi-FI client driver exchanges data and commands between the SD stack and the Wi-FI hardware
through SDIO port.

28.3.1 Conflicts with Other Peripherals

Wi-FI shares one reset pin with the Bluetooth module in the 3-Stack board.

28.4 Software Operation
The overall software architecture with WLAN Unifi driver for APM 6628 is depicted in Figure 28-1.

WLAN Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 28-3

Figure 28-1. Software Architecture with WLAN Unifi Driver

The main component is the miniport driver. The driver provides the means to configure the UniFi device
for connecting to a wireless network to send and receive data. A suitable wireless client, such as Microsoft
Wireless Zero Configuration can:

• Actively scan for wireless networks in the local area

• Connect to an unsecured or WEP-enabled infrastructure or ad-hoc network

• Connect to WPA-enabled networks using pre-shared key (PSK)

• Start an unsecured or WEP-enabled ad-hoc network (IBSS)

The device driver conforms to the following:

• The NDIS 5.1 specification (defined by the IEEE 802.11 Network Adapter Design Guidelines for
Windows XP) for integration into the Windows operating system

• The UniFi Host Interface Protocol Specification for the exchange of signal primitives with the
UniFi WLAN card.

• Network connections are set up using a wireless LAN client. The client issues a set of NDIS
defined 802.11 OIDs to the miniport driver so that it can configure the UniFi device appropriately

28.4.1 Wi-FI Registry setting

The following registry keys are required to properly load and configure WLAN driver
[HKEY_LOCAL_MACHINE\Comm\ufmp]
 "DisplayName"="CSR UniFi v5.0"

WLAN Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

28-4 Freescale Semiconductor

 "Group"="NDIS"
 "ImagePath"="ufmp.dll"
 "Dll"="ufmp.dll"
 "Prefix"="NDL"

[HKEY_LOCAL_MACHINE\Comm\ufmp\Linkage]
 "Route"=multi_sz:""

[HKEY_LOCAL_MACHINE\Comm\ufmp1]
 "DisplayName"="CSR UniFi v5.0"
 "Group"="NDIS"
 "ImagePath"="ufmp.dll"

[HKEY_LOCAL_MACHINE\Comm\ufmp1\Parms\TcpIp]
 "EnableDHCP"=dword:1
 "IpAddress"="0.0.0.0"
 "DefaultGateway"="0.0.0.0"
 "UseZeroBroadcast"=dword:0
 "Subnetmask"="0.0.0.0"

[HKEY_LOCAL_MACHINE\Comm\ufmp1\Parms]
 "BusType"=dword:0
 "BusNumber"=dword:0
 "PowerMobileMode"=dword:0
 "PollingModeEnabled"=dword:0
 "SdioBusWidth"=dword:4
 "SmeDebug"=dword:0
 "CoreDebug"=dword:0
 "DrvDebug"=dword:0

[HKEY_LOCAL_MACHINE\Drivers\SDCARD\ClientDrivers\Custom\MANF-032A-CARDID-0001-FUNC-1]
 "Dll"="ufmp.dll"
 "Prefix"="NDL"
 "Instance0"="ufmp:ufmp1"
 "DbgLevel"="1"

28.5 Unit Test
WLAN test includes CETK test and manual WLAN connection without protection.

28.5.1 Unit Test Hardware

Table 28-2 lists the required hardware on the 3-Stack board to run the unit tests.

Table 28-2. Hardware Requirements

Requirement Description

3 access points The Access point supports open/wep/wpa-psk.

laptop Used to setup adhoc network.

3-Stack board Test board.

WLAN Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 28-5

28.5.2 Unit Test Software

Table 28-3 lists the required software on the 3-Stack board to run the unit tests.

28.5.3 Running the WLAN Driver Tests

The Wi-Fi test suite requires three Wi-Fi access points to be present simultaneously, each configured for
different encryption schemes. In case there is only one access point available, the tests can be split into
three parts, depending upon encryption disabled: WEP 40-bit or WPA-PSK. Follow the steps below:

1. Create an ad-hoc Wi-Fi link (SSID: CE-ADHOC1) on a WLAN supported laptop or other
WLAN-supporting device

2. Power On 3DS board, and click LoadDriveriMX31.exe to load the wifi. If the Wireless driver can
be successfully loaded, Windows CE 6.0 displays a Window listing the available wireless networks

3. Select CE-ADHOC1 to connect, config the IPaddress

4. Use Ping tool to test the connection

5. Create an Open security AP, SSID: CE-OPEN, DHCP enable

6. Power On 3DS board, and click LoadDriveriMX31.exe to load the wifi. If the Wireless driver can
be successfully loaded, Windows CE 6.0 displays a Window listing the available wireless networks

7. Select CE-ADHOC1 to connect

8. Use Ping tool to test the connection

9. Create an WEP 40-bit security AP, SSID:CE-OPEN,DHCP enable, key 0x1234567890

10. Power On 3DS board, and click LoadDriveriMX31.exe to load the wifi. If the Wireless driver can
be successfully loaded, Windows CE 6.0 displays a Window listing the available wireless networks

11. Select CE-ADHOC1 to connect, set WEP , KEY 0x1234567890

12. Use Ping tool to test the connection

13. Create an WPA-PSK security AP, SSID:CE-OPEN,DHCP enable, key 12345678

14. Power On 3DS board, and click LoadDriveriMX31.exe to load the wifi. If the Wireless driver can
be successfully loaded, Windows CE 6.0 displays a Window listing the available wireless networks

15. Select CE-ADHOC1 to connect, set WEP , KEY 12345678

16. Use Ping tool to test the connection.

Table 28-3. Software Requirements

Requirement Description

Tux.exe Tux text harness, which is required for executing the test.

Kato.dll Kato logging engine, which is required for logging test data.

Tooltalk.dll Application required by Tux.exe and Kato.dll. Handles the transport between the
target device and the development workstation.

ufmp.dll Test ufmp.dll file for the test client

WLAN Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

28-6 Freescale Semiconductor

28.5.4 Test the WLAN Communication without Protection

This test covers the practical functionality of the Wireless LAN driver to connect to any public wireless
network for internet access. For this test it is required to have a 3-Stack board and any wireless access point
(maybe a wireless router) without any protection to the internet access. The test is considered passed if the
user can access http://www.google.com and view its contents. To run the test:

1. Turn on the board

2. If Windows CE 6.0 was correctly configured

3. Click LoadDriveriMX31.exe to load the wifi. If the Wireless driver can be successfully loaded,
Windows CE 6.0 displays a Window listing the available wireless networks

4. Select the wireless network without protection that you can use to navigate through the Internet

5. Open Internet Explorer from the desktop icon

6. Navigate through the Internet to http://www.google.com

http://www.google.com
http://www.google.com

Frequently Asked Questions

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor A-1

Appendix A
Frequently Asked Questions

A.1 How to Deal with Different Resolutions of the Display Panel?
The DirectDraw display driver does not support dynamic resolution change. You can specify the screen
resolution in either of two locations during boot up:

• The sdc.c file specifies the hardware-level register settings. Set the width and height using the
variables PANEL_INFO.width and PANEL_INFO.height; these parameters identify to the SDC
the size of the LCD panel. For more information about the register settings, see the chapter on the
Image Processing Unit (IPU) in the MCIMX31 and MCIMX31L Applications Processors Reference
Manual.

• The sdc.h file specifies the actual panel size in the software settings. Set the size values using
SCREEN_PIX_WIDTH and SCREEN_PIX_HEIGHT.

NOTE
If the user selects a large resolution, such as VGA (640x480), remember to
adjust the video memory size, which is set in the registry. For details, see
Section 10.4.2.2, “Display Registry Settings.”

A.2 How to Deal with Different Display Interface Formats?
The current driver setting uses the RGB565 interface format. It is recommended that you use the RGB565
interface, as it uses much less memory than the RGB888 interface, and it also provides a high quality color
representation.

Currently, the display driver supports only RGB565 and YUV422 surface. Better performance cannot be
obtained using the RGB666 and RGB888 display interfaces.

If the display panel does not support the RGB565 format, use other RGB format. Map RGB565 to
RGBXXX by changing three registers: DI_DISP3_B0_MAP, DI_DISP3_B1_MAP, DI_DISP3_B2_MAP.
These control the DI bus mapping unit. The setting of these registers is in the function InitializeSDC in the
sdc.c file. For further information about settings, see Section 44.4.6.4, “Bus Mapping Unit,” in MCIMX31
and MCIMX31L Applications Processors Reference Manual.

Frequently Asked Questions

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

A-2 Freescale Semiconductor

	Contents
	About This Book
	Audience
	Suggested Reading
	Conventions
	Acronyms and Abbreviations

	Chapter 1 Introduction
	1.1 Getting Started
	1.2 SDK System Architecture
	1.2.1 Tools and Bootloader
	1.2.2 BSP Layer
	1.2.3 Middleware and Core OS Service Layer
	1.2.4 Application Layer

	1.3 Windows Embedded CE 6.0 Architecture

	Chapter 2 ACC Driver
	2.1 ACC Driver Summary
	2.2 Supported Functionality
	2.3 Hardware Operation
	2.4 Software Operation
	2.4.1 Application / User Interface to ACC drives
	2.4.2 ACC Driver Configuration
	2.4.3 Loading and Initialization
	2.4.4 Mode Selection
	2.4.5 G-Level Selection
	2.4.6 Output Resolution
	2.4.7 Detection Axis
	2.4.8 Calibration
	2.4.9 Power Management

	Chapter 3 ATA Driver
	3.1 ATA Driver Summary
	3.2 Requirements
	3.3 Hardware Operation
	3.3.1 Conflicts with other Peripherals and Catalog Options
	3.3.2 Cabling

	3.4 Software Operation
	3.4.1 Application / User Interface to ATA drives
	3.4.2 ATA Driver Configuration
	3.4.3 Power Management
	3.4.4 Registry Settings
	3.4.5 DMA Support

	3.5 Unit Test
	3.5.1 Unit Test Hardware
	3.5.2 Unit Test Software
	3.5.3 Building the Storage Device Tests
	3.5.4 Running the Storage Device Tests

	3.6 Basic Elements for Driver Development
	3.6.1 BSP Environment Variables
	3.6.2 Mutual Exclusive Drivers
	3.6.3 Dependencies of Drivers

	3.7 Block Device API Reference
	3.7.1 IOCTL_DISK_DEVICE_INFO
	3.7.2 IOCTL_DISK_GET_STORAGEID
	3.7.3 IOCTL_DISK_GETINFO
	3.7.4 IOCTL_DISK_GETNAME
	3.7.5 IOCTL_DISK_READ
	3.7.6 IOCTL_DISK_SETINFO
	3.7.7 IOCTL_DISK_WRITE
	3.7.8 IOCTL_DISK_FLUSH_CACHE

	Chapter 4 Audio Driver
	4.1 Audio Driver Summary
	4.2 Requirements
	4.3 Hardware Operation
	4.3.1 Audio Playback
	4.3.2 Speaker output
	4.3.3 Required SoC Peripherals
	4.3.4 Conflicts with Other SoC Peripherals
	4.3.5 Known Issues
	4.3.6 Required MC13783 PMIC Components

	4.4 Software Operation
	4.4.1 Audio Playback
	4.4.2 Audio Recording
	4.4.3 Audio Driver Compile-time Configuration Options
	4.4.4 DMA Support
	4.4.5 Power Management
	4.4.6 Audio Driver Registry Settings

	4.5 Unit Test
	4.5.1 Unit Test Hardware
	4.5.2 Unit Test Software
	4.5.3 Building the Audio Driver CETK Tests
	4.5.4 Running the Audio Driver CETK Tests

	4.6 System-level Audio Driver Tests
	4.6.1 Checking for a Boot-time Musical Tune
	4.6.2 Confirming Touchpanel Taps and Keypad Key Presses
	4.6.3 Playing Back Sample Audio and Video Files Using the Media Player
	4.6.4 Using the SDK Sample Audio Applications for Testing

	4.7 Audio Driver API Reference
	4.8 Audio Driver Troubleshooting Guide
	4.8.1 Checking Build-time Configuration Options
	4.8.2 Confirming Audio Driver Loading During Device Boot
	4.8.3 Media Player Application Not Found
	4.8.4 Media Player Fails to Load and Play an Audio File

	Chapter 5 Backlight Driver
	5.1 Backlight Driver Summary
	5.2 Requirements
	5.3 Hardware Operation
	5.4 Software Operation
	5.4.1 Backlight Driver Registry Settings

	5.5 Unit Test
	5.5.1 Unit Test Hardware
	5.5.2 Unit Test Software
	5.5.3 Running the Backlight Application Test

	5.6 Backlight API Reference

	Chapter 6 Battery Driver
	6.1 Battery Driver Summary
	6.2 Requirements
	6.3 Hardware Operation
	6.3.1 Conflicts with other SoC Peripherals

	6.4 Software Operation
	6.4.1 Battery Driver Registry Settings
	6.4.2 Power Management

	6.5 Unit Test
	6.5.1 Unit Test Hardware

	6.6 Battery API Reference
	6.6.1 Battery PDD Functions
	6.6.2 Battery Driver Structures

	Chapter 7 Bluetooth Driver
	7.1 Bluetooth Driver Summary
	7.2 Supported Functionality
	7.3 Hardware Operation
	7.4 Software Operation
	7.5 Unit Test

	Chapter 8 Camera Driver
	8.1 Camera Driver Summary
	8.2 Supported Functionality
	8.3 Hardware Operation
	8.4 Software Operation
	8.4.1 Communicating with the Camera
	8.4.2 Camera Registry Settings
	8.4.3 Power Management

	8.5 Unit Test
	8.5.1 Unit Test Hardware
	8.5.2 Unit Test Software
	8.5.3 Building the Camera Tests
	8.5.4 Running the Camera Tests

	8.6 Camera Driver API Reference

	Chapter 9 Chip Support Package Driver Development Kit (CSPDDK)
	9.1 CSPDDK Driver Summary
	9.2 Supported Functionality
	9.3 Hardware Operation
	9.3.1 Conflicts with Other Peripherals

	9.4 Software Operation
	9.4.1 Communicating with the CSPDDK
	9.4.2 Compile-Time Configuration Options
	9.4.3 Registry Settings
	9.4.4 Power Management

	9.5 CSPDDK DLL Reference
	9.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
	9.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
	9.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
	9.5.4 CSPDDK DLL SDMA (DDK_SDMA) Reference

	Chapter 10 Display Driver
	10.1 Display Driver Summary
	10.2 Supported Functionality
	10.3 Hardware Operation
	10.3.1 Rotation Control
	10.3.2 TV Output Mode

	10.4 Software Operation
	10.4.1 Communicating with the Display
	10.4.2 Configuring the Display
	10.4.3 Power Management

	10.5 Unit Test
	10.5.1 Unit Test Hardware
	10.5.2 Unit Test Software
	10.5.3 Building the Display Tests
	10.5.4 Running the Display Tests

	10.6 Display Driver API Reference

	Chapter 11 Dynamic Voltage and Frequency Control (DVFC) Driver
	11.1 DVFC Driver Summary
	11.2 Supported Functionality
	11.3 Hardware Operation
	11.3.1 Pin Settings and Conflicts

	11.4 Software Operation
	11.4.1 Loading and Initialization
	11.4.2 Clock Tree Dependency
	11.4.3 Processor Workload Tracking
	11.4.4 Setpoint Consideration
	11.4.5 Lock and Performance
	11.4.6 DDK Interface
	11.4.7 Power Management

	11.5 Unit Test

	Chapter 12 FM Radio Driver
	12.1 Radio Driver Summary
	12.2 Supported Functionality
	12.3 Hardware Operation
	12.4 Software Operation
	12.4.1 Radio Driver Registry Settings
	12.4.2 Power Management

	12.5 Unit Test
	12.5.1 Unit Test Hardware
	12.5.2 Building the Radio Tests
	12.5.3 Running the Radio Tests

	12.6 Radio IOCTL Reference
	12.6.1 Radio Driver IOCTLS
	12.6.2 Radio Driver Structures

	Chapter 13 General Purpose Timer (GPT) Driver
	13.1 GPT Driver Summary
	13.2 Supported Functionality
	13.3 Hardware Operation
	13.3.1 Conflicts with Other Peripherals

	13.4 Software Operation
	13.4.1 Communicating with the GPT
	13.4.2 Creating a Handle to the GPT
	13.4.3 Configuring the GPT
	13.4.4 Write Operations
	13.4.5 Closing the Handle to the GPT
	13.4.6 Power Management
	13.4.7 GPT Registry Settings

	13.5 Unit Test
	13.5.1 Unit Test Hardware
	13.5.2 Unit Test Software
	13.5.3 Building the GPT Tests
	13.5.4 Running the GPT Tests

	13.6 GPT Driver API Reference
	13.6.1 GPT Driver Functions
	13.6.2 GPT Driver Structures

	Chapter 14 Global Positioning System Driver
	14.1 GPS Driver Summary
	14.1.1 Application layer
	14.1.2 GPS Core Driver Layer
	14.1.3 GPS HAL driver layer

	14.2 Supported Functionality
	14.3 Hardware Operation
	14.3.1 UART Port
	14.3.2 GPIO Control
	14.3.3 Conflicts with Other Peripherals

	14.4 Software Operation
	14.4.1 Communicating with the GPS Module
	14.4.2 Power Management
	14.4.3 GPS Driver Registry Settings

	14.5 Unit Test

	Chapter 15 Inter-Integrated Circuit (I2C) Driver
	15.1 I2C Driver Summary
	15.2 Requirements
	15.3 Hardware Operation
	15.3.1 Conflicts with other SoC peripherals

	15.4 Software Operation
	15.4.1 Communicating with the I2C
	15.4.2 Creating a Handle to the I2C
	15.4.3 Configuring the I2C
	15.4.4 Data Transfer Operations
	15.4.5 Closing the Handle to the I2C
	15.4.6 Power Management
	15.4.7 I2C Registry Settings

	15.5 Unit Test
	15.6 I2C Driver API Reference
	15.6.1 I2C Driver IOCTLS
	15.6.2 I2C Driver Macros
	15.6.3 I2C Driver Structures

	Chapter 16 Keypad Driver
	16.1 Keypad Driver Summary
	16.2 Requirements
	16.3 Hardware Operation
	16.3.1 The Keypad
	16.3.2 Conflicts with other SoC peripherals

	16.4 Software Operation
	16.4.1 Keypad Scan Codes and Virtual Keys
	16.4.2 Power Management
	16.4.3 Keypad Registry Settings

	16.5 Unit Test
	16.5.1 Unit Test Hardware
	16.5.2 Unit Test Software
	16.5.3 Building the Keyboard Tests
	16.5.4 Running the Keyboard Tests

	16.6 Keypad Driver API Reference
	16.6.1 Keypad PDD Functions

	Chapter 17 LAN9217 Product Ethernet Driver
	17.1 LAN9217 Product Ethernet Driver Summary
	17.2 Requirements
	17.3 Hardware Operation
	17.3.1 Conflicts with other SoC peripherals

	17.4 Software Operation
	17.4.1 Power Management
	17.4.2 Product Ethernet Registry Settings

	17.5 Unit Test
	17.5.1 Unit Test Hardware
	17.5.2 Unit Test Software
	17.5.3 Building the LAN9217 Product Ethernet Tests
	17.5.4 Running the LAN9217 Product Ethernet Tests

	17.6 LAN9217 Product Ethernet Driver API Reference

	Chapter 18 MBX Direct3D Mobile/OpenGL ES Drivers
	18.1 Direct3D Mobile/OpenGL ES Drivers Summary
	18.2 Supported Functionality
	18.3 Hardware Operation
	18.3.1 Conflicts with other Peripherals

	18.4 Software Operation
	18.4.1 Application / User Interface to MBX Drivers
	18.4.2 Configuring the LCD Display Panels
	18.4.3 Float Pointing Acceleration using the ARM VFP Library

	18.5 Unit Test
	18.5.1 Unit Test Hardware
	18.5.2 Unit Test Software
	18.5.3 Building the Direct3D Mobile Tests
	18.5.4 Running the Direct3D Mobile Tests
	18.5.5 Direct3D Mobile/OpenGL ES Application Samples/Demos
	18.5.6 Direct3D Mobile Application Samples
	18.5.7 Known Issues for MBX CE6 Driver

	18.6 Drivers API Reference
	18.6.1 Direct3D Mobile
	18.6.2 OpenGL ES

	Chapter 19 NAND Flash Media Driver (FMD)
	19.1 NAND FMD Summary
	19.2 Requirements
	19.2.1 Conflicts with other SoC peripherals

	19.3 Software Operation
	19.3.1 Compile-Time Configuration Options
	19.3.2 Registry Settings
	19.3.3 DMA Support
	19.3.4 Power Management

	19.4 Unit Test
	19.4.1 CETK Testing
	19.4.2 System Testing

	Chapter 20 Postfilter Driver
	20.1 Postfilter Driver Summary
	20.2 Requirements
	20.3 Hardware Operation
	20.3.1 Conflicts with other SoC peripherals

	20.4 Software Operation
	20.4.1 Communicating with the Postfilter Driver
	20.4.2 Creating a Handle to the Postfilter Driver
	20.4.3 Configuring the Postfilter Driver
	20.4.4 Executing Postfilter Operations
	20.4.5 Closing the Handle to the Postfilter Driver
	20.4.6 Postfilter Registry Settings
	20.4.7 Power Management

	20.5 Unit Test
	20.5.1 Unit Test Software
	20.5.2 Building the Postfilter Tests
	20.5.3 Running the Postfilter Tests

	20.6 Postfilter Driver API Reference
	20.6.1 Postfilter Driver Functions
	20.6.2 PF Driver Enumerations
	20.6.3 PF Driver Structures

	Chapter 21 Power Management IC (PMIC)
	21.1 PMIC Driver Summary
	21.2 Requirements
	21.2.1 PMIC API Framework

	21.3 Hardware Operation
	21.3.1 MX31 Peripheral Conflicts

	21.4 Software Operation
	21.4.1 Configuring the PMIC
	21.4.2 Creating a Handle to the PMIC
	21.4.3 Write Operations
	21.4.4 Read Operations
	21.4.5 Closing the Handle to the PMIC
	21.4.6 Power Management
	21.4.7 PMIC Registry Settings
	21.4.8 A/D Converter and Touch

	21.5 Unit Test
	21.5.1 Unit Test Hardware
	21.5.2 Unit Test Software
	21.5.3 Building the PMIC Tests
	21.5.4 Running the PMIC Tests

	21.6 PMIC Reference API
	21.6.1 PMIC Driver IOCTLS
	21.6.2 Interrupt Handling
	21.6.3 Register Access API
	21.6.4 Power Control Reference
	21.6.5 PowerCutTimer Functions
	21.6.6 Memory Hold Operation functions
	21.6.7 Power Cut Counter Functions
	21.6.8 Power Management
	21.6.9 Voltage Regulator
	21.6.10 Data Structures
	21.6.11 Switch mode regulator API’s
	21.6.12 Linear Voltage Regulator API’s
	21.6.13 Power Management
	21.6.14 Battery Charger
	21.6.15 Data Structures
	21.6.16 Battery Charger API (Compatible with SC55112 API)
	21.6.17 Battery Charger API (MC13783 Native For Compatibility with SC55112)
	21.6.18 Battery Charger API (MC13783 Native)
	21.6.19 Power Management

	Chapter 22 Power Manager
	22.1 Power Manager Summary
	22.2 Requirements
	22.3 Hardware Operation
	22.4 3-Stack Software Operation
	22.4.1 Power Management
	22.4.2 Image Configuration
	22.4.3 Registry Settings

	22.5 Unit Test
	22.6 Power Manager API Reference
	22.6.1 Application Interface
	22.6.2 Device Driver Interface

	Chapter 23 Secure Digital Host Controller Driver
	23.1 SDHC Driver Summary
	23.2 Supported Functionality
	23.3 Hardware Operation
	23.3.1 Conflicts with Other Peripherals

	23.4 Software Operation
	23.4.1 Required Catalog Items
	23.4.2 SDHC Registry Settings
	23.4.3 DMA Support
	23.4.4 Power Management

	23.5 Unit Test
	23.5.1 Unit Test Hardware
	23.5.2 Unit Test Software
	23.5.3 Building the Tests
	23.5.4 Running the Tests
	23.5.5 System Testing

	23.6 Secure Digital Card Driver API Reference

	Chapter 24 Serial Driver
	24.1 Serial Driver Summary
	24.2 Supported Functionality
	24.3 Hardware Operation
	24.3.1 Conflicts with Other Peripherals

	24.4 Software Operation
	24.4.1 Serial Registry Settings
	24.4.2 DMA Support

	24.5 Unit Test
	24.5.1 Unit Test Hardware
	24.5.2 Unit Test Software
	24.5.3 Building the Serial Port Driver Tests
	24.5.4 Running the Serial Port Driver Test

	24.6 Serial Driver API Reference
	24.6.1 Serial PDD Functions
	24.6.2 Serial Driver Macros
	24.6.3 Serial Driver Structures

	Chapter 25 Touch Panel Driver
	25.1 Touch Panel Driver Summary
	25.2 Supported Functionality
	25.3 Hardware Operations
	25.3.1 Conflicts with Peripherals
	25.3.2 Conflicts with i.MX31 3-Stack

	25.4 Software Operation
	25.4.1 Touch Driver Registry Settings

	25.5 Unit Tests
	25.5.1 Unit Test Hardware
	25.5.2 Unit Test Software
	25.5.3 Building the Touch Panel Tests

	25.6 Touch Panel API Reference

	Chapter 26 USB Boot and KITL
	26.1 USB Boot and KITL Summary
	26.2 Supported Functionality
	26.3 Hardware Operation
	26.3.1 Conflicts with Other Peripherals

	26.4 Software Operation
	26.4.1 Software Architecture
	26.4.2 Source Code Layout
	26.4.3 IOMUX and Pinout
	26.4.4 Power Management
	26.4.5 Registry Settings
	26.4.6 DMA Support

	26.5 Unit Test
	26.5.1 Building the USB Boot and KITL
	26.5.2 Testing USB Boot and KITL

	Chapter 27 USB OTG Driver
	27.1 USB OTG Driver Summary
	27.1.1 OTG Client Driver Summary
	27.1.2 OTG Host Driver Summary
	27.1.3 OTG Transceiver Driver Summary (For HIGH-SPEED only)

	27.2 Supported Functionality
	27.3 Hardware Operation
	27.3.1 Conflicts with Other Peripherals
	27.3.2 Signal Quality Requirement

	27.4 Software Operation
	27.4.1 USB OTG Host Controller Driver
	27.4.2 USB Client Driver
	27.4.3 USB Transceiver Driver (ID Pin Detect Driver -- XCVR)
	27.4.4 Power Management
	27.4.5 Function Drivers
	27.4.6 Class Drivers

	27.5 IRAM Patch
	27.6 Basic Elements for Driver Development
	27.6.1 BSP Environment Variables
	27.6.2 Dependencies of Drivers

	Chapter 28 WLAN Driver
	28.1 WLAN Driver Summary
	28.2 Supported Functionality
	28.3 Hardware Operation
	28.3.1 Conflicts with Other Peripherals

	28.4 Software Operation
	28.4.1 Wi-FI Registry setting

	28.5 Unit Test
	28.5.1 Unit Test Hardware
	28.5.2 Unit Test Software
	28.5.3 Running the WLAN Driver Tests
	28.5.4 Test the WLAN Communication without Protection

