i.MX31 PDK 1.5 Windows
Embedded CE 6.0

Reference Manual

Part Number: 926-77201
Rev. 1.5
2/2009

freescgle“

SSSSSSSSSSSS

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 010 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

+1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. The
Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© Freescale Semiconductor, Inc., 2008-2009. All rights reserved.

W POWERED

ARM

BUILT ON

freescale:

semiconductor

@

Contents

Paragraph Page
Number Title Number
About This Book
U 1= o o S XiX
SUQGGESIEA REAMING ...ttt ettt e e ee e et eh et s e et ne et sn e en e e enas XiX
(©00]01V7= 11 0] 1 RSO XiX
Acronyms and ADDIEVIALIONScc.ooiiiiiee ettt sttt es e st ese e e e e seenseenaeereenee e e enneas XX
Chapter 1
Introduction
11 GEEING STAMEA ... ettt se e b e 1-1
12 SDK SyStemM ATCIITECTUIE.c.eieiie ettt 1-1
121 TOOIS AN BOOUOBTES ...ttt e ene e e 1-2
122 BOP LAY ...t b 1-2
1.2.3 Middleware and Core OS SErVICE LAYENccoveerirerireeeie e 1-2
124 APPIICAITION LBYEN ...ttt e b se e e e 1-2
13 Windows Embedded CE 6.0 ArChItECIUNe.........cccueriiieieieceie e e 1-4
Chapter 2
ACC Driver
21 ACC DITVEN SUMIMAIY ...ttt e se et se et ss e ss e s se e ss et ss e e sre e e eseeneanes 2-1
22 SUPPOIEd FUNCHIONAIITY ..ottt e e 2-2
23 HarAWare OPEIaLiON........c.oiueie ittt sttt sr e e e b e e 2-2
24 SOfIWEAIE OPEIALTON ...ttt ettt eb et s e sn e sr e eee e enne e 2-2
241 Application / User Interface to ACC ArVES........coeveiirerireeie e 2-2
242 ACC DIiVEr CONFIQUIBLIONc.veiviieetereeeieseee et sr e sr e ese e se e e sne e enes 2-2
243 Loading and INItialiZaHION...........coeiirieeieeie et 2-2
244 MOE SEIECLION ...ttt ettt e e e e esaesreesee e e enneas 2-3
245 GLEVE SEIECHION ...ttt erae st st e e enen 2-3
24.6 OULPUL RESDIULION ...ttt st s 2-3
24.7 DEIECHION AXIS ..eieeieeie e etieetee e st e e estesteestesteesee et e s e essees e sseesses e esseenseesaesseessenneensens 2-3
248 (@7 1] o] 11 o] o ISR 2-4
249 POWEr ManagemMENtooiiiiee e e e 2-4
Chapter 3
ATA Driver
31 ATA DIIVEN SUMMBIY ..ot etieeteeseeseeieesaeeseeseesseessesseesseesseessessesssesssesssessessssssesssesneesses 31
3.2 REQUITEIMENTS ...ttt sttt es e s e sse e e e s e enseeneeesensaeeeennens 31

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
3.3 HarAWare OPEIaLiON........c.oiuiieieieieiee ettt ettt sr e eb e e 3-2
331 Conflicts with other Peripherals and Catalog Options............cccoevererireneneeinieeieees 3-3
332 (0= o[oo TR TSSO P TSP PRSP 3-3
34 SOfIWEAIE OPEIALTON ...ttt ettt se e eb et s e sn e sn e eee e s e 3-3
341 Application / User Interface to ATA ArVES ..o 3-3
34.2 ATA Driver CONfIQUIBLIONcouiiiiieieeie sttt ne s 34
34.3 POWEr ManagemMeNtooiiiie e e 34
344 REGISINY SEIINGS. ... ettt ettt se e sb et en e 3-5
345 DIMA SUDPOIT ...ttt ettt et nb e en e nn e ennennes 3-7
35 UNIE TESE ..ttt ettt bbb e e e et eb e ene e nn s 3-7
351 UNIT TESE HAIGWEIE........eeeeeee et 3-7
352 UNIT TESE SOFIWEAIE ...t s en e 3-8
353 Building the Storage DeVviCe TESES.......ccuiiiieiieeie et 3-8
354 Running the SIorage DEVICE TESIS........cciiieirire et 3-8
3.6 Basic Elementsfor Driver DeVEIOPMENtcoiieiire e 3-9
36.1 BSP Environment Variables...........o.ooiiiiiii e 3-10
36.2 MuUtUal EXCIUSIVE DIIVEIS ..ottt e e s 3-10
3.6.3 DEPENdENCIES OF DIIVENS......ccuiiieiiieeie ettt se e e e sne e 3-10
3.7 Block Device API REFEIENCE..........ooiiceee e e e 3-10
371 IOCTL_DISK_DEVICE_INFOoiitiiiiiiiiteie et 3-10
3.7.2 IOCTL_DISK_GET_STORAGEIDcciitiiiieieise et 3-11
373 [OCTL_DISK_GETINFO ...ttt e s 3-11
374 [OCTL_DISK_GETNAME ..ottt s e 3-11
3.75 [OCTL_DISK_READ ...ttt st sr e e 3-12
3.7.6 [OCTL_DISK_SETINFO.....ceiiiitiieiieeeie ettt e e e 3-12
3.7.7 [OCTL_DISK _WRITE... .ottt st se e e e ene e 3-12
3.7.8 IOCTL_DISK_FLUSH_CACHE ... et 3-12
Chapter 4
Audio Driver
4.1 AUIO DIIVEr SUMIMAIY ...ttt e sn e sr e en e enes 4-1
4.2 REQUITEIMENTS ...t e et b et se e e sr e 4-2
4.3 HarAWare OPEIALiON........c.oiuiieeeieieiee ettt sttt et sr e sr e eb e en s 4-3
43.1 AUIO PLayDaCK ... s 4-4
4.3.2 SPEAKEN QUEPUL ...ttt s et se e st ee et b e e e 4-5
4.3.3 Required SOC Peripherals...........ooo i 4-5
4.3.4 Conflicts with Other SOC Peripherals..........ooooieiiiiieiiie e 4-5
4.3.5 KINOWN ISSUES.......ceoeie ettt e e e e nn e nree e 4-5
4.3.6 Required MC13783 PMIC COMPONENES.......ccuiiiiereeieseeneeeeeeeiie e e seese s 4-5
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
iv Freescale Semiconductor

Paragraph
Number

44

441
4.4.2
4.4.3
444
445
4.4.6
45

451
45.2
45.3
454
4.6

4.6.1
4.6.2
4.6.3
4.6.4
4.7

4.8

48.1
4.8.2
4.8.3
4.8.4

5.1
5.2
5.3
5.4
541
5.5
551
55.2
553
5.6

Contents

Page
Title Number
SOfIWEAIE OPEIALTON ...ttt ettt se e se et s et sn e e e ere e enne e 4-6
AUIO PlayDaCK ... e 4-6
AUAIO RECOTTING. ...ttt ettt sttt er e eb e e 4-6
Audio Driver Compile-time Configuration Options...........coccoeeereeirneee e 4-6
DIMA SUDPOM ...ttt et sr sttt ese e b en e nn e e nnes 4-8
POWEr ManagemMEeNTccoiiiiiie e 4-10
AUdio Driver REQISITY SELlINGS........ccereeiereeeeee et 4-11
0T 1= RSO RUSTPR R 4-12
UNIT TESE HAIAWEAIE........oeieee e e s 4-12
UNIT TESE SOFIWEAIE ...t e e e 4-12
Building the Audio Driver CETK TESIScciviiiiiiesieee e 4-13
Running the Audio Driver CETK TESES........coieiirerereeieieeie e sees s 4-13
System-level AUAIO DIVEN TESES........ooiiiieeiere et e s 4-13
Checking for aBoot-time MusICal TUNEooeiiiirieieeee e 4-13
Confirming Touchpanel Taps and Keypad Key Presses..........cccoevevevenccinecienene 4-14
Playing Back Sample Audio and Video Files Using the Media Player 4-14
Using the SDK Sample Audio Applications for TeStINGcccccererererenereeieenes 4-14
AUdiO Driver APl REFEIENCEc.oouiiieiieeee e 4-14
Audio Driver Troubleshooting GUITE.............ooiiiiriiie i 4-14
Checking Build-time Configuration OPtiONS............cccerereeerneeeseeie e 4-14
Confirming Audio Driver Loading During Device BOOL............ccccooereneierceeinnennnen. 4-15
Media Player Application NOt FOUN...........oooiiiiiiiieeee e 4-15
Media Player Failsto Load and Play an Audio File...........cooooiiiiiniiiieee 4-15
Chapter 5

Backlight Driver
Backlight DriVer SUMIMEIYcooieiiiiieie sttt 5-1
REQUITEIMENTS ...ttt et re et e ettt e e e s 5-1
HarAWare OPEIaLiON........c..oiuiieieieieiee ettt ettt sr e sr e eb e nn s 5-2
SOfIWEAIE OPEIALTON ...ttt ettt sr et bt s e sn e e e e e enne e 5-2
Backlight Driver REQISIIY SEttinNgS........coeeirireeiereee et 5-2
0T 1= TSROV 5-2
UNIT TESE HAIOWEAIE........cceeeeee et e e e 5-3
UNIT TESE SOFIWEAIE ...ttt e s s 5-3
Running the Backlight AppliCation TESE........c.ooiiiriierie e 5-3
Backlight APl REFEIENCE ... e 5-4

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor '

Contents

Paragraph Page
Number Title Number
Chapter 6
Battery Driver
6.1 Battery DIiVEr SUMIMEIYccoiiieeiiieeie sttt ettt sr e sr e en e e 6-1
6.2 REQUITEIMENTS ...ttt ettt se et et er et eb e s nn s 6-1
6.3 HarAWare OPEIaLiON..........oiuiieieieieiee ettt sttt et e e se et nn s 6-1
6.3.1 Conflicts with other SOC Peripherals...........cccooiiiiiniicce e 6-2
6.4 SOfIWEAIE OPEIALTON ...ttt ettt sr ettt se e e e ebe e enne e 6-2
6.4.1 Battery Driver REQISITY SElINGS.cocveeiieieiieeeie et 6-2
6.4.2 POWEr ManagemMeNtooiiiiie e e 6-2
6.5 O = USSR 6-2
6.5.1 UNIt TESE HAIAWEIE. ...ttt ettt et e e en e snneenne e 6-3
6.6 Battery APl REFEIENCE.......oouiceeee e 6-3
6.6.1 Battery PDD FUNCLIONS.........couiiiieiiie ettt s 6-3
6.6.2 Battery DIiVEr SITUCIUIES.........oouiieieiee ettt ettt s s 6-4
Chapter 7
Bluetooth Driver
7.1 BlUELtOOL DIiVEr SUMIMEIYc.eiiieeieieeeeie ettt see e s se e e enseeneesseeseeeneenneas 7-1
7.2 SUPPOItEd FUNCHIONAIITYeeeeeee et enee e 7-2
7.3 HardWare OPEIELION.........cceeeeee e eeeerees e etteste et seee e e e e e e eseesseesseenee s e enseeneessenssesneesnens 7-2
731 Conflicts with Other Peripheralsand Catalog ItemsScccevevieeiece e 7-3
74 SOFtWAIr€ OPEIELIONeeeeeeeie ettt e e eaee s teesee e st e s e enseeseeaseessee e asseenseeneessennsenns 7-3
74.1 REGISIIY SBINGS. ... e ieeeeeeie ettt st se e s e e e e e esaesneeseeeneenneas 7-4
75 O = USRS 7-4
75.1 UNIt TESE HAIAWAEIE. ...ttt sttt et e e sneeenne e 7-4
75.2 UNIt TESE SOfIWEIE ...ttt et e er e e r e eane e 7-4
7.5.3 RUNNING the UNIT TESES ...ttt e e 7-4
754 Operation Attention [teMS aNA TIPS.......ooveierreeie e 7-7
7.5.5 KINOWN [SSUES........eeieee ettt ettt e et e e e e aae e e e e nnseee e e essnaneeensaeeeennsnneeaans 7-8
Chapter 8
Camera Driver
8.1 CameEra DIIVEr SUMIMEIYcc.eoiieieeieeiestieseeeseeseeesees e esaeeseesseeseeseesseenseeseesseessesneenseensesses 8-1
8.2 SUPPOItEd FUNCHIONAIITYeeieeee et snee e 8-1
8.3 HardWare OPEIELION.........ceeieeee e seeerees e ete et seee e e e e e e eseesseesseenee s e enseeneeeseessesneensens 8-2
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
Vi Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
8.4 SOfIWEAIE OPEIALTON ...ttt ettt se e se et s et sn e e e ere e enne e 8-2
84.1 Communicating With the CaMEra...........ooeieiirire e 8-2
84.2 Camera REQISITY SEIINGS......couerereeiieieie et 8-2
84.3 POWEr ManagEMENTcocviiiie e e nnee e 8-3
85 0T 1= TSROSO 8-4
851 UNIT TESE HAIAWEAIE........eceeeece e e e 8-4
8.5.2 UNIT TESE SOFIWEAIE ...t s eb e 8-4
8.5.3 Building the Camera TESES.ccuoieiire et e 8-5
854 RUNNING the CamMEra TESESccuiieieie et e 8-6
8.6 CameraDriver APl REFEINENCE........ccociiieieieciee ettt e e 8-6
Chapter 9
Chip Support Package Driver Development Kit (CSPDDK)
9.1 CSPDDK DIIVEr SUMIMEIYccuviieiieieiie et sese et se et ss e sses et se e ssese s e sseseessennas 9-1
9.2 SUPPOIEd FUNCHIONAIITY ..ottt e e 9-1
9.3 HarAWare OPEIaLiON........c.ueiuiieeeieiei ettt sttt se e sr e eb e nn s 9-2
931 Conflicts with Other Peripherals..........cooiiieiiiiee e 9-2
94 SOfIWEAIE OPEIALTON ...ttt ettt ettt se e et eb et b e e e aesr e 9-2
94.1 Communicating With the CSPDDKooiiiiiie e 9-2
94.2 Compile-Time Configuration OPLIONS...........ccuererieriire e 9-2
94.3 REGISINY SEEINGS. ... ettt e e bt en e e 9-3
94.4 POWEr ManagemMeNtc.oooiiiie e s e 9-3
9.5 CSPDDK DLL REFEIENCE.ceiieiie ettt ettt s 9-3
951 CSPDDK DLL System Clocking (DDK_CLK) Reference..........ccocecvvveeeneeneseeniennes 9-3
95.2 CSPDDK DLL GPIO (DDK_GPIQO) REfEIENCE.........coereeeieieie e 9-6
953 CSPDDK DLL IOMUX (DDK_IOMUX) Reference.........ccooveeerneeienecie e 9-10
954 CSPDDK DLL SDMA (DDK_SDMA) REfEIENCe........cccerireereeiireeiienecie e 9-14
Chapter 10
Display Driver
10.1 Display DIiVEr SUMMEIYccoeuiiieieieeie st sses et se e e se e e ss e see e ese e ense e 10-1
10.2 SUPPOItEd FUNCHIONALITYoeeeieeeie ettt e e s 10-1
10.3 HaradWare OPEIatiON...........ooiieeiieeiie ettt ettt se e sr e se e s e e 10-2
10.3.1 ROLEETON CONIO ... s 10-2
10.3.2 TV OULPUL IMOTE. ...ttt st 10-2
104 SOfIWEAIE OPEIALTONceeieeeieeee ettt ettt sr et se e ss e st et ene e 10-3
104.1 Communicating With the DiSPlaycceiiieeniee e 10-3
104.2 Configuring the DISPIAYcoeeeieeieee e 10-4
104.3 POWEr ManagEmMENTcooiiiiie e s e 10-5

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor vii

Contents

Paragraph Page
Number Title Number
10.5 O I OSSR 10-5
105.1 (O S =0 Y7 SRR 10-6
10.5.2 UNIT TESE SOFIWAIE ...ttt e eneeere e e 10-6
10.5.3 Building the Display TESES.......ocueieieee et 10-7
1054 RUNNING the DiSplay TESES........ociiieeee e e 10-7
10.6 Display Driver APl REFEIENCE........cuiiiereie ettt 10-7
Chapter 11
Dynamic Voltage and Frequency Control (DVFC) Driver
111 DV FC DIIVES SUMIMEBIY ...eeviieetiieetisseesie e ssess et ssesiessese et e s s e ssessessessessesneessensansesees 11-1
11.2 SUPPOIEd FUNCHIONALITY ..ot 11-1
11.3 HardWare OPEIatiON...........ooiieeiieeiie ettt ettt se e e sr e b e e e 11-2
1131 Pin SettingS and CONFIICES.oviiiiie e 11-2
11.4 SOftWAIE OPEIELIONcueeeeieeeee ettt st sr e eb et re e e sn e ene s 11-2
1141 Loading and INItialiZaHION...........ooeiireeeieeeiei e e e 11-2
11.4.2 ClOCK Tree DEPENUENCYccveueeeeieeiieeeie ettt e 11-2
11.4.3 Processor Workload TraCking..........coeceeeeieinece et 11-2
11.4.4 SELPOINT CONSIAETELION.......coueeeieie ettt e e sr e 11-3
11.4.5 LOCK @nd PerfOrMaNCE........c..oeueeieerieeeee ettt et eree e 11-3
11.4.6 1D S 11 = ot SRR 11-3
114.7 PoOwWer ManagemMEeNTccooiiiiieeie et e e 11-3
115 O I OSSR 11-4
Chapter 12
FM Radio Driver
121 RaiO DIIVEr SUMIMEIY ...c.eeieeie ettt st sree s ne e e enseeneeeseensens 12-1
12.2 SUPPOItEd FUNCHIONAIITY ..ottt e e 12-1
12.3 HardWare OPEIaLION..........cceieeie et seese et ete e et see e e e s e e e eseeeseesseeneesneenseeneesseessens 12-1
124 SOTtWAIr€ OPEIEHIONeeeeeie ettt st eetae e e e s e e e entesseeseee e e s e e seeseessensseseenseas 12-1
124.1 Radio Driver REgIStry SEtINGS.cceiveieiiese ettt st neens 12-2
12.4.2 POWEr MaNAJEMENTot snne e snne e e enee s 12-2
12.5 O I S 12-2
125.1 (O S =0 Y7 PR 12-3
1252 Building the RA0IO TESES.c.oiieiieieciese ettt 12-3
1253 RUNNING the RAAIO TESES. ... 12-3
12.6 Radio IOCTL REFEIENCE.eieeie ettt sree e 12-3
12.6.1 Radio DIiVEr IOCTLS ...ttt eneeeree e 12-3
12.6.2 RaiO DIIVEr SITUCLUIES ...t sttt st st enae e e e 12-6
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
viii Freescale Semiconductor

Paragraph
Number

131

13.2

13.3

1331
134

134.1
134.2
134.3
134.4
134.5
13.4.6
134.7
13.5

1351
1352
13.5.3
1354
13.6

136.1
13.6.2

141
1411
14.1.2
14.1.3
14.2
14.3
1431
14.3.2
14.3.3
144
1441
14.4.2
144.3
145

Contents

Page
Title Number
Chapter 13
General Purpose Timer (GPT) Driver
GPT DIVEN SUMIMEIY ...ttt e sr et e e se e ss e s ene e e 13-1
SUPPOItEd FUNCHIONALITYoeieieeeiie et s 13-1
HardWare OPEIatiON...........ooiieeiiieeiie ettt sr e sa e s e e 13-1
Conflicts with Other Peripherals..........ooo i 13-2
SOftWEAIE OPEIATON ...ttt ettt e e bt s et sr e sr e ene e 13-2
Communicating With the GPT ..o e 13-2
Creating aHandle to the GPT ... e 13-2
ConfigUITNG the GPT ...t e 13-2
WWITEE OPEIELIONS. ...ttt ettt re e ettt e se et sr et et eae e nnan 13-3
Closing the Handle to the GPT ..o e 13-3
POWEr ManagEmMENTcooiiiiie et e e 13-4
GPT REQISINTY SEINGS.ceeutereeie ittt e sr e ene e 13-4
0T 1= O SROUSTPR 13-4
UNIT TESE HAIAWEAIE........oei ettt 13-4
UNIT TESE SOFIWEAIE ...ttt 13-5
BUIlAING the GPT TESES ...ttt et 13-5
RUNNING the GPT TESEScuictieeeee ettt 13-5
GPT Driver APl REFEIENCE........oiie e e 13-6
GPT DIVEN FUNCHIONS........oitiiiiie ettt s e e 13-6
GPT DIVEN SITUCLUINESeceieeeiie sttt e st se et e sr e e 13-9
Chapter 14
Global Positioning System Driver
GPS DIIVEN SUMIMEIY ...ttt ettt e se e ss et et sn e e ss e e et s e e e 14-1
APPIICATON TAYE ... e e e e 14-2
GPS COre DIIVES LAYEN....c.ecieieiie ettt sttt st se e sr e en e e 14-3
GPS HAL AriVEr TAYEN ...t e e 14-3
SUPPOItEd FUNCHIONALITYoeieeeeiie ettt 14-3
HardWare OPEIatiON...........ooiie ettt sttt sr e bt en e e 14-3
UART PO ...ttt et ettt se s e s enas 14-3
GPIO COMNIOL ..ottt e et bt ne e e sr et sr e eb e 14-3
Conflicts with Other Peripherals..........ooo i 14-4
SOfIWEAIE OPEIATON ..ottt ettt ettt e e bt e sn e ene e 14-4
Communicating with the GPS Module.............ooooiiiiieee e 14-4
POWEr ManagEmMENTcoiiiiiie e s 14-4
GPS Driver REgISIIY SEiNGS......ccviiiieieeie ettt 14-4
0T 1= S OUSTPRR 14-4

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor ix

Contents

Paragraph Page
Number Title Number
Chapter 15
Inter-Integrated Circuit (12C) Driver
151 [2C DIIVEN SUMIMEYeeiiiieeeieeeie sttt se e e se et s e sn e sn e ene e e enee e 15-1
15.2 REQUITEIMENTS ...ttt e e e se e ee et eb et s e e e 15-1
153 HardWare OPEIatiON...........ooiieeiiieeiie ettt sr e sa e s e e 15-1
1531 Conflicts with other SOC peripherals..........cocoiiiieiiniecee e 15-2
154 SOftWEAIE OPEIATON ...ttt ettt e e bt s et sr e sr e ene e 15-2
154.1 Communicating With the 12C...........c.oiiee e 15-2
154.2 Creating aHandle tothe 12C ..o e 15-2
154.3 ConfiguIING thE T2C ... e e 15-3
154.4 Data Transfer OPErationsS...........cccueiereriere et 15-4
154.5 Closing the Handle to the 12C............o o e e 15-6
15.4.6 POWEr ManagEmMENTcooiiiiie et e e 15-6
154.7 [2C REQISITY SEHINGS. ... veuteieiie ettt sttt se e sr et sn e sne e enee e 15-6
15.5 UNIE TESE ..ottt ettt et ekttt ee bbb e e e s e 15-7
15.6 [2C Driver API REFEIENCE ... 15-7
156.1 [2C DIIVEN TOCTLS....eece ettt e e et s 15-7
15.6.2 [2C DIIVEN IMIBEIOS......ccueieeaie sttt ettt e et bt s et e e e ene e 15-9
15.6.3 [2C DIIVEN SITUCLUIES.......ccuieieiie ettt sttt e se e es et sr e en e 15-13
Chapter 16
Keypad Driver
16.1 Keypad DIiVEr SUMMEIYccoeiiieieieeie et ssese et se e se e e ss e sse e esee e enee e 16-1
16.2 REQUITEIMENTS ...ttt et et e sr e bt eb e e e s e 16-1
16.3 HarAWare OPEIatiON...........ooiieeierieiie ettt se e sr e eb e ese e e 16-1
16.3.1 THE KEYPAO.... ettt et 16-2
16.3.2 Conflicts with other SOC peripherals..........cocoeriiiiinieceee e 16-2
164 SOfIWEAIE OPEIATON ..ottt ettt ettt e e bt e sn e ene e 16-2
16.4.1 Keypad Scan Codes and Virtual KEYS..........ooiiiiiiiinieee s 16-3
16.4.2 POWer ManagemMEeNTcooiiiiieeeee e e 16-3
16.4.3 Keypad REQISITY SEtINGS........cieerireeieieeie st s sr e ene e 16-4
16.5 UNIE TESE ..ttt ettt eh et ekt e et et en et eb et eb e e e ene e 16-4
16.5.1 UNIT TESE HAIAWEAIE........eceieeeee et 16-4
16.5.2 UNIT TESE SOFIWEAIE ...ttt 16-4
16.5.3 Building the Keyboard TESES..........oiiierie e 16-5
1654 Running the Keyboard TESES..........ooiiirriie e 16-5
16.6 Keypad Driver APl REFEIENCE........cuiieiie ettt 16-5
16.6.1 Keypad PDD FUNCLIONS........ccoiiiiie et e s 16-5
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
X Freescale Semiconductor

Contents

Paragraph
Number Title
Chapter 17
LAN9217 Product Ethernet Driver
171 LAN9217 Product Ethernet Driver SUMMANYcccooeeereeneneeneseeeeie e
17.2 REQUITEIMENTS ... e s
17.3 Hardware OPEration...........cceeeeierieierees et e
1731 Conflicts with other SOC peripherals..........coccoieirieeieiere e,
174 SOftWEAIrE OPEIAION.......eeeeeiieeieee et e sr e
174.1 Power Management ..o e e
17.4.2 Product Ethernet Registry Settings..........ooevrereeerene e
17.5 (0T 1= OSSR
1751 UNit TESt HAIAWEAIE........oeieeeeee e
17.5.2 UNIt TESE SOfIWEAIE ...
1753 Building the LAN9217 Product Ethernet TeStS..........cccocerineniniccinneene.
1754 Running the LAN9217 Product Ethernet TESESccoceeevieenciereeen
17.6 LAN9217 Product Ethernet Driver APl Reference.........ccooveeenveeieneccenene
Chapter 18
MBX Direct3D Mobile/OpenGL ES Drivers

18.1 Direct3D Mobile/OpenGL ES Drivers SUMMAarYcccceeevereneeesieeneneenns
18.2 Supported FUNCHONALITY ..ot
18.3 Hardware OPEration...........coeeieieriereniese ettt
18.3.1 Conflicts with other Peripherals..........ccocooiiiiiniie e
184 SOftWEAIrE OPEIATION.......eeeevieeeiieeee ettt s sr e
184.1 Application / User Interface to MBX DIiVESS ...
18.4.2 Configuring the LCD Display Pan€els.........c.ccoooiriiinciinie e,
18.4.3 Float Pointing Acceleration using the ARM VFP Librarycccccceee.
18.5 (0T 1= OSSR
1851 UNit TESt HAIAWEAIE........oeieeceeee e
18.5.2 UNIt TESE SOfIWEAIE ... e
18.5.3 Building the Direct3D MoDbile TESES........ccciriiecieeee e
1854 Running the Direct3D Mobile TESES.......ccceirirecieeee e
18.5.5 Direct3D Mobile/OpenGL ES Application SamplesDemos....................
18.5.6 Direct3D Mobile Application SamPIes..........cccooeeirieienene e
18.5.7 Known Issues for MBX CEG DIV ..o
18.6 Drivers APl REFEIENCE.ccuiiiieieiie sttt
18.6.1 DireCt3D MODIE. ... e
18.6.2 OPENGL ES......eee et et

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Page
Number

Freescale Semiconductor

Xi

Contents

Paragraph Page
Number Title Number
Chapter 19
NAND Flash Media Driver (FMD)

191 NAND FMD SUMMEIY ..ottt see e e ss e sr e sne e e s e nes 19-1
19.2 REQUITEIMENTS ...ttt e e e se e ee et eb et s e e e 19-1
1921 Conflicts with other SOC peripherals..........cocoeririiiniece e 19-2
19.3 SOfIWEAIE OPEIATON ...ttt ettt e bt e e e sr e ene e 19-2
1931 Compile-Time Configuration OPLIONS...........ccererierireeereeee e 19-2
19.3.2 REGISINY SEINGS. ... ettt ettt sr e sn e ee e e 19-2
19.3.3 DIMA SUDPOIT ...ttt ettt sr e sr st sr e er e e e enneereenn e 19-2
1934 POWEr ManagEmMENTooiiiiiie e e 19-2
19.4 UNIE TESE ..ttt ettt eh ek ettt e e er e b et eb e e e enee e 19-3
194.1 CETK TESLNG ...ttt sttt et se e e se et st eh et e e e e en et eb e ene e e enn s 19-3
194.2 SYSEOM TESHNQ ..+ttt e ettt se e ee et bt ene e ene s 19-4
Chapter 20
Postfilter Driver
20.1 POSLTIItEr DIIVEr SUMMIBIYc.eeivieeiie ettt sr e b e 20-1
20.2 REQUITEIMENTS ...ttt ee et sr e eb et en e e s e 20-1
20.3 HardWare OPEIatiON...........ooueieeiieeiie ettt ettt se e sr e sa e s e 20-2
20.3.1 Conflicts with other SOC peripherals..........cocoeiiieiiniecce e 20-2
204 SOfIWEAIE OPEIATON ..ottt ettt sr e bt e sr e ene e 20-2
204.1 Communicating with the POStTilter DIIVES ..o e 20-2
20.4.2 Creating a Handle to the POSITIlter DIVES ... 20-2
20.4.3 Configuring the POSLTITEr DIIVENoccceiee e e 20-2
204.4 Executing POstfilter OPErations...........ooooeiirire i 20-3
20.4.5 Closing the Handle to the POSilter DIVES ..o 20-4
20.4.6 POStfilter REGISIIY SEINGScoeeeeieeie et 20-4
20.4.7 POWEr ManagemMeNtcooiiiiie e e e e 20-4
20.5 UNIE TESE ..ot eb e et eb et eb et es e e e srene e 20-5
205.1 UNIT TESE SOFIWEAIE ...ttt 20-5
20.5.2 Building the POSITIItEr TESES.......ccuiieceie e 20-5
20.5.3 RUNNING the POSITIITEr TESES.......ccueieeieseee et 20-5
20.6 Postfilter Driver APl REFEIENCE.........ooiiiie e 20-6
20.6.1 POSLTIlter DrIVEr FUNCHIONS.......c.ciiiieiieieeie ettt 20-6
20.6.2 PF Driver ENUMEIALIONScc.oiiiiieeie sttt s sr e e 20-10
20.6.3 PF DIVEN SITUCLUMNES ...ttt e e e e 20-11
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
Xii Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
Chapter 21
Power Management IC (PMIC)

211 PMIC DIIVEN SUMIMEIYeeiviie et se e ss s see e see e es e es e ss e sse e ssesneesee e aneennas 21-1
21.2 REQUITEIMENTS ...ttt e bt eb et se et sr e e 21-1
2121 PMIC APl FramEWOIK.......cue ittt sn e 21-2
213 HardWare OPEIaLiON.........c.ocirieieie ettt et sr et e e sn e enen 21-3
2131 MX31 Peripheral ConfliCLS.......cccouiiiiiiie e 21-3
214 SOfIWAIE OPEIALTONceeieeeieeceie ettt et e et ee et se et sr e st e s e 21-3
2141 Configuring the PMIC ...t et 21-3
21.4.2 Creating aHandle to the PMIC..........ooiiiii e 21-3
21.4.3 WWITEE OPEIELIONS. ...ttt ettt re e ettt e se et sr et et eae e nnan 21-4
21.4.4 REAN OPEIALIONS..... vttt sttt sttt se e et er b ere et ese e e enee e 21-4
21.4.5 Closing the Handle to the PMIC...........coo e 21-4
21.4.6 POWeEr ManagemMENTcooiiiiie e e 21-4
21.4.7 PMIC REQISITY SEIINGS ... cveeverieetereeiiese ettt se e e sr e sne e 21-5
21.4.8 A/D Converter and TOUCK.........cccuiiiie it 21-5
215 UNIE TESE ..ottt se e bt b et e ee et er bbb e e e s e 21-8
2151 UNIT TESE HAIAWEAIE.......eei ettt e 21-8
2152 UNIT TESE SOFIWEAIE ...ttt sn et 21-8
2153 BUIlAiNG the PMIC TESES. ...ttt e 21-9
2154 RUNNING the PMIC TESES.ccuiiieiieece ettt 21-9
216 PMIC REFEIENCE AP ...ttt e 21-10
21.6.1 PMIC DIiVEr TOCTLS ... ittt st e e e 21-10
21.6.2 INtErTUPE HANAIING. ...t e s 21-12
21.6.3 REGISIEr ACCESS AP ... e e 21-18
21.6.4 Power Control REFEIENCE.........ccoiiiie e 21-19
21.6.5 POWErCULTIMEN FUNCHIONS ...ttt e e e 21-29
21.6.6 Memory Hold Operation fUNCLIONScoiiiieiiri i 21-30
21.6.7 Power Cut CouNter FUNCLIONS........cccoieiiie ettt 21-32
21.6.8 POWEr ManagemMENT ..o e 21-33
21.6.9 VOItage REQUIBLON ...ttt e e e 21-33
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
Freescale Semiconductor Xiii

Contents

Paragraph Page
Number Title Number
21.6.10 Data SITUCTUIES.......cee ettt ettt et sn e nn e 21-33
216.11 SWitch MOode regulaior APIS........c..oiie e e 21-37
21.6.12 Linear Voltage ReQUIAIOr API’S.........cuo ittt 21-42
21.6.13 PoOwWer ManagemMEeNTc.ooiiiiiieir e e e 21-44
216.14 Battery CRalQer .. .o e e e 21-44
21.6.15 Data SITUCTUIES.......cee ettt sttt e e e nr e nn e 21-44
21.6.16 Battery Charger API (Compatible with SC55112 API)....ccooeviieiiecieeeecee 21-44
21.6.17 Battery Charger API (MC13783 Native For Compatibility with SC55112) 21-47
21.6.18 Battery Charger APl (MCL3783 NaLIVE)cccoeivirieiireeiiereeie e 21-48
21.6.19 POWEr ManagEmMENTc.cooiiiiie e e 21-54
Chapter 22
Power Manager
221 Power Manager SUMMBITYcoueoioiireeieie et sr e sneennens 22-1
222 REQUITEIMENTS ...ttt e e e ee e ee et eb et b e e s e 22-1
22.3 HardWare OPEIatiON...........ooiieeieieeie ettt ettt e sr e sr e s e e 22-1
224 3-StaCk SOMtWare OPEraHION.......cc.eieeiieeeie sttt s sr et 22-1
2241 POWEr ManagemMEeNTcoiiiiiie et 22-2
2242 IMBGE CONFIGUIBLION ...ttt 22-2
2243 REGISINY SEINGS. ... vttt ettt ettt r e en et s e e 22-3
225 UNIE TESE ..ottt eh e b ettt er et et et e b e e e enee e 22-4
22.6 Power Manager APl REFEIENCEooiiiiiiereie ettt 22-4
226.1 APPIICATON INEEITACE ... e 22-4
22.6.2 DeViCe DIIVEr INEEITACE ...ttt s 22-5
Chapter 23
Secure Digital Host Controller Driver
231 SDHC DIVEN SUMIMEIY ...ttt et ss et se e sse e sres e ese e enee s 23-1
23.2 SUPPOItEd FUNCHIONALITY ..ottt e e e 23-1
23.3 HaradWare OPEIatiON...........ooiieeiiie ettt se e sr e sb e e es 23-1
2331 Conflicts with Other Peripherals..........oooiiiiiiiirecee e 23-2
234 SOftWEAIE OPEIATON ...ttt ettt e e bt e sr e ene e 23-2
234.1 Required CatalOg [TEMSc.oiiiieeee ettt sr e s 23-2
234.2 SDHC REQISITY SEIINGSccuveieerieieeie ettt se e e s e e ene e 23-2
234.3 DIMA SUDPIOIT ...ttt ettt sr e e en e sn e e ennenn e nn e 23-3
234.4 POWEr ManagemMEeNTccoiiiiiie e 23-3
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
Xiv Freescale Semiconductor

Paragraph
Number

235

2351
2352
2353
2354
2355
23.6

241
24.2
243
243.1
244
2441
24.4.2
245
2451
2452
2453
2454
24.6
246.1
24.6.2
24.6.3

251
25.2
253
2531
25.3.2
254
254.1

Contents

Page
Title Number
0T 1= OSSR 23-4
UNIT TESE HAIAWEAIE........oei ettt e 23-4
UNIT TESE SOFIWEAIE ...ttt 23-5
BUITAING ThE TESES ... e 23-5
RUNNING The TESES......ee e e e 23-5
SYSEOM TESHNQ .. vttt ettt ee et sr et eb e en e 23-6
Secure Digital Card Driver APl REFEIENCE.........cccueiieieie e 23-6
Chapter 24
Serial Driver
Serial DIIVEr SUMIMBIYoouviiiieieeie ettt et sr et se e e sr et ene e 24-1
SUPPOItEd FUNCHIONALITYooeieeeeeie et e e s 24-1
HaradWare OPEIatiON...........ooiieeiireeiie ettt sr e sr e e s e e 24-2
Conflicts with Other Peripherals..........coo i 24-2
SOfIWEAIE OPEIATON ...ttt ettt r e e bt sr e sr e ene e 24-2
Serial REQISIIY SEIINGS.ot e 24-2
DIMA SUDPIOIT ...ttt ettt sr e e en e sn e e ennenn e nn e 24-3
0T 1= USRS 24-4
UNIT TESE HAIAWEAIE........ceie e e 24-4
UNIT TESE SOFIWEAIE ...ttt sr et 24-4
Building the Serial Port DIVEr TESES......coeiirireeiireeie e 24-4
Running the Serial POrt DIIVErN TESE........cci it 24-4
Serial Driver APl REFEIENCE.........coi it et 24-5
Serial PDD FUNCLIONS ..ottt st 24-6
SEXTal DIIVELN IMACIOS.......coeiieieiie ettt sttt sb e e 24-7
SErial DIIVEr SIUCIUIES ...ttt 24-7
Chapter 25
Touch Panel Driver
Touch Panel DIiVEr SUMIMEIYccceuiiiiieriine ettt sr e e sre e ene e 25-1
SUPPOItEd FUNCHIONALITYooeieeeeie et e e 25-1
HardWare OPEIatiONSco.eieeiiieeiie ettt ee et e e e se e sr e sb et ese e e 25-1
ConflictS With PefipRerals.........cc.oiiiiiiiie e 25-2
ConflictS With I.MX3L 3-SEACKccueeiiiereiiee e 25-2
SOfIWEAIE OPEIALTONceeieeeee ettt et sr et e e se et sr e sr et s e e e 25-2
Touch Driver REQISITY SEIINGS........ooiiuerriie ettt 25-2

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor XV

Contents

Paragraph Page
Number Title Number
255 UNIE TESES ..ttt ettt eb et b et re et er et eb et b e e e ene e e 25-3
2551 UNIT TESE HAIAWEAIE........oei ettt e 25-3
255.2 UNIT TESE SOFIWEAIE ...ttt 25-3
2553 Building the Touch Panel TESES.........cco i 25-4
25.6 Touch Panel APl REFEIENCE.........cco i e e 25-4
Chapter 26
USB Boot and KITL
26.1 USB B0oot and KITL SUMIMAYccuoiiiiieiiiee e 26-1
26.2 SUPPOItEd FUNCHIONALITY ..ottt e e e 26-1
26.3 HaradWare OPEIaLiON...........ooeieeiiie ettt ettt se e sr e sb e e e e 26-2
26.3.1 Conflicts with Other Peripherals..........ooo i 26-2
26.4 SOftWEAIE OPEIATON ...ttt ettt e e bt e e e sr e ene e 26-2
26.4.1 SOftWArE ATCHITECTUIE........eiee ettt e 26-2
26.4.2 SOUICE COUB LBYOUL.........oeemieieiie ettt ettt s en e 26-3
26.4.3 TOMUX 8N PINOUL. ...ttt se e sr e sn e eas 26-3
26.4.4 POWeEr ManagEmMENTcoiiiiiieee et 26-3
26.4.5 REGISINY SEIINGS. ...ttt ettt sr e bt ee e e e 26-3
26.4.6 DIMA SUDPIOIT ...ttt ettt et sr e sn e en e enneeneenn e 26-3
26.5 UNIE TESE ..ottt e e bt b et et er et ee et eb e e e enee e 26-4
26.5.1 Building the USB B0OOt @nd KITLc..ooiiiiiiie e 26-4
26.5.2 Testing USB BOOE @N0 KITL ..ottt e s 26-4
Chapter 27
USB OTG Driver
271 USB OTG DIiVEr SUMMEIYccveieeiieeeieseeie et seesieseese et ne e ss e e snes e snesseeses e anse e 27-1
2711 OTG Client DriVEr SUMMEIYccoiieeeeeiereeseeie e e se e ssesseseesessesseennens 27-1
27.1.2 OTG HOSE DIIVEr SUMMEIYoeueeieieeeiieeeeie et se e sr e sne e e 27-2
27.1.3 OTG Transceiver Driver Summary (For HIGH-SPEED only)........ccccocv i 27-2
27.2 SUPPOIEd FUNCHIONALITY ..ottt e s 27-3
27.3 HardWare OPEIatiON...........ooiieeiiieeiie ettt sttt sr e b e e e e 27-4
27.3.1 Conflicts with Other Peripherals..........ooo i 27-4
27.3.2 Signal Quality REQUITEMENE.........cc.oiiiie e e e 27-4
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
XVi Freescale Semiconductor

Paragraph
Number

274

274.1
27.4.2
274.3
274.4
27.4.5
27.4.6
275

276

27.6.1
27.6.2

28.1
28.2
28.3
2831
284
284.1
285
2851
285.2
2853
2854

Al
A2

Contents

Page
Title Number
SOfIWEAIE OPEIALTON.....ceeeeeieieeee ettt et sr ettt se et se e et et ese e enee s 27-4
USB OTG HOSt CONLrOHEr DIIVES ..ottt 27-4
USB ClI@NE DIIVEY ...ttt sttt st ne e eneesreenne e e enne s 27-13
USB Transceiver Driver (ID Pin Detect Driver -- XCVR)....occooivivinieciiecieeee, 27-18
POWEr ManagemeNt ..o e e 27-22
FUNCLION DIIVES ...ttt sttt se e ne e eneesneenee e e enne s 27-25
(@=L V< S 27-28
LN (o USSR 27-30
Basic Elementsfor Driver DevElOPMENtcoeiirireeiieeie e 27-30
BSP Environment Variabl€s..........coooieeieiieee e 27-30
DePendenCieS OF DIIVES. ..ottt e e e e 27-31
Chapter 28
WLAN Driver
WLAN DIIVEN SUMIMAY ...eiueieeieeeieetieseeseeeeiesee e sseeseesseesseesseessesseessesneassesnsesssessesssenns 28-1
SUPPOItEd FUNCHIONAIITYeeeie et 28-2
HardWare OPEIaLION..........cueieee e eeeeseeeeese ettt seeese et e e eseeeseesseeneesneenseeneesseessens 28-2
Conflicts with Other PeripheralS.........ccoooeieeiiieee e 28-2
o V7= =X @ o 1< (0] o TSP 28-2
WI-Fl REQISIIY SELHING......eeieieieieeie et sre e e e e e e e enes 28-3
g T =S SRS 28-4
UNIT TESE HAIOWEI€.......c.eeceie ettt et e e enaeeneeneens 28-4
UNIT TESE SOFIWAIE ...ttt eneeere e e 28-5
RUNNING the WLAN DIiVEr TESES.....cuiiiieieire et 28-5
Test the WLAN Communication without Protectionccccceeeveenenieenieece e 28-6
Appendix A
Frequently Asked Questions
How to Deal with Different Resolutions of the Display Pandl?...........ccccoooviiiiinicenns A-1
How to Deal with Different Display Interface FOrmatS?...........coceoveieienineninenineenens A-1

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor Xvii

Contents

Paragraph Page
Number Title Number

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Xviii Freescale Semiconductor

About This Book

This reference manual describes the requirements, implementation, and testing for the modul es included
in Freescale's software development kit (SDK) for Microsoft® Windows® CE 6.0.

Audience

Thisdocument isintended for device driver devel opers, application devel opers, and test engineerswho are
planning to use the product. This document is also intended for people who want to know more about
Freescal€'s software development kit (SDK) for Microsoft Windows CE 6.0.

Suggested Reading

Freescal e documentation is available from the sources listed on the back cover of this manual.

* Microsoft Windows Embedded CE Help can be viewed from the Microsoft Developer Network at
http://msdn.microsoft.com. Visit the web site and search for the string, “Windows Embedded CE.”

http://msdn.microsoft.com/embedded/windowsce
* 1.MX31 PDK Hardware User’s Guide
* 1.MX31 Applications Processor |C Reference Manual
* 1.MX31 PDK Windows Embedded CE 6.0 Release Notes
* 1.MX31 PDK Windows Embedded CE 6.0 User’s Guide
* Windows Embedded CE 6.0 BSP Reference Guide (RTM14)
* Visual Sudio 2005 Help
The Freescale manuals can be also befound at http://www.freescale.com. The manuals can be downloaded

directly from the web, or you can also order the printed copies. The Freescale manuals may aso be
provided with your PDK.

Conventions

This document uses the following conventions:

* Couri er isused toidentify commands, explicit command parameters, code examples,
expressions, data types, and directives.

» Bold indicates the menu options or buttons the user can select. Cascaded menu options are
delimited with the — symbol.

» [talicisused for emphasis, to identify new terms, and for replaceable command parameters.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor Xix

http://msdn.microsoft.com
http://www.freescale.com

Acronyms and Abbreviations

Tablei contains acronyms and abbreviations used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
API Application programming interface
BSP Board support package
CSP Chip support package
CSPI Configurable serial peripheral interface
D3DM Direct 3D Mobile
DHCP Dynamic host configuration protocol
DPTC Dynamic power and temperature control
DVFC Dynamic voltage and frequency control
DVFS Dynamic voltage and frequency scaling
EBOOT Ethernet bootloader
FAL Flash abstraction layer
FIR Fast infrared
FMD Flash media driver
GDI Graphics display interface
GPT General purpose timer
12C Inter-integrated circuit
IDE Integrated development environment
IPU Image processing unit
IST Interrupt service thread
KITL Kernel independent transport layer
LvDS Low-voltage differential signaling
MAC Media access control
MMC Multimedia cards
NLED Notification Light Emitting Diode
OAL OEM adaptation layer
OEM Original equipment manufacturer
OS Operating system
OoTG On-the-go
PMIC Power management IC
PQOAL Production quality OEM adaptation layer

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

XX

Freescale Semiconductor

Table i. Acronyms and Abbreviated Terms

Term Meaning
PWM Pulse-width modulation

SD Secure digital cards

SDC Synchronous display controller

SDHC Secure digital host controller

SDIO Secure digital I/O and combo cards

SDK Software development kit

SDRAM Synchronous dynamic random access memory

SIM Subscriber identification module

SIR Slow infrared

SoC System on a chip
UART Universal asynchronous receiver transmitter
uSB Universal serial bus

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor XXi

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

XXii Freescale Semiconductor

Chapter 1
Introduction

This Freescale i.MX31 PDK Windows Embedded CE 6.0 based product development kit (PDK) helps
speed development of applications for the Freescale i.MX31 3-Stack multimedia applications processor.
It includes the following:

» Software development kit (SDK), which includes tools, BSP, codecs, basic middleware, and
applications

* Hardware board (i.MX31 3-Stack board)
» Documentation
This kit supports the Microsoft Windows® Embedded CE 6.0 operating system, and requires the use of
Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded OS designs. To view feature information, see thei.MX31 PDK Release Notes.
NOTE
Use this guide in conjunction with Microsoft Windows Platform Builder
Help (or the identical Platform Builder User Guide).
» Toview the Platform Builder Help, click Help from within the Platform
Builder application.

» Toview the Platform Builder User Guide, visit:
http://msdn2.microsoft.com/en-ug/library/aad448606.aspx

1.1 Getting Started

For instructions on installing the SDK, and on building, downloading, and running the OS image on the
hardware board, refer to thei.MX31 PDK 1.5 Wndows Embedded CE 6.0 User’s Guide included with this
distribution.

1.2 SDK System Architecture

Figure 1-1 showsthe SDK system, which consists of tools, bootloader, BSP layer, amiddleware, and core
OS service layer, and an application layer.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 1-1

Introduction

1.2.1 Tools and Bootloader

The PDK tools and boot loader consist of the following components.

Tools Flashing tool: support image download and flashing from UART

EBOOT

1.2.2 BSP Layer

The BSP layer contains the following components.

ATA Display LCD GPT Serial

Audio DAC Display TV-Out 12C SDHC
Backlight DVFC KPP Touch Panel
Battery Ethernet MBX D3DM&OpenGL | USB
Camera FM Radio NAND FMD WiFi

DDK GPS PMIC

1.2.3 Middleware and Core OS Service Layer

The middleware and core OS service layer contains the Power Management components.

1.24 Application Layer

The application layer contains the following components.

FM Radio application TV-Out application

Camera application 3D Demo Application

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

1-2 Freescale Semiconductor

Introduction

papoddng jop _

pIECH HEMPIEH JIEIS-E FEXIN

safe] asempiey

Jind _E [=u=ea | — _SM_E__ _ [waa | [wo ||| [=c8 2n9es] [iear Bunseis
=aup | | =aup H m_n_] Py ! _ﬂ_ a _ Y3 LM _ 100) Bumifes
. : = A
[Berea || gsn | [wana| 2N [waul | o m a1 _.H_qn._!ﬁ _ _ upl _ [l] [wiw] [8Sn it |
549 - wmding wduy py 857 198 | oo sBumew
AP I O MY I A ndn | [anen
fi=ueg _ [w= 00 owLr
Janug 458 o] @ ooy
g 5| .
E =3 w = || = E
g Sl (2518 2
= o2 E12)5]F] 2
s SISl &2 =
= = |l o 2
o E=] o
z = -
[PAUE DO LI Ty
_ e MOUS 132000 |
_ =an=s pue vogEddy || (53me) u=isfg weag pue Burmopuiy, owydeig |

F0IAISE § 0 2400 7 AIEMS|PPII

s [puea o] [|
5:;:# __Emoam_ 20549 | | ermuen

[T _ TENE, __aﬂ.mﬂm; n
menl __ oIPIA, _ ahew| BUEALLL

=T
iy

sl N4

1ake ucneDddy

Figure 1-1. WSDK System Diagram

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

1-3

Freescale Semiconductor

Introduction

1.3 Windows Embedded CE 6.0 Architecture

The Windows Embedded CE 6.0 architecture is a variation of Microsoft's Windows operating system for
minimalistic computers and embedded systems. The architecture of the operating system and sub-systems
(for example, power management and DirectDraw) are described in severa locationsin the Help. You may
want to begin at the following location in Help:

Welcome to Windows Embedded CE 6.0 > Windows Embedded CE Architecture

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

1-4 Freescale Semiconductor

ACC Driver

Chapter 2
ACC Driver

The accelerometer (ACC) driver isused asthelower layer for the ACC algorithm layer. The main purpose
of the ACC driver isto provide 12C interface for register access, and act as an interrupt process on the
MMAT7450L accelerometer. The ACC driver is constructed as a stream interface driver that exposes 1/0
control codes (IOCTL_ACC_XXX).

2.1 ACC Driver Summary

The following table identifies the source code location, library dependencies, and other BSP information.

Driver Attribute Definition
Target Platform (TGTPLAT) IMX313DS
Target SOC (TGTSOC) N/A
CSP Driver Path N/A
CSP Static Library N/A
Platform Driver Path .\PLATFORM\<tgtplat>\SRC\DRIVERS\ACCELEROMETER
Import Library (cspddk.lib)
Driver DLL mma.dll
Catalog Iltem Third Party —> BSPs —> Freescale i.MX313DS:ARMV4| —>
Device Drivers —> Accelerometer
SYSGEN Dependency
BSP Environment Variable BSP_ACC

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 2-1

ACC Driver

2.2 Supported Functionality
The ACC driver enables the MM A7450L sensor on the 3-Stack board to provide the following software
and hardware support:

* Flexibility to select STANDBY, MEASUREMENT, LEVEL DETECTION or PULSE
DETECTION mode for multifunctional applications

» Flexibility to select 2g, 4g or 8g of acceleration for multifunctional applications
» Flexibility to select an output resolution of 8-bit or 10-bit

» Flexibility to select detection axis, X-axis,Y-axis, Z-axis or arbitrary combination
» Offset calibration

2.3 Hardware Operation
For operation and programming information, see the MCIMX31 and MCIMX31L Applications Processors
Reference Manual.

2.4 Software Operation

241 Application / User Interface to ACC drives

The ACC device exports a standard streams interface to the Application/User, and can be accessed using
functions such as CreateFile() and CloseHandl&().

24.2 ACC Driver Configuration

You configure the driver into the BSP build by dragging the catalog item. Doing so defines the
environment variable/configuration option: BSP_ACC.

243 Loading and Initialization

The ACC driver isloaded by the device manager in the kernel space. As part of the stream driver loading
procedure, the device manager invokes the corresponding stream initialization function exported by the
ACC driver. Theinitiaization sequence includes a call to platform-specific code (BspeEnableacc) to power
on the sensor and set the IOMUX configuration.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

2-2 Freescale Semiconductor

ACC Driver

244 Mode Selection
The following table describes the four available modes.
Name Configuration Setting Name Description
STANDBY ACC_MODE_STANDBY The device outputs are turned off, providing significant
reduction of operating current.
MEASUREMENT |ACC_MODE_MEASUREMENT During measurement mode, continuous measurements on all
three axes enabled.
LEVEL ACC_MODE_LEVEDETECTION In level detection mode, the measurements for x, y and z are
DETECTION all enabled with 2g/4g and 8g range available. The detection of
thresholds for an acceleration signal level for the combinations
of xand y or x, y, and z is enabled.
PULSE ACC_MODE_PULSEDETECTION In pulse detection mode, both 2g/4g and 8g range are
DETECTION available. Measurements for x, y and z in 2g/4g or 8g mode are
enabled.
The level detection is also enabled in this mode. The pulse
detected by the acceleration signal is enabled with single pulse
and double pulse detection allowing the choice of either
positive, negative, or absolute value pulse detection.
245 G-Level Selection
The following table describes the four G-Level options.
Configuration T
Name Setting g-Range Sensitivity
8G(10bit) ACC_GSEL_8G -8G~—8G 64 LSB/g
8G(8bit) ACC_GSEL_8G -8G~—8G 16 LSB/g
4G ACC_GSEL_4G -4G~—~4G 32 LSB/g
2G ACC_GSEL_2G -2G~—2G 64 LSB/g

2.4.6

Output Resolution

There are two available output resolutions.

Resolution Configuration Setting
8-bit ACC_GSEL_8G, ACC_GSEL_4G, ACC_GSEL_2G
10-bit ACC_GSEL_8G

24.7

Detection Axis

The X, Y and Z axis detection can be enabled separately and combined in any way.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

2-3

ACC Driver

24.8 Calibration
The offsets of the X, Y and Z axes can be assigned to calibrate the output.

249 Power Management

The ACC supports two power management modes, ON (D0) and STANDBY (D4). These modes are
managed through the standard Windows Power M anager. Power Manager uses |IOCTL_POWER_SET to
switch the disk's power state, according to the inactivity settings configured in Power Manager.

2.4.9.1 PowerUp

This stream interface function is not implemented for the ACC driver.

2.4.9.2 PowerDown

This stream interface function is not implemented for the ACC driver.

2.4.9.3 IOCTL_POWER_CAPABILITIES
The DO or D4 device power states are supported.

2494 IOCTL_POWER_SET
The DVFC driver supports requests to enter the DO or D4 device power state.

2495 IOCTL_POWER_GET
The DVFC driver reports the current device power state (DO or D4).

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

2-4 Freescale Semiconductor

ATA Driver

Chapter 3
ATA Driver

The ATA driver in Windows Embedded CE 6.0 isablock driver, used as the lower layer for File Systems
and USB mass storage, for example. It is constructed as a stream interface driver that exposes 1/0 control
codes (IOCTL_DISK_XXX and DISK_IOCTL_XXX). The file system uses these /O control codes to
access the ATA devices.

3.1 ATA Driver Summary

The following table provides a summary of source code location, library dependencies and other BSP
information:

Table 3-1. ATA Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) IMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
CSP Driver Path .\PLATFORM\COMMON\SRC\SOC\FREESCALE\<TGTSOC>\A
TA
CSP Static Library ata_<TGTSOCs>.lib
Platform Driver Path - \PLATFORM\<TGTPLAT>\SRC\DRIVERS\BLOCK\ATA
Import Library (cspddk.lib)
Driver DLL ata_mx31.dll
Catalog ltem Third Party —> BSP —> Freescale i.MX31 3DS: ARMV4| —>
Storage Drivers —> ATA device driver
SYSGEN Dependency SYSGEN_MSPART,SYSGEN_FATFS,SYSGEN_EXFAT
BSP Environment Variable BSP_ATA

3.2 Requirements

The ATA driver must meet/support the following requirements:

* Provide standard Microsoft Block Storage Device API, including disk information management,
formatting, block data read/write with full scatter-gather buffer support

* Support two power management modes, full on and full off

» Support standard bus timing mode for UDMA mode 3 (optiona support other modes such as PIO
modes 0-4, MDMA modes 0-2, and UDMA modes 0-2 & 4).

» Support full sustained (media) data throughput capacity of Hitachi Travel Star C4K40 (or
equivalent) at UDMA mode 3.

» Support full sustained (media) data throughput capacity of SST NANDrive (or equivaent) at
UDMA mode 3.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-1

ATA Driver

NOTE
UDMAS5 mode requires 80MHz bus clock or above, so this mode may not
apply to MX31 which bus clock is 66.5MHz.

NOTE

If SST NANDdriveis set to be write-protected through a jumper or host
logic, the ATA driver will output message “WARNING: NANDrive write
protected!!!”.

3.3 Hardware Operation

For operation and programming information, see the chapter on the Advanced Technology Attachment
(ATA) inthe MCIMX31 and MCIMX31L Applications Processors Reference Manual.

The MX31 contains an on-chip ATA controller. Data transfers on the ATA bus can take place through the
following:

» CPU programmed datatransfersthrough ATA controller registers. (Programmed 1/O modes, “PIO”
modes 0-4)
e “Multi-word” DMA (MDMA modes 0-2)

« “Ultra’ DMA (UDMA modes 0-5)

Within the types of ATA-bus datatransfer (PIO or XDMA), the various“modes’ (0-n) refer only to
specified combinations of timing parameters, as supported by industry standard hardware. The ATA DMA
modes transport data between the ATA peripheral (disk) and the system bus, through the MX31's ATA
peripheral data FIFO.

|
| Smart DMA Interrupt ARM CPU
| Controller -
| Memory Management
| 1 Unit
System
Memory | System Bus A *
- Y
| A ¢ Transaction
| ATA Data ATA Control ﬁfga;“;tae s,
| i :
| FIFO D — Registers Interrupts
| ATA DMA
| ATA Bus MDMA UDMA Controller
|
|

Figure 3-1. ATA Hardware Block Diagram

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-2 Freescale Semiconductor

ATA Driver

The MX31 also contains a“Smart DMA controller” (SDMA) which acts as a third-party bus mastering
DMA, for transporting data between the ATA data FIFO and system memory. SDMA support isbuilt into
the ATA driver, and is automatically configured and used when UDMA or MDMA modes are selected for
data transport on the ATA bus. The default block/sector sizeis 512 bytes. With these sector sizes, far
greater efficiency in processor/bus usage is gained by setting UDMA or MDMA modes, instead of PIO
modes. The PIO modes are provided for functional compatibility with legacy hardware which may not
support fastest current data rates.

The appropriate ATA-specific mode (PIO, MDMA or UDMA) must be selected based on the capabilities
of the specific attached ATA peripheral.

3.3.1 Conflicts with other Peripherals and Catalog Options

3.3.1.1 Conflicts with SoC Peripherals

On the MX31 processor, the ATA has signals which can conflict with the CSPI device (CSPI1), USB
Host 1 port and PWM module depending on configuration. See below for details of current
implementation.

3.3.1.2 Conflicts on 3-Stack board

Because the CSPI 1 device, the USB Host 1 port, and the PWM modul e are not supported on the 3-Stack
board, the ATA asimplemented for the 3-Stack board has no pin conflicts with the CSPI device (CSPI1),
USB Host 1 port, and PWM.

3.3.2 Cabling

The ATA specification requires an 80 core ribbon cable when used in UDMA modes 3 or greater. Thismay
be relaxed for cables shorter than the maximum defined in the specification.

3.4 Software Operation

3.4.1 Application / User Interface to ATA drives

The ATA device exports a standard streams interface to the Windows File System. Application-level
access to ATA disksis through the Windows File System, using functions such as CreateFile() and
CloseHandl&().

The File System, or user software which requires block device accessto the ATA, does so through the
standard Windows Embedded CE Block Device IOCTLSs as described in section 0. These provide
functions to acquire disk information and to read and write blocks (disk sectors) of data.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-3

ATA Driver

3.4.2 ATA Driver Configuration

The driver is configured into the BSP build by dragging & dropping the catalog item as defined in
Section 3.1, “ATA Driver Summary.” This defines the environment variable/configuration option:
BSP_ATA.

Configuration for the ATA isthen provided through registry settings imported from platform.reg. These
settings can be modified to select timing and transfer mode, and if necessary the device prefix and index.

3.4.2.1 Transfer Mode and Timing

The mode by which datais transported on the ATA bus (TransferM ode) is configured by aregistry setting
defined in Section 3.4.4, “Registry Settings.”

The ATA bustimings are based on thei.MX 31 clock, as defined in the M X 31 hardware reference manual.
The driver requires a clock period of 15 nanosec (66.6 MHz).

3.4.2.2 Prefix and Index

Thedefault deviceprefix is“DSK” and Index is“1”. Theseitemsareimportant when configuring astorage
device as sourcefor the USB Mass Storage client. The USB Mass Storage client (function) driver'sdefault
registry configuration, from PUBLIC\Common\OAK\FIL ES\common.reg, setsthe source block device as
“DSK1".

When no Index isconfigured for the ATA block device, the bus enumerator will assign anindex according
to the order of block device loading. When removable storage is attached to USB host ports (as mass
storage class), or when RAMDISK isincluded, the index assigned to these other block devices can
influence any Index automatically assigned by the bus enumerator.

3.4.23 IOMUX and Pinout
Theinterna MX31 ATA signals can be multiplexed to a choice of pinson I C, asdescribed for the IOMUX
in the hardware reference manual.

3.4.2.4 Defaults

The default mode for the ATA is transfer mode UDMA mode 3 for MX 31, as selected by the default
platform.reg file supplied for the build.

3.4.3 Power Management

The ATA supportstwo power management modes, ON (DO0) and OFF (D4). These modes are managed
through the standard Windows Power Manager. Power Manager uses|OCTL_POWER_SET to switch the
disk's power state, according to inactivity settings configured in Power Manager.

Asfor standard block drivers, PowerUp and PowerDown functions are called by the Device Manager.

The primary method for limiting power consumption in the ATA module is to gate off all clocksto the
module when those clocks are not needed. This is accomplished through the DDK ClockSetGatingMode

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-4 Freescale Semiconductor

ATA Driver

function call. The clock is turned on during initialization process and the clock isturned off after
initialization is completed. Data transfer operations are handled in DSK_IOCTL function to process the
IOCTL calsfromtheFile System. The ATA driver turns ON the clock and enablesthe ATA module before
processing any data transfer. After the block of data has been processed, the ATA moduleis disabled and
the clock is turned OFF.

3.4.3.1 PowerUp
This function called by the Device Manager sets aflag to indicate power is up.

3.4.3.2 PowerDown

This function called by the Device Manager ensures volatile datais stored in RAM and sets aflag to
indicate power is down.

3.4.3.3 IOCTL_POWER_SET

ThisOCTL handles the request to change disk power state (DO or D4), called by Power Manager (or
SetDevicePower() API).

344 Registry Settings
The ATA driver settings are taken from platform.reg, which can be customized for each particular build.
These registry values are located under the registry key:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ ATA_MX31]
The values under that registry key should be defined in platform.reg. These can be qualified with the
BSP_ATA system variable for configurable catalog item support.

Table 3-2. ATA Driver Registry Key Values

Value Type Content Description
DIl sz ata_mx31.dll | Driver dynamic link library
IClass sz "{AAE7EDDA-E575-4252-9D6B-4195D48BB865}"
GUID for a power-manageable block device
TransferMode dword 08 PIO mode 0
09 PIO mode 1
oC PIO mode 4
20 MDMA mode 0
21 MDMA mode 1
22 MDMA mode 2
40 UDMA mode 0

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-5

ATA Driver

Value Type Content Description
45 UDMA mode 5
InterruptDriven dword 01 enable interrupt-driven 1/0 use for PIO or MDMA/UDMA modes
(disable interrupt; not used normally)
(00)
DMA dword 00 disable DMA (always disable for PIO mode)
01 enable DMA (always enable for MDMA or UDMA modes)
IORDYEnable dword 01 enable Host IORDY for PIO mode 3 and 4

Asindicated in the above table, the following settings should be combined:
For PIO modes:

"I nterruptDriven"=dword: 01 ; Ol-enable interrupt driven I/O, 00-disable
" DVA" =dwor d: 00 ; di sabl e DVA

"Transf er Mode" =dwor d: Oc ; 08-PIO nobde 0, ..., OCPIO node 4

"| ORDYEnabl e" =dword: 01 ; enable Host | ORDY for PIO node 3, 4

For MWDMA modes:

"I nterruptDriven"=dword: 01 ; enable interrupt driven I/0O

"DMVA" =dwor d: 01 ; enabl e DVA

"Transf er Mode" =dwor d: 20 ; 20- WVDMVA nmode 0, ..., 22- MADMA node 2
"| ORDYEnabl e" =dword: 01 ; enable Host | ORDY for PIO node 3, 4

For UDMA modes:

"I nterruptDriven"=dword: 01 ; enable interrupt driven I/0O

"DMVA" =dwor d: 01 ; enabl e DVA

"Transf er Mode" =dwor d: 43 ; 40- UDMA node 0, ..., 45-UDMVA node 5
"| ORDYEnabl e" =dword: 01 ; enable Host | ORDY for PIO node 3, 4

Standard registry entries also to be included for the ATA device under the above key, are indicated below.

Table 3-3. ATA Standard Registry Values

Value Type Content Description
Prefix sz “‘DSK” Device identifier (combined with Index for DSK1 for example)
Index dword 1 Instance of ATA drive.
Order dword 10 Early, to allow file system loading
DoubleBufferSize dword 10000 128 sectors
DrgDataBlockSize dword 200 Each data request is one sector, always 512 bytes
WriteCache dword 01 disk internal cache is enabled within drive
LookAhead dword 01 disk read-ahead to internal is enabled within drive
Deviceld dword 00 primary device ID
HDProfile sz “HDProfile” | Storage Manager profile to be used in GetDevicelnfo (see below)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-6 Freescale Semiconductor

ATA Driver

In addition to these values, the ATA makes use of the HDProfile information from the StorageM anager
registry keys. Default/sample values are as below:

[HKEY_LOCAL_MACHI NE\ Syst emk St or ageManager\ Profi | es\ HDPr of i | €]
"Name" =" ATA Hard Di sk Drive"
"Fol der"="Hard Di sk"

[HKEY_LOCAL_MACHI NE\ Syst emk St or ageManager\ Profi | es\ HDPr of i | e\ FATFS]
" Enabl eCacheWar m' =dwor d: 00000000

3.4.5 DMA Support

The ATA driver supports DMA mode and non-DMA mode of transfer. The driver always defaultsto DMA
mode of transfer. ATA supports three transfer-types: UDMA, MDMA and PIO modes. PIO mode works

in non-DMA mode of operation while other modes worksin DMA mode. To change the mode of tranfer,
changethevaue of “TransferMode* from the registry. When the ATA driver operatesin SDMA, it aways
uses the scatter gather method. Though the flag BSP_SDMA_SUPPORT_ATA ispresent in bsp_cfg.h, it
does not control whether SDMA isused or not.

The driver does not allocate or manage DMA buffersinternally. All buffersare allocated and managed by
the upper layers, the details of which are given in the request submitted to the driver. For every request
submitted to it, the driver attempts to build aDMA Scatter Gather Buffer Descriptor list for the buffer
passed to it by the upper layer.

For the driver to attempt to build the Scatter Gather DMA Buffer Descriptors, the upper layer should
ensure that the buffer meets the following criteria:

» Start of the buffer should be a cache-line (32byte) aligned address.

* Number of bytesto transfer should be cache-line (32byte) aligned.

3.5 Unit Test

The ATA driver istested using the Storage Device test cases included as part of the Windows Embedded
CE Test Kit (CETK). There are no custom CETK test cases for the ATA driver. The Storage Device test
cases used to test the ATA driver include:

File System Driver Test cases

Storage Device Block Driver API Test cases

Storage Device Block Driver Read/Write Test cases
Storage Device Block Driver Benchmark Test cases
Storage Device Block Driver Performance Test cases

o s~ bR

3.5.1 Unit Test Hardware

The following table lists the required hardware to run the ATA driver unit tests.
Table 3-4. ATA Driver Unit Test Hardware Requirements

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-7

ATA Driver

Requirements Description

i.MX31 and attached HITACHI hard disk Other drives supporting up to UDMA mode 3 may be used.
C4K40 or SST NANDrive.

3.5.2 Unit Test Software

The following table lists the required software to run the Storage Device Tests.
Table 3-5. ATA Storage Device Test Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test.
Kato.dll Kato logging engine, which is required for logging test data.
fsdtst.dll Test .dll file used to perform File System Driver Test cases.
disktest.dll Test .dll file used to perform Storage Device Block Driver API Test cases.
rw_all.dll Test .dll file used to perform Storage Device Block Driver Benchmark Test cases.
rwtest.dll Test .dll for various read/write options, including multi-threading and various block sizes.
Disktest_perf.dll Test .dll file used to perform Storage Device Block Driver Performance Test cases.
perflog.dil Logging library that provides functionality for timing and logging the performance data generated
by the test dll.

3.5.3 Building the Storage Device Tests

The Storage Device Tests come pre-built as part of the CETK. No steps are required to build these tests.
The fsdtst.dll, disktest.dll rw_all.dll and rwtest.dll files can be found alongside the other required CETK
filesin the following location:

\Program Fi |l es\ M crosoft Pl atform Buil der\6. 00\ cepb\ wcet k\ ddt k\ ar mv41

3.5.4 Running the Storage Device Tests
These CETK testswill destroy any information residing on the hard disk.
The tests can be launched from command line or CE Target Control window in Platform Builder.

The command line for running the File System Driver Test is:
tux —o —-d fsdtst -x 1001-1010,5001-5031 -c "-p HDProfile —zorch”

This performs file system tests which cover al required File System API functions. Excluded are those
tests which manipulate disk partitions.

The command line option HDProfile refers to the registry setting used to establish storage device profile
information to the Storage Manager:

[HKEY_LOCAL_MACHI NE\ Syst emk St or ageManager\ Profi | es\ HDPr of i | €]
"Name" =" ATA Hard Di sk Drive"
"Fol der"="Hard Di sk"

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-8 Freescale Semiconductor

ATA Driver

NOTE
The command line option “-zorch” is case-sengitive (the help message
within the test .dll is not correct) and is used to confirm over-writing of all
information on the hard disk.

NOTE
Test cases 5019 and 5022 can be safely skipped.

The command line for running the Storage Device Block Driver APl Test is:
tux —o —d disktest —c "-p HDProfile -zorch /maxsectors 65536"
NOTE
The free program memory to be adjusted to be larger than 64Mbytesin
control panel, CETK cases 4021 can be safely skipped.

The command line for running the Storage Device Block Driver Read/Write Test is:

tux -o -d rwest -c "-p HDProfile -zorch"

The command line for running the Storage Device Block Benchmark Test is:
tux -o -d rw.all —x 1006 —c "-p HDProfile -zorch"

The command line for running the Storage Device Block Driver Performance Test is:

tux -o -d disktest_perf -c¢ "-profile HDProfile -zorch"

Thisincludes only the benchmark test for 128 contiguous sectors. The test reads and writes all sectors of
the drivein 128 block (64 kByte) chunks. When drive read-ahead is enabled, thiswill allow the driveto
provide maximum sustained data rate from the media, to ensure the ATA driver supportsthe same. Itisnot
necessary for all drive sectors to be tested, but the pre-compiled test does not have options to limit the
portion tested, and all components are not publicly available for test customization. The test takes
approximately 4 hours to execute on a40 GB drive. Tests using smaller contiguous chunks take even
longer, and are not necessary for driver characterization.

For detailed information on the Storage Device CETK test cases, refer to the following:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests > File System Driver
Test

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests —> Storage Device
Block Driver API Test

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests —> Storage Device
Block Driver Read/Write Test

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests —> Storage Device
Block Benchmark Test

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage Device Tests —> Storage Device
Block Driver Performance Test

3.6 Basic Elements for Driver Development
This chapter provides details of the basic elements for driver development in the <TGTPLAT> BSP.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-9

ATA Driver

3.6.1 BSP Environment Variables
Table 3-6. BSP Environment Variables

Names Definition

BSP_ATA Set to enable ATA device driver

3.6.2 Mutual Exclusive Drivers

Since the ATA asimplemented for the 3-Stack board has no pin conflicts with the CSPI device (CSPI1),
USB Host 1 port and PWM, there are no mutual exclusive drivers.

3.6.3 Dependencies of Drivers

The following table summarizes the Microsoft-defined environment variables used in the BSP,
Table 3-7. Environment Variables Used in the BSP

Names Definition
SYSGEN_FATFS Set to support FAT32 file system
SYSGEN_EXFAT Set to support EXFAT file system

SYSGEN_STOREMGR Set to support storage manager
SYSGEN_STOREMGR_CPL Set to support storage manager in control
panel
SYSGEN_MSPART Set to support partition driver.

3.7 Block Device API Reference

The primary interface to the ATA block device is through the standard Windows Embedded CE Block
Device IOCTLs as described in the following sections. Application-level accessto ATA disks should be
through the Windows File System.

For reverse compatibility deprecated DISK_IOCTL* are also supported but not documented here. See
CE 6.0 Help for further details.

The driver aso supports the standard XXX _Init, XXX_Deinit, XXX_Open and XXX_Close routines, as
used by the Device Manager and the bus enumerator to load the driver. When the registry settingsfor ATA
are correct, these functions are handled automatically, and need no further documentation here.

3.7.1 IOCTL_DISK_DEVICE_INFO

This Devicel oControl reguest returns storage information to block device drivers.

Parameters
|plnBuffer [in] Pointer to a STORAGEDEVICEINFO structure.
ninBufferSze [in] Specifiesthe size of the STORAGEDEVICEINFO structure.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-10 Freescale Semiconductor

ATA Driver

|pBytesReturned [out] Pointer to aDWORD to receive the total number of bytes returned.

3.7.2 IOCTL_DISK_GET_STORAGEID

ThisDeviceloControl request returnsthecurrent STORAGE_IDENTIFICATION structurefor aparticular
storage device.

Parameters

hDevice [in] Handleto the block device storage volume, which can be obtained by opening
the FAT volume by itsfile system entry. The following code example shows how
to open a PC Card storage volume.

hVolume = CreateFile(TEXT("\Storage Card\Vol:"),
GENERIC_READ|GENERIC_WRITE, O, NULL, OPEN_EXISTING, O,
NULL);

[pOutBuffer [out] Set to the address of an allocated STORAGE_IDENTIFICATION structure.
This buffer receives the storage identifier data when the loControl call returns

nOutBuffer Sze [out] Set to the size of the STORAGE_IDENTIFICATION structure and also
additional memory for the identifiers. For Advanced Technology Attachment
(ATA) disk devices, theidentifiersconsist of 20 bytesfor amanufacturer identifier
string, and also 10 bytes for the serial number of the disk.

|pBytesReturned [out] Pointer to aDWORD to receive the total number of bytes returned.

3.7.3 IOCTL_DISK_GETINFO

This DeviceloControl request returns notifies the block device drivers to return disk information.

Parameters

[pOutBuffer [out] Pointer to aDISK_INFO structure.

nOutBuffer Sze [out] Specifiesthe size of the DISK_INFO structure.

|pBytesReturned [out] Pointer to aDWORD to receive the total number of bytes returned.

3.7.4 IOCTL_DISK_GETNAME

ThisDeviceloControl request servicesthe request from the FAT file system for the name of the folder that
determines how users access the block device. If the driver does not supply a name, the FAT file system
uses the default name passed to it by thefile system.

Parameters

[pOutBuffer [out] Specifies abuffer allocated by the file system driver. The device driver fills
this buffer with the folder name. The folder name must be a Unicode string.

nOutBuffer Sze [out] Specifiesthe size of |pOutBuffer. Always set to MAX_PATH where

MAX_PATH includes the terminating NULL character.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 3-11

ATA Driver

|pBytesReturned [out] Set by the device driver to the length of the returned string and also the
terminating NULL character.

3.7.5 IOCTL_DISK_READ
This DeviceloControl request services FAT file system requests to read data from the block device.

Parameters

|plnBuffer [in] Pointer to a SG_REQ structure.

ninBufferSze [in] Specifiesthe size of the SG_REQ structure.

|pBytesReturned [out] Pointer to a DWORD to receive total bytesreturned. Set to NULL if you do

not need to return this value.

3.7.6 IOCTL_DISK_SETINFO
This DeviceloControl request services FAT file system requests to set disk information.

Parameters

|plnBuffer [in] Pointer to a DISK_INFO structure.

ninBufferSze [in] Specifiesthe size of DISK_INFO.

|pBytesReturned [out] Pointer to aDWORD to receive total bytes returned.

3.7.7 IOCTL_DISK_WRITE
This DeviceloControl request services FAT file system requests to write data to the block device.

Parameters

[plnBuffer [in] Pointer to an SG_REQ structure.

ninBufferSze [in] Specifiesthe size of SG_REQ.

|pBytesReturned [out] Pointer to aDWORD to receive total bytes returned.

Seethe sr_status member of SG_REQ for write status. ERROR_SUCCESS indicates write success.

3.7.8 IOCTL_DISK_FLUSH_CACHE

This DeviceloControl request issues the ATA FLUSH CACHE command to the disk.
Parameters [No parameters]
Return Value ERROR_SUCCESS: flushed okay

ERROR_GEN_FAILURE: Failed to send flush command. Either write caching
was not enabled on the device, or command was aborted.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

3-12 Freescale Semiconductor

Audio Driver

Chapter 4
Audio Driver

The audio driver module for the MC13783 PMIC (wavedev_MC13783.dll) is used for providing audio
playback and recording functions. This module is capable of performing audio playback using the
MC13783 PMIC Stereo DAC and recording using the MC13783 VVoice CODEC. Notethat for the 3-Stack
board set, the ssi channel for Voise CODEC is not connected on the CPU engine board. So only playback
function is supported. Recording function is not supported, and is disabled in the driver.

An application can access the audio driver using the methods and functions related with waveout function
that are described in the following Platform Builder online help section:

Windows Embedded CE Features> Audio > Waveform Audio > Waveform Audio Application
Development

4.1 Audio Driver Summary

The table below provides a summary of the source code location, library dependencies, and other BSP
information:

Table 4-1. Audio Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
MXARM11 CSP Driver Path .\PLATFORM\common\src\soc\freescale\mxarm11_fsl_v1\audiodev
IC-specific CSP Driver Path N/A
CSP Static Library audiodev_mxarm11_fsl_v1.lib

audiodev_record_stubs_mxarmi11_fsl_v1.lib
audiodev_record_mxarm11_fsl_v1.lib

Platform Driver Path . \PLATFORM\<TGTPLAT>\SRC\DRIVERS\WAVEDEV\MC13783
Import Library N/A
Driver DLL wavedev_MC13783.dll
Required Catalog Iltems Third Party > BSP > Freescale i.MX31 3DS:ARMV4I| > Device Drivers >

Audio = MC13783 Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-1

Audio Driver

Driver Attribute

Definition

Recommended Catalog ltems

Core OS > CEBASE > Graphics and Multimedia Technologies > Audio >
Waveform Audio

Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > MP3 Codec

Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > MPEG-1 Layer 1 and 2 Audio Codec
Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > MS ADPCM Audio Codec

Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > Wave/AlFF/au/snd File Parser

Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > Waveform Audio Renderer

Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Audio Codecs and Renderers > WMA Codec

Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Windows Media Player > Windows Media Player

Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Windows Media Player > Windows Media Player OCX

Core OS > CEBASE > Graphics and Multimedia Technologies > Media >
Windows Media Player > Windows Media Technologies

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_AUDIO_MC13783=1
BSP_PMIC_MC13783=1

The Recommended Catal og Items isted in the table above should be included in the OS design in order to
provide afairly comprehensive audio playback capability using the Windows Media Player application.
The choice of which audio CODECs to include or exclude from the OS design can be altered based upon
the specific functional requirements and degree of audio support that isdesired.

Note that the selection and use of the Windows M edia Player and the various software CODECsis beyond
the scope of the audio driver and will not be discussed further in this document. Refer to the following
Patform Builder online help section if additional information about these items is required:

Windows Embedded CE Features - Audio

4.2 Requirements

The audio driver must meet/support the following requirements:
1. Conform to the Microsoft audio driver architecture as defined for Windows Embedded CE 6.0 and

all related operating systems.

a b~ N

Support any Freescale M XARM 11-based platform that is compatible with the MC13783 PMIC.
Use double-buffered DMA operations to transfer audio data between memory and the SSI FIFO.
Support two power management modes, full on and full off.

Minimize power consumption at all times using clock gating and by disabling all audio-related

hardware components that are not actively being used.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-2

Freescale Semiconductor

Audio Driver

Audio Application
Audio Driver
S y N
MX31 ADS MC13783
PMIC
Recording g
y y ssi |<— s \/Oice CODEC q/‘!
: : Microphone
& b | o
SDMA . .
Controller Serial PLL Audio MUX 10 MUX
i 5 = e ——
: : —
. 8| R “ \
Playback 2 =P Stereo DAC > J
y ¥ > ssi2 |— 4
Primary SPI Stereo
. %SUZI - Interface .| control Headset
Interface Registers

Figure 4-1. Audio Playback and Recording Hardware Components

4.3 Hardware Operation

Figure 4-1 shows the hardware components and the default configuration that is used for both audio
playback and recording. Refer to the chapters in the |C-specific Reference Manual for the SSI, Seria
Clock PLL, SDMA, Audio MUX, and IO MUX components for detailed operation and programming
information. Also refer to the MC13783 DTS document for complete technical details concerning all of
the MC13783 audio components. This includes the Stereo DAC, the Voice CODEC, the various audio
input/output paths that are available, and the supported amplifier/mixer configurations.

Note that on the 3-Stack board, the connection between the I OMUX module of M X 31 and Voice CODEC
of PMIC isnot available.

The schematicsfor the platform and the M C13783 PMI C (which may bein theform of an add-on daughter
card) should also be consulted if information about the routing of the various audio-related signal linesis
needed.

Also see the Audio Driver Compile-time Configuration Options section below for information about how
to change or fine-tune the hardware configuration for audio playback and recording.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-3

Audio Driver

4.3.1

Audio Playback

The following hardware configuration steps are performed just prior to each playback operation (based
upon the default audio driver configuration):

Configure SSI2 for time-d otted network mode using 4 timesl ots/frame and asampling rate of 44.1
kHz. Thefirst two timedots are used to transmit the left and right audio channel data words,
respectively. Each audio dataword is 16 bitslong. SSI2 isa so configured to operate in lave mode
using the CLIA (from MC13783) clock signal to generate the appropriate framesync and bitclock
signals. Note that the clock gating scheme is used with SSI2 where all clock signalsto SSI2 are
disabled until SSI2 isactually being used. This helpsto minimize power consumption when audio
playback is not being performed.

The SSI2 transmitter watermark levels are also set to support SDMA transfers during audio
playback.

The MC13783 Stereo DAC is then aso configured for time-dotted network mode using 4
timedots/frameand a44.1 kHz samplerate but operating in dave mode. Thefirst two timeslotsare
also used to receive the left and right audio channel datawords, respectively, to match the SSI2
configuration. If necessary, the required M C13783 audio components are also powered on or
re-enabled at thistime. Normally, the MC13783 audio componentsthat are not actively being used
are kept in a power-off or disabled state so as to minimize power consumption.

The Digital Audio MUX is configured to connect internal port 2(which is assigned to SSI2) with
externa port 4 (which is used to communicate with the Stereo DAC). At the same time, the
appropriate IO MUX pins are also configured so that the Audio MUX external port 4 signals can
actually be routed off-chip to the MC13783.

The SDMA channel isfully configured to support 16-bit data transfers between the application’s
memory buffers and the SSI2 TX FIFOO. The SSI2 TX FIFOO is prefilled with audio data at this
point along with the DMA buffers.

Finally, the SSI2 transmitter is enabled which begins the transmission of the audio data stream.

The hardware repeatedly performs the following functions while audio playback is being performed:

The SSI will issue anew DMA request whenever the transmitter’s FIFOO level reaches the empty
watermark level. The SDMA controller will then refill FIFOO using data from the DMA buffers
until the DMA buffer has been emptied.

Aninterrupt is generated whenever a DMA buffer has been emptied and this interrupt is handled
by the audio driver. The audio driver isresponsiblefor refilling the DMA buffer and returning it to
the SDMA controller for processing.

Since a double-buffering scheme is used, the SDMA controller smply usesthe other DMA buffer
to continue refilling the SSI2 transmitter FIFOO while the previous DMA buffer is being refilled.

The following hardware changes are made at the completion of each playback operation:

When the entire audio stream is transmitted, there will be no more dataavailableto refill the empty
DMA buffers. Therefore, the output DM A channel can be disabled when both output DMA buffers
are empty and there is no additional data available to refill them.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-4

Freescale Semiconductor

Audio Driver

» The MC13783 audio components that were used for playback are disabled to minimize power
consumption. This step is done before disabling SSI2 to avoid any extraneous noise or “pop” that
may be heard over the headphones.

* Finally, we also disable and clock gate SSI2.

4.3.2 Speaker output

The hardware supports speaker output as follows:
* The system detects in real-time if the headset is plugged in or unplugged.
» If the headset is plugged in, the speaker output is disabled.
» |If the headset is unplugged, the speaker output is enabled.

4.3.3 Required SoC Peripherals

The audio driver requires the exclusive use of al of the following SoC hardware components:
» SSI2 synchronous serial interfaces, used for playback.
* The Serial Clock PLL to provide the master clock signal for SSI2 (for SSI master mode).

* A 26 MHz clock signal generator that suppliesthe CLIA clock input to the MC13783 PMIC (for
MC13783 master mode).

* TheDigital Audio MUX to connect SSI2 to the |O MUX in order to access off-chip peripherals.
* ThelOMUX pinsfor connecting the Digital Audio MUX external ports4 to the MC13783 PMIC.
* The SDMA Controller to manage the DMA channels that are used for playback.

4.3.4 Conflicts with Other SoC Peripherals

4.3.4.1 i.MX31 Peripheral Conflicts

There are no known conflicts between the SoC peripherals that are required by the audio driver and any
other device driver.

4.3.5 Known Issues

None.

4.3.6 Required MC13783 PMIC Components

The audio driver requiresthe exclusive use of al of the following MC13783 PMIC hardware components:
* The Stereo DAC and the audio output section to perform playback.
» Digital audio busesin order to transfer data between the SSI and the Stereo DAC
* The CLIA clock input is also required if the Stereo DAC isto be operated in master mode.

Note that the audio driver expectsthat all of the following MC13783 hardware control registers are
accessible by the ARM core: RX0, RX1, Audio Codec, Audio Stereo DAC, Audio Tx, and SSI Network.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-5

Audio Driver

This means that the ARM core must be connected to the MC13783 control registers using the primary
processor interface and not the secondary processor interface. Thisis the normal configuration for all of
the currently supported platforms.

4.4 Software Operation

This driver follows the Microsoft-recommended architecture for audio drivers. The details of this
architecture and its operation can be found in the Platform Builder Help at the following location:

Developing a Device Driver = Windows Embedded CE Drivers->» Audio Drivers-> Audio Driver
Development Concepts.

4.4.1 Audio Playback

The operation of theaudio driver for playback basically followsthe hardware configuration stepsthat were
described earlier. Once the appropriate hardware components have been properly configured, then theonly
thing that the audio driver must still do isto handle the output DMA buffer empty interrupts. Thisis done
through the interrupt handler which simply refills each of the output DMA buffers with new audio data
that has been supplied by the application and then returns the DMA buffer to the SDMA controller.

4.4.2 Audio Recording
Note that the recording function is not supported for hardware limitation and disabled in driver.

The operation of the audio driver for recording basically follows the hardware configuration steps that
were described earlier. Once the appropriate hardware components have been properly configured, then
the only thing that the audio driver must still do is to handle the input DMA buffer full interrupts. Thisis
done through the interrupt handler which ssmply copies the contents of each input DMA buffer to an
application-supplied buffer and then returns the empty DMA buffer to the SDMA controller. If the
application-supplied buffer does not have enough space for all of the new data, then any extradatais
simply discarded.

The application is signaled using a callback function when the application-supplied buffer isfull.

4.4.3 Audio Driver Compile-time Configuration Options

The audio driver can be configured for awide variety of operating modes depending upon the specific
hardware and software requirements. The available compile-time configuration options are described in
Table 4-2 and Table 4-3.

The audio driver configuration settings should not be changed without a detailed understanding of the
platform’s hardware configuration and operating characteristics. Selecting invalid or incorrect
configuration settings may result in an audio driver that will not load or work properly. Conversely, the
audio driver performance and resource usage can be fine-tuned by adjusting these configuration settings.
Additional documentation regarding each of the configuration options may be found in the corresponding
source files.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-6 Freescale Semiconductor

Audio Dr

Table 4-2. Audio Driver Configuration Settings (hwctxt.h)

iver

Configuration Setting Name

Description

OUTCHANNELS Defines the number of output/playback channels that are available. Can be
set to either 1 or 2. Default is 2.

BITSPERSAMPLE The number of data bits per audio sample. This must match with the
HWSAMPLE typedef and the
AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

INSAMPLERATE The hardware input/recording sampling rate in Hz. Default is 16000.

OUTSAMPLERATE The hardware output/playback sampling rate in Hz. Default is 44100.

HWSAMPLE A typedef that defines the size of each audio data word. This must match

the BITSPERSAMPLE and
AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is INT16.

USE_MIX_SATURATE

Enable a check in the software mixer code to guard against saturation.
Defaultis 1.

AUDIO_SAMPLE_MAX and
AUDIO_SAMPLE_MIN

The valid range of each audio data word. Values that are outside of this
range will be clipped to the max/min value by the saturation protection
code if USE_MIX_SATURATE is set to 1. Default is 32767 and -32768.

AUDIO_DMA_PAGE_SIZE

The size in bytes of each audio DMA buffer. Default is 2048 bytes.

AUDIO_REGKEY_PREFIX

The common prefix to be used for accessing all of the audio driver runtime
configuration registry keys. Default is “Drivers\Builtin\Audio\PMIC\Config”.

PLAYBACK_DISABLE_DELAY_MSEC and
RECORD_DISABLE_DELAY_MSEC

The delay, in milliseconds, that the audio driver will wait following the
completion of an I/O operation before actually disabling the audio CODEC
hardware. On some devices, such as the MC13783, there is a significant
CODEC warm-up delay before an audio playback or recording operation
can be performed. Audio hardware disabling can be delayed for a brief
period following each audio operation and thereby skip having to re-enable
the hardware if another audio 1/O operation is started soon after. The delay
interval can be set to zero to disable this feature. The default is 1000 for

both playback and recording.

Table 4-3. Audio Driver Configuration Settings (hwctxt.cpp)

Configuration Setting Name

Description

BSP_SSI1_MASTER_BOOL and
BSP_SSI2_MASTER_BOOL

Selects whether SSI1 and/or SSI2 are to be operated in master mode.
Default is FALSE for both settings.

SSI1_MASTER_CLOCK_SOURCE and
SSI2_MASTER_CLOCK_SOURCE

Defines the master clock input for each SSI. This is only used when the SSI
is operating in master mode. The default settings are
DDK_CLOCK_BAUD_SOURCE_SERPLL for both settings.

STEREO_DAC_SSI

The SSI that will be used for playback through the Stereo DAC. Default is
m_pSSI2.

VOICE_CODEC_SSI

The SSI that will be used for recording using the Voice CODEC. Default is
m_pSSIi.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

4-7

Audio Driver

Configuration Setting Name Description
SSI1_AUDMUX_PORT and The internal Digital Audio MUX ports that are connected to SSI1 and SSI2.
SSI2_AUDMUX_PORT The defaults are PORT1 for SSI1 and PORT2 for SSI2.
VOICE_CODEC_AUDMUX_PORT The external Digital Audio MUX port that is connected to the Voice CODEC.

The default is PORT5.

STEREO_DAC_AUDMUX_PORT The external Digital Audio MUX port that is connected to the Stereo DAC.
The default is PORT4.

VOICE_CODEC_AUDIO_BUS The digital audio bus that connects the Audio MUX to the Voice CODEC.
The default is AUDIO_DATA_BUS_2.

STEREO_DAC_AUDIO_BUS The digital audio bus that connects the Audio MUX to the Stereo DAC. The
default is AUDIO_DATA_BUS_1.

STEREO_DAC_BUS_MODE The digital audio bus protocol that is to be used. Either timeslotted
NETWORK_MODE or 12S_MODE may be selected. The default is
NETWORK_MODE.

VOICE_CODEC_BUS_MODE The digital audio bus protocol that is to be used. Either timeslotted
NETWORK_MODE or 12S_MODE may be selected. The default is
NETWORK_MODE.

SSI_SFCSR_TX_WATERMARK and The transmitter and receiver watermarks that are to be used with SSI1 and
SSI_SFCSR_RX_WATERMARK SSI2. The default is 4 for both watermark levels.

DEFAULT_OUTPGA_GAIN Sets the default output amplifier gain level. The default is
OUTPGA_GAIN_MINUS_3DB.

4.4.4 DMA Support

As indicated above, the audio driver uses the SDMA controller to transfer the digital audio data between
the audio application and the SSI FIFOs. This minimizes the processing that is required by the ARM core
and can also reduce the power consumption during audio playback and recording operations.

Note, however, that the audio driver always requires the use of DMA support for proper operation. Unlike
some of the other device drivers, the audio driver does not have any support for an aternative non-DMA
or polling-based operating mode. Therefore, the BSP_SDMA_SUPPORT_SSI1 (for audio playback) and
BSP_SDMA_SUPPORT_SSI2 (for audio record) macros in the bsp_cfg.h header file must always be
defined as TRUE even though the audio driver does not explicitly make use of these definitions.

This section will describe the audio driver DM A implementation issues and tradeoffs. The available
compile-time DMA-related configuration options will also be described.

In order to use DMA transfers, all of the following items must be properly allocated, managed, and
deallocated by the device driver:
» The DMA data buffers where the application datais kept.

* The DMA buffer descriptors which are used by the DMA hardware to manage the state of each
DMA buffer.

The DMA data buffers can be allocated from either "internal memory" (which is provided by on-chip
internal RAM) or "external memory" (which is provided by off-chip external DRAM). Table4-4isa

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-8 Freescale Semiconductor

Audio Driver

summary of the issues and tradeoffs regarding which type of memory should be used for the DMA data
buffers.

Table 4-4. DMA Memory Allocation Issues and Considerations

Memory Region Memory Usage Issues and Considerations

Internal Allows the external memory to be placed in a low power mode while the DMA data buffers
are being processed to reduce system power consumption (as long as nothing else on the
system requires access to external memory). Also, less power is required to access the
internal RAM than to access

But the total size of the internal memory region is limited (only 16 kB for the i.MX31).

The limited amount of internal memory may have to be shared by multiple device drivers.

The entire internal memory region must be manually managed with predefined addressed
ranges being reserved for each specific use.

External The total size of the external memory is typically much greater than the size of the internal
memory (128 MB compared to 16 kB for the i.MX31). This provides much greater flexibility
in selecting the size of the DMA data buffers.

There is typically no need to worry about the possible impact and memory requirements of
any other device driver.

Memory allocation is handled using the standard Windows Embedded CE 6.0 system
calls.

The external memory cannot be placed into a low power mode while the DMA is active.

Table 4-5. Configuring for Internal/External Memory DMA Data Buffer Allocation

Memory Region Required Configuration Options

Internal Set the BSP_AUDIO_DMA_BUF_ADDR macro in bsp_cfg.h to an address within the
internal memory region. Also set BSP_AUDIO_DMA_BUF_SIZE to the total size (in bytes)
for all DMA data buffers that will be allocated.

External Make sure that the BSP_AUDIO_DMA_BUF_ADDR macro is commented out in bsp_cfg.h

Table 4-5 describes how to configure the build so that the audio driver will allocate its DMA data buffers
from either internal or external memory.

The DMA buffer descriptors can also be alocated from either internal or external memory. However, in
this case, the choice is made automatically through the use of the CSPDDK APIs, specifically
DDKSdmaAllocChain(). Refer to the CSPDDK documentation for additional information about the
DDKSdmaAllocChain() API.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-9

Audio Driver

4.4.5 Power Management

The primary method for limiting power consumption in the audio driver isto gate off all clocksto the SS|
when those clocks are not needed and to turn off al audio hardware components at the end of each audio
stream. Thisisaccomplished through the DDK Clock SetGatingM ode function call and the various PMIC
audio APIs. In the Windows CE 6.0 BSP, the audio module can be disabled, and its clocks turned off,
whenever there are no active audio I/O operations. The clock gating aswell as the disabling of all related
audio hardware componentsis al handled automatically within the audio module and requires no
additional configuration or code changes.

The audio driver can work correctly after resume for power down mode.

4.4.5.1 PowerUp

This function has been implemented to support resuming an audio I/O operation that was previousy
terminated by calling the PowerDown() API. It begins by restoring power and re-enabling all of the
required audio hardware components. Next, the audio DMA transfers are restarted to complete the
powerup process for the audio driver.

Note that this function is intended to be called only by the Power Manager and must not block or depend
on any hardware interrupts. Therefore, all required timed delays must be handled using a polling loop
instead of any of the normal “wait for an event to be signaled” functions. This functionality is currently
handled by IOCTL_POWER_SET and the function isjust a stub.

4.45.2 PowerDown

This function has been implemented to support suspending all currently active audio I/O operations just
before the entire system entersthe low power state. Note that thisfunction isintended to be called only by
the Power Manager and must not block or depend on any hardware interrupts. Therefore, the first thing
that this function must do isto signal all of the possible wait events that the normal audio driver thread
may be currently waiting on. If it is not done, the PowerDown thread may be blocked waiting for acritical
section that is currently being held by the normal audio driver thread. Thisisan error and would deadlock
the entire system and prevent it from properly entering the low power state.

Since, al possible waiting events are signaled, the normal audio thread will now be guaranteed (because
of priority inversion) to run to the point where it will release the required critical section and alow the
PowerDown thread to proceed without the possibility of deadlocking.

Now itisensured that the normal audio thread is not executing inside any critical section, the PowerDown
thread can safely proceed to disable all active audio DMA operations and to powerdown all of the
associated audio hardware components. Once this has been done, the audio driver will remainin itslow
power state until the PowerUp function is called by the Power Manager. This functionality is currently
handled by IOCTL_POWER_SET and the function isjust a stub.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-10 Freescale Semiconductor

Audio Driver

4.4.5.3 IOCTL_POWER_SET

ThisPower Manager IOCTL isimplemented for the audio driver. All system suspend and resume handling
is currently handled by the IOCTL which handles the PowerDown and PowerUp functionalities. For all
platforms, the following registry entry must be defined:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ Audi 0]
"I O ass" ="{A32942B7- 920C- 486b- BOE6- 92A702A99B35} " ; PMCLASS GENERI C_DEVI CE

Thisregistry entry isrequired for proper power management functionality.

4.4.6 Audio Driver Registry Settings

At least oneregistry key must be properly defined so that the Device Manager will know to load the audio
driver when the system is booted. Additional registry keys may also be defined, and even changed at
runtime, to configure the operation of the audio driver. Both the required and optional registry keysfor the
audio driver are described in the following sections.

4.4.6.1 Required Audio Driver Registry Settings

Thefollowing registry keysarerequired in order for the Device Manager to properly load the audio device
driver during the device's normal boot process. These registry settings should typically not be modified.
If they are missing or incorrectly defined, then the audio driver may not be loaded at al and all audio
functions will be disabled.
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ Audi o]

"Prefix"="WAV"

"Dl "="wavedev_MC13783.dl | "

"1 ndex" =dword: 1

"Order"=dword: 10

"Priority256"=dword: 95

"1 O ass" ="{ A32942B7- 920C- 486b- BOE6- 92A702A99B35} " ; PMCLASS_GENERI C_DEVI CE

4.4.6.2 Optional Audio Driver Runtime Configuration Registry Settings

The following optional registry keys can aso be defined in order to configure the audio driver’s various

runtime operating modes. If these registry keys are not defined or if the valuesare invalid, then the values
shown below are used as the default settings by the audio driver. Additional configuration settingsthat are
currently supported by the audio driver can be found by looking at the enumerated type definitionsin the
pmic_audio.h header file. All of the numeric constants that are used in the following registry key values

are smply the integer value that correspondsto the enumerated types that are defined in pmic_audio.h for
each specific function or item.

Note that the registry settings for the recording does not function for the 3-Stack board.

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ Audi o\ PM Q\ Conf i g\ Pl ayback]
"Lef t Channel "=dword: 40
"Ri ght Channel "=dwor d: 80
"Description"="Stereo headset jack J8 (LeftChannel =0x40, Ri ght Channel =0x80)"

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t 1 n\ Audi o\ PM C\ Confi g\ Recor di ng]
"Lef t Channel "=dword: 1

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-11

Audio Driver

"Ri ght Channel "=dwor d: 2
"Description"="Stereo input jack J4 (LeftChannel =1, RightChannel =2)"

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t 1 n\ Audi o\ PM C\ Confi g\ M cBi as1]
"Enabl e"=dwor d: O
"Description"="M crophone bias circuit 1 disabled (0) or enabled (1)"

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t 1 n\ Audi o\ PM C\ Confi g\ M cBi as2]
"Enabl e"=dwor d: 1
"Description"="M crophone bias circuit 2 disabled (0) or enabled (1)"

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ Audi o\ PM Q\ Confi g\ | nput Anp]
" Mode" =dwor d: 1
"Mode Description"="Voltage-to-Voltage (1) or Current-to-Voltage (2)"
" Gai n" =dwor d: 8
"Gain Description'="-8 dB (0) to 23 dB (31 or Ox1F) in 1 dB steps"

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ Audi o\ PM Q\ Conf i g\ Headset Det ect]
"Enabl e"=dwor d: O
"Description"="Di sabled (0) or enabled (1)"

Note that changes to these audio driver configuration registry keys can be made at any time and the new
settings will immediately take effect at the beginning of the next audio 1/0O operation. A device's current
registry entries can be viewed and modified using the Remote Registry Editor tool that is provided with
Platform Builder.

4.5 Unit Test

The audio driver is tested using the Waveform Audio Driver Test suite that isincluded as part of the
Windows CE 6.0 Test Kit (CETK). The test suite includes both automated and interactive tests that are
used to test various playback and recording functions.

451 Unit Test Hardware

The following table lists the required hardware to run the unit tests.
Table 4-6. Unit Test Hardware Requirements

Requirements Description

Stereo headphones or earphones.
This is required to confirm that audio playback is working. The headphones or
earphones should have a 3.5mm jack for the MX31 platforms.

PO
t!

Mono microphone. This is not required for the MX31 3-Stack board.

4.5.2 Unit Test Software
The following table lists the required software to run the unit tests.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-12 Freescale Semiconductor

Audio Driver

Table 4-7. Unit Test Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
wavetest.dll Test .dll file

4.5.3 Building the Audio Driver CETK Tests

The audio driver tests come pre-built as part of the CETK. No steps are required to build these tests. The
wavetest.dll file can be found alongside the other required CETK filesin the following location:

[Drive]:\Program Files\Microsoft Platfor m Builder\6.00\cepb\wcetk\ddtk\ar mv4i

4.5.4 Running the Audio Driver CETK Tests

The command line for running the audio driver test is tux —o —d wavetest. Alternatively, the CETK GUI
interface can aso be used from within Platform Builder. As full-duplex operation is not supported, the
command line should be tux -o -d wavetest -c “-e-t5-p”.

The tread count used in test case 6000 Playback Mixing needs to be reduced to “5” instead of the default
value of “9” because of a CETK known issue. Please refer to ticket ENGR76843.

Refer to BSP release notes for the test cases failed as MSFT's known issue.

For detailed information about the audio driver tests, see the following section in the Platform Builder
online help:

Windows Embedded CE Test Kit=> CETK Testsand Test Tools» CETK Tests =2 Audio Tests 2
Waveform Audio Driver Test

4.6 System-level Audio Driver Tests

In addition to running theaudio driver testsinthe CETK, it isalso possibleto perform various system-level
teststhat involve the use of the audio driver. The following sections describe various waysto test the audio
driver without using the CETK.

4.6.1 Checking for a Boot-time Musical Tune

The normal Windows Embedded CE 6.0 boot procedure includes playing ashort musical tune just before
displaying the touchpanel calibration screen. At this point, the audio driver should already have
successfully loaded and you should hear the tune if you attach a headset to the stereo output jack.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-13

Audio Driver

4.6.2 Confirming Touchpanel Taps and Keypad Key Presses

The normal Windows Embedded CE 6.0 system configuration includes the ability to play back a short
tapping sound whenever the stylus makes contact with the touchpanel. Again, it is quite easy to confirm
whether or not these taps are heard when aheadset is attached to the stereo output jack.

A similar “click” should also be heard whenever akey on the keypad is pressed.

4.6.3 Playing Back Sample Audio and Video Files Using the Media Player

The Microsoft-supplied Media Player application can be used to load and play avariety of audio and video
mediafilesin anumber of different formats. The only requirement here isthat the appropriate software
CODECs that may be needed to decode the mediafile be included in the OS image. The Media Player
includes controls for pausing, resuming, and stopping playback aswell as advancing it to a specific point.
Additional volume and muting controls are al so provided.

4.6.4 Using the SDK Sample Audio Applications for Testing

The Windows Embedded CE 6.0 SDK that isincluded as part of Platform Builder includes two
audio-related sample applications. The wavrec sample application, which isnot supported on PDK, can be
used to test the audio recording function while the wavplay sample application provides a command
line-based method of playing back various mediafiles. Additional information about both the wavrec and
wavplay sample applications may be found in the following Platform Builder online help section:

Windows Embedded CE Features = Audio = Waveform Audio = Waveform Audio Samples

4.7 Audio Driver APl Reference

Detailed referenceinformation for the audio driver may befoundin Platform Builder Help at thefollowing
location:

Developing a Device Driver = Windows Embedded CE Drivers > Audio Drivers-> Audio Driver
Reference - Waveform Audio Driver Reference

4.8 Audio Driver Troubleshooting Guide

The following sections describe various techniques that may be used to help identify and fix the most
common problems involving the audio driver.

4.8.1 Checking Build-time Configuration Options

Any compile- or link-time errors are probably due to incorrect or invalid configuration settings that were
defined in hwctxt.h or hwetxt.cpp. See the Audio Driver Compile-time Configuration Options section
above for information about each of the device driver build configuration options.

The build procedure that is documented in the BSP Users Guide must also be followed in order to
successfully compile and link the audio driver.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-14 Freescale Semiconductor

Audio Driver

Finally, also confirm that the required Platform Builder catalog items have been included inthe OS design.
See the Table 1 above for alist of the required and recommended audio driver-related catalog items.

4.8.2 Confirming Audio Driver Loading During Device Boot

First, confirm that the appropriate [HKEY _LOCAL_MACHINE\Drivers\Builtin\Audio] registry key has
been defined.

Next, confirm that all of the following files exist in the release directory: wavedev_MC13783.dll,
waveapi.dll, device.exe. Thefirst DLL istheaudio devicedriver whilethe second DLL providesthe means
for applications to access the audio driver. Thelast file is the Device Manager executable that is required
to load the audio driver.

Finally, if you are booting a release OSDesignsimage, then you should see all of the following messages
in the Platform Builder output window:

Loaded synbol s for

" D: \ W NCE600\ OSDesi gns\ <wor kspace>\ RELDI R\ <pl at f or n>_ARW4| _RELEASE\ WAVEDEV_MC13783. DLL'
Loaded synbol s for

' D: \ W NCE600\ OSDesi gns\ <wor kspace>\ RELDI R\ <pl at f or m>_ARW4| _RELEASE\ WAVEAPI . DLL'

The correspondi ng nessages when booti ng a debug i mage are (the ti mestanp, process ID, and thread
ID nunbers may differ fromthose shown bel ow but the inmportant thing to confirmis that the
nmodul es are bei ng | oaded):

4294770428 PI D: 2bf 8a70e TI D: 2bf 9bd56 0x8bf 8a4a8: >>> Loadi ng nodul e wavedev_MC13783.dl | at
addr ess 0x01A20000- 0x01A38000

Loaded synbol s for

' D: \ W NCE600\ OSDesi gns\ <wor kspace>\ RELDI R\ <pl at f or n>_ARW4| _DEBUG WAVEDEV_MC13783. DLL'
4294770755 PI D: 2bf 8a70e Tl D: 2bf 9bd56 0x8bf 8a4a8: >>> Loadi ng nodul e waveapi .dll at address
0x03BF0000- 0x03C1B000 (RWdata at 0x01FCFO00- Ox01FCF958)

Loaded synbol s for

' D: \ W NCE600\ OSDesi gns\ <wor kspace>\ RELDI R\ <pl at f or m>_ARW4| _DEBUG WAVEAPI . DLL'

4.8.3 Media Player Application Not Found

Make sure that the Media Player catalog item has been included in the OS design (see Table 1 above). The
Media Player application will not beincluded in the final system image if the catalog item is not selected.

4.8.4 Media Player Fails to Load and Play an Audio File

This problem istypically caused by failing to include the appropriate software CODEC that isrequired to
handle the audio file format. Seethe list of recommended audio driver catalog itemsin Table 1 above and
make sure that support for the desired audio file format has been included.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 4-15

Audio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

4-16 Freescale Semiconductor

Backlight Driver

Chapter 5
Backlight Driver

The backlight drvier use the hardware provided by the display module on the chip to control the backlight
on the LCD display.

The backlight driver interfaces with the Windows CE Power Manager to provide timed control over the
display backlight. A timeout interval controls the length of time that the backlight stays on.

The backlight driver should be power-manageable; hence it must meet the requirements of a
power-manageabl e device by implementing the required IOCTLs. The backlight driver will use its own
defined timer to set the backlight power states.

5.1 Backlight Driver Summary

Table 5-1. Backlight Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
CSP Driver Path .\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXAR
M11_FSL_V1\BACKLIGHT\DRIVER
CSP Static Library backlight_mxarm11_fsl_v1.lib
Platform Driver Path .\PLATFORM\<TGTPLAT>
\SRC\DRIVERS\BACKLIGHT\DRIVER
Import Library N/A
Driver DLL backlight.dll
Catalog Item Third Party >BSPs > Freescale i.MX31 3DS: ARMV4I
—>Device Drivers —>Smart Backlight Control—>Backlight
IPU
SYSGEN Dependency N/A
BSP Environment Variables BSP_BACKLIGHT_IPU=1

BSP_BACKLIGHT_MC13783 should not be set.

5.2 Requirements

The backlight driver should meet the following requirements:
1. Conform to the Device Manager streams interface.
2. Support 0~255 level adjustment.
3. Support power management mode full on / full off.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 5-1

Backlight Driver

5.3 Hardware Operation

The hardware consists of an independently programmable register in the Image Processing Unit (1PU)
module, SDC_CUR_BLINK_PWM_CTRL Register, which is used to control the signal output at the
contrast pin. Default behavior for the Backlight Driversisto control the pulse-width of the built-in
pulse-width modulator, which controls the contrast of the LCD screen.

5.4 Software Operation

The backlight driver is a stream interface driver, and is thus accessed through the file system APIs. To
use the backlight driver, a handle to the device must first be created using the CreateFile function.
Subsequent commands to the device are issued using the Devicel oContr ol function with IOCTL codes
specifying the desired operation.

The control of the backlight operation requires a call to the Devicel oControl function. Four possible
choices are available for the user:
* |OCTL_POWER_CAPABILITIES - where you register and inform the Power Manager of
capabilities
* |OCTL_POWER_QUERY —where the new power stateis returned
* |OCTL_POWER_SET —interface to the hardware that controls the backlight through the PDD
layer.
* |OCTL_POWER_GET - the current power state is returned

5.4.1 Backlight Driver Registry Settings
The following registry keys are required to properly load the backlight driver.

[HKEY_CURRENT_USER!\ Cont r ol Panel \ Backl i ght]

"Bat t Backl i ght Level "=dword: 7F ; Backlight |evel settings. OxFF = Full On
"ACBackl i ght Level "=dword: 7F ; Backlight |evel settings. OxFF = Full On
"BatteryTi meout "=dword: 1E ; 30 seconds

" ACTi meout " =dwor d: 78 ; 2 nminutes

"UseExt "=dword: 1 ; Enabl e timeout when on external power
"UseBattery"=dword: 1 ; Enable timeout when on battery

"AdvancedCPL" =" AdvBackl i ght" ; Enabl e Advanced Backlight control panel dial og

5.5 Unit Test

The backlight driver is tested by Application test.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

5-2 Freescale Semiconductor

Backlight Driver

5.5.1 Unit Test Hardware

The following table lists the required hardware to run the backlight application test.
Table 5-2. Unit Test Hardware Requirements

Requirements Description

Epson L4F00242T03 VGA Panel Display panel required for display of graphics data.

5.5.2 Unit Test Software

The following table lists the required software to run the backlight application test.
Table 5-3. Unit Test Software Requirements

Requirements Description
backlight.dll The backlight driver to implement the backlight functions.
Advbacklight.dll The file implements adding an Advanced button to the Backlight Control Panel application.

5.5.3 Running the Backlight Application Test

The following table lists the backlight application test procedures:
Table 5-4. Backlight Application Test Procedures

Test Cases Entry Criteria/Procedure/Expected Results

Backlight Level Entry Criteria:
N/A
Procedure:

Go to “ Setting > Control Panel”

Double click on the “Display” icon, then click on the “Backlight” tab
Click on the “Advanced...” button

Modify the backlight level setting for both battery and external power
5. Observe that the backlight level behaves according to the new setting

WD

Expected Resullt:
N/A

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 5-3

Backlight Driver

Backlight Timeout Entry Criteria:
N/A
Procedure:

1. Goto“Setting >Control Panel”

2. Double click on the “Display” icon, then click on the “Backlight” tab

3. Modify the backlight timeout setting for both battery and external power, and
then click on “OK" button to apply the changes

4. Observethetimeit takes for the backlight to go out, make sureit correspond with
the new settings entered in step 3

Expected Resullt:
N/A

5.6 Backlight APl Reference

The API for the backlight driver conforms to the stream interface and exposes the standard functions.
Further information can be found at “Developing a Device Driver = Windows CE Embedded Drivers
- Streams|Interface Drivers’

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

5-4 Freescale Semiconductor

Battery Driver

Chapter 6
Battery Driver

The battery driver moduleis used to provide information about the battery level to the operating system.

The battery driver samples the voltage level upon initialization as well as on power up when coming out
of suspend. It checksto determineif the charger and/or battery is attached, then decides whether to execute
the charging or discharging operations. It also reports the battery capability and power supply state to the
OS periodically by measuring battery voltage. During charging, current-limit and voltage-limit will take
place to protect the charger and battery, and the operating system will be forbidden to enter suspend mode
to prevent the charging operation from losing control.

6.1 Battery Driver Summary

The following table provides a summary of source code location, library dependencies and other BSP
information:

Table 6-1. Battery Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_VA1
CSP Static Library N/A
Platform Driver Path .\PLATFORM\<TGTPLAT>\SRC\DRIVERS\BATTDRVR\MC 13783
Import Library N/A
Driver DLL battdrvr_MC13783.dlI
Catalog Item Third Party —> BSP —> Freescale i.MX31 3DS:ARMV4I1—> Device Drivers
—>Battery —> MC13783 Battery
SYSGEN Dependency N/A
BSP Environment Variables BSP_BATTERY=1, BSP_PMIC_MC13783=1

6.2 Requirements

The battery driver should meet the following regquirements:
1. Conform to the Device Manager streams interface.
2. Support the <TGTPLAT> MC13783 PMIC.
3. Support the main battery without the support of the change notification.

6.3 Hardware Operation

The battery driver isimplemented with the aid of the MC13783 Power Management Integrated Circuit
(PMIC). The PMIC isamulti-functional IC that contains on-chip analog to digital converters used to

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 6-1

Battery Driver

measurethevoltage and current level s of the battery. Theselevelsare then used in determining the capacity
level of the battery.

6.3.1 Conflicts with other SoC Peripherals

No conflicts.

6.4 Software Operation

Upon initialization of the driver, the default values for the battery parameters are retrieved from the
registry, and battery statusinformation isupdated. After initialization the function BatteryPDDGetStatus()
iscalled periodically to get the status of the Battery and to decide to charge or discharge the battery. It fills
the structure SY STEM_POWER_STATUS _EX2 and returnsiit to the system. The power properties
window is updated based on the values in this structure.

6.4.1 Battery Driver Registry Settings
The following registry keys are required to properly load the battery driver.

; These registry entries |load the battery driver. The | d ass val ue nust natch
; the BATTERY_DRI VER_CLASS definition in battery.h -- this is how the system
; knows which device is the battery driver.

[HKEY_LOCAL_MACHI NE\ Dri vers\ Buil t1 n\ Battery]
"Prefix"="BAT"

"Fl ags" =dwor d: 8 ; DEVFLAGS_NAKEDENTRI ES
"1d ass"="{DD176277- CD34- 4980- 91EE- 67DBEF3D8913}"
"BattFul | Li ft Ti me" = dword: 8 ;Batt Spec defined: in hr,8hr is assuned
"Batt Ful | Capacity"=dword: 960 ; Batt Spec defined: in mAh, 2400mAhr i s assumed
"Bat t MaxVol t age" =dwor d: 1068 ; Batt Spec defined: in nV,4200mV is assuned
"Batt M nVol t age" =dwor d: BB8 ; Batt Spec defined: in nV,3000mV is assuned
"Bat t Peuker t Nunber " =dwor d: 73 ;Batt Spec defined, 1.15 is assuned
"Bat t Char geEf f " =dwor d: 50 ; Batt Spec defined, 0.80 is assuned

"Pol | I nterval "=dword: 000003e8 ; Batt poll interval in mlliseconds

="battdrvr_MC13783.dl I "

[HKEY_LOCAL_MACHI NE\ Syst em Event s]
" SYSTEM Batt er yAPl sReady" ="Battery Interface APIs"

6.4.2 Power Management

There is no additional power management implementation done specifically for the battery driver other
than the implementation described in section 17.5.6 of Power Management IC (PMIC) reference
document.

6.5 Unit Test

The battery can be tested, by switching on the system and watching the power properties window. When
charging, the LED indicator will turn on and the charge capacity of the battery can be seen increasing until

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

6-2 Freescale Semiconductor

Battery Driver

charged to 100%. When without battery attached or battery fully charged or supplied with battery, the LED
indicator will be turned off.

CAUTION

Please do not plug in or remove the battery after booting up the device. The
device can be damaged if the battery is plugged in or removed after boot.

6.5.1 Unit Test Hardware
The MX31 3-Stack board is required.

6.6 Battery API Reference

The API for the battery driver conformsto the stream interface and exposes the standard functions. Further
information can be found at Developing a Device Driver — Windows Embedded CE Drivers —>
Battery Drivers

6.6.1 Battery PDD Functions

6.6.1.1 BSPBattdrvrGetParameters
This function returns the battery and charger voltage levels, the current level, and a flag that indicates if
the current is charging or discharging.

Prototype BOOL BSPBat t dr vr Get Par anet er s(DWORD *pBatt_V, DWORD *pCharger_V, BOOL
*f Char ge, DWORD *1)

Parameters pBatt_V
[out] pointer to the battery voltage value
pCharger_V
[out] pointer to the charger voltage value
fCharge
[out] pointer to the flag TRUE for charging FAL SE for discharging
I
[out] pointer to the charging/discharging current

6.6.1.2 BSPBattdrvrGetSample

This function returns the battery voltage sample.

Prototype BOOL BSPBat t drvr Get Sanpl e(Ul NT16 *psanpl e)

Parameters psample
[out] pointer to the sample value,
psample[0] = battery voltage;
psample[1] = battery current;

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 6-3

Battery Driver

6.6.2

6.6.2.1

psample[2] = charger voltage;
psample[3] = charger current;

Battery Driver Structures

Battery Channels Structure

typedef enum _BATTDRVR_CHANNELS {
Bat t Vol t age,
Batt Current,
Char ger Vol t age,
Char ger Current,
Tot al Channel s,
} BATTDRVR_CHANNELS;

6.6.2.2

Battery Information Structure

typedef struct _BATT_I NFO

{
DWORD

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

} BATT_I NFO,

adc_| evel ;
adc_batt_nmax_V,
adc_batt_m n_V,
adc_batt_nmax_|I;
adc_batt_mn_I;
adc_charger _nmax_V;
adc_charger _mn_V;
adc_charger _nmax_1I ;
adc_charger_mn_l;
charger_V_limt;
*PBATT_I NFQ,

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

6-4

Freescale Semiconductor

Chapter 7

Bluetooth Driver

The Bluetooth driver is used to drive the APM 6628 modul e to implement Bluetooth functionality
compatible with Bluetooth v2.0 +EDR. Bluetooth exchanges data with the through the UART2 port. The
APM6628 modul e adopts BlueCore4 Bluetooth solution of Cambridge Silicon Radio company.

7.1 Bluetooth Driver Summary

The Bluetooth driver is provided in binary form instead of source codes. Table 7-1 provides asummary of
the source code location, library dependencies, and other BSP information.

Table 7-1. Bluetooth Driver Summary

Driver Attribute

Definition

Target Platform

Target SOC

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2\BLUETOOTH

SOC Specific Path

N/A

Platform Specific Path

.\PLATFORM\<Target Platform>\SRC\DRIVERS\BLUETOOTH

Driver DLL bthbesp.dll btp_bchs.dll btp_modules.dll bth_avdrv.dil
SDK Library N\A
Catalog ltem Third Party > BSP > Freescale <Target Platform>: ARMV4l > Device Drivers > BlueTooth >

CSR BlueTooth

Third Party > BSP > Freescale <Target Platform>: ARMV4| > Device Drivers > Serial > UART2
serial port support

Core OS > CEBASE > Communication Services and Networking > Networking - Personal Area
Network(PAN) > Bluetooth > Bluetooth Protocol Stack with Transport Driver Support >
Bluetooth Stack with Universal Loadable Driver (exclude other HCI drivers)

Core OS > CEBASE > Applications and Services Development > .NET Compact Framework
2.0 > .NET Compact Framework 2.0

Core OS > CEBASE > Applications and Services Development > Object Exchange
Protocol(OBEX) > OBEX Client

Core OS > CEBASE > Applications and Services Development > Object Exchange
Protocol(OBEX) > OBEX Server > OBEX File Browser

Core OS > CEBASE > Applications and Services Development > Object Exchange
Protocol(OBEX) > OBEX Server —> OBEX Inbox

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

7-1

Bluetooth Driver

SYSGEN Dependency SYSGEN_BTH=1
SYSGEN_DOTNETV2=1
SYSGEN_OBEX_FILEBROWSER=1
SYSGEN_OBEX_CLIENT=1
SYSGEN_OBEX_INBOX=1

BSP Environment Variables | BSP_CSR_BLUETOQOTH =1
BSP_SERIAL_UART2 =1

The Catalog Itemsin Table 7-1 should be included in the OS design in order to provide Bluetooth Profiles.
When Third Party > BSP > Freescale <Target Platform>: ARMV4l > Device Drivers> Bluetooth >
CSR Bluetooth is selected, other catalog items are selected automatically.

7.2 Supported Functionality

The Bluetooth driver enables the 3-Stack board to provide the following software and hardware support:
» Drives Bluetooth module in APM6628 chip

* Provides communication between Bluetooth module and UART2 driver with serial baudrate up to
921.6kbps

* Supports A2DP SOURCE (Advanced Audio Distribution Profile)
» Supports AVRCP (Audio Video Remote Control Profile)
» Supports FTP (File Transfer Profile)

7.3 Hardware Operation

The Bluetooth driver exchanges data and commands between the BCHS (BlueCore Host Software) stack
and Bluetooth hardware via UART2 port.

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

7-2 Freescale Semiconductor

Bluetooth Driver

7.3.1 Conflicts with Other Peripherals and Catalog Iltems
7.3.1.1 Conflicts with SoC Peripherals
7.3.1.2 Conflicts with 3-Stack Peripherals

7.4 Software Operation

The overall software architecture with existing Microsoft Bluetooth stack and CSR BCHS stack is shown
in Figure 7-1

7 MS or OEM
| F; | [Applications
t mppext | __ﬂ* App Extension
App Maduls I 1 Module Layer
BT Manager I _‘:-— Manager
™
ﬂﬂ SYNC
AG DUN SPR| AV
_ — ~ BCHS
Natl?e MS M5 Profiles I _.Ennne::tiun Manager
profiles /
MS BT Proxy] = Driver layer
& s :
Socket A1 |_aTH_|
e MS Host
RFCOMM | SDP | L2C Ext ~ BT Stack
L2CAP
t __,-
-
LC CSR
BB Mioro */ ~ BlueCore
Radio

-

Figure 7-1. Software Architecture of Bluetooth Driver and Protocol

The BCHS is an embedded Bluetooth software package complementing the already existing Microsoft
Bluetooth profiles delivered as part of the Microsoft Windows CE OS. BCHS is devel oped to operate on
top of the native Microsoft Bluetooth stack and not as a replacement of the Microsoft Bluetooth stack.

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 7-3

Bluetooth Driver

7.4.1 Registry Settings

7.5 Unit Test
Bluetooth test includes CETK test and manual tests for A2DP, AVRCP and FTP.

7.5.1 Unit Test Hardware

Table 7-2 lists the required hardware to run the unit tests.
Table 7-2. Hardware Requirements

Requirement Description

Bluetooth Headset Bluetooth Headset which supports SBC decoder for testing A2DP and AVRCP feature. HT820
headset is used

Mobile phone or PC with Bluetooth feature. Nokia mobile phone and laptop DELL D610 is used

Two 3-stack boards CETK for Bluetooth needs two Bluetooth boards on TCP/IP networking

7.5.2 Unit Test Software
Table 7-3 lists the required software to run the unit tests.

Table 7-3. Software Requirements

Requirement Description
Tux.exe Tux text harness, which is required for executing the test.
Kato.dll Kato logging engine, which is required for logging test data.
Tooltalk.dll Application required by Tux.exe and Kato.dll. Handles the transport between the target

device and the development workstation.

Netall.dll Provides functions that generate random numbers, output data, and parse command lines

Btwsvr22.exe, Btw22.exe CETK MS Bluetooth Test

bthapitst.dll CETK Bluetooth API Test

Perflog.dll, Perf_bluetooth.dll | CETK Bluetooth Performance Test

hciga_con.dll,ddIx.dll CETK Bluetooth HCI Transport Driver Test

7.5.3 Running the Unit Tests

7.5.3.1 Running Bluetooth CETK

7.5.3.1.1 Running the CETK Bluetooth API Test

The API test requires two Bluetooth boards: one for the client and one for the server. The test steps are as
follows:

1. Bootup the two 3-Stack boards

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

7-4 Freescale Semiconductor

Bluetooth Driver

2. Copy Kato.dll, Tooltalk.dll, Netall.dll and bthapitst.dll into the Windows directory in client board

3. Intheclient board, open Run from START and enter tux -o -d bthapitst.dll -c*-sserver_bt_addr”
command to execute thistest. Where server_bt_addr is the Bluetooth address of the Windows
Embedded CE based device running as a server. For example, if the server addressis
0123456789ab, the command line should read: tux -o -d bthapitst.dll -c*-s 0123456789ab” .

7.5.3.1.2 Running the CETK Bluetooth Performance Test

The performancetest requirestwo Bluetooth boards: onefor the client and onefor the server. Thetest steps
areasfollows:
1. Bootup two 3-Stack boards.

2. Copy Kato.dll, Tooltalk.dll, Perflog.dil and Perf_bluetooth.dll into the Windows directory in both
boards

3. Intheserver board, open Run from START and enter tux -0 -d perf_bluetooth -c “-i
Number Oflteraions-b Number OfBuffers-p Server Channel Number” command to executethistest.
Such astux -0 -d perf_bluetooth -c “-i 10 -p 6 -b 163840"

4. Inthe client board, open Run from START and enter tux -o -d perf_bluetooth -c*“-s
server_bt_addr -i Number Oflteraions -b Number OfBuffers -p Server ChannelNumber” command
to execute thistest. Such astux -0 -d perf_bluetooth -c “-s0123456789ab -i 10 -p 6 -b 163840”

To view the test results:
1. Copy the .log file to the development workstation.

2. From <Platform Builder installation path>\Cepb\Wcetk\Ddtk\Desktop, copy Pparse.exe to the
directory that contains the log file.

3. Inthedirectory that contains thelog file, run the following command: ppar se log_filename
parsed_filename, wherelog_filenameisthe name of thelog fileand parsed_filename isthe name
of the .csv file that you want to create to store the parsed test results.

4. In Excel, open the .csv file.

7.5.3.1.3 Running the CETK Bluetooth HCI Transport Driver Test

The HCI transport driver test requires two Bluetooth boards: one for the client and one for the server. The
test steps are as follows:

1. Bootup two 3-Stack boards.
2. Copy Kato.dll, Tooltalk.dll, hciga_con.dll and ddIx.dll into the Windows directory in both boards.

3. Inthe server board, open Run from START and enter tux -o -d ddIx.dll -c “-d hciga_con.dll -i 2
-c /accept /class 0x010000” command to execute this test.

4. Intheclient board, open Run from START and enter tux -o -d ddIx.dll -c “-d hciga_con.dll -i 2
-c /class 0x010000" command to execute this test.
NOTE

Refer to http://msdn.microsoft.com/en-ug/library/bb203069.aspx for
detailed CETK information.

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 7-5

Bluetooth Driver

7.5.3.2 Manual Test Bluetooth

NOTE

Follow the steps shown below exactly, otherwise there may be unexpected
results.

7.5.3.2.1 Running the Bluetooth A2DP Test
The purpose of the A2DP test isto listen to stereo music played by MediaPlayer from the Bluetooth
headset. The test steps are as follows:

1. Make Bluetooth headset entering pairing mode

2. Open the Bluetooth Device Properties tools in the control panel and click scan deviceicon

3. The 3-stack board sets up the audio connection with Bluetooth headset. Music played by Media
Player, may be listened from your Bluetooth headset.

7.5.3.2.2 Running the Bluetooth AVRCP Test
1. After A2DP has been setup, play amusic file with the M ediaPlayer. Long-press the volume-up or
volume-down button on the headset and the music volume from headset changes accordingly.

2. Click PLAY/PAUSE/STOP button, the MediaPlayer pauses the music. Then re-click this button,
and the MediaPlayer plays the music again. Long-press this button, and the MediaPlayer stops.

7.5.3.2.3 Running the Bluetooth FTP Test

1. Open the Bluetooth Device Properties tools in the control panel and click the scan deviceicon

2. If you open the Bluetooth Neighborhood folder under My Device, the paired Bluetooth device
(phone or PC) is asked to permit the 3-stack board access. After you click OK and input the default
password (0000), also input 0000 in thewindow in the 3-Stack board. A shared folder of the paired
Bluetooth device appears and you may get/put files from/to this shared folder

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

7-6 Freescale Semiconductor

7.5.4

[? Jox] %]

|E§NOK1A WMobile (00183 :I
DNOKIA Mohile (00184
SNOKIA Mabile (00183
B HOKTA Mohile (00185

[?] Unrarmed (DDDH%E
KI I

SEal'l Device

Trusted———

Bluetooth Manager

Scan Device

Bluetooth Driver

|7 JoK] x|

Untrusted

Bluetooth Manager

Scan DEVICE

N - 1] |

Untrusted

BENOKLA Makile (0018
SNOKIA Mobile (001sa:

[HoKL2 Mobile (00122l
[?] Unnamed {00013623

Unnarned (DDIEEEE
] I

B —

Trusted———
MOKLA Mohile (D01ea4cft

Bluetooth Manager Em
Scan Device

% [Nokia 6600 (00605727200 4 |
0% [7] Arthur (00188d769083)
0%] MOKIA (D01ea4cfcd9e)
0¥n &3 NOKI& (DD1eadcicdde) |:|

O¥nBlE NOKIS (D01sadcfcdde)
OFnao) NOKIA (D01eadcfodde)
o¥nSh NOKIA (D01eadcfrdde)

0% [MOKIA (001sadcfcc9e) EE
Kl ——

{5can Device |

O a Mokia 5600 (D06057d8f350 :

o (2] Arthor (00128d7600e3)
o 2] NOK1A [D01eadcfedde)
o) MOKIA (001leadcfcdde)
ka2 NOKIA (001ea4cfedSe)
oY MOKIA (001eadcfrdde)
o¥n=h NOKIA [D01eadcfedde)
(

%E NOKIA (DD1eadcfode) .H

EENOKIA Mobie (I01ea(a |
EBNOKIA Mobie (0018a

B HOKIA Mobie (001eal
Unnamed (00013623

Unnarned (DDIECEE
[

Trusted
FAIMOKIA Mobie (001eadcft

Scan Deyice

-

KT —

Fle Edit View Go Favorites |||]]|¢|9||><||

]Agldressl\Bluetuoth Meighbourhood' (001eadcfodoe)

-
5 7 Graphics
e
Yideo clips

Images

S

S e S

Mernory card - Music fles Receiv, fles

[Fle Edit view Go | “Zl

21 BT i
Address | \Bluetooth MNeighbourhood) (D0 1eadcfrdde)

2 & E = = -

7 FTP_settings Mew Text aooo
Docurnent
[[[[[[
oo oo oo ooo ooooo oooo

Figure 7-2. Bluetooth FTP Test

NOTE

Make sure you use the correct Bluetooth A2DP and FTP icons, and do not
use other icons.

Operation Attention Items and Tips

You must strictly follow the Bluetooth manual test steps given above. This section reaffirms the itemsto
pay close attention to.

Ensure that the Bluetooth headset isin pairing mode, then begin to scan the device from the
Bluetooth Manager Window

After the Bluetooth headset is scanned, a password window appears. Quickly input the default
password ‘0000’ . If the headset icon in Bluetooth Manager window isaquestion mark and headset
isnot in pair mode, the password was inputted to slow. Set the headset in pair mode and re-scan.
If the headset icon in the Bluetooth Manager window is a question mark, and headset isin pair
mode, the password isincorrect. In this case, trust the headset icon in the manager window, then

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

7-7

Bluetooth Driver

7.5.5

un-trust it to delete the headset password information. Then set the headset in pair mode and
re-scan it and input the correct password.

Pay attention to the A2DP and FTP icon which may refer to
WINCEG600\PUBLIC\COMMON\OAK\DRIVERS\NETUI and use the right icon.

It is better to use non-activing than del eting, because after deleting, you must re-pair the Bluetooth
device if you want to reuse it.

Known Issues

If you move the Bluetooth headset from the right block to the left block before the headset is
activated, do not again move the headset to the right block. This confuses the Bluetooth. The
correct operation is the following steps after headset is removed into left block

— Ensure headset in pair mode
— Rescan and input password
— Move headset into right block and activeit.

The reason is that the Bluetooth Property Application provided by Microsoft deletes the trusted
Bluetooth headset security register.

When scan is running, do not reopen the Bluetooth Property Application in the control panel,
otherwise the Bluetooth Property Application will be in an unexpected state, such as cannot stop
or cannot reopen if you close thiswindow. This reason is that Bluetooth Property Application
provided by Microsoft is not handled well for unique instance.

Bluetooth APl CETK failsin hold mode test, because CSR Bluetooth protocol does not support
thismode. CSR fixesthisin alater version.

i.MX35 PDK Windows Embedded CE 6.0 Reference Manual, Rev 1.5

7-8

Freescale Semiconductor

Camera Driver

Chapter 8
Camera Driver

The cameradriver is based on the Windows CE 6.0 Camera Device Driver Interface. Thisinterface
provides basic support for video and still image capture devices. The camera driver conforms to the
architecture for Windows CE stream interface drivers and alows applications to use the middleware layer
provided by the DirectShow video capture infrastructure to communicate with and control the camera
This module is designed to be compatible with the OV 2640 camera sensor modul es.

At the lower layer, the camera driver performs several tasksincluding:
» Communicating with and configuring a camera sensor through the 12C interface
» Interfacing with the Image Processing Unit (IPU) to perform pre-processing tasks on captured
images
» Configuring the IPU Synchronous Display Controller (SDC) for direct display of video preview
data

8.1 Camera Driver Summary

Table 8-1 provides a summary of source code location, library dependencies and other BSP information.
Table 8-1. Camera Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
MXARM11 SOC Driver Path .\PLATFORM\COMMON\SRC\SOC\freescale\mxarm11_fsl_v1\ipu\camera
SOC Driver Path N/A
SOC Static Library camera_mxarmi1_fsl_v1.lib
Platform Driver Path .\PLATFORM\< TGTPLAT>\SRC\DRIVERS\IPU\CAMERA
Import Library N/A
Driver DLL camera.dll
Catalog ltems Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I| > Device Drivers >
Camera > Camera
SYSGEN Dependency SYSGEN_DSHOW_CAPTURE=1
BSP Environment Variables BSP_CAMERA=1

8.2 Supported Functionality

The camera driver enables the 3-Stack board to provide the following software and hardware support:
» Supports the Windows CE Camera Device Driver Interface
» Supports Preview, Capture, and Still pins

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 8-1

Camera Driver

» Supports a Direct-to-Display preview mode
» Supports the OV 2640 camera sensors
» Supports power management operations

8.3 Hardware Operation

Several hardware modules are involved in the operation of the camera driver. The OV 2640 camera sensor
captures external image data. All other hardware elements of the camera driver are within the IPU. The
IPU Camera Sensor Interface (CSl) receives data from the sensor and converts the data into a format
understood by the |PU. Thisdatais subsequently pre-processed by the | PU Image Converter (IC) module.
There are two pre-processing paths: one for encoding and one for viewfinding. The pre-processed image
dataisthen transferred by the IPU DMA module to one of two destinations: system memory (encoding or
viewfinding data) or the IPU Synchronous Display Controller (SDC) for display (viewfinding data).

For detailed operation and programming information, refer to the chapter on the Image Processing Unit
(IPVU) in the hardware specification document.

8.4 Software Operation

8.4.1 Communicating with the Camera

Communication with the camera driver is accomplished through camera APIs defined by Microsoft for
Windows CE 6.0. Applications may access these APIs directly or through the DirectShow video capture
support.

8.4.1.1 Using the Windows CE Camera Device Driver Interface

The Windows CE CameraDevice Driver Interface provides basic support for video and still image capture
devices. Refer to the following Windows CE 6.0 Help Documentation section for information on using
these Camera APIs:

Developing a Device Driver > Windows Embedded CE Drivers> CameraDrivers> CameraDriver
Reference.

8.4.1.2 Using DirectShow for Video Capture

DirectShow provides support for the creation of filter graphs for video capture. Information on using
DirectShow for video capture can be found in the following Windows CE 6.0 Hel p Documentation section:

Windows Embedded CE Features > Encoded Media > DirectShow > DirectShow Application
Development > DirectShow Architecture> Audio and Video Capture Support > Video Capture.

8.4.2 Camera Registry Settings

Two sets of registry settings are needed for proper cameradriver operation: One for the camera sensor and
another for the cameradriver.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

8-2 Freescale Semiconductor

Camera Driver

The following registry keys are required to properly load the camera driver.

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ Caner a]
"Prefix"="CAM
"Dl"="canera.dl|"
"Or der " =dwor d: 20
"l ndex"=dword: 1
"Caneral d"=dword: 3
"I Class"=mul ti_sz:
"{ CB998A05- 122C- 4166- 846A- 933E4D7E3C86} ", "{ A32942B7- 920C- 486b- BOE6- 92A702A99B35} "

The Camerald registry key selects among the available camera sensor modules. Table 8-2 showsthe valid
values and the corresponding camera sensors.
Table 8-2. Camerald Registry Key Settings

Value Camera Sensor
0 iMagic IM8803
1 iMagic IM8201
2 Magna521DA
3 0V2640

[HKEY_LOCAL_MACHI NE\ Sof t war e\ M crosof t\ Di rect X\ Di r ect Show\ Capt ur €]
"Prefix"="PIN
"Dl"="canera.dl|"
"Or der " =dwor d: 20
"I ndex"=dword: 1
"Pi nCount "=dword: 3 ; Pin count. Max = 3; default = 2
"MenoryModel "=dword: 1 ; Pin nmenory node.
"I Class"=mul ti_sz:"{COD092D6- 827A- 45E2- 8144- DE1982BFC3A8} ",
"{ A32942B7- 920C- 486b- BOE6- 92A702A99B35} "

8.4.3 Power Management

The cameradriver consumes power primarily through the operation of various IPU sub-modules, such as:
» CSl which synchronizes and receives image data from the camera sensor
» |C which performs pre-processing operations on captured image data

The CSlI and 1C modules are enabled when the camerais set to arunning state. Support for transition to
the Suspend and Resume states is provided through the IOCTL_POWER_SET IOCTL.

8.4.3.1 PowerUp

This function is not implemented for the camera driver.

8.4.3.2 PowerDown

This function is not implemented for the camera driver.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 8-3

Camera Driver

8.4.3.3 IOCTL_POWER_SET
The camera driver implements the IOCTL_POWER_SET IOCTL API with support for the DO, D1, D2
(Full on) and the D3, D4 (Off) power states. These states are handled in the following manner:

* DO0-D2-Action isonly taken when resuming from the D4 state. If the camera was running when
the transition to the D4 state occurred, the camerareturns to a running state, re-enabling the CSI
and 1C modules.

» D3-D4-Actionisonly takenif the camerais running when the request to transition to the D4 state
OCCUrS.

8.5 Unit Test

The cameradriver is subject to the following test suites provided with the Windows CE Test Kit (CETK):

» CameraDriver Data Structure Verification Test - queries the driver for the various properties and
formats, and verifiesthat the data structures returned are valid

» CameraDriver I/O Test - verifies the functionality of the preview and capture streams on the
cameradriver

» Cameraand DirectShow Integration Test - verifiesthefunctionality of the cameradriver when used
under DirectShow

» Camera Performance Test - gathers performance data for a number of DirectShow capture
scenarios

Additionally, for Windows CE 6.0, a Camera Application written by Microsoft may be used to preview
and capture still images.

8.5.1 Unit Test Hardware

Table 8-3 lists the required hardware to run the Windows CE 6.0 Camera CETK test and the camera
application.

Table 8-3. Hardware Requirements

Requirements Description

Camera functionality The device must have camera functionality, currently OV2640 sensor is used

8.5.2 Unit Test Software

8.5.2.1 Custom Camera CETK Test

Table 8-4 lists the required software to run the Camera CETK Test.
Table 8-4. Camera CEKT Test Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

8-4 Freescale Semiconductor

Camera Driver

Requirements Description
CameraGraphTests.dll Library containing the camera and directshow integration test cases
CamTestProperties.dll Library containing the camera driver data structure verification test cases
CamlQOTests.dll Library containing the camera driver I/O test cases
CameraPerfTests.dll Library containing the camera performance test cases
CameraGrabber.dll Filter required by many command line parameters to track and output information
about media samples

SYSGEN_DSHOW_CAPTURE (DirectShow capture) isalso required. In addition, the configurationfile
“capconfig.ini” isrequired for CameraPerfTests.dll.
8.5.2.2 Freescale Camera Application

Table 8-5 lists the required software to run the custom camera application.
Table 8-5. Custom Camera Application Software Requirements

Requirements Description

Camapp.exe Executable file for the camera application

8.5.2.3 Camera Application

No additional actions are required to include the Windows CE 6.0 camera application in an OS image
beyond the required registry keys.

8.5.3 Building the Camera Tests

8.5.3.1 Camera CETK Test

All the above mentioned tests come pre-built as part of the CETK. No steps are required to build these
tests. These test files can be found alongside the other required CETK filesin the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4l

8.5.3.2 Freescale Camera Application

The following steps can be used to build the custom camera application:
1. Build an OSimage for the desired configuration
Add anew folder named “APP” under the folder “\WINCEG00\PL ATFORM\imx313ds\src\”
Copy the folder of “Camapp” under the folder “APP’
Setup a new blank dirs file under the folder “ Camapp”
Enter the build command at the prompt and press build camapp
Find the “camapp.exe” filein “obj\release” or “ obj\debug” folder under folder * camapp”

o gk wbd

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 8-5

Camera Driver

8.54 Running the Camera Tests

8.5.4.1 Running the Camera CETK Test

Thefollowing are the tests available and the test procedures for each of thetests. For detailed information
on the these tests see the relevant subsections under “CETK Tests’ in the Windows CE 6.0 Help
Documentation section: Windows Embedded CE Test Kit > CETK Testsand Test Tools> CECETK
Tests> Camera Tests.

* The command line tux -0 -d CameraGraphTests.dll runs the camera and directshow integration
test

* The command line tux -0 -d CamTestProperties.dll runs the Camera Driver Data Structure
Verification Test

¢ The command line tux -0 -d Caml OTests.dll runs Camera Driver I/O Test

* The command line tux -0 -d cameraperftests.dll -c " -p \release\capresults.csv -c
\release\capconfig.ini” runsthe Camera Performance Test. Note that this test requires the
“capconfig.ini” configuration file which specifies what isto be tested, copying the file under the
corresponding folder such as “\release” before testing from the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4l

NOTE

The tests that involve audio capture are skipped due to a hardware audio
recording limitation. For more information, see Chapter 4, “ Audio Driver.”

8.5.4.2 Running the Freescale Camera Application

In the target control command prompt, use the following command to execute the custom camera
application:

s camapp. exe

8.6 Camera Driver API Reference

Documentation for the cameradriver APlscan be found within thelatest Windows CE 6.0 Documentation.

Reference information on basic camera driver functions, methods, and structures can be found at the
following location in the Windows CE 6.0 Help Documentation:

Developing a Device Driver > Windows Embedded CE Drivers> CameraDrivers> CameraDriver
Reference

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

8-6 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

Chapter 9
Chip Support Package Driver Development Kit (CSPDDK)

The BSP includes a component called the Chip Support Package Driver Development Kit (CSPDDK)
which provides an interface to access peripheral features and SoC configuration shared by the system. The
CSPDDK executes as adevice driver DLL and exports functions for the following SCC components:

» System clocking (CCM)

« GPIO

« DMA (SDMA)

* Pin multiplexing and pad configuration (IOMUX)

9.1 CSPDDK Driver Summary

Table 9-1 provides a summary of source code location, library dependencies and other BSP information.
Table 9-1. CSPDDK Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
MXARM11 CSP Driver Path . \PLATFORM\COMMON\SRC\SOC\FREESCALE\MXARM11_FSL_V1\
CSPDDK
CSP Driver Path \PLATFORM\COMMON\SRC\SOC\FREESCALE\MX31_FSL_v1\CSPD
DK
CSP Static Library ddk_mx31_fsl_v1.lib
Platform Driver Path .\PLATFORM\<TGTPLAT>\SRC\DRIVERS\CSPDDK
Import Library cspddk.lib
Driver DLL cspddk.dll
Catalog Item N/A
SYSGEN Dependency N/A
BSP Environment Variables Remove BSP_NOCSPDDK=1

9.2 Supported Functionality

The CSPDDK enables the 3-Stack board to provide the following software and hardware support:

» Supports an interface that allows synchronized inter-process access to the following set of shared
SoC resources:

— GPIO (DDK_GPIO)

— SDMA (DDK_SDMA)
— IOMUX (DDK_IOMUX)
— CCM (DDK_CLK)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-1

Chip Support Package Driver Development Kit (CSPDDK)

» Exposes exported functions that can be invoked without incurring a system call (i.e. not a stream
driver)
9.3 Hardware Operation

Refer to the hardware specification document for detailed operation and programming information.

9.3.1 Conflicts with Other Peripherals

No conflicts.

9.4 Software Operation

9.4.1 Communicating with the CSPDDK

Similar to the CEDDK DLL, the CSPDDK DLL does not require any specia initialization. All of the
initialization required by the CSPDDK is performed when the DLL isloaded into the respective process
space. Drivers that want to utilize the CSPDDK simply need to link to the CSPDDK export library and
invoke the exported functions.

9.4.2 Compile-Time Configuration Options

The CSPDDK exposes compile-time options for configuring the SDMA support. In some cases, these
compilation variables are also leveraged by driver code to expose a central point of controlling SDMA
functionality. Table 9-2 describes the available CSPDDK compile options.

Table 9-2. CSPDDK Compile Options

Header

Compilation Variable Location

Description

IMAGE_WINCE_DDKSDMA_IRAM_PA_START image_cfg.h Physical starting address in internal RAM
(IRAM) where the shared SDMA data structures
will be located

IMAGE_WINCE_DDKSDMA_IRAM_OFFSET image_cfg.h | Offset in bytes from the base of IRAM for the
SDMA data structures

IMAGE_WINCE_DDKSDMA_IRAM_SIZE image_cfg.h Size in bytes of the IRAM reserved for SDMA
data structures

IMAGE_WINCE_DDKSDMA_RAM_PA_START image_cfg.h Physical starting address in external RAM
where the shared SDMA data structures will be
located. This address must correspond to the
region reserved in config.bib

IMAGE_WINCE_DDKSDMA_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for
SDMA data structures. This size must
correspond to the region reserved in config.bib.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-2 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

BSP_SDMA_MCOPTR bsp_cfg.h Starting address for the shared SDMA data
structures. Set to
IMAGE_SHARE_IRAM_SDMA_PA_START to
use internal RAM. Set to
IMAGE_SHARE_SDMA_PA_START to use
external RAM.

BSP_SDMA_CHNPRI_xxx bsp_cfg.h Assigns a SDMA channel priority to the
respective peripheral. Refer to the individual
driver chapters for more information on the
specific priorities.

BSP_SDMA_SUPPORT _xxx bsp_cfg.h Boolean to specifies if SDMA-based transfers
are enabled for each respective peripheral.
Refer to the individual driver chapters for more
information on the DMA support provided.

The CSPDDK manages the allocation of buffer descriptor chains for drivers and applications. The
allocation scheme first attempts to allocate the buffer descriptor chain from afixed memory pool within
theregion specified by BSP_SDMA_MCOPTR. If the CSPDDK isunableto allocate enough storage from
thisfixed pool, it dynamically allocates the necessary storage from external memory.

To decrease power consumption in cases such as audio playback, it isbeneficial to configure
BSP_SDMA_MCOPTR to point to areserved internal RAM (IRAM) region and allocate the audio buffers
in IRAM. This configuration does not require external memory cyclesin the data flow from the audio
buffersto the SSI and allows the CSPDDK to utilize EMI clock gating to significantly reduce the power
consumption. Refer to the audio chapter in the Reference Guide for more information on configuring audio
DMA support.

9.4.3 Registry Settings

There are no registry settings that need to be modified to use the CSPDDK driver. Since most drivers need
to use CSPDDK functionality, the CSPDDK should be one of the first DLLs loaded by device manager.

9.4.4 Power Management

The CSPDDK exposes interfaces that allow driversto self-manage power consumption by controlling
clocking and pin configuration. The CSPDDK executes as a shared DLL and does not implement the
power manager driver IOCTLs or the PowerUp/PowerDown stream interface. However, the CSPDDK
functions are invoked by other drivers during power state transitions.

9.5 CSPDDK DLL Reference

9.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference

The DDK_CLK interface allows device driversto configure and query system clock settings.

9.5.1.1 DDK_CLK Enumerations
Table 9-3. DDK_CLK Enumerations

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-3

Chip Support Package Driver Development Kit (CSPDDK)

Programming Element Description
DDK_CLOCK_SI GNAL Clock signal name for querying/setting clock configuration
DDK_CLOCK_GATE_| NDEX Index for referencing the corresponding clock gating control bits within the CCM
DDK_CLOCK_GATE_MODE Clock gating modes supported by CCM clock gating registers

DDK_CLOCK_BAUD_SOURCE Input source for baud clock generation

DDK_CLOCK_CKO_SRC Clock output source (CKO) signal selections

DDK_CLOCK_CKO DI V Clock output source (CKO) divider selections

9.5.1.2 DDK_CLK Functions

9.5.1.21 DDKClockSetGatingMode

This function sets the clock gating mode of the peripheral.

BOCOL DDKC ockSet Gat i nghvbde(
DDK_CLOCK_GATE_I NDEX i ndex,
DDK_CLOCK_GATE_MODE npde)

Parameters

index [in] Index for referencing the peripheral clock gating control bits.
mode [in] Requested clock gating mode for the peripheral.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.1.2.2 DDKClockGetGatingMode

This function retrieves the clock gating mode of the peripheral.

BOCOL DDKC ockGet Gat i nghvbde(
DDK_CLOCK_GATE_| NDEX i ndex,
DDK_CLOCK_GATE_MODE *pMode)

Parameters

index [in] Index for referencing the peripheral clock gating control bits.
pMode [out] Current clock gating mode for the peripheral.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.1.2.3 DDKClockGetFreq

This function retrieves the clock frequency in Hz for the specified clock signal.

BOCOL DDKC ockGet Freq(
DDK_CLOCK_SI GNAL si g,
U NT32 *freq)

Parameters

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-4 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

sg [in] Clock signal.
freq [out] Current frequency in Hz.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.1.24 DDKClockConfigBaud

This function configures the input source clock and dividers for the specified CCM peripheral baud clock
output.

BOCOL DDKC ockConfi gBaud(
DDK_CLOCK_SI GNAL si g,
DDK_CLOCK_BAUD_SOURCE sr c,
U NT32 preDiv,

Ul NT32 post Di v)

Parameters

sg [in] Clock signal to configure.

src [in] Selectsthe input clock source.

preDiv [in] Specifies the value programmed into the baud clock predivider.
postDiv [in] Specifies the value programmed into the baud clock postdivider.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.1.25 DDKClockSetCKO

This function configures the clock output source (CKO) signal.

BOCOL DDKC ockSet CKO(
BOCOL bEnabl e,
DDK_CLOCK_CKO _SRC src,
DDK_CLOCK_CKO DI V di v)

Parameters

bEnable [in] Set to TRUE to enable CKO output. Set to FAL SE to disable CKO output.
src [in] Selectsthe CKO source signal.

div [in] Specifiesthe CKO divide factor.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.1.2.6 DDKClockSetpointRequest

This function requests the specified setpoint optionally blocks until the setpoint.

BOCOL DDKC ockSet poi nt Request (
DDK_DVFC_SETPO NT set poi nt,
BOCOL bBI ock)

Parameters
setpoint [in] - Specifies the setpoint to be requested.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-5

Chip Support Package Driver Development Kit (CSPDDK)

bBlock [in] - Set TRUE to block until the setpoint has been granted. Set FAL SE to return
immediately after request has submitted.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.1.2.7 DDKClockSetpointRelease

This function releases a setpoint previously requested using DDK Clock SetpointRequest.

BOCOL DDKC ockSet poi nt Rel ease(
DDK_DVFC_SETPO NT set poi nt)

Parameters
setpoint [in] Specifies the integer ration used to scale the AHB bus clock.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.1.3 DDK_CLK Examples

Example 9-1. Example: CSPDDK Clock Gating

#i nclude “csp. h” /'l 1ncludes CSPDDK definitions

/'l Enabl e keypad peripheral clock
DDKCl ockSet Gat i ngMbde(DDK_CLOCK_GATE_| NDEX_KPP, DDK_CLOCK_GATE_MODE_ENABLED ALL);

/| Disable keypad peripheral clock
DDKCl ockSet Gat i ngMbde(DDK_CLOCK_GATE_| NDEX_KPP, DDK_CLOCK_GATE_MODE_DI SABLED) ;

Example 9-2. Example: CSPDDK Clock Rate Query

#i nclude “csp. h” /'l Includes CSPDDK definitions
U NT32 freq;

/1 Query the current bus clock
DDKCl ockGet Fr eq(DDK_CLOCK_SI GNAL_AHB, &freq);

9.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference

The DDK_GPIO interface allows device drivers to utilize the GPIO ports. Each GPIO port hasasingle
interrupt request line that is shared for all port pins. In addition, configuration, status, and data registers
areshared. The DDK_GPIO provides saf e access to the shared GPIO resources.

9.5.2.1 DDK_GPIO Enumerations
Table 9-4. DDK_GPIO Enumerations

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-6 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

Programming Element Description

DDK_GPI O_PORT Specifies the GPIO module instance

DDK_GPI O DI R Specifies the direction the GPIO pins

DDK_GPI O_I NTR Specifies the detection logic used for generating GPIO interrupts

9.5.2.2 DDK_GPIO Functions

9.5.2.2.1 DDKGpioSetConfig

This function sets the GPIO configuration (direction and interrupt) for the specified pin.

goodBOOL DDKGpi 0Set Conf i g(
DDK_GPlI O_PORT port,
Ul NT32 pin,
DDK GPIO DI R dir,
DDK_GPI O INTR i ntr)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

dir [in] Direction for the pin.

intr [in] Interrupt configuration for the pin.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.2.2 DDKGpioBindirq

This function binds the specified GPIO line with an IRQ that is registered with the OAL to receive
interrupts.

BOOL DDKGpi oBi ndl r q(
DDK_GPI O_PORT port,

Ul NT32 pin,
DWORD i rQ)
Parameters
port [in] GPIO module instance.
pin [in] GPIO pin [0-31].
irq [in] Specifiesthe hardware IRQ that is trandated into aregistered SYSINTR

within OEMInterruptHandler when the configured interrupt condition for the
GPIO line occurs.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-7

Chip Support Package Driver Development Kit (CSPDDK)

9.5.2.23 DDKGpioUnbindirq

This function unbinds the specified GPIO line from an IRQ that is registered with the OAL to receive
interrupts.

BOOL DDKGpi oUnbi ndlrqg (
DDK_GPI O_PORT port,

Ul NT32 pin)
Parameters
port [in] GPIO module instance.
pin [in] GPIO pin [0-31].
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.24 DDKGpioWriteData

This function writes the GPIO port data to the specified pins.

BOOL DDKGpi oW i t eDat a(
DDK_GPI O_PORT port,
U NT32 port Mask,

U NT32 data)
Parameters
port [in] GPIO module instance.
portMask [in] Bit mask for data port pinsto be written.
data [in] Datato be written.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.2.5 DDKGpioWriteDataPin

This function writes the GPIO port data to the specified pin.

BOOL DDKGpi oW i t eDat aPi n(
DDK_GPI O_PORT port,

U NT32 pin,
U NT32 data)
Parameters
port [in] GPIO module instance.
pin [in] GPIO pin [0-31].
data [in] Datato bewritten [0 or 1].
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.2.6 DDKGpioReadData
This function reads the GPIO port data from the specified pins.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-8 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

BOOL DDKGpi oReadDat a(
DDK_GPI O_PORT port,
U NT32 port Mask,
Ul NT32 *pDat a)

Parameters

port [in] GPIO module instance.

portMask [in] Bit mask for data port pins to be read.

pData [out] Points to buffer for dataread.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.2.7 DDKGpioReadDataPin

This function reads the GPIO port data from the specified pin.

BOOL DDKGpi oReadDat aPi n (
DDK_GPI O_PORT port,
Ul NT32 pin,
U NT32 *pDat a)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

pData [out] Pointsto buffer for dataread. Datais shifted to the L SB.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.2.8 DDKGpioReadIntr

This function reads the GPIO port interrupt status for the specified pins.

BOOL DDKGpi oReadl nt r (
DDK_GPI O_PORT port,
U NT32 port Mask,
U NT32 *pSt at us)

Parameters

port [in] GPIO module instance.

portMask [in] Bit mask for interrupt status bitsto be read.
pSatus [out] Points to buffer for interrupt status.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.2.9 DDKGpioReadIntrPin

This function reads the GPIO port interrupt status from the specified pin.

BOOL DDKGpi oReadl nt r Pi n(
DDK_GPI O_PORT port,
Ul NT32 pin,

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-9

Chip Support Package Driver Development Kit (CSPDDK)

U NT32 *pSt at us)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

pSatus [out] Pointsto buffer for interrupt status. Status is shifted to the L SB.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.2.10 DDKGpioClearintrPin

This function clears the GPIO interrupt status for the specified pin.

BOOL DDKGpi oCl ear I ntr Pi n(
DDK_GPI O_PORT port,
Ul NT32 pin,
U NT32 *pSt at us)

Parameters

port [in] GPIO module instance.

pin [in] GPIO pin [0-31].

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.2.3 DDK_GPIO Examples

Example 9-3. Example: CSPDDK GPIO Configuration

#i nclude “csp. h” /'l Includes CSPDDK definitions

/] Configure GPIOL_3 as a level-sensitive interrupt input
DDKGpi 0Set Confi g(DDK_GPI O PORT1, 3, DDK_GPIO DIR IN, DDK_GPI O I NTR_HI GH_LEV);

/1 Clear interrupt status for GPIOL_3
DDKGpi oCl ear | nt r Pi n(DDK_GPI O_PORT1, 3);

/1 Bind the GPlOinterrupt request to the keypad IRQ registered with the OAL.

/1 An assertion of the GPIOL_3 interrupt will cause keypad | ST to be signaled just
/1 as if the keypad | RQ was asserting.

DDKGpi 0Bi ndl r q(DDK_GPI O PORT1, 3, |RQ KPP);

9.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference

TheDDK_IOMUX interfacealowsdevicedriversto configuresignal multiplexing and pad configuration.
This control resides inside the IOMUX registers and is shared for the entire system. The DDK_IOMUX
support allows drivers to dynamically update and query their signal multiplexing and pad configuration.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-10 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

9.5.3.1 DDK_IOMUX Enumerations
Table 9-5. DDK_IOMUX Enumerations

Programming Element Description
DDK_IOMUX_PIN Specifies the functional pin name used to configure the IOMUX. The enum value
corresponds to the bit offset within the SW_MUX_CTL registers.
DDK_IOMUX_OUT Specifies the muxing on the output path for a signal
DDK_IOMUX_IN Specifies the muxing on the input path for a signal
DDK_IOMUX_GPR Specifies the general purpose register (GPR) bits within the IOMUX used to

control various muxing features within the SoC

DDK_IOMUX_PAD Specifies the functional pad name used to configure the IOMUX. The enum value
corresponds to the bit offset within the SW_PAD_CTL registers.

DDK_IOMUX_PAD_SLEW | Specifies the slew rate for a pad

DDK_IOMUX_PAD_DRIVE | Specifies the drive strength for a pad

DDK_IOMUX_PAD_MODE | Specifies the CMOS/open drain mode for a pad

DDK_IOMUX_PAD_TRIG | Specifies the trigger for a pad

DDK_IOMUX_PAD_PULL | Specifies the pull-up/pull-down/keeper configuration for a pad

9.5.3.2 DDK_IOMUX Functions

9.5.3.2.1 DDKlomuxSetPinMux

This function sets the IOMUX configuration for the specified IOMUX pin.

BOCL DDKI ormmux Set Pi nMux(
DDK_I OMUX_PI N pi n,
DDK_I OMUX_QOUT out Mux,
DDK_I OMUX_I N i nMux)

Parameters

pin [in] Functional pin name used to select the IOMUX output/input path to be
configured.

outMux [in] Output path configuration.

inMux [in] Input path configuration.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.3.2.2 DDKlomuxGetPinMux

This function gets the IOMUX configuration for the specified IOMUX pin.
BOCOL DDKI ormux Get Pi nMux(

DDK_I OMUX_PI N pi n,

DDK_I OMUX_OUT * pOut Mux,

DDK_I OMUX_I N *pl nMux)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-11

Chip Support Package Driver Development Kit (CSPDDK)

Parameters

pin [in] Functional pin name used to select the IOMUX output/input path to be
configured.

pOutMux [out] Output path configuration.

plnMux [out] Input path configuration.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.3.2.3 DDKlomuxSetPadConfig

This function sets the IOMUX pad configuration for the specified IOMUX pin.

BOOL DDKI onux Set PadConf i g(
DDK_| OMUX_PAD pad,
DDK_| OMUX_PAD_SLEW sl ew,
DDK_| OMUX_PAD DRI VE dri ve,
DDK_| OMUX_PAD_MODE node,
DDK_| OMUX_PAD TRI G tri g,

DDK_| OMUX_PAD_PULL pul)

Parameters

pad [in] Functional pad name used to select the pad to be configured.
dew [in] Slew rate configuration.

drive [in] Drive strength configuration.

mode [in] CMOS/open-drain output mode configuration.

trig [in] Trigger configuration.

pull [in] Pull-up/pull-down/keeper configuration.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.3.24 DDKlomuxGetPadConfig

This function gets the IOMUX pad configuration for the specified IOMUX pad.

BOOL DDKI onmux Get PadConf i g(
DDK_| OMUX_PAD pad,
DDK_| OMUX_PAD_SLEW *pSl ew,
DDK_| OMUX_PAD DRI VE *pDri ve,
DDK_| OMUX_PAD_MODE * pMode,
DDK_| OMUX_PAD_TRI G *pTri g,

DDK_| OMUX_PAD_PULL *pPul |)

Parameters

pad [in] Functional pad name used to select the pad to be configured.
pSew [in] Slew rate configuration.

pDrive [in] Drive strength configuration.

pMode [in] CMOS/open-drain output mode configuration.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-12 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

pTrig [in] Trigger configuration.
pPull [in] Pull-up/pull-down/keeper configuration.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.3.25 DDKlomuxSetGpr
This functions writes a value into the IOMUX GPR register. The GPR is used to control the muxing of

signals within the SoC.

BOOL DDKI omuxSet Gpr (
U NT32 nask,
U NT32 data)

Parameters

mask [in] Bit mask for GPR bits to be written.

data [in] Datato be written.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.3.2.6 DDKlomuxSetGprBit

This function writes avalue into the specified IOMUX GPR bhit. These GPR bits are used to control the
muxing of signals within the SoC.

BOOL DDKI omuxSet Gpr Bi t (
DDK_| OMUX_GPR bi t,

U NT32 data)
Parameters
bit [in] GPR bit to be configured.
data [in] Value for the GPR bit [0 or 1].
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.3.3 DDK_IOMUX Examples

Example 9-4. Example: CSPDDK IOMUX Signal Multiplexing

#i nclude “csp. h” /'l Includes CSPDDK definitions

/'l Configure the signal nmultiplexing for GPIOl_3. Route the internal input and
/1 output path of the GPIOL_3 pin to the GPI O nodul e
DDKI omux Set Pi nMux (DDK_| OMUX_PI N_GPI O1_3, DDK_| OMUX_OUT_GPI O, DDK_| OMUX_I N GPI O ;

Example 9-5. Example: CSPDDK IOMUX Pad Configuration

#i nclude “csp. h” /'l Includes CSPDDK definitions

/1 Configure the GPIOL_3 pad for the follow ng configuration: slow slew rate,

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-13

Chip Support Package Driver Development Kit (CSPDDK)

// normal drive strength, CMOS, Schmitt trigger, 100K pul | -up.

DDKI omux Set PadConf i g(DDK_I OMUX_PI N_GPI O1_3, DDK_| OMUX_PAD_SLEW SLOW
DDK_| OMUX_PAD DRI VE_NORMAL, DDK_| OMUX_PAD MODE_CMOS, DDK_| OMUX_PAD_TRI G_SCHM TT,
DDK_| OMUX_PAD_PULL_UP_100K) ;

9.5.4 CSPDDK DLL SDMA (DDK_SDMA) Reference
The DDK_SDMA interface allows device drivers to allocate, configure, and control shared SDMA
resources.

9.5.4.1 DDK_SDMA Enumerations
Table 9-6. DDK_SDMA Enumerations

Programming Element Description

DDK_DMA_ACCESS | Specifies width of the data for a peripheral DMA transfer

DDK_DMA_FLAGS Specifies mode flags within the DMA buffer descriptor

DDK_DMA_REQ Specifies DMA request used to trigger SDMA channel execution

9.5.4.2 DDK_SDMA Functions

9.5.4.2.1 DDKSdmaOpenChan

This function attempts to find an available virtual SDMA channel that can be used to support a
memory-to-memory, peripheral-to-memory, or memory-to-periphera transfers.
U NT8 DDKSdnmaQpenChan(

DDK_DMA_REQ dnaReq,

U NT8 priority,

LPTSTR | pNane,

DWORD i rQ)

Parameters

dmaReq [in] Specifiesthe DMA request to be bound to a virtual channel.

priority [in] Priority assigned to the opened channel.

IpName [in] Not currently used. Set to NULL.

irq [in] Only used if IpName is set to NULL. Specifies the hardware IRQ to be
translated into aregistered SY SINTR within OEM InterruptHandler when a
transfer interrupt occurs. Set to IRQ_NONE if no interrupt should be generated by
the channel.

Return Values: Returns anon-zero virtual channel index if successful, otherwise returns 0.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-14 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

9.5.4.2.2 DDKSdmaUpdateSharedChan

Thisfunction allows achannel that has multiple DMA requests combined into a shared DMA event to be
reconfigured for one of the alternate DMA reguests.
BOOL DDKSdmaUpdat eShar edChan(

Ul NT8 chan,
DDK_DMA_REQ dnaReq)

Parameters

chan [in] Virtual channel returned by DDK SdmaOpenChan.

dmaReq [in] Specifiesthe DMA request to be bound to a virtual channel.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.54.2.3 DDKSdmaCloseChan

This function closes avirtual DMA channel previously opened by DDK SdmaOpenChan.
BOOL DDKSdmaCl oseChan(

U NT8 chan)
Parameters
chan [in] Virtual channel returned by DDK SdmaOpenChan function.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.4.2.4 DDKSdmaAllocChain

This function allocates a chain of buffer descriptors for avirtual DMA channel.

BOOL DDKSdmaAl | ocChai n(
U NT8 chan,
U NT32 nunBuf Desc)

Parameters

chan [in] Virtual channel returned by DDK SdmaOpenChan.

numBufDesc [in] Number of buffer descriptorsto allocate for the chain.

Return Values: Returns TRUE if the chain allocation was successful, otherwise returns FAL SE.

9.5.4.2.5 DDKSdmaFreeChain

This function frees a chain of buffer descriptors previously allocated with DDK SdmaAllocChain.
BOOL DDKSdmaFr eeChai n(

U NT8 chan)
Parameters
chan [in] Virtual channel returned by DDK SdmaOpenChan.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-15

Chip Support Package Driver Development Kit (CSPDDK)

9.5.4.2.6 DDKSdmaSetBufDesc

This function configures a buffer descriptor for aDMA transfer.

BOOL DDKSdmaSet Buf Desc(
Ul NT8 chan,
U NT32 i ndex,
U NT32 nodeFl ags,
U NT32 nemAddr 1PA,
Ul NT32 nmemAddr 2PA,
DDK_DMA_ACCESS dat aW dt h,
U NT16 nunByt es)

Parameters

chan [in] Virtual channel returned by DDK SdmaOpenChan.

index [in] Index of buffer descriptor within the chain to be configured.

modeFlags [in] Specifies the buffer descriptor mode word flags that control the “continue”,
“wrap”, and “interrupt” settings.

memAddr1PA [in] For memory-to-memory transfers, this parameter specifies the physical

memory source address for the transfer. For memory-to-peripheral transfers, this
parameter specifies the physical memory source address for the transfer. For
peripheral-to-memory transfers, this parameter specifies the physical memory
destination address for the transfer.

memAddr2PA [in] Used only for memory-to-memory transfers to specify the physical memory

destination address for the transfer. Ignored for memory-to-peripheral and
peripheral-to-memory transfers.

dataWidth [in] Used only for memory-to-peripheral and periphera-to-memory transfersto
specify the width of the data for the peripheral transfer. Ignored for
memory-to-memory transfers.

numBytes [in] Virtual channel returned by DDK SdmaOpenChan.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.4.2.7 DDKSdmaGetBufDescStatus

Thisfunction retrieves the status of the “done” and “error” bitsfrom a single buffer descriptor within of a
chain.

BOOL DDKSdmaGet Buf DescSt at us(
U NT8 chan,
U NT32 i ndex,
U NT32 *pSt at us)

Parameters

chan [in] Virtual channel returned by DDK SdmaOpenChan.

index [in] Index of buffer descriptor within the chain.

pSatus [in] Pointsto a buffer to be filled with the status of the buffer descriptor.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-16 Freescale Semiconductor

Chip Support Package Driver Development Kit (CSPDDK)

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.4.2.8 DDKSdmaGetChainStatus

Thisfunction retrieves the status of the“done” and “error” bitsfrom all of the buffer descriptors of achain.

BOCOL DDKSdmaGet Chai nSt at us(
Ul NT8 chan,
U NT32 *pSt at us)

Parameters

chan [in] Virtual channel returned by DDK SdmaOpenChan.

pSatus [in] Pointsto an array to be filled with the status of each buffer descriptor in the
chain.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.4.2.9 DDKSdmaClearBufDescStatus

This function clears the status of the “done” and “error” bits within the specified buffer descriptor.

BOCOL DDKSdmaCl ear Buf DescSt at us(
Ul NT8 chan,
Ul NT32 i ndex)

Parameters

chan [in] Virtual channel returned by DDK SdmaOpenChan.
index [in] Index of buffer descriptor within the chain.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.4.210 DDKSdmaClearChainStatus

Thisfunction clears the status of the “done” and “error” bitswithin all of the buffer descriptors of achain.
BOOL DDKSdmaCl ear Chai nSt at us(

U NT8 chan)
Parameters
chan [in] Virtual channel returned by DDK SdmaOpenChan.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.4.2.11 DDKSdmalnitChain
Thisfunction initializes a buffer descriptor chain and the context for achannel. It should be invoked when

before avirtual DMA channdl isinitially started, and when the DMA channel is stopped and restarted.

BOOL DDKSdmal ni t Chai n(
Ul NT8 chan,
U NT32 wat er Mar k)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 9-17

Chip Support Package Driver Development Kit (CSPDDK)

Parameters

chan [in] Virtual channel returned by DDK SdmaOpenChan.

water Mark [in] Specifies the watermark level used by the periphera to generate aDMA
request. This parameter tellsthe DMA how many transfers to complete for each
assertion of the DMA request. Ignored for memory-to-memory transfers.

Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.4.2.12 DDKSdmaStartChan

This function starts the specified channel.
BOOL DDKSdmaSt art Chan(

U NT8 chan)
Parameters
chan [in] Virtual channel returned by DDK SdmaOpenChan.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.

9.5.4.2.13 DDKSdmaStopChan

This function stops the specified channel.
BOCOL DDKSdnmaSt opChan(

Ul NT8 chan,

BOOL bKi I 1)
Parameters
chan [in] Virtual channel returned by DDK SdmaOpenChan.
bKill [in] Set TRUE to terminate the channel if it is actively running. Set FALSE to

allow the channel to continue running until it yields.
Return Values: Returns TRUE if successful, otherwise returns FAL SE.
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

9-18 Freescale Semiconductor

Display Driver

Chapter 10
Display Driver

The Windows CE 6.0 BSP display driver isbased on the Microsoft DirectDraw Graphics Primitive Engine
(DDGPE) classes and supportsthe Microsoft DirectDraw interface. Thisdriver combinesthe functionality
of astandard LCD display with DirectDraw support. The display driver interfaces with the Image
Processing Unit (1PU). For dumb displays, the IPU Synchronous Display Controller (SDC) combines
graphics and video planes and generates display controls with programmable timing.
The display driver supports the following display types:

e EPSON L4F00242T03 VGA LCD panel

* PAL and NTSC TV through the Chrontel CH7024 TV encoder chip

10.1 Display Driver Summary

Table 10-1 provides a summary of source code location, library dependencies and other BSP information.
Table 10-1. Display Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path N/A

CSP Driver Path N/A
CSP Static Library N/A
Platform Driver Path .\PLATFORM\< TGTPLAT>\SRC\DRIVERS\IPU\DISPLAY\DLL
Import Library ddgpe.lib, gpe.lib
Driver DLL ddraw_ipu.dll
Catalog ltems Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device Drivers > Display

> EPSON L4F00242T03 (VGA)
Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I| > Device Drivers > TV
Output > TV Output CH7023/CH7024

SYSGEN Dependency SYSGEN_DDRAW-=1

BSP Environment Variables BSP_PP=1
BSP_DISPLAY_EPSON_L4F00242T03 = 1 for Epson LCD Panel
BSP_TVOUT_CHRONTEL_CH702X = 1 for TV Output

10.2 Supported Functionality

The display driver enables the 3-Stack board to provide the following software and hardware support:
» Supports EPSON 2.8" VGA Display With Touch Screen (L4F00242T03)
» Supports VGA portrait display resolution(480x640)
» Supports RGB565 interface

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 10-1

Display Driver

» Supportsthe DirectDraw Hardware Abstraction Layer (DDHAL)

* Supports overlay surface

» Supports video overlays containing image datain the FOURCC UYVY & YV12 pixel format
» Supports hardware-accelerated color space conversion in video overlays
» Supports hardware-accel erated image resizing in video overlays

» Supports overlay surface color key feature

» Supports overlay surface alpha blending feature

» Supports two power management modes, full on and full off

* Supports system suspend

* Supports screen rotation

» Supports dynamic switch between TV and LCD display

10.3 Hardware Operation

Refer to the chapter on the image processing unit (IPU) in the hardware specification document for
detailed operation and programming information.

10.3.1 Rotation Control

Application rotate.exe provides away to change the screen orientation while the Windows Embedded CE
6.0 image isrunning. Clicking rotate application toggles the orientation of the screen between a0 and 270
degreerotation angle. The default path of rotate.exe is “\windows”.

NOTE

Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw (see the Windows CE Help documentation, stating that “ GDI
screen rotation cannot be used with DirectDraw”), a DirectDraw display
driver with rotation support enabled may yield more failuresin the
GDI/DIRECTDRAW CETK test suite. It is recommended to run these
CETK tests with rotation support disabled or under O rotation degree.

10.3.2 TV Output Mode

Application tvout.exe provides away to switch between LCD and TV Output mode (PAL standard).
Clicking tvout application toggles between these two modes. The default path of tvout.exeis“\windows”.
The tvout application sets the TV output mode to PAL or NTSC standards by receiving one parameter:
“tvout.exe 0" sets TV output mode to PAL, “tvout.exe 1" setsto NTSC.

The display driver always ensures the output is LCD mode, when responding the power management to
enter the power states DO (Full On) and D4 (Off). TV output mode requires an 270 degree rotation so that
the primary surface can fit to the physical resolution 640x480 that TV can support.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

10-2 Freescale Semiconductor

Display Driver

NOTE

Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw (see the Windows CE Help documentation, stating that “ GDI
screen rotation cannot be used with DirectDraw”), a DirectDraw display
driver with rotation support enabled may yield more failuresin the
GDI/DIRECTDRAW CETK test suite. I1t's recommended to run these
CETK tests with rotation support disabled or under O rotation degree.

An application tvhotkey.exe is provided. It is a startup application after bootup and listens to the hot key
event (ALT + SPACE) to allow switching between LCD and NTSC display modes. This feature can be
disabled by setting environment variable "BSP_NOTVHOTKEY" to“1”".

10.4 Software Operation

10.4.1 Communicating with the Display

Communication with the display driver is accomplished through Microsoft-defined APIs. A framework
for accessing the display driver is provided through the Graphics Device Interface (GDI) and DirectDraw.

10.4.1.1 Using the GDI

The Graphics Device Interface provides basic controls for the display of text and graphics. Refer to the
following help section for information on using the GDI:

Windows Embedded CE Features> Shell, GWES and User | nterface > Graphics, Windowing and
Events(GWES) > GWES Application Development > Graphics Device | nterface.

10.4.1.2 Using DirectDraw

The DirectDraw API provides support for hardware-accelerated 2-D graphics offering fast accessto
display hardware while retaining compatibility with the GDI. Information on using the DirectDraw API
can be found in the following help section:

Windows Embedded CE Features > Graphics > DirectDraw

The following DirectDraw features are supported in the display driver by the IPU hardware:

» Pageflipping with one backbuffer

* Overlay surfacesusing RGB or YUV pixel format

» Overlaying using acolor key for the overlay surface for RGB colors

» Overlaying using a color key for the non-overlay graphics surface for RGB colors

» Stretching of overlay surfaces
The IPU contains Post-Processing hardware, which is used within the display driver to accelerate the
following operations:

» Color space conversion of YUV overlay datato RGB. This conversion isrequired in order to
combine the overlay data with RGB graphics plane datain the IPU SDC.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 10-3

Display Driver

* Resizing of the overlay surface
* Rotation of the overlay surface (used when the screen orientation is rotated)
* Resizing and rotation of the primary graphics surface when TV Output modeis enabled and active.
Thisisrequired to obtain a 640x480 resolution image for output toa TV.
NOTE

Setting environment variable "BSP_DISPLAY_DELAYFLIP" to 1 enables
thefeature to support delay flip (which issynchronous) for overlay surfaces.
Other than this environment variable, application should explicitly set
DDFLIP_WAITNOTBUSY flag when flipping.

10.4.1.3 Using Display Driver Escape Codes

In some cases, applications might need to communicate directly with adisplay driver. To make this
possible, an escape code mechanism is provided as part of the display driver. A detailed description of
standard display driver escape codes can befound at the following location in the CE Help documentation:

Developing a Device Driver > Windows Embedded CE Drivers> Display Drivers> Display Drivers
Development Concepts>Display Driver Escape Codes.

10.4.2 Configuring the Display

The display is configured based on the Panel Typeregistry key, which is described in Section 10.4.2.2,
“Display Registry Settings. The Panel Type registry key indicates the display panel that is being used.
Thereis only one supported display panel: The EPSON L4F00242T03 VGA LCD panel.

10.4.2.1 Rotation Support

The DirectDraw display driver may be configured to alow screen rotation through a parameter in the
bsp_cfg.hfile. If the BSP_DIRECTDRAW_SUPPORT_ROTATION parameter is set to TRUE, the
DirectDraw display driver supportsrotation. If it is set to FALSE, it does not support rotation.

NOTE

Due to lack of support for the co-existence of GDI screen rotation and
DirectDraw (see the Windows CE Help documentation, stating that “ GDI
screen rotation cannot be used with DirectDraw”), a DirectDraw display
driver with rotation support enabled may yield more failuresin the
GDI/DIRECTDRAW CETK test suite. It is recommended to run these
CETK tests with rotation support disabled or under O rotation degree.

10.4.2.2 Display Registry Settings

Thefollowing registry keys are optionally included, depending on the display panel catalog item included
in the OS design.

If the Epson VGA panel is selected, the following registry keys are included:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Di spl ay\ DDI PU|

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

10-4 Freescale Semiconductor

Display Driver

" Bpp" =dwor d: 10 ; 16bpp
"Vi deoBpp" =dwor d: 10 ; RGB565
"Panel Type"=dword: 1 ; Epson VGA dunb Panel

If TV Output isincluded in the OS design, the following registry keys are also included:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Di spl ay\ DDI PU|
"TVSupported"=dword: 1 ; Flag indicates TV out node is supported

10.4.3 Power Management

The display driver consumes power primarily through the operation of various IPU sub-modules, such as
the SDC which combines and displays video and graphics data, and through the operation of the display
panel. To facilitate management of these modules, the display driver implements the power management
1/0 Control (IOCTL) codeslike IOCTL_POWER_CAPABILITIES, IOCTL_POWER_QUERY,
IOCTL_POWER_GET and IOCTL_POWER_SET.

10.4.3.1 PowerUp

This function is not implemented for the display driver.

10.4.3.2 PowerDown

This function is not implemented for the display driver.

10.4.3.3 I0CTL_POWER_SET

The display driver implements the IOCTL_POWER_SET IOCTL API with support for the DO (Full On)
and D4 (Off) power states. These states are handled in the following manner:

* DO-Thedisplay panel isenabled. ThelPU’sDisplay Interface (DI) and SDC modul es are enabled.
* D4-TheDI and SDC modules of the IPU are disabled. The display panel is disabled.

10.5 Unit Test

The display driver is subject to two test suites provided with the Windows CE Test Kit (CETK): the
Graphics Device Interface (GDI) Test and the DirectDraw Test. Additionally, video playback may be
verified using the Windows Media Player application. The GDI Test is designed to test a graphics device
interface. Thistest verifies that basic shapes, including rectangles, triangles, circles, and ellipses, are
drawn correctly. Thetest a'so examinesthe color palette of the display, verifiesthat the display iscorrectly
divided into multiple regions, and tests whether a device context can be properly created, stored, retrieved,
and destroyed.

The DirectDraw Test analyzes basic DirectDraw functionality including block image transfers (blits),
scaling, color keying, color filling, flipping, and overlaying. Windows Media Player may be used to play
back WMV video files and visually verify correct operation of video overlays, accelerated color space
conversion, and accel erated image resizing.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 10-5

Display Driver

10.5.1 Unit Test Hardware

Table 10-2 lists the required hardware to run the GDI and DirectDraw tests.
Table 10-2. Hardware Requirements

Requirements Description

EPSON L4F00242T03 VGA Panel Display panel required for display of graphics data

10.5.2 Unit Test Software

10.5.2.1 GDI Tests

Table 10-3 lists the required software to run the GDI tests.
Table 10-3. GDI Test Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Gdiapi.dll Main test .dll file
Ddi_test.dll Graphics Primitive Engine (GPE)—based display driver that the GDI API uses to
verify the success of each test case.
If Ddi_test.dll is unavailable, run the test with manual verification.

10.5.2.2 DirectDraw Tests

Table 10-4 lists the software required to run the DirectDraw tests.
Table 10-4. Direct Draw Test Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
DDrawTK.dll Test .dll file

10.5.2.3 Windows Media Player Tests

Table 10-5 lists the software required to perform WMV playback with Windows Media Player.
Table 10-5. Windows Media Player Test Software Requirements

Requirements Description
Ceplayer.exe Windows Media Player sample application
*.wmv sample video files Sample windows media files

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

10-6 Freescale Semiconductor

Display Driver

10.5.3 Building the Display Tests

The GDI and DirectDraw tests come pre-built as part of the CETK. Ensureyou are using the latest CETK
suite. No steps are required to build these tests. Refer to the help documentation for more detailed
information:

Windows Embedded CE Test Kit > CETK Testsand Test Tools> CETK Tests> Display Tests.

For Windows Media Player testing, there are no build steps required. The Windows Media Player catalog
item must be added to the OS image to ensure that ceplayer.exe isincluded in the image. Additionally,
sample WMV files must be included in the image to demonstrate playback.

10.5.4 Running the Display Tests

10.5.4.1 Running the GDI Tests
The command line for running the GDI testsis tux —o —d gdiapi.dll.

For detailed information on the GDI tests and command line options for these tests, see Windows
Embedded CE Test Kit > CETK Testsand Test Tools> CETK Tests> Display Tests > Graphics
Device Interface Test in the CE Help documentation.

10.5.4.2 Running the DirectDraw Tests
The command line for running the DirectDraw testsis tux —o —d ddrawtk.

For detailed information on the DirectDraw tests and command line options for these tests, see Windows
Embedded CE Test Kit > CETK Testsand Test Tools> CETK Tests> Display Tests > DirectDraw
Test in the CE Help documentation.

10.5.4.3 Running the Windows Media Player Tests

The command line for starting playback of a WMV test video clip in Windows Media Player is ceplayer
[wmv test file] (e.g. “ceplayer motocross_208x160_30fps.wmv”). If audio support is not included in the
current BSP, a dialog box reading “ Audio hardware is missing or disabled” pops up when the WMV file
is being loaded. Select OK to continue to WMV playback.

Correct operation of thistest isconfirmed by observing the application and verifying that thevideo clipis
playing at asmooth rate (it should not be dropping frames or otherwise appearing jerky) with aclear image,
normal coloring, and correct image sizing.

10.6 Display Driver APl Reference

Documentation for the display driver APIs can be found within the CE Help documentation. No additional
custom API information is required for the features currently supported in the display driver. Reference
information on basic display driver functions, methods, and structures can be found at the following
location in the CE Help documentation:

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 10-7

Display Driver

Developing a Device Driver > Windows Embedded CE Drivers> Display Drivers> Display Driver
Reference

Reference information on DirectDraw functions, callbacks, and structures can be found at the following
location in the CE Help documentation:

Windows Embedded CE Features > Graphics > DirectDraw

Windows Embedded CE Features> Shell, GWES, and User Interface > Graphics, Windowing and
Events (GWES) > GWES Reference> GDI Reference

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

10-8 Freescale Semiconductor

Dynamic Voltage and Frequency Control (DVFC) Driver

Chapter 11
Dynamic Voltage and Frequency Control (DVFC) Driver

The BSP includes a component called the Dynamic Voltage and Frequency Control (DVFC) driver that
provides combined support for DVFS (Dynamic Voltage Frequency Scaling) and APM (Advanced Power
Management). The DVFC driver plays an important role in the reduction of i.MX31 CPU power
consumption by dynamically adjusting the voltage and frequency settings of the system. The DVFC driver
responds to DVFS that is monitoring CPU loading and process performance of i.MX31 ARM platform.
The APM algorithm monitors clock tree changes in the system, and applies most adapting performance
level to system.

11.1 DVFC Driver Summary

Table 11-1 provides a summary of source code location, library dependencies and other BSP information.
Table 11-1. DVFC Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_VA1
MXARM11 CSP Driver Path N/A

CSP Driver Path

..\platform\common\src\soc\freescale\mx31_fsl_v1i\dvfc

CSP Static Library

dvfc_mx31_fsl_v1.lib

Platform Driver Path

..\PLATFORM\< TGTPLAT>\SRC\DRIVERS\DVFC\MC13783

Import Library

pmicSdk_mc13783.lib

Driver DLL

dvfc_mc13783.dll

Catalog ltem

Third Party > BSPs > Freescale <TGTPLAT> > Device Drivers > DVFC >
MC13783 DVFC

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_PMIC_MC13783 = 1

BSP_DVFC_MC13783 = 1

11.2

The DVFC driver enables the 3-Stack board to provide the following software and hardware support:
* Supports APM that depends on clock tree state change
» Supports DVFS and bus scale for power conservation
* Providesintegrated voltage control supplied from MC13783
* Exposesinterface for CE6 power manager
* Supports DO, D1, D2, and D4 driver power states
* Supports APM and DVFS use MPLL/SPLL switching

Supported Functionality

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 11-1

Dynamic Voltage and Frequency Control (DVFC) Driver

11.3 Hardware Operation

The DVFC driver is dependent upon the M C13783 interface for dynamic voltage control. The MC13783
chip must be present on the i.MX31 3-stack CPU board. Thei.MX31 CPU board must be configured to
source power from the MC13783. Refer to the Windows CE BSP for i.M X31 3-Stack User’s Guidefor
the proper board configuration.

11.3.1 Pin Settings and Conflicts

11.3.1.1 Peripheral Conflicts

The signals used for the dynamic voltage control interface between i.MX31 and M C13783 cannot be used
for other purposes. In particular, thei.MX31 GPIO1_5 pin is connected to the PMIC power ready
notification signal and is used by the DVFS hardware to determine when the voltage setting is reached.
This pin should not be configured for GPIO purposes.

11.3.1.2 PMIC and DVS Pin settings

The signals of DV S0 and DV S1 are configured in combination mode. MC13783 switches SW1 and SW2
that are connected together provide four voltage selection.

11.4 Software Operation

11.4.1 Loading and Initialization

The DVFC driver isloaded by the device manager in the kernel space. As part of the loading procedure of
stream drivers, the device manager invokes the corresponding stream initialization function exported by
the DVFC driver. Theinitialization sequence includes acall to platform-specific code (Bspovfcinit) to
allow the OEM to configure and tune the DVFC driver operation.

11.4.2 Clock Tree Dependency

The DVFC driver uses APM algorithm to control and regul ate system performance. All the clock modules
are mapped to an unique request system setpoint. With manipulating clock tree changing event, DVFC
driver is able to select the best satisfied setpoint to all BSP modules with optimized performance and
power.

11.4.3 Processor Workload Tracking

The DVFC driver utilizes the hardware load tracking available within thei.MX31 DVFSlogic. Theload
tracking hardware monitors the CPU activity and notifies the system to adjust the DV FS setting to meet
the required CPU performance. By adjusting parameters of the load tracking hardware, DVFS hardware
can control the CPU loading characteristics that trigger DVFS transitions. The DVFS can trigger system
to raise or lower setpoint based on CPU workload.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

11-2 Freescale Semiconductor

Dynamic Voltage and Frequency Control (DVFC) Driver

11.4.4 Setpoint Consideration

There are four setpoints defined in the DVFC driver to select processor work performance. Table 11-2
describe the setpoint definition and power conservation schemain DVFC driver.
Table 11-2. DVFC Setpoint Definition

Name Per?;nr:lza)nce Vo(l:,a)ge Power Target
TURBO 528/132/66 1.600 Fastest for speed, high voltage

HIGH 396/132/66 1.350 Reduced speed and voltage to save power for most uses case
MEDIUM 132/66/66 1.300 System bus scale

LOW 132/33/33 1.250 Peripheral bus scale

11.4.5 Lock and Performance

Since system clock tree status can be changed at any time, DVFC driver holds a exclusion lock to DDK
threads when it is updating system setpoint.
The setpoint updating performance depends on six factors:
* Communication efficiency to PMIC
* Regulator speed in PMIC for voltage ready
* PLL lock and switch time
* Mutex lock of DDK threads
» Critical section of Shared CSPI to PMIC
* Busready time
DVFS hardware al so triggers asynchronous events to request setpoint change. The DV FC daemon thread

synchronizes to DV FS with mutex protection to change the system state. Because the APM algorithm
priority is higher than DVFS, DVFS gives up the mutex lock if it conflicts with APM setpoint turning.

11.4.6 DDK Interface

The DVFC driver allows other drivers/applications to control some aspects of the DV FS operation. Due
to the tight coupling with the system clock configuration, this interface is exposed within CSPDDK
clocking support. Refer to the CSPDDK documentation for the following functions:

» DDKClockSetpointRequest
» DDKClockSetpointRelease

11.4.7 Power Management

The DVFCisanintegral part of the power management supported by the BSP. However, sincethe DVFC
runs as adriver on the system, it aso supports the power manager device driver interface. Thisallowsthe
DVFC driver to be notified when the system is suspending/resuming and configure the processor
performance accordingly.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 11-3

Dynamic Voltage and Frequency Control (DVFC) Driver

11.4.7.1 PowerUp

This function is not implemented for the DVFC driver.

11.4.7.2 PowerDown

This function is not implemented for the DVFC driver.

11.4.7.3 10CTL_POWER_CAPABILITIES
The DVFC driver advertises that DO-D4 device power states are supported.

11.4.7.4 10CTL_POWER_SET
The DVFC driver supports requests to enter DO-D4 device power state.

11.4.7.5 I0CTL_POWER_GET
The DVFC driver reports the current device power state (DO, D1, D2 or D4).

11.5 Unit Test
No unit test cases provided.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

11-4 Freescale Semiconductor

FM Radio Driver

Chapter 12
FM Radio Driver

The FM radio driver is used to control the Si4702 chip, and is compatible with the Stream Interface driver
framework. This chapter provides information about developing the FM radio application, which
interfaces directly to the hardware component Si4702 chip.

12.1 Radio Driver Summary

Table 12-1 provides a summary of source code location, library dependencies and other BSP information.
Table 12-1. Radio Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_VA1
CSP Driver Path N/A
CSP Static Library N/A
Platform Driver Path . \PLATFORM\<TGTPLAT>\SRC\DRIVERS\RADIO
Import Library N/A
Driver DLL fm_radio.dll
Catalog Item Third Party — BSP > Freescale i.MX31 3DS:ARMV4I| > Device Drivers >
Radio Driver > Si4702 FM Radio
SYSGEN Dependency N/A
BSP Environment Variables BSP_RADIO=1

12.2 Supported Functionality

The radio driver enables the 3-Stack board to provide the following software and hardware support:
» Conformsto the Device Manager streams interface
* Supportsthe Si4702 chip
» Supportsthemain functionsof FM radio: power on/off, set frequency, set volume, muted, auto scan

12.3 Hardware Operation
The driver uses 1°C to interact with Si4702 hardware. Details refer to Silicon Laboratories S4702.pdf.

12.4 Software Operation

The only interface to control the radio driver isIOCTLSs.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 12-1

FM Radio Driver

12.4.1 Radio Driver Registry Settings
The following registry keys are required to properly load Radio driver.

; These registry entries load the FM Radio driver. The IClass value be GU D for generic ;
power - managed devi ces.

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ RADI Q|
"Prefix"="RDO'
"Dl"="fmradio.dlI"
"I ndex" =dword: 1
"Order" =dword: 30
"1d ass"="{A32942B7-920C- 486b- BOE6- 92A702A99B35} "
12.4.2 Power Management

The primary method for limiting power consumption in the radio moduleis to power down the chip when
no longer using the FM radio driver. The application can call IOCTL_SET_POWER with parameter
POWER_OFF to power down the chip.

12.4.2.1 PowerUp

This function is not implemented for the radio driver.

12.4.2.2 PowerDown

This function is not implemented for the radio driver.

12.4.2.3 10CTL_POWER_CAPABILITIES

The power management capabilities are advertised with power manager through this IOCTL. The radio
module supports only two power states: DO and D4.

12.4.2.4 |I0CTL_POWER_SET

ThisOCTL requests a change from one device power state to another. DO and D4 are the only two
supported CEDEVICE_POWER_STATE intheradio driver. Any request that is not DO is changed to a
D4 request and results in the system entering into a suspend state, while for avalue of DO the system
resumes.

12.4.2.5 I0CTL_POWER_GET

ThisOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It doesnot generally issuean IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

12.5 Unit Test

The Radio CETK test cases verify the functionality of the radio driver for Si4702 chip. Also the FM Radio
Application can be used to verify the radio driver. Refer to FM Radio Application section of user guide.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

12-2 Freescale Semiconductor

FM Radio Driver

12.5.1 Unit Test Hardware
The i.MX31 3-Stack board is required.

12.5.2 Building the Radio Tests

In order to build the radio tests, complete the following steps:

Build an OS image for the desired configuration.

1. Within Platform Builder, go to the Build menu option and select the Open Release Directory
menu option. This opens a DOS prompt.

2. Change to the Radio Tests directory. (\WINCE600O\SUPPORT\MX31\TESTS\RADIO)

3. Enter set WINCEREL =1 on the command prompt and hit return. This copiesthebuilt DLL tothe
flat release directory.

4. Enter the build command (build -c) at the prompt and press return.
After the build completes, the radio_test.dll fileislocated in the $(_FLATREL EASEDIR) directory.

12.5.3 Running the Radio Tests

The command linefor running the radio testsistux —o—d radio_test. You can provide an additional option
—f if youwish to redirect thetest resultsto afile. Radio tests do not contain any test specific command line
options.

12.6 Radio IOCTL Reference

This section consists of descriptionsfor the RADIO I/O control codes (IOCTLS). These IOCTLs are used
in calls to DeviceloControl to issue commands to the radio device modules. Only relevant parametersfor
the IOCTL have adescription provided. Most of the IOCTL s are explained in the specific sections where
they are most relevant.

12.6.1 Radio Driver IOCTLS

12.6.1.1 RADIO_IOCTL_GET_CAPS
This Devicel oControl request gets capability of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufin NULL

pBufOut pointer to RADIO_CAPS type data return to caller

12.6.1.2 RADIO_IOCTL_GET_TUNER
This Devicel oControl request gets tuner data of hardware.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 12-3

FM Radio Driver

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufin NULL

pBufOut pointer to RADIO_TUNER type data return to caller

12.6.1.3 RADIO_IOCTL_SET_TUNER

This Devicel oControl request setstuner data of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufln pointer to RADIO_TUNER type datafilled by caller

pBufOut NULL

12.6.1.4 RADIO_IOCTL_GET_AUDIO
This Devicel oControl request gets audio data of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufln NULL

pBufOut pointer to RADIO_AUDIO type datareturn to caller

12.6.1.5 RADIO_IOCTL_SET_AUDIO

This Devicel oControl request sets audio data of hardware such as volume or muted.
Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufin pointer to RADIO_AUDIO type datafilled by caller

pBufOut NULL

12.6.1.6 RADIO_IOCTL_GET_FREQ
This Devicel oControl request gets the current frequency of the hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufin NULL

pBufOut pointer to the current frequency return to caller

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

12-4 Freescale Semiconductor

FM Radio Driver

12.6.1.7 RADIO_IOCTL_SET_FREQ

This Devicel oControl request tunes to the frequency.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufin pointer to the frequency filled by caller

pBufOut NULL

12.6.1.8 RADIO_IOCTL_GET_POWER
This Devicel oControl request gets the power state of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufln NULL

pBufOut pointer to RADIO_POWER type data return to caller

12.6.1.9 RADIO_IOCTL_SET_POWER

This Devicel oControl request sets power state of hardware.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufln pointer to RADIO_POWER type data filled by caller

pBufOut NULL

12.6.1.10 RADIO_IOCTL_AUTO_TUNE

This Devicel oControl request auto scan al available channels.

Parameters

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufln pointer to RADIO_AUTOTUNE type datafilled by caller.

pBufOut NULL

12.6.1.11 RADIO_IOCTL_GET_LAST_ERROR

This Devicel oControl returnsthe last return code.
Parameters

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 12-5

FM Radio Driver

hOpenContext [in] Handle to the device that is to perform the operation. To obtain a device
handle, call the CreateFile function

pBufin NULL

pBufOut pointer to the current return code returned to the caller

12.6.2 Radio Driver Structures

12.6.2.1 Radio Tuner Structure

typedef struct

{
TCHAR nane[32]; // i.e "FM
I NT32 band_i d;
U NT32 range_| ow, /I KHz
U NT32 range_high; //KHZ
U NT32 signal;
U NT32 normal _signal; //acceptabl e signal
U NT32 node; //MONO STEREO
U NT32 reserved;

} RADI O TUNER,

12.6.2.2 Radio Caps Structure

typedef struct
{
TCHAR driver[32];// i.e. "Radio"
TCHAR chip[32]; // i.e. "Silicon Laboratories Si4702"
U NT32 version; /1
U NT32 caps; // Device capabilities
U NT32 bands;
U NT32 reserved;
} RADI O_CAPS;

12.6.2.3 Radio Audio Structure

typedef struct

{
U NT32 vol une;

U NT32 nut ed;
} RADI O AUDI O,

12.6.2.4 Radio Power State Structure

typedef enum

{
RADI O PONER_OFF = 0,
RADI O PONER_ON

} RADI O PO/ER

12.6.2.5 Radio Auto Tune Structure

typedef enum

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

12-6 Freescale Semiconductor

RADI O AUTOTUNE_FROM BEG N = 0,

RADI O AUTOTUNE_FROM CUR,
RADI O AUTOTUNE_FROM END
} RADI O AUTOTUNE_PCS;

typedef enum

{
RADI O_AUTOTUNE_SEEKUP = 0,
RADI O_AUTOTUNE_SEEKDOAN

} RADI O AUTOTUNE_DI R,

typedef struct
{
RADI O_AUTOTUNE_POS pos;
RADI O AUTCTUNE DI R dir;
} RADI O_AUTOTUNE;

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

FM Radio Driver

Freescale Semiconductor

12-7

FM Radio Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

12-8 Freescale Semiconductor

Chapter 13
General Purpose Timer (GPT) Driver

The general purposetimer isamultipurpose modul e used to measure interval s or generate periodic output.
The timer counter value can be captured in aregister using an event on an external pin. The GPT can also
generate an event on a chip boundary signal and an interrupt when the timer reaches a programmed value.
Thereis only one general purpose timer supported in i.MX31.

13.1

GPT Driver Summary

General Purpose Timer (GPT) Driver

Table 13-1 provides a summary of source code location, library dependencies and other BSP information.
Table 13-1. GPT Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_VA1

MXARM11 CSP Driver Path

.\SOC\FREESCALE\MXARM11_FSL_V1\GPT

CSP Driver Path

N/A

CSP Static Library

gpt_mxarm11_fsl_v1.lib

Platform Driver Path

.\PLATFORM\IMX313DS\SRC\DRIVERS\GPT

Import Library N/A
Driver DLL gpt.dil
Catalog Item Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device
Drivers > Timers > GPT
SYSGEN Dependency N/A
BSP Environment Variables BSP_GPT=1

13.2 Supported Functionality

The GPT driver enables the 3-Stack board to provide the following software and hardware support:
Configured as aloadable .dIl module so that other drivers can use the interface of the GPT driver
Supports clock source selection, including external clock source
Supports both reset and free-run mode count operation

Supports two power management modes, power on and power off

13.3 Hardware Operation

Supports the SDK interface

The unit test cases are created for testing the GPT driver

Refer to the chapter on General Purpose Timer in the hardware specification document for detailed
hardware operation and programming information.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

13-1

General Purpose Timer (GPT) Driver

13.3.1 Conflicts with Other Peripherals

No conflicts.

13.4 Software Operation

NOTE

If Platform Builder profiling support isto be used, the GPT driver cannot be
included in the workspace

13.4.1 Communicating with the GPT

The GPT driver controls the General Purpose Timer. Thistimer is used to provide high resolution
(microsecond) timing functionality to other platform modules. The GPT isastream interface driver and is
accessed through the file system APIs. To communicate using the GPT, a handle to the device must first
be obtained using the GptOpenHandle function. Subsequent commands to the device are issued using
various APIs supported by thisdriver. Itis necessary to include the gptsdk_mxarm11 fsl_va.liblibrary to
use this API.

13.4.2 Creating a Handle to the GPT

To communicate with the GPT, a handle to the device must first be created using the GptOpenHandle
API. The default GPT port is 1.

To open a handle to the GPT:

/! dobal data
/! Handle to the GPT device
HANDLE g_hGpt = NULL;

/1 opening the default GPT port.
g_hGpt = Gpt OpenHandl e();

For more information on this API, see the GptOpenHandle section under the GPT API reference.

13.4.3 Configuring the GPT

Configuring the GPT for communications involves selecting timer source by:
» Cdling GptSetTimerSrc APl
» Starting the timer and enabling the timer event trigger by calling GptStart AP
* Showing the current timer source by calling GptShowTimer Src AP

Before this action can be taken, a handle to the GPT port must already be opened.
Call the GptSetTimer Src API to select timer source.

/1 selecting the GPT source
Gpt Set Ti mer Src(g_hGpt, pGpt Ti ner SrcPkt) ;

Call the GptStart API to enable and start the timer.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-2 Freescale Semiconductor

General Purpose Timer (GPT) Driver

/1 configuring and starting the GPT, the second paranmeter contains timer node and
// timer length
Gpt Start (g_hGpt, pTimerConfig) ;

Call the GptShowTimer Src API to show current timer source.

/1 showi ng current GPT tinmer source
Gpt ShowTi mer Src(g_hGpt) ;

For more information on this API, see the GptStart section under the GPT API reference.

13.4.4 Write Operations

The Write operations for the GPT involve setting the time through the GptSetTimer API. Before this
action can be taken, a handle to the GPT must aready be opened.

The timer mode can be either, timerModeFreeRunning or timerModePeriodic. The period has the unit of
microsecond.

// Name to create the naned event for Tinmer
#define GPT_EVENT_NAME L"Gpt Test1"

/'l GPT Tiner packet

GPT_TI MER_SET_PKT gpt Ti mer Del ayPkt ;

/'l create an event for the timer interrupt
hGptIntr = GptCreateTi mer Event (hGpt, GPT_EVENT_NAME);

gpt Ti mer Del ayPkt . ti mer Mode = ti nmer ModePeri odi c;
gpt Ti mer Del ayPkt . peri od = 10000000;

/] Setting the GPT tinmer
Gpt Set Ti mer (g_hGpt, &gpt Ti mer Del ayPkt) ;

For more information on this API, see GptSetTimer section of the GPT API reference.

13.4.5 Closing the Handle to the GPT

To close the GPT handle, call the GptCloseHandle API. Before performing the close operation, stop the
timer using GptStop API. It isalways advised to call GptReleaseTimer Event to release any pending
timer events before closing the handle.

Before these actions can be taken, a handle to the GPT must already be opened.
To closethe GPT Handle,

/! Name to create the nanmed event for Tiner
#define GPT_EVENT_NAME L"Gpt Test1"

/1 releasing the Tiner Event.
Gpt Rel easeTi mer Event (g_hGpt, event String);

Gpt St op(g_hGpt)
Gpt Cl oseHandl e(g_hGpt);

For more information on these APIs, see the GptReleaseTimer Event, GptSop and GptCloseHandle
section under the GPT API reference.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-3

General Purpose Timer (GPT) Driver

13.4.6 Power Management

The primary method for limiting power consumption in the GPT module isto gate off al clocksto the
module when GPT is not used. The clock is enabled when an application calls GPT_Open(). This clock
then remains enabled as long device is kept open. The GPT clock isturned off when the application closes
the device using GPT_Close().

13.4.6.1 PowerUp

Thisfunction restores the state of the GPT clocks back to the state before entering suspend. If the GPT was
counting before suspend, GPT continues to count from the place where it was stopped.

13.4.6.2 PowerDown

Thisfunction disables the clock to the GPT module. If the GPT was counting, then the count value freezes
at the point when the clock is removed.

13.4.6.3 IOCTL_POWER_CAPABILITIES

N/A

13.4.6.4 I0CTL_POWER_SET
N/A

13.4.6.5 IOCTL_POWER_GET
N/A

13.4.7 GPT Registry Settings

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ GPT]
"Prefix"="GT"
"Dil"="gpt.dlI"
"l ndex" =dword: 1

13.5 Unit Test
The GPT tests verify that the GPT driver properly initializes and controls the general purpose timer.

13.5.1 Unit Test Hardware

Table 13-2 lists the required hardware to run the unit tests.
Table 13-2. Hardware Requirements

Requirements Description

No additional hardware required

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-4 Freescale Semiconductor

General Purpose Timer (GPT) Driver

13.5.2 Unit Test Software

Table 13-3 lists the required software to run the unit tests.
Table 13-3. Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
GPTTEST.dII Test .dll file

13.5.3 Building the GPT Tests
In order to build the GPT tests, complete the following steps:

Build an OS image for the desired configuration:

1. Within Platform Builder, go to the Build menu option and select the Open Release Directory
menu option. This opens a DOS prompt.

2. Changeto the GPT Tests directory: \WINCEG00\SUPPORT\MX31\TESTS\GPT

3. Enter set WINCEREL =1 on the command prompt and hit return. This copiesthebuilt DLL tothe
flat release directory.

4. Enter the build command at the prompt and press return.
After the build completes, the GPTTEST.dII file islocated in the $(_FLATREL EASEDIR) directory.

13.5.4 Running the GPT Tests

The command line for running the GPT testsis tux —0 —d gpttest. The GPT tests do not contain any test
specific command line options.
To add the GPT test to CETK, perform the following steps:
1. Goto the Tests menu and select User Defined.
2. Follow the wizard and add the GPTTEST. dI | located in the release folder as the test module.
3. Follow the wizard until it finishes.

Table 13-4 describes the test cases contained in the GPT tests.
Table 13-4. GPT Test Cases

Test Case Description

1: TST_StartBeforeCfg Attempt to start the GPT timer without setting the timer period (expected failure)

2: TST_OpenMultipleHandle Attempt to open multiple GPT Handles (expected failure)

3: TST_ComparewithSysTick Check timer accuracy with system clock

4:TST_ChangeClockSrc Run the timer with different timer source

5:TST_PeriodicMode Periodic mode test

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-5

General Purpose Timer (GPT) Driver

6: TST_FreerunMode Free run mode test

7: TST_StopAndResume Stop and resume test

13.6 GPT Driver API Reference

13.6.1 GPT Driver Functions

13.6.1.1 GptOpenHandle

This API creates a handle to the GPT stream driver.
HANDLE Gpt OpenHandl e(

voi d
);
Parameters This API accepts no parameters.
Return Values: An open handle to the specified file indicates success.
INVALID HANDLE VALUE indicatesfailure.
Remarks Use the GptCloseHandle function to close the handle returned by
GptOpenHandl&().

13.6.1.2 GptCreateTimerEvent

This APl isused to create the GPT Timer event.

HANDLE Cpt Cr eat eTi mer Event (
HANDLE hGpt ,
LPTSTR event Name

)

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.

eventName [in] Pointer to a null-terminated string that specifies the name of the object.

Return Values: A non-null handle to the specified event indicates success. NULL indicates
failure.

Remarks Use the GptReleaseTimer Event function to close the event. The system closes

the handle automatically when the process terminates. The event object is
destroyed when its last handle has been closed.

13.6.1.3 GptShowTimerSrc

This APl show the current timer source for the GPT.

BOOL Gpt ShowTi mer Sr c(
HANDLE hGpt

)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-6 Freescale Semiconductor

General Purpose Timer (GPT) Driver

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
Return Values: TRUE on success and FAL SE indicates afailure.

Remarks Prints a message indicating which clock source is selected.

13.6.1.4 GptSetTimerSrc

This API show the current timer source for the GPT.

BOOL Gpt Set Ti mer Src(
HANDLE hGpt ,
PGPT_TI MER_SRC_PKT pGpt Ti ner Sr cPkt

)

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
pGptTimer S cPkt [in] Anobject of the PGPT_TIMER_SRC_PKT structure

Return Values: TRUE on success and FAL SE indicates afailure.

Remarks Select clock source between CLK_HIFRQ, CLK_32K, CLK_IPG CLK_EXT

13.6.1.5 GptStart

This APl enablesthe GPT interrupt and starts the GPT timer.

BOOL Gpt Start (
HANDLE hGpt ,
pGPT_Config pTi merConfig

)

Parameters

hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
pTimerConfig [in] An object of the pGPT_Config structure.

Return Values: TRUE on success and FAL SE indicates afailure.

Remarks Set desired event trigger time and start GPT.

13.6.1.6 GptUpdatePeriod

This APl updates the counter compare value on regarding to the current counter value and the new time
length submitted.

BOOL Gpt Updat ePer i od(

HANDLE hGpt,
DWORD peri od
)
Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
period [in] new time length (in micorsecond) submitted.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-7

General Purpose Timer (GPT) Driver

13.6.1.7 GptGetCounterValue

This API gets the current counter register value.

BOOL Gpt Get Count er Val ue(
HANDLE hGpt,
PDWORD pTi nmer Count
)

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
pTimer Count [in] point to the variable which receives current counter value

13.6.1.8 GptResume

This APl reactivates the GPT.
BOOL Gpt Resune(

HANDLE hGpt
);
Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
Remarks Often called after a stop.

13.6.1.9 GptStop
This API disables the GPT interrupt and stops the GPT timer.

BOOL Gpt St op(
HANDLE hGpt
)
Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
Return Values TRUE on success and FAL SE indicates afailure.

13.6.1.10 GptReleaseTimerEvent

This APl closes the currently open GPT Timer Event.

BOOL Gpt Rel easeTi ner Event (
HANDLE hGpt ,
LPTSTR event Name

)

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
eventName [in] Pointer to a null-terminated string that specifies the name of the object

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-8 Freescale Semiconductor

General Purpose Timer (GPT) Driver

Return Values Nonzero indicates success. Zero indicates failure. To get extended error
information, call GetLastError().
13.6.1.11 GptCloseHandle

This API closes a handle to the GPT driver.
BOCOL Gpt C oseHandl e(

HANDLE hGpt
)
Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API.
Return Values Nonzero indicates success. Zero indicates failure. To get extended error

information, call GetLastError().

13.6.2 GPT Driver Structures

13.6.2.1 GPT_Config

typedef struct

{

ti mer Mode_c ti mer Mode;

U NT32 peri od;

} GPT_Config, *pGPT_Config;

Members

timerMode Selects between two supported modes: reset or periodic mode
(timerModePeriodic) and free-running mode (timerM odeFreeRunning).

period Counter period (in microsecond)

13.6.2.2 GPT_TIMER_SRC_PKT

typedef struct
{

timerSrc_c tinmerSrc;
} GPT_TI MER_SRC_PKT, *PGPT_TI MER_SRC _PKT;

Members

timerSc Selects between 4 supported timer source, GPT_IPGCLK, GPT_HIGHCLK,
GPT_EXTCLK and GPT_32KCLK

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 13-9

General Purpose Timer (GPT) Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

13-10 Freescale Semiconductor

Global Positioning System Driver

Chapter 14
Global Positioning System Driver

Theglobal positioning system (GPS) enablesa GPSreceiver to determineitslocation, speed/direction, and
time. This 3-Stack platform supports the BroadCom BCM4750 Single Chip A-GPS Solution. BCM4750
isan A-GPS solution that integrates a high performance A-GPS baseband signal processor with a
low-noise GPS RF Tuner into asingle CMOS die. BCM 4750 delivers exceptional sensitivity (-162 dBm),
low power consumption and fast time-to-first-fix (TTFF) in asmall, inexpensive package.

The external GPS module is supported using the UART port and GPIO resources. Because the chipset
features a host-based architecture, certain software components must be loaded onto the platform in order
to enable full operation.

14.1 GPS Driver Summary

Most GPS software modules are provided in binary form only. This application also provides source code
format for the driver that supports access to the hardware. To enable the GPS module, select the
corresponding elements from the platform builder catalog for the current OS design. The binary files and
the registry settings that correspond to the elements selected are included in the OS run-time image.

The GPS module uses UART on the 3-Stack platform. Reset and power on/ power off to the GPS module

are controlled by the GPIO pins of the i.MX31. The GPS module functionality is segmented into

subsystems. Not al of the subsystems need to be selected in order to enable GPS on the platform.

Table 14-1 provides a summary of source code location, library dependencies and other BSP information.
Table 14-1. GPS Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) |iMX313DS

Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path | N/A

CSP Driver Path N/A
CSP Static Library N/A
Platform Driver Path .\PLATFORM\<{gtplat\SRC\DRIVERS\GPS
.\PLATFORM\<tgtplat\SRC\DRIVERS\GPSCTRL
Import Library N/A
Driver DLL Gpsct.exe;GpsNavigationLauncher.exe;GpsctServiceLauncher.exe;GpsctService.dll;

GlvcDriver.dll;gpscontroldriver.dll

LtoManager.exe, LioManager.exe.config, LtoManagerLauncher.exe, log4net.dll,
OpenNetCF_GL.dll, OpenNetCF.Net_GL.dll,
OpenNetCF.Windows.Forms_GL.dll

Catalog ltems Third Party > BSPs > Freescale <tgtplat> > Device Drivers > GPS > GPS core drivers
Third Party > BSPs > Freescale <fgtplat> > Device Drivers > GPS > GPS control
driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 14-1

Global Positioning System Driver

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_GPS_COREDRIVER =1
BSP_GPS_CONTROL_DRIVER= 1
BSP_SERIAL_UART3 = 1

Figure 14-1 shows the architecture of GPS driver, showing the following layers in the GPS software
system:

14.1.1

Application layer

GPS core driver layer
GPSHAL driver layer

Application layer

Handset applications, TCP/IP stack, and GSM layer3 in Figure 14-1 belong to application layer. Handset
applications, such as Visual Gpsce.exe or any other mapping software, can receive standard NMEA datato
show position with afriendly user interface. TCP/IP stack and GSM |ayer3 can provide A-GPS navigation
service to enhance GPS functionality even when satellite signal is not strong enough to get fix.

» Wirel
Physical

¥ £ Layer

L TCP/IP GSM

Handset Applications Stack Layer 3
JSR-179 7 NMEAT L A~

¥ L4 4 1
Location & SUPL [P RRLP '
Navigation API Module S Module :
¢ A i A 1
\ 4 !
| Position Computation] | Assistance Data Manager 1

GLOBAL LOCATE LIBRARY (GLL) |

HAL

A
Y

Manager

4

Mo volatile Log
Sweaac Buffer

Driver

Commurications

GFIO
F unction

Sysien
Tirmer

Serial Interface

IndoorGPS Chip Set or Single Chip Solution

Figure 14-1. Software Architecture of GPS Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

14-2

Freescale Semiconductor

Global Positioning System Driver

14.1.2 GPS Core Driver Layer

The middle section of Figure 14-1 shows the Global Local Library (GLL) which belongsto GPS core
driver layer. The GPS core driver runs at host and communicates with GPS chip by calling GPS HAL
driver. The driver is used for position calculation and assi stance data management.

14.1.3 GPS HAL driver layer

GPS HAL drivers provide hardware related resource, such as serial port driver, non-volatile storage, and
GPIO functions. Only GPIO functions are provided here to control GPS power state and reset. The driver
iscaled gpscontrol driver. dl I, and source code is available at

..\ PLATFORM <t gt pl at >\ SRC\ DRI VERS\ GPSCTRL.

14.2 Supported Functionality

The GPS driver enables the 3-Stack board to provide the following software and hardware support:
* Integrates the BCM4750 GPS module from BroadCom company
» Supports power management mode full on/full off

14.3 Hardware Operation

14.3.1 UART Port

Fori.MX31-3DSbhoard, UART 3 isused to communicatewith the GPS module. If adifferent UART isused
for this purpose, then the following registry should be changed correspondingly:

.\PLATFORM \<tgtplat>\SRC\DRIVERS\GPS\GIl obal L ocate-Gpsct-flatrom.reg:
"GpsComPort"="COMXx:"
Here “x” should be specified according to the UART actually used ("COM3:").

14.3.2 GPIO Control

Some GPIO pins of the 3-Stack platform are used to control the GPS module (Table 14-2). If different pins
are used for such purpose, then some source code must be updated to reflect the difference. Refer to the
following source file for details: .\PLATFORM\<tgtplat>\SRC\DRIV ERS\GPS\GpsCtlPdd.cpp

Table 14-2. GPIO Control

GPIO Name PIN Value Description

BSP_GPIO_GPS_RESET MCU2_15 0: Reset of GPS module is asserted
1: Reset of GPS module is de-asserted

BSP_GPIO_PWR_EN_GPS MCUS3_2 1: GPS module is powered on
0: GPS module is powered off

FM_CLK_EN MCU2_3 Must be 1 to enable 32KHz RTC

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 14-3

Global Positioning System Driver

14.3.3 Conflicts with Other Peripherals

No conflicts.

14.4 Software Operation

14.4.1 Communicating with the GPS Module

Software applications communicate with the GPS modul e through a virtual COM port (i.e. COM8). The
virtual COM port is a standard stream interface driver, and is thus accessed through the file system APIs.
For example, the Win32 API CreateFile() call can be used to obtain a handle and ReadFile() can be used
to read the NMEA data stream output by the GPS module.

14.4.2 Power Management

The 3-Stack platform functions GPS_PowerUp and GPS_PowerDown are used to bring the GPS module
into and out of standby mode. The codeis designed to keep the power consumption of the GPS module at
aminimal level when the standby power state is invoked.

14.4.3 GPS Driver Registry Settings

14.4.3.1 Configuration Registry Keys
Contact BroadCom for details.

14.5 Unit Test

A navigation application is necessary to test GPS driver. Freescale does not provide a navigation
application. The user isresponsible for providing a navigation application (contact BroadCom for more
information).

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

14-4 Freescale Semiconductor

Inter-Integrated Circuit (12C) Driver

Chapter 15
Inter-Integrated Circuit (I12C) Driver

The I nter-Integrated Circuit (12C) module provides the functionality of a standard 1°C slave and master.
The 1°C module is designed to be compatible with the standard Phillips 1%C bus protocol.
15.1 12C Driver Summary

The following table provides a summary of source code location, library dependencies and other BSP
information:

Table 15-1. 12C Driver Attributesl

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
MXARM11 CSP Driver Path .\PLATFORM\common\src\soc\freescale\mxarm11_fsl_v1\i2c
CSP Driver Path .\PLATFORM\common\src\soc\freescale\<TGTSOC>\DRIVERS\I2C
CSP Static Libraries i2c_mxarm11_fsl_v1.lib, i2c_<TGTSOC>.lib
Platform Driver Path \PLATFORM\<TGTPLAT>\SRC\DRIVERS\I2C
Import Library N/A
Driver DLL i2c.dll
Catalog Iltem Third Party —> BSP —> Freescale i.MX31 3DS:ARMV4| —> Device Drivers —>
12C Bus
SYSGEN Dependency N/A
BSP Environment Variables BSP_12CBUS=1

15.2 Requirements

The 12C driver should meet the following requirements:
1. Support the 12C communication protocol.

Support multiple 12C controllers.

Support the 12C master mode of operation.

Not support the 12C slave mode of operation.

Function as a stream interface driver implementing the programming interface defined in this
document.

6. Support two power management modes, full on and full off.

(L S

15.3 Hardware Operation

Refer to the chapter on 12C in the hardware specification document for detailed operation and
programming information.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-1

Inter-Integrated Circuit (I12C) Driver

15.3.1 Conflicts with other SoC peripherals

15.3.1.1 i.MX31 Peripheral Conflicts

The i.MX31 platform contains three | 2C modules, but only one of these modules may be used on the
i.MX31 PDK board, the I2C1 module. 12C2 does not have any allocated pins, and |2C3 shares pins with
the CSPI2 module. The CSPI2 signals are selected in the IOMUX, asthey are required for proper
communication with the MC13783 PMIC.

15.4 Software Operation

15.4.1 Communicating with the 12C

The 12C is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the 12C, a handle to the device must first be created using the CreateFile function. Subsequent
commandsto the device are issued using the Devicel oControl function with IOCTL codes specifying the
desired operation. If preferred, the Devicel oControl function calls can be replaced with macros that hide
the Devicel oControl cal details. The basic steps are detailed below.

15.4.2 Creating a Handle to the 12C

Call the CreateFile function to open aconnection to the 12C device. An 12C port must be specified in this
call. Theformat is“12CX”, with X being the number indicating the 12C port. This number should not
exceed the number of 12C instances on the platform. If an 12C port does not exist, CreateFile returns
ERROR_FILE_NOT_FOUND.

To open a handle to the 12C, complete the following steps:

1. Insert acolon after the 12C port for the first parameter, |pFileName.
— For example, specify 12C1: asthe 12C port.

2. Specify FILE_SHARE_READ |FILE_SHARE_WRITE in the dwShareMode parameter. M ultiple
handles to an 12C port are supported by the driver.

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter.
— Thisflagisrequired.

4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open an 12C port.

// Open the serial port.
hl1 2C = CreateFile (CAM I 2C PORT, // nanme of device
GENERI C_READ | GENERI C_WRI TE, /'l access (read-wite) node
FI LE_SHARE_READ | FILE SHARE WRITE, // sharing node
NULL, /1 security attributes (ignored)
OPEN_EXI STING // creation disposition
FI LE_FLAG_RANDOM ACCESS, /1 flags/attributes
NULL) ; /1 tenplate file (ignored)

Before writing to or reading from an 12C port, configure the port.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-2 Freescale Semiconductor

Inter-Integrated Circuit (12C) Driver

When an application opens an 12C port, it uses the default configuration settings, which might not be
suitable for the device at the other end of the connection.

15.4.3 Configuring the 12C

Configuring the I2C port for communications involves 2 main operations:

» Setting the 12C frequency

» Setting the Self Address (the address for the 12C port on the platform).
Before these actions can be taken, a handle to the 12C port must already be opened. Each of these steps
requires a call to the Devicel oControl function. As parameters, the 12C port handle, appropriate IOCTL
code, and other input and output parameters are required.
To configure an 12C port, complete the following steps:

1. Set the hDevice parameter to the previously acquired 12C port handle.

2. Set the dwloControl Code to one of the following IOCTL codes:

« 12C_IOCTL_SET_FREQUENCY

« 12C_IOCTL_SET_SELF ADDR

3. Set the IpInBuffer to point to the variable that you are wishing to use for the 12C port setting. Set
ninBufferSize to the size of that variable.

4. Set |pOutBuffer, |pBytesReturned, and IpOverlapped to NULL. Set nOutBufferSzeto 0.

The following code example shows how to configure the 12C port.
/'l Clock frequency set at 1MHz

DWORD dwkr equency = 1000000; /1 12C frequency
BYTE bySel f = 0x20; [/ Self address val ue
/] Set 12C frequency
Devi cel oControl (hl 2C, /1 file handle to the driver
1 2C_| OCTL_SET_FREQUENCY, // 1/0O control code
(PBYTE) &dwFrequency, [l in buffer
si zeof (dwFr equency), /1 in buffer size
NULL, /1 out buffer
0, [/ out buffer size
NULL, /! nunber of bytes returned
NULL) ; /1 ignored (=NULL)
/] Set 12C self address
Devi cel oControl (hl 2C, /1 file handle to the driver
1 2C_| OCTL_SET_SELF_ADDR, // 1/0O control code
(PBYTE) &bySel f, /1 in buffer
si zeof (bySel), [l in buffer size
NULL, /1 out buffer
0, [/ out buffer size
NULL, /1 nunber of bytes returned
NULL) ; /1 ignored (=NULL)

As asubstitute for the Devicel oControl calls above, macros may be used to simplify the code. The
following are examples:

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-3

Inter-Integrated Circuit (I12C) Driver

1 2C_MACRO_SET_FREQUENCY(hl 2C, dwFr equency);
I 2C_MACRO_SET_SELF_ADDR(hl 2C, bySel f);

15.4.4 Data Transfer Operations

The I2C driver provides one command, Transfer, that facilitates performing both reads and writes through
the I12C. The basic unit of datatransfer in the 12C driver isthe 12C_PACKET, which contains a buffer for
reading or writing dataand aflag that specifieswhether the desired operationisaRead or aWrite. Anarray
of these packets makes up an 1I2C_TRANSFER_BLOCK object, which is needed to perform a Transfer
operation. The steps below detail the process of performing write and read operations through the 12C.

Before these actions can be taken, a handle to the 12C port must already be opened. Each of these steps
requires acall to the Devicel oControl function. As parameters, the 12C port handle, appropriate IOCTL
code, and other input and output parameters are required.

To perform an 12C transfer, complete the following steps:

1. Createan array of 12C_PACKET objects and initialize the fields of each packet as follows:

a) SetthebyRWfieldto12C_RW_WRITE to specify that the 12C operation is a Write, or
12C_RW_READ to specify that the |2C operation is a Read.

b) Set the byAddr field to the 7-bit 12C dlave address of the device to which the datawill be
written.

NOTE

The byAddr field requires the 7-bit 12C slave address, aligned to the least
significant 7 bits. Thisaddresswill be shifted |eft one bit and ORed with the
read/write bit to compose the 8-bit value sent out during the 12C slave
addresscycle. Inolder versions of thisdriver, the dave address was entered
as the most significant 7 bits of the 8-bit value.

c) If byRWissettol2C_RW_WRITE, create abuffer of bytes and fill it with the datato write to
the slave device. Set the pbyBuf field to point to this buffer. If isset to 12C_RW_READ, create
abuffer of bytes to hold the data which will be read from the slave device.

d) SetthewLenfieldtosize, inbytes, of theread or write buffer. Thiswill indicate the number of
bytes to write or read.

€) Set the IpiResult field to point to an integer that will hold the return value from the write
operation.

2. Set the hDevice parameter to the previously acquired 12C port handle.
3. Set the dwloControlCodeto the I2C IOCTL_TRANSFER IOCTL code.

4. Set the IpInBuffer to point to the I2C_TRANSFER_BLOCK object created in step 1. Set
nlnBuffer Sze to the size of that packet object.

5. Set IpOutBuffer, |pBytesReturned, and IpOverlapped to NULL. Set nOutBufferSzeto 0.

6. After calling the Devicel oControl function, check the IpiResult field to ensure that the operation
was successful. If IpiResult pointsto the I2C_NO_ERROR value, the operation was successful.
Otherwise, there was an error.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-4 Freescale Semiconductor

Inter-Integrated Circuit (12C) Driver

The following code example demonstrates how to perform atransfer that contains one write and one read
packet. The write is performed before the read operation.

| 2C_TRANSFER_BLOCK | 2CXf er Bl ock;

| 2C_PACKET | 2CPacket [2] ;

BYTE byAddr = 0x2D; /'l Sl ave Address
BYTE byCQutData = 0x39; // Data to wite
BYTE byl nDat a; /1 Read buffer

/] Packet O contains write operation

| 2CPacket [0] . pbyBuf = (PBYTE) &byCQut Dat a;
| 2CPacket [0] . wLen = si zeof (byCQut Dat a) ;

| 2CPacket [0] . byRW = | 2C_RW WRI TE

| 2CPacket [0] . byAddr = byAddr;

| 2CPacket [0] . | pi Result = | pi Resul t;

/] Packet 1 contains read operation

| 2CPacket [1] . pbyBuf = (PBYTE) &byl nDat a;
| 2CPacket [1] . wLen = si zeof (byl nDat a) ;

| 2CPacket [1] . byRW = | 2C_RW READ;

| 2CPacket [1] . byAddr = byAddr;

| 2CPacket [1] .| pi Result = | pi Result;

| 2CXf er Bl ock. pl 2CPackets = | 2CPacket ;

| 2CXf er Bl ock. i NunPackets = 2;

/1 Transfer data through I2C

Devi cel oControl (hl 2C, /1
I 2C_| OCTL_WRI TEREG, [/
(PBYTE) &l 2CXf er Bl ock,
si zeof (1 2CXf er Bl ock),

NULL, /1
0, /1
NULL, /1
NULL) ; /1

file handle to the driver
1/0O control code

/1l in buffer

[/ in buffer size

out buffer

out buffer size

nunber of bytes returned
i gnored (=NULL)

As asubstitute for the Devicel oControl call above, macros may be used to simplify the code. The

following is an example:

| 2C_MACRO_TRANSFER(hl 2C, &l 2CXf er Bl ock) ;

Repeated Sart

The array of 12C_PACKET objects passed to the Transfer command is guaranteed to be performed
sequentially, without interruption or preemption by another driver that is attempting to access the 12C
module. An 12C START command initiates the transmission of the first packet in the
12C_TRANSFER_BLOCK array. For subsequent packets, a change in the direction of communication
(from Read to Write or Write to Read) or achangein the target slave address triggers a REPEATED
START command before the transmission of the packet. Thus, if a REPEATED START isrequired
between data transfers with a target 12C device, all of those data transfers should be contained within a

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

15-5

Inter-Integrated Circuit (I12C) Driver

single|2C_TRANSFER_BLOCK. Thefinal packet inthel2C_TRANSFER_BLOCK issucceeded by an
12C STOP command.

15.4.5 Closing the Handle to the I12C
Call the CloseHandle function to close a handle to the 12C when an application is done using it.

CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the 12C port.

There isatwo-second delay after CloseHandleis called before the port is closed and resources are freed.
This delay alows pending operations to complete.

15.4.6 Power Management

The primary method for limiting power consumption in the 12C module is to gate off all clocks to the
module when those clocks are not needed. Thisis accomplished through the DDK Clock SetGatingM ode
function call. In the Windows CE 6.0 <TGTPLAT> BSP, the I2C module always operates in master mode
and never in slave mode. As aresult, the |2C module can be disabled, and its clocks turned off, whenever
the module is not processing 12C packets. By contrast, were the 12C module to operate in slave mode, the
module would have to be enabled, and have its clocks turned on, at al timesin order to properly receive
the interrupt that signals the start of a data transfer from another 12C master device.

Asdescribed in the Data Transfer Operations section, 12C data transfer operations are handled in
12C_TRANSFER_BLOCK objects, which contain one or more packets of 12C data. The |2C driver turns
on the 12C clocks and enablesthe 12C module before processing an 12C_TRANSFER_BL OCK, and then
disables and turns off clocks to the 12C module after the block of packets has been processed. Thislimits
the time during which the 12C module is consuming power to the time during which the 12C is actively
performing data transfers.

15.4.6.1 PowerUp

This function is not implemented for the 12C driver. Power to the |2C module is managed as 12C transfer
operations are processed. There are no additional power management steps needed for the 12C.

15.4.6.2 PowerDown

This function is not implemented for the 12C driver.

15.4.6.3 I10CTL_POWER_SET

This function is not implemented for the 12C driver.

15.4.7 12C Registry Settings

The following registry keys are required to properly load the I2C1 module.

I F BSP_| 2CBUS
; @I PREG ON | F PACKAGE_CEMDRI VERS

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-6 Freescale Semiconductor

Inter-Integrated Circuit (12C) Driver

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | tI n\12Cl1]
"Prefix"="12C
"Dl"="i2c.dlI"
"I ndex"=dword: 1
" Order"=dword: 4

ENDI F

15.5 Unit Test
No CETK Test for 12C.

NOTE

The camera module uses the 12C interface to control its setting, so the 12C
function can be verifed by the camera module.

15.6 12C Driver API Reference

15.6.1 12C Driver IOCTLS

This section consists of descriptions for the 12C 1/0 control codes (IOCTLS). These IOCTLs are used in
callsto Devicel oControl to issue commands to the 12C device. Only relevant parameters for the IOCTL
have a description provided.

15.6.1.1 12C_IOCTL_GET_CLOCK_RATE

This Devicel oControl request retrieves the clock rate divisor. Note that the value is not the absolute
peripheral clock frequency. The value retrieved should be compared against the 12C specifications to
obtain the true frequency.

Parameters

[pOutBuffer Pointer to the divisor index. Thetrue clock frequency isplatform dependent. Refer
to 12C specification for more information.

nOutBuffer Sze Sizein bytes of the divisor index.

15.6.1.2 12C_IOCTL_GET_SELF_ADDR

This Devicel oControl request retrieves the address of the 2C device. Note that this macro is only
meaningful if it is currently in Slave mode.

Parameters

[pOutBuffer Pointer to the current 12C device address. The valid range of the address is[0x00,
OX7F].

nOutBuffer Sze Sizein bytes of the 12C device address.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-7

Inter-Integrated Circuit (I12C) Driver

15.6.1.3 12C_IOCTL_IS_MASTER

This Devicel oControl request determines whether the 12C is currently in Master mode.
Parameters

[pOutBuffer Pointer toaBY TE that will contain the return value from the Master modeinquiry.
TRUE if currently in Master mode; FALSE if currently in Siave mode.
nOutBuffer Sze Sizein bytes of the return value. This should be one byte.

15.6.1.4 12C_IOCTL_IS_SLAVE

This Devicel oControl request determines whether the 12C is currently in Slave mode.
Parameters

[pOutBuffer Pointer to aBY TE that will contain the return value from the Slave mode inquiry.
TRUE if currently in Slave mode; FALSE if currently in Master mode.
nOutBuffer Sze Sizein bytes of the return value. This should be one byte.

15.6.1.5 12C_IOCTL_RESET

ThisDevicel oControl request performs ahardware reset. Note that the 12C driver will still maintain all of
the current information of the device, including all of theinitialized addresses.

15.6.1.6 12C_IOCTL_SET_CLOCK_RATE

This Devicel oControl request initializes the |2C device with the given clock rate. Note that this IOCTL

does not expect to receive the absolute peripheral clock frequency. Rather, it will be expecting the clock

rate divisor index stated in the 12C specification. If absolute clock frequency must be used, use the macro
12C_MACRO_SET_FREQUENCY.

Parameters

|plnBuffer Pointer to the divisor index. Refer to the | 2C specification to obtain the true clock
frequency.

ninBufferSze Sizein bytes of the divisor index.

15.6.1.7 12C_IOCTL_SET_FREQUENCY

ThisDevicel oContr ol request estimatesthe nearest clock rate acceptable for the12C deviceand initializes
the 12C device to use the estimated clock rate divisor. If the estimated clock rate divisor index is required,
refer to the macro 12C_MACRO_GET_CLOCK _RATE to determine the estimated index.

Parameters
|plnBuffer Pointer to the desired 12C frequency.
ninBufferSze Sizein bytes of the 12C frequency requested.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-8 Freescale Semiconductor

Inter-Integrated Circuit (12C) Driver

15.6.1.8 [12C_IOCTL_SET_MASTER_MODE
This Devicel oControl request setsthe 12C device to Master mode.

15.6.1.9 12C_IOCTL_SET_SELF_ADDR

This Devicel oControl request initializes the |2C device with the given address.
Parameters

[plnBuffer Pointer to the expected 1 2C device address. The valid range of addressesis [0x00,
OX7F].

ninBufferSze Sizein bytes of the 12C device address.

Remarks The device will be expected to respond when any master on the 12C bus wishesto

proceed with any transfer. Note that this IOCTL will have no effect if the 12C
deviceisin Master mode.

15.6.1.10 I12C_IOCTL_SET_SLAVE_MODE

This Devicel oControl request setsthe 12C device to Slave mode.

15.6.1.11 12C_IOCTL_TRANSFER

This Devicel oControl request performs the transfer (read or write) of one or more packets of datato a
target device. An12C_TRANSFER_BLOCK object isexpected, which containsan array of 12C_PACKET
objects to be executed sequentially. All of the required information should be stored in the
12C_TRANSFER_BLOCK passed in the IpInBuffer field.

Parameters

| plnBuffer Pointertoan 12C_TRANSFER_BLOCK structure containing a pointer to an array
of 12C_PACKET objectsspecifying al of theinformation required to perform the
requested Read and Write operations.

ninBufferSze Sizein bytes of the 2C_TRANSFER_BL OCK.

15.6.2 12C Driver Macros

15.6.2.1 12C_MACRO_GET_CLOCK_RATE

This macro will retrieve the clock rate divisor.

| 2C_MACRO GET_CLOCK_RATE(
HANDLE hDev,
WORD wdl kRat e

);

Parameters
hDev The I2C device handle retrieved from CreateFile().

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-9

Inter-Integrated Circuit (I12C) Driver

wClkRate Contains the divisor index. Refer to 12C specification to obtain the true clock
frequency.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

Remarks Note that the value is not the absolute peripheral clock frequency. The value
retrieved should be compared against the 12C specification to obtain the true
frequency.

15.6.2.2 12C_MACRO_GET_SELF_ADDR

This macro will retrieve the current 12C device address. Note that this macro is only meaningful if itis
currently in Slave mode.

| 2C_MACRO _GET_SELF_ADDR(
HANDLE hDev,
WORD bySel f Addr

);

Parameters

hDev The I2C device handle retrieved from CreateFile().

dwSelfAddr The current |2C device address. The valid range of addressis [0x00, Ox7F].
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.3 12C_MACRO_IS_MASTER

This macro determines whether the 12C is currently in Master mode.

I 2C_MACRO | S MASTER(
HANDLE hDev,
BOOL bl sMaster

);

Parameters

hDev The I2C device handle retrieved from CreateFile().

blsMaster TRUE if the 12C device isin Master mode.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.4 12C_MACRO_IS_SLAVE

This macro determines whether the 12C is currently in Slave mode.

I 2C_MACRO | S_SLAVE(
HANDLE hDev,
BOOL bl sSl ave

);

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-10 Freescale Semiconductor

Inter-Integrated Circuit (12C) Driver

Parameters

hDev The 12C device handle retrieved from CreateFile().

blsSave TRUE if the 12C device isin Slave mode.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.5 12C_MACRO_RESET

This macro perform a hardware reset. Note that the 12C driver will still maintain all of the current
information of the device, including theinitialized addresses.

| 2C_MACRO_RESET(
HANDLE hDev,

);

Parameters
hDev The I2C device handle retrieved from CreateFile().
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.6 12C_MACRO_SET_CLOCK_RATE

This macro will initialize the 12C device with the given clock rate.

| 2C_MACRO SET_CLOCK_RATE(
HANDLE hDev,
WORD wdl kRat e

);

Parameters

hDev The 12C device handle retrieved from CreateFile().

wClkRate Contains the divisor index. Refer to the | 2C specification to obtain the true clock
frequency.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

Remarks Note that this macro does not expect to receive the absolute peripheral clock

frequency. Rather, it will be expecting the clock rate divisor index stated inthe | 2C
specification. If absolute clock frequency must be used, use the macro
12C_MACRO_SET_FREQUENCY.

15.6.2.7 12C_MACRO_SET_FREQUENCY

This macro will estimate the nearest clock rate acceptable for the 12C device and initialize the 12C device
to use the estimated clock rate divisor. If the estimated clock rate divisor index is required, refer to the
macro 12C_MACRO_GET_CLOCK_RATE to determine the estimated index.

| 2C_MACRO SET_FREQUENCY (
HANDLE hDev,
DWORD dwFr eq

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-11

Inter-Integrated Circuit (I12C) Driver

)

Parameters

hDev The I2C device handle retrieved from CreateFile().

dwFreq The desired frequency.

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.8 12C_MACRO_SET_MASTER_MODE

This macro set the 12C device to Master mode.
| 2C_MACRO SET_MASTER MODE(

HANDLE hDev
)
Parameters
hDev The I2C device handle retrieved from CreateFile().
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.9 12C_MACRO_SET_SELF_ADDR

This macro initializes the 12C device with the given address.

| 2C_MACRO_SET_SELF_ADDR(
HANDLE hDev,
BYTE bySel f Addr

);

Parameters

hDev The 12C device handle retrieved from CreateFile().

bySelfAddr The expected 12C device address. The valid range for the addressis [0x00, Ox7F].
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.
Remarks The device will be expected to respond when any master on the 12C bus wishesto

proceed with any transfer. Note that this macro will have no effect if the 12C
deviceisin Master mode.

15.6.2.10 12C_MACRO_SET_SLAVE_MODE

This macro sets the | 2C device to Slave mode.

| 2C_MACRO_SET_SLAVE_MODE(
HANDLE hDev

);

Parameters
hDev The I2C device handle retrieved from CreateFile().

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-12 Freescale Semiconductor

Inter-Integrated Circuit (12C) Driver

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful.

15.6.2.11 12C_MACRO_TRANSFER

This macro performs a sequence of datatransfersto atarget device. All of the required information should
be stored in the 1I2C_TRANSFER_BLOCK object passed in the pl2CTransfer Block field.

| 2C_MACRO TRANSM T(
HANDLE hDev,
Pl 2C_TRANSFER_BLOCK pl 2CTr ansf er Bl ock

);

Parameters

hDev The 12C device handle retrieved from CreateFile().

pl2CTransfer Block

pl2CPackets [in] Pointer to an array of packets to be transferred sequentially.

iNumPackets [in] Thenumber of packets pointed to by pl2CPackets (the number of packets
to be transferred).

Return Values Returns TRUE or FAL SE. If the result is TRUE, the operation is successful.

15.6.3 12C Driver Structures

15.6.3.1 12C_PACKET

This structure contains the information needed to write or read data using an 12C port.

typedef struct {
BYTE byAddr ;
BYTE byRW
PBYTE pbyBuf ;
WORD wien;
LPI NT | pi Resul t;
} 12C_PACKET, *Pl2C_PACKET;

Members

byAddr This 7-bit dave address specifiesthe target 1 2C device to or from which datawill
be read or written.

byRW Determines whether the packet isaread or awrite packet. Set to 12C_RW_READ
for reading and 12C_RW_WRITE for writing.

pbyBuf A pointer to abuffer of bytes. For a Read operation, thisis the buffer into which
data will beread. For a Write operation, this buffer contains the data to write to
the target device.

wLen If the operation isaRead, wLen specifies the number of bytesto read into pbyBuf.
If the operation is a Write, wLen specifies the number of bytes to write from
pbyBuf.

IpiResult Pointer to an int that contains the return code from the transfer operation.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 15-13

Inter-Integrated Circuit (I12C) Driver

15.6.3.2 12C_TRANSFER_BLOCK

This structure contains an array of packetsto be transferred using an 12C port.

typedef struct {
| 2C_PACKET *pl 2CPacket s;
I NT32 i NunPackets;
} 12C_TRANSFER BLOCK, *PlI 2C_TRANSFER BLOCK;

Members
pl2CPackets A pointer to an array of 12C_PACKET objects.
iNumPackets The number of 12C_PACKET objects pointed to by pl2CPackets.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

15-14 Freescale Semiconductor

Keypad Driver

Chapter 16
Keypad Driver

The Keypad Port (KPP) moduleis used for keypad matrix scanning. This module is capable of detecting,
debouncing, and decoding one or two keys pressed simultaneously in the keypad.

The keypad driver converts input from the KPP into keyboard events that the driver entersinto the input
system.

16.1 Keypad Driver Summary

The following table provides a summary of source code location, library dependencies and other BSP
information:

Table 16-1. Keypad Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1

MXARM11 CSP Driver Path

.\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXARM11_FSL_V1\K
EYBD

CSP Driver Path

N/A

CSP Static Library

Keypad_mxarm11_fsl_v1.lib
PddList_mxarm11_fsl_v1.lib

Platform Driver Path

.\PLATFORM\<TGTPLAT>\SRC\DRIVERS\KEYBD

Import Library N/A
Driver DLL Kbdmouse.dll
Catalog ltem Third Party —> BSP —> Freescale i.MX31 3DS: ARMV4| —> Device

Drivers —> Input Devices —> Keyboard/Mouse > 3DS Keypad

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_KBDMOUSE_EVBKPD=1

16.2

Requirements

The keypad driver should meet the following requirements:
1. Conform to the Microsoft Layout Manager Interface.
2. Support multiple ssimultaneous key presses.
3. Support two power management modes, full on and full off.

16.3 Hardware Operation

Refer to the chapter on the KPP in the hardware specification document for detailed operation and
programming information.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

16-1

Keypad Driver

16.3.1 The Keypad

The keypad driver interfaces with the Windows CE Keyboard Driver Architecture to provide key input
support.

The 9-key keypad is located in the personality board and the mapping is as follows:
Table 16-2. Keypad Labels and Key Values

Label Key value
S7(up) upP
S8(down) DOWN
S10(left) LEFT
S9(right) RIGHT
S11(enter) ENTER
S12(menu 1) ALT
S15(menu 2) TAB
S16(menu 3) SPACE
S17(menu 4) ESC

The ALT key provides the user with greater ability to navigate Windows CE. The following key
combinations make use of the ALT key to perform specific tasksin Windows CE:

Table 16-3. ALT Keystroke Combinations

Press To
ALT + TAB Switch between open items.
ALT + underlined letterin a | Display the corresponding menu.
menu name
ALT + Enter Open the properties for the selected

object.

16.3.2 Conflicts with other SoC peripherals

No conflicts.

16.4 Software Operation

The keypad driver follows the Microsoft-recommended architecture for keyboard drivers. The details of
this architecture and its operation can be found in the CE help documentation at the following location:
“Developing a Device Driver — Windows Embedded CE Drivers—> Keyboard Drivers—
Keyboard Driver Development Concepts’

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

16-2 Freescale Semiconductor

Keypad Driver

16.4.1 Keypad Scan Codes and Virtual Keys

Each key on the keypad has a unique scan code, which is added to a buffer whenever that key is pressed
or released. These scan codes, which are hardware-specific, are first converted to intermediate PS/2
keyboard scan code values and then converted into virtual keys, which are hardware-independent numbers
that identify the key. On the other hand, if akey is pressed from the keyboard, the generated scan code is
directly converted into virtual keys. For alphabetic keys, the ASCII code for the capitalized letter isthe
virtual key. For other keys, the virtual key is defined by Microsoft and starts with “VK_".

The following table shows the scan code to virtual key mapping :
Table 16-4. Keypad Scan Codes and Virtual Keys

Key Keypad Scan Code Virtual Key
upP 0 VK_UP
DOWN 3 VK_DOWN
LEFT 4 VK_LEFT
RIGHT 1 VK_RIGHT
ENTER 7 VK_RETURN
ALT 2 VK_MENU
ESC 11 VK_ESCAPE
TAB 5 VK_TAB
SPACE 8 VK_SPACE

16.4.2 Power Management

The primary method for limiting power consumption in the keypad module is to gate off all clocksto the
module when those clocks are not needed. Thisis accomplished through the DDK Clock SetGatingM ode
function call. Inthismodule, the clocks are enabled only when it isrequired to access any keypad register.
Once done using the registers, the clocks are brought back to their previous state.

16.4.2.1 BSPKppPowerOn

Thisfunctionisused to power up the keypad. Thisfunction will do the necessary configuration settingsin
the registersto bring up the keypad and then the clocks are brought back to their original state asit was
just before the module was powered down.

16.4.2.2 BSPKppPowerOff

This function powers down the keypad. But before turning off the module, the current state of the clock
settings for thismodule is saved and then there is a delay until the keypad does not report any
key-down/key-up event. Then the clocks to this module are turned off.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 16-3

Keypad Driver

16.4.2.3 I10CTL_POWER_CAPABILITIES
N/A

16.4.2.4 I10CTL_POWER_SET
N/A

16.4.2.5 I0CTL_POWER_GET
N/A

16.4.3 Keypad Registry Settings

The following registry keys are required to properly load the keypad device layout and input language.

[HKEY_LOCAL_MACHI NE\ HARDWARE\ DEVI CEMAP\ KEYBD)]
"Cal VKey" =dword: 0
" Cont LessVKey" =dwor d: 0
" Cont Mor eVKey" =dwor d: 0
"TaskManVKey" =dwor d: 2E
"Keyboard Type" =dword: 4
"Keyboard SubType"=dword: 0
"Keyboard Function Keys"=dword: 0
"Keyboard Layout"="00000409"
"Driver Nanme"="kbdnouse. dl | "

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Layout s\ 00000409]
"Layout Fil e"="kbdnouse.dll"
"Layout Text"="US-Keypad"
" KPPLayout " =" kbdmouse. dl | "

[HKEY_CURRENT_USER\ Keyboar d Layout \ Prel oad\ 4]
@" 00000409"

16.5 Unit Test

Asthe keypad has only 9 keys, it is not a full-function keypad and it cannot pass the Keyboard Test
included as part of the Windows Embedded CE 6.0 Test Kit (CETK). A specific procedure is designed to
test al keys.

16.5.1 Unit Test Hardware
N/A

16.5.2 Unit Test Software
N/A

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

16-4 Freescale Semiconductor

16.5.3 Building the Keyboard Tests
N/A

16.5.4 Running the Keyboard Tests

The procedure for keyboard tests is as follows:
Run the application "Microsoft WordPad".
Input "Tab".
Input " Space”.
Input "Alt" to open the menu bar.

Keypad Driver

. Open the help document by click the question mark on the "Internet Explorer” application.

Input the "ESC" to quit from help document.

. Input the "Alt + Tab" to call the "Task Manager".
. Quit the application "Microsoft WordPad". In the pop up dialog box, click the "Yes" button.

1
2
3
4.
5. Run the application "Internet Explorer”.
6
7
8
9

16.6 Keypad Driver API Reference

Detailed reference information for the keypad driver may be found in CE help documentation at the

following location:

Developing a Device Driver — Windows Embedded CE Drivers —> Keyboard Drivers —>

Keyboard Driver Reference

16.6.1 Keypad PDD Functions

The following table shows a mapping of keyboard PDD functions to the functions used in the keypad

driver:

Table 16-5. Keypad PDD Pointers and Driver Functions

PDD Function Pointer

Keypad Driver Function

PFN_KEYBD_PDD_ENTRY

KPP_Entry

PFN_KEYBD_PDD_GET_KEYBD_EVENT

KeybdPdd_GetEventEx2

PFN_KEYBD_PDD_POWER_HANDLER

KPP_PowerHandler

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

16-5

Keypad Driver

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

16-6 Freescale Semiconductor

LAN9217 Product Ethernet Driver

Chapter 17
LAN9217 Product Ethernet Driver

The LAN9217 Product Ethernet driver isused for connectivity with an IEEE 802.3 Ethernet using the
SMSC LAN9217 Ethernet Controller. The driver provides support to communicate with the Ethernet at
10/100 M bps speed, asthe LAN9217 Ethernet Controller isa10Base-T/100 Base-TX Ethernet controller.
The driver makes use of the LAN9217 internal M1I-compatible transceiver.

The LAN9217 Product Ethernet driver isaNDIS 5.0-compliant miniport driver.

17.1 LAN9217 Product Ethernet Driver Summary

The following table provides a summary of source code location, library dependencies, and other BSP

information:

Table 17-1. LAN9217 Product Ethernet Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
MXARM11 CSP Driver Path N/A
<TGTPLAT> CSP Driver Path N/A
CSP Static Library N/A

Platform Driver Path

\PLATFORM\< TGTPLAT>\SRC\DRIVERS\LAN9217

Import Library ndis.lib
Driver DLL lan9217.dll
Catalog ltem Catalog —> Third Party —> BSP —> Freescale <TGTPLAT>: ARMV4|

—> Device Drivers —> Ethernet LAN9217 Driver

SYSGEN Dependency

SYSGEN_NDIS=1
SYSGEN_TCPIP=1
SYSGEN_WINSOCK=1

BSP Environment Variables

BSP_ETHER_LAN9217=1

17.2 Requirements

The LAN9217 Product Ethernet driver should meet the following requirements:
» Conformtothe Microsoft Network Driver Interface Specification (NDIS) architecturein Windows

Embedded CE. 6.0

» Support |IEEE 802.3 Ethernet protocols for communication.
» Support two power management modes, full on and full off.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

17-1

LAN9217 Product Ethernet Driver

17.3 Hardware Operation

The LAN9217 chip is an on-board peripheral which is connected to the processor through the PBC
(Peripheral Bus Controller). Refer to the Peripheral Bus Controller CPLD document and LAN9217
data sheet for detailed operation and programming information.

17.3.1 Conflicts with other SoC peripherals

17.3.1.1 i.MX31 Peripheral Conflicts

No conflicts. (Refer to Peripheral Bus Controller CPLD document for details).

17.4 Software Operation

The Product Ethernet driver follows the Microsoft-recommended architecture for NDIS miniport drivers.
The details of thisarchitecture and its operation can be found in the Platform Builder Help at the following
location: Developing a Device Driver — Windows Embedded CE Drivers —> Network Drivers —>
Network Driver Development Concepts —> Miniports, | ntermediate Drivers, and Protocol Drivers.

17.4.1 Power Management

The power management is currently not implemented for the LAN9217 Product Ethernet driver.

17.4.2 Product Ethernet Registry Settings

The following registry keys are required to properly load the LAN9217 Product Ethernet driver and to
configure the TCP/IP for Ethernet interface. In the following specimen, a dynamic IP address is assigned
using DHCR, the variable enabl ebHcr should be set to 1.

[HKEY_LOCAL_MACHI NE\ Corm | an9217]
"Di spl ayName" ="1an9217 Ethernet Driver"
" Group" ="NDI S"
"l magePat h"="1an9217.dl | "

[HKEY_LOCAL_MACHI NE\ Corm | an9217\ Li nkage]
"Route"=nul ti _sz:"lan9217"

[HKEY_LOCAL_MACHI NE\ Corm | an9217]
"Di spl ayName" ="1an9217 Ethernet Driver"
" Group" ="NDI S"
"l magePat h"="1an9217.dl | "

[HKEY_LOCAL_MACHI NE\ Conmi | an9217\ Par ns]
"BusNumber " =dwor d: 0
"BusType" =dword: 0
"I nt errupt Nunber"=dword: 1; pio interrupt
"1 oBaseAddr ess" =dwor d: B6000000 ; ETHERNET_BASE (Physi cal Addr)
"PhyAddr ess" =dwor d: FF ; PHY address (0x20: Auto, OxFF:Internal)
" RxDVAMbde" =dword: 0 ; 1-DWVA, 0-PIO
"TxDVAMbde" =dword: 0 ; 1-DMVA, 0-PIO
"Fl onCont rol "=dword: 1 ; 1- Enabl ed, 0-Di sabl ed

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

17-2 Freescale Semiconductor

; LinkMode will replace Dupl ex,

LAN9217 Product Ethernet Driver

Speed and Fl owContr ol

; bit7: RESERVED, bit6: ANEG, bit5: ASynmmetric Pause, bit4: Symmetric Pause
; bit3: 100FD, bit2: 100HD, bitl: 10FD, bitO: 10HD

"Li nkMode" =dwor d: 7F

[HKEY_LOCAL_MACHI NE\ Conm | an9217\ Par ns\ Tcpl p]

" Enabl eDHCP" =dwor d: 1

"1 pAddr ess"="0.0.0. 0"
"Subnet mask"="0.0.0.0"

" Def aul t Gat eway" ="0. 0. 0. 0"
"UseZer oBroadcast " =dword: 0

17.5 Unit Test

The LAN9217 Product Ethernet driver is tested using the following:

1. Network utilities'operations: Ping to and from the 3DS device, FTPtransfers (file put and get) with
3DSdevice as FTP server and Internet browsing with Pocket Internet Explorer on the 3DS device.

2. Winsock CETK test cases: Winsock 2.0 Test (v4/v6) and Winsock Performance Test with 3DS
device as client.

17.5.1 Unit Test Hardware

The following table lists the required hardware to run the unit tests.

Table 17-2. Unit Test Hardware Requirements

Requirements

Description

3DS board with LAN9217

Board that hosts the LAN9217 Product Ethernet driver

PC/machine

To act as counterpart for network operation

An Ethernet or a cross-Ethernet cable

To form an Ethernet

17.5.2

Unit Test Software

The following table lists the required software to run the unit tests.
Table 17-3. Unit Test Software Requirements

Requirements

Description

Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Ws2bvt.dll Test .dll file for Winsock 2.0 Test (v4/v6)
Perflog.dll Module that contains functions that monitor and log performance for Winsock

Performance Test

Perf_winsock2.dll

Test .dll file for Winsock Performance Test

Perf_winsockd2.exe

Test .exe file (server program) for Winsock Performance Test

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

17-3

LAN9217 Product Ethernet Driver

Ndt.dll Protocol driver for One-card network card miniport driver test
Ndt_1c.dll Test .dll for One-card network card miniport driver test
Ndp.dll MS_NDP protocol driver for NDIS performance test
Perf_ndis.dll Test .dll file NDIS performance test

17.5.3 Building the LAN9217 Product Ethernet Tests

17.5.3.1 Network utilities related tests

The following registry entries need to be enabled to allow get/put of files using the anonymous FTP
upload, and to be able to access all the files and folders under the root directory on the target:

[HKEY_LOCAL_MACHI NE\ COMM FTPD]
"Al | owAnonynmousUpl oad" = dword: 1
"Defaul tDir" = "\\"

For minimum network support and ping to work, the following components need to be enabled in the OS
design:

Under Core 0s —> CEBASE —> Conmuni cation Servi ces and Net wor ki ng —> Networking - General:
Network Driver Architecture (NDIS)

TCP/ I P

TCP/ I P —> | P Hel per API

W nsock Support
Network Utilities (IpConfig, Ping, Route)

For FTPto work, the following components need to be enabled in the OS design:
Under core 0s —> CEBASE > Conmuni cation Services and Networking > Servers:
FTP Server

For Video streaming to work, the following components need to be enabled in the OS design:
Under core 0s —> CEBASE —> Graphics and Miltinedi a Technol ogi es —> Medi a:

Medi a Formats —> AVI Filter

Stream ng Media Pl ayback

Vi deo Codecs and Renderers —> Vi deo/ | mage Conpressi on Manager

Vi deo Codecs and Renderers —> WW/ MPEG 4 Vi deo Codec

W ndows Media Player —> W ndows Medi a Pl ayer

W ndows Media Player —> W ndows Media Player OCX

W ndows Media Player —> W ndows Medi a Technol ogi es

W ndows Media Player —> W ndows Medi a Technol ogi es —> W ndows Media Milticast and Multi-Bit
Rat e

W ndows Media Player —> W ndows Medi a Technol ogi es —> W ndows Medi a Stream ng from Local
St or age

W ndows Media Player —> W ndows Medi a Technol ogi es —> W ndows Medi a Stream ng over HTITP

It will be helpful to add the command line shell and console support:
Shell and User Interface > Shell > Conmand Shell:

Command Processor

Command W ndow

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

17-4 Freescale Semiconductor

LAN9217 Product Ethernet Driver

17.5.3.2 Winsock 2.0 Test (v4/v6)

The Winsock 2.0 Test (v4/v6) comes pre-built as part of the CETK. No steps are required to build these
tests. The Ws2bvt.dll can be found alongside the other required CETK filesin the following location:

[Drive]:\Program Fil es\ M crosoft Pl atform Builder\6.00\cepb\wcet k\ ddt k\ ar mv4l

17.5.3.3 One-Card Network Card Miniport Driver Test

The one-card network card miniport driver test comes pre-built as part of the CETK. No stepsarerequired
to build these tests. The ndt.dll and ndt_1c.dll can be found alongside the other required CETK filesin the
following location:

[Drive]:\Program Fil es\ M crosoft Pl atform Builder\6.00\cepb\wcet k\ ddt k\ ar mv4l

17.5.4 Running the LAN9217 Product Ethernet Tests

17.5.4.1 Network utilities-related tests

17.5.4.1.1 Ping tests

The ping tests can be run as usual from the 3DS device as well as from the PC side.

17.5.4.1.2 Browsing

The network browsing tests can be done after setting the following on the device front panel:

— DNSserversin the TCP/IP properties of LAN9217 network interface (Control Panel —>
Network and Dial-up Connections)

— Proxy server, if used in the network used for test, on the Pocket Internet explorer.

17.5.4.1.3 FTP tests

For running FTP tests, the FTP service needs to be started on the <TGTSOC> device using the following
command on the DOS prompt:

services start FTPO:

17.5.4.2 Video streaming tests

This can be done by accessing the web sites which provide video clips. An exampleis:
http://www.smartvideo.com. The set-up for internet browsing (as mentioned above) is mandatory.
17.5.4.3 Winsock 2.0 Test (v4/v6)

The test can be executed on the < TGTSOC> device using tux —o—d Ws2bvt.dl in the command line on the
<TGTSOC>.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 17-5

LAN9217 Product Ethernet Driver

For detailed information on the Winsock 2.0 Test (v4/v6) tests, see Debugging and Testing —> Tools for
Debugging and Testing —> Windows CE Test Kit —> CETK Tests —> Winsock 2.0 Test (v4/v6) in the
Patform Builder Help.

17.5.4.4 One-Card Network Card Miniport Driver Test

Thistest can be done by including ndt.dll and ndt_1c.dll in the image, and starting the test by entering tux
—0—d ndt_lc.dll c“-t LAN9217" on the command line on the <TGTSOC>.

For detailed information on the Winsock Performance tests, see Debugging and Testing —> Tools for
Debugging and Testing —> Windows CE Test Kit —> CETK Tests—> One-card Network Card
Miniport Driver Test in the Platform Builder Help.

17.6 LAN9217 Product Ethernet Driver APl Reference

The LAN9217 Product Ethernet driver conformsto NDIS 5.0 specification by Microsoft for the miniport
network drivers.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

17-6 Freescale Semiconductor

MBX Direct3D Mobile/OpenGL ES Drivers

Chapter 18
MBX Direct3D Mobile/OpenGL ESDrivers

The MBX Lite graphics processor is an |P wrapper for 2D/3D hardware acceleration, and is designed for
ultra-low-power cost-sensitive system-on-chip (SoC) applications such as mainstream mobile phones,
PDAs, and handheld gaming devices.

The MBX D3DM and OpenGL ES driversinterface with the i.MX 31 Image Processing Unit (IPU)
Synchronous Display Controller (SDC) to combine graphics and video planes, and to generate display
controls with programmable timing. This module is compatible with the Epson L4F00242T03 panel.

The MBX Direct3D® Mobile (D3DM) driver provides the actual drawing services that Microsoft
Direct3D Mobile middleware uses. The middleware isathin layer of software that handles call transport,
synchronization, and OS integration issues; the driver manages the memory for display surfaces.

OpenGL ESisaroyalty-free, cross-platform API for full-function 2D and 3D graphics on embedded
systems. OpenGL ES 1.X isfor fixed function hardware and offers accel eration, image quality, and
performance.

Thei.MX31 MBX supports the D3DM and OpenGL ES in Windows Embedded CE 6.0.

18.1 Direct3D Mobile/OpenGL ESDrivers Summary

The following table identifies the source code location, library dependencies, and other BSP information.
Table 18-1. Direct3D Mobile/OpenGL ES Drivers Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) IMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
CSP Driver Path N/A
CSP Static Library N/A
Platform Driver Path .\PLATFORM\<{gtplat-\SRC\DRIVERS\MBX
Import Library ddgpe.lib, gpe.lib
Driver DLL Clcdckmif.dll, sdc_display.dll, ddi_powervr.dll, gxdma.dll, libGLES_CM.dIl,

libpvrWCEWSEGL.dIl, IMGEGL.dIl, pvr_d3dm.dll, pvr_kernel.dll, um3partyif.dll

Catalog Item Third Party BSPs Freescale <tgiplat> Device Drivers Display
Epson L4F00242T03

Third Party BSPs Freescale <tgiplat> Device Drivers MBX
MBX i.MX31 Base Driver

Third Party BSPs Freescale <tgiplat> Device Drivers MBX
MBX i.MX31 D3DM Core

Third Party BSPs Freescale <tgiplat> Device Drivers MBX
MBX i.MX31 Ogles Core

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 18-1

MBX Direct3D Mobile/OpenGL ES Drivers

SYSGEN Dependency SYSGEN_DDRAW=1
SYSGEN_D3DM=1

BSP Environment Variable BSP_MBX
BSP_DISPLAY_EPSON_L4F00242T03 = 1 for epson LCD Panel

18.2 Supported Functionality
The MBX D3DM and OpenGL ESdrivers enable the 3-Stack board to provide the following software and
hardware support:

» Driversderive from the Graphics Primitive Engine (GPE) class

» Drivers support the DirectDraw Hardware Abstraction Layer (DDHAL), support overlay surface
for pixel format RGB565, UY VY, YV 12, Overlay surface color key feature

» Driver support TVout

» Drivers support the Epson L4F00242T03 panels

» Direct3D Mobile supports Microsoft Direct3D Maobile Specification
* OpenGL ES supports OpenGL ES 1.1 Specification

* MBX driver uses VFP for hardware accelerate

18.3 Hardware Operation

Refer to the chapter on the MBX in the MCIMX31 and MCIMX3L1L Applications Processors Reference
Manual for detailed operation and programming information.

18.3.1 Conflicts with other Peripherals

MBX does not have conflicts with any other module.

18.4 Software Operation

The MBX D3DM driver follows the Microsoft-recommended architecture for Direct3D Mobile drivers.
For details of this architecture and its operation, see the Platform Builder Help:

Developing a Device Driver > Windows Embedded CE Drivers> Direct3D Mobile Display Drivers

The MBX driver uses a standalone DirectDraw driver. If MBX isincluded in the OS image, the IPU
DirectDraw driver will be replaced by the MBX DirectDraw driver.

If VFP accelerate is used for MBX, VFP is setted to runfast mode. A mathematical operation may fail
when it involves a NaN operation. For further information, see the ARM VFP v2 Floating Point Support
Library for Microsoft Windows Embedded CE 6.0 Release Note.

18.4.1 Application / User Interface to MBX Drivers

Communications with the MBX drivers are provided through Microsoft-defined APIsor OpenGL ES
APIs. The MBX Direct3D Mobile driver uses the local hooking model. The application's process space

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

18-2 Freescale Semiconductor

MBX Direct3D Mobile/OpenGL ES Drivers

includes both the Microsoft Direct3D Mobile middieware (d3dm di 1) and the MBX Direct3D Mobile
driver.

Because the locally hooked drivers are not loaded into the Graphics, Windowing, and Event Subsystem
(GWEY), they do not have direct access to the hardware. Asaresult, these drivers must rely on some other
graphics technology, such as DirectDraw, to present rendered output to the user.

18.4.2 Configuring the LCD Display Panels

The display configuration is based on the Panel Type registry key, which is described in the
DisplayRegistry Settings section below. The Panel Typeregistry key indicates the display panel that is
being used. The supported display panel is the Epson L4F00242T03 LCD panel.

18.4.2.1 LCD Display Registry Settings

Thefollowing registry keys are optionally included, depending on the display panel catalog item included
in the OS design. If the Epson L4F00242T03 VGA panel is selected, the following registry keys are
included:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Di spl ay\ DDI PU_SDC]

"Bpp"=dword: 10 ; 16bpp
"Panel Type"=dword: 1 ; Epson VGA Panel

18.4.2.2 Power Management
Power management is currently supported in the D3DM and OpenGL ES drivers.

18.4.2.3 Direct3D Mobile and OpenGL ES Registry Settings
The following registry keys are required to properly load the MBX D3DM and OpenGL ES drivers.

; Disable Power M anagement
[HKEY_LOCAL_MACHINE\System\CurrentControl Set\Control\Power\Timeouts]
"ACUserldle"=dword:00000000
"ACSystemldle"=dword:00000000
" ACSuspend"=dword:00000000
"BattUserl dl€'=dword:00000000
"BattSysteml dle"=dword:00000000
"BattSuspend"=dword:00000000
[HKEY_LOCAL_MACHINE\Drivers\Builtn\PVRK ernel]
"Prefix"="PKM"
"DII"="pvr_kernd.dll"
"Order"=dword:10
"Keep"=dword:1
“BM_POOLO_PHY_BASE"=dword:86700000
; Indicate PKM isa generic power manageable interface
"IClass"'="{ A32942B7-920C-486b-BOE6-92A 702A99B 35} "
[HKEY_LOCAL_MACHINE\Drivers\Builtln\PV R3rdPartyK ernel]
"Prefix"="P3P"
"DII"="clcdckmif.dII"

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 18-3

MBX Direct3D Mobile/OpenGL ES Drivers

"Order"=dword:10

"Keep"=dword:1
“CLCDC_MEM_BASE"=dword:87200000
“CLDC_MEM_SIZE”=dword: 500000

; Indicate P3P is a generic power manageable interface

"|Class"'="{ A32942B7-920C-486b-BOE6-92A 702A99B 35} "
[HKEY_CURRENT_USER\ControlPanel\K eybd]

"Contrast"=dword:80
[HKEY_LOCAL_MACHINE\System\GDI\Drivers]

"Display"="ddi_powervr.dil"
[HKEY_LOCAL_MACHINE\Drivers\Display\PowerVR]

"lsrDII"="GIISR.DLL"

"lsrHandler"="ISRHandler"
; Screen rotation control
"DisableDynamicScreenRotation"=dword:0
“Width”=dword: 1E0
“Height”=dword: 280
“BitsPerPixel” =dword:010
[HKEY_LOCAL_MACHINE\Drivers\Display\PowerVR]

"HWRecoveryTimeout"="350"
[HKEY_LOCAL_MACHINE\Drivers\Display\PowerVR\M BX 1\Game Settings\OpenGLES]
[HKEY _LOCAL_MACHINE\Drivers\Display\PowerVR\MBX 1\Game Settings\D3DM]
[HKEY_LOCAL_MACHINE\system\gdi\rotation]

"Angle"=dword:0
[HKEY_LOCAL_MACHINE\System\D3DM\Drivers]

"LocalHook"="pvr_d3dm.dIl"

18.4.3 Float Pointing Acceleration using the ARM VFP Library

Because thei.MX31 includes a VVFP module, the MBX and other applications or drivers can use VFP to
accelerate the mathematical algorithm. You can download the ARM VFP library release for Windows
Embedded CE 6.0 from the ARM website and use the information in the rel ease notes to enable the OEM
floating point library support.

According to the ARM release document, this VFP library isimplemented only in the runfast mode.
However, the actual arm sample code does not set the VFP to runfast mode. You may refer to the
following code and then add it in the ARM library init function to enable the runfast mode.

; in float_assems file

EXPORT | _set FPSCR|

EXPORT | _get FPSCR|

AREA MX31_VFP, CODE, READONLY

| _set FPSCR| PRCC
FMXRFPSCR, rO0O
MOVPC, LR, Return
ENDP

| _get FPSCR|
FMRXr 0, FPSCR

MOVPC, LR; Return

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

18-4 Freescale Semiconductor

MBX Direct3D Mobile/OpenGL ES Drivers

ENDP
END

; in VFP library init function
_set FPSCR(_get FPSCR() | 0x03000000); //use runfast node

18.5 Unit Test

To add all MBX-related drivers on Windows Embedded CE 6.0 to the image, including D3DM, OpenGL
ES, DirectDraw, LCD, and IPU SDC, add the following three MBX modules from the catal og:

* MBX MX31 Base driver
« MBX MX31D3DM Core
* MBX MX31 Ogles Core

To add all MBX-related drivers on Windows M obile/SmartPhone to the image, uncomment the MBX
macrosin mMx31. bat , and ensure that the macros related to the LCD and |PU SDC are availablein mx31. bat .

The sections below focus on the D3DM Windows CETK test and the D3DM/OpenGL ES demo test. For
further information about the DirectDraw/GDI CETK and Windows Media Player tests, see Chapter 10,
“Display Driver”.

18.5.1 Unit Test Hardware
The Epson L4F00242T03 VGA Panel is needed to run the unit tests. The panel displays the graphics data.

18.5.2 Unit Test Software

18.5.2.1 Direct3D Mobile Interface Tests

The following table lists the required software to run the D3DM Interface tests.
Table 18-2. Direct3D Mobile Interface Test Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
D3DM_Interface.dll Library containing the test cases

To run the Direct3D Mobile Interface Test, follow these steps:
1. Inyour OSdesign, set the SY SGEN_D3DM variable from:
Core OS->CEBASE->Graphicsand Multimedia Technologies->Graphics->Direct3D Mobile
2. Include aDirect3D Mobile driver in your OS design.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 18-5

MBX Direct3D Mobile/OpenGL ES Drivers

18.5.3 Building the Direct3D Mobile Tests

The D3DM Interface Tests, D3DM Driver Verification Tests and D3DM Driver Comparison Tests come
with the CETK. No steps are required to build these tests. The tests are in the following location:

[Drive]:\Program Fil es\ M crosoft Pl atform Builder\6.00\cepb\wcet k\ ddt k\ ar mv4l
18.5.4 Running the Direct3D Mobile Tests

18.5.4.1 Running the Direct3D Mobile Interface Tests

The command line for running the D3DM Interface testsis:

tux —o —d d3dm.interface.dll

For detailed information on the D3DM | nterface tests and command line options, see the Platform Builder
Help:
Windows Embedded CE Test Kit -> CETK Testsand Test Tools-> Display Tests-> Direct3D Mobile
Interface Test
The following table describes the test cases in the D3DM Interface test suite.

Table 18-3. Direct3D Mobile Interface Test Cases

Test Case Description
1-99 Tests the methods for the IDirect3DMobile interface.
101-199 Tests the methods for the IDirect3DMobileDevice interface.
201-299 Tests the methods for the IDirect3DMobilelndexBuffer interface
301-399 Tests the methods for the IDirect3DMobileSurface interface
401-499 Tests the methods for the IDirect3DMobileTexture interface
501-599 Tests the methods for the IDirect3DMobileVertexBuffer interface.
2001-2099 Tests the security of a Direct3D Mobile driver

18.5.5 Direct3D Mobile/OpenGL ES Application Samples/Demos

In order to reduce the OS image size, alimited number of pre-built demos have been included in the BSP
package.

18.5.6 Direct3D Mobile Application Samples

There are seven D3DM application samples located in\ w NCE600\ PUBLI O\ DI RECTX\ SDK\ SAMPLES\ D3DV,
which will be built when BSP_MBX is enabled. The table that follows identifies these tests.

Table 18-4. Direct3D Mobile Application Samples

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

18-6 Freescale Semiconductor

MBX Direct3D Mobile/OpenGL ES Drivers

Tests Pass
D3dm_createdevice.exe Y
D3dm_fixedpoint.exe Y
D3dm_lights.exe Y
d3dm_matrices.exe Y
d3dm_textures.exe Y
d3dm_twotri.exe Y
d3dm_vertices.exe Y

18.5.6.1 Direct3D Mobile/OpenGL ES Demos

Tests Pass
D3DMEvilSkull.exe Y
OGLESVase.exe Y

Seethe MX31 MBX SDK package for additional demo applications in source code and binary code.

18.5.7 Known Issues for MBX CEG6 Driver

The following are known issues for the MBX CEG driver:
» For directdraw cetk, in TVout mode, 9 cases (102/200/210/220/300/310/320/1200/1300) failed.
» After suspending the system, you need to click the panel to resumeit.

* Whilerunning overlay application, like mosquito or media play, if you rotate or switch between
LCD and TV, the application fails to run. To re-run, exit and reopen the application.

» D3DM comparision test 5192 case failed.
* MBX driver only supports suspend/resume from keypad when in tvout mode.

18.6 Drivers API Reference

18.6.1 Direct3D Mobile

For documentation for the Direct3D driver APIs, seethe Platform Builder Help. No additiona custom API
information is required for the features currently supported in the Direct3D Mobile driver. For reference
information on basic Direct3D Mobile driver functions, methods, and structures, see the Platform Builder
Help:

DevelopingaDeviceDriver- >Windows Embedded CE Drivers-> Direct3D MobileDisplay Drivers-
>Direct3D Mobile Driver Reference

For reference information on Direct3D Mobile functions, callbacks, and structures, see the Platform
Builder Help:

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 18-7

A
MBX Direct3D Mobile/OpenGL ES Drivers

Windows Embedded CE Features -> Graphics-> Direct3D M obile

18.6.2 OpenGL ES

Documentation for the OpenGL driver APIs can be found at ht t p: / / waw. khr onos. or g/ opengl es

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

18-8 Freescale Semiconductor

NAND Flash Media Driver (FMD)

Chapter 19
NAND Flash Media Driver (FMD)

19.1 NAND FMD Summary

Windows CE provides driver support for flash media devices using FMD (Flash Media Driver) and FAL
(Flash Abstraction Layer) software architecture. The FMD and FAL allow NAND flash storage to be
exposed as ablock driver that isaccessed using file system. The FMD software layers ported to the MX31
NAND flash controller are responsible for the actual 1/0O with the corresponding NAND flash devices
respectively. The NAND FMD driver included in the MX31 BSP istargeted for the NAND flash device
shipped with the MX31 PDK, But these drivers can be easily ported to other NAND flash devices.

The NAND flash device can be sorted as two categories: asmall page size (page sizeis 512 bytes) NAND
device and alarge page size (page size is 2048 bytes) NAND device. For the MX31 PDK, the large page

NAND device K9F2G0O8ROA is supported.

The following table provides a summary of source code location, library dependencies and other BSP

information.

Table 19-1. NAND Flash Media Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
MXARM11 SOC Driver Path N/A
SOC Driver Path N/A
SOC Static Library N/A

Platform Driver Path

\WINCEGB0O\PLATFORM\<TGTPLAT>\SRC\COMMON\NANDFMD
\WINCEG0O\PLATFORM\<TGTPLAT>\SRC\DRIVERS\BLOCK\NANDFMD

Import Library

fal.lib, fmdhooklib.lib

Driver DLL

nandfmd.dll

Catalog ltem

Third Party —> BSP —> Freescale i.MX31 3DS: ARMV4| —> Storage Drivers —> MSFlash
Drivers —> Samsung K9F2G08ROA NAND Flash.

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_NAND_FMD=1 &
BSP_NAND_K9F2G08R0A=1

19.2 Requirements

The NAND FMD should meet the following requirements:
» Support the Windows CE FMD interface.
» Support both large page and small page NAND.
» Support EMI clock gating for power management.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

19-1

NAND Flash Media Driver (FMD)

19.2.1 Conflicts with other SoC peripherals

19.2.1.1 MX31 Peripheral Conflicts

The NAND flash controller interface consists of shared EMI signals and NAND-specific signals. The
NAND-specific signals (NFWE_B, NFRE_B, NFALE, NFCLE, NFWP_B, NFCE_B, NFRB) can be
configured for alternate functionality (ATA, USB H2, GPIO) using the MX31 IOMUX. The configuration
supported by the BSP does not use this alternate functionality and dedicates these signalsfor NAND flash
controller use. Changing this configuration would result in a conflict and prevent proper operation of the
NAND FMD.

19.3 Software Operation

The development concepts for flash media drivers are described in the Windows CE 6.0 Help
Documentation section under the topic Developing a Device Driver > Windows Embedded CE
Drivers > Flash Drivers. The NAND FMD supported in the MX31 PDK BSPsimplementsthe required
FMD functions for interfacing to NAND flash devices.

19.3.1 Compile-Time Configuration Options

The NAND FMD driver abstracts the details of the NAND flash memory device to asingle header file.
This header file is found in the \WINCEG00\PLATFORM\<TGTPLAT>\SRC\COMMON\NANDFMD
directory and named according to the NAND device.

To support adifferent NAND device, create a new header using one of the existing NAND device headers
as atemplate and update the device-specific information. Then update the reference to the device-specific
header in \WINCEGOO\PLATFORM\<TGTPLAT>\SRC\COM MON\NANDFM D\nandfmd.h and
recompile the NAND FMD driver for the new device.

19.3.2 Registry Settings

The registry keys implemented for the NAND FMD provides basic support for loading and configuring
the NAND as afile system mount. Many more configuration options are available and are discussed in
Windows CE 6.0 Help Documentation section under the topic Windows Embedded CE Features > File
Systemsand Data Store > File Systems and Data Store Registry Settings.

19.3.3 DMA Support
The NAND FMD currently does not provide DMA support.

19.3.4 Power Management

The power management support provided by the NAND FMD leverages clock gating features available
within the hardware. The NAND flash controller is a component of the EMI (External Memory
Interface). The clock gating for the EMI is managed globally for all EMI components. Thisimplies that

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

19-2 Freescale Semiconductor

NAND Flash Media Driver (FMD)

while the NAND flash controller does not have individual clock gating capability, the clocksto the
NAND flash controller will be disabled when the EMI is clock gated.

19.4 Unit Test

TheNAND FMD wastesting using Windows CE 6.0 Test Kit and additional system use cases. Thissection
will describe the test scenarios that were used to verify the operation of the NAND FMD.

19.4.1 CETK Testing

The CETK includes Storage Deviceteststhat can be used to exercisesthe NAND FMD. Thefollowing table
liststhe CETK teststhat were performed and providesthetest configuration necessary to target the NAND
FMD.

NOTE

Depending on the state of the NAND flash memory, it may be necessary to
format and partition the NAND device using Storage Manager prior to
running the CETK tests that do not reformat the device automatically.

Table 19-2. CETK Tests and Command Lines

CETK Test Command Line

Storage Device > Storage Device Block Diver Read/Write Test tux -o -d rwtest -c "-z"

Note: This test does not recognize the storage device
profile parameter. You may need to remove other
storage devices from the image so that the device
targeted for the test appears as DSK1 on the system.

Storage Device > Storage Device Block Diver Benchmark Test tux -o -d rw_all -c "-p FlashDisk -z"

Storage Device > Storage Device Block Diver API Test tux -o -d disktest -c "-p -store FlashDisk -z"

Storage Device > Flash Memory Read/Write and Performance Test For WinCE CETK:
tux -o -d flshwear -c¢ "-disk DSK1: -z"

For Mobile CETK:

tux -o -d flshwear -c “-z /profile FlashDisk”

Note: For 2K sector size format, don’t run the test
because the CETK doesn’t supports 2K sector size.

Storage Device >Storage Device Block Driver Performance Test tux -o -d disktest_perf -c "-disk DSK1: -z"

Storage Device > File System Driver Test tux -o -d fsdtst -¢ "-p FlashDisk -z"

NOTE:

>Read/Write test can recognize the parameter /Profile with QFEO4. CETK cases #2001,
#2002 failed can be safely ignored.

> API test: CETK cases #4006, #4007, #4012, #4013, #4022, #4023 can be safely skipped.

> FHash Memory Read/Write and Performance Test do support the 2K sector size with
QFEO4 and can recognize parameter /Profile

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 19-3

NAND Flash Media Driver (FMD)

> File System Driver test: CETK cases #5019,#5022 can be safely skipped.

19.4.2 System Testing
The following system tests were performed to verify the operation of the NAND FMD:

Use Start —> Settings—> Control Panel —> Storage Manager to format and create partitions on the mounted
NAND device.

Establish ActiveSync connection over USB and transfer files to/from the NAND storage.

Write mediafilesto NAND storage. Use Windows Media Player to playback mediafilesfrom NAND
storage.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

19-4 Freescale Semiconductor

Postfilter Driver

Chapter 20
Postfilter Driver

The Postfilter Driver provides an API to access to hardware acceleration for H.264 deblocking and
MPEG4 deblocking and deringing. The Postfilter driver interfaces with the Image Processing Unit (1PU)
Postfilter (PF) submodule. The Postfilter driver conforms to the architecture for Windows CE stream
interface drivers.

20.1 Postfilter Driver Summary

The following table provides a summary of source code location, library dependencies and other BSP
information.

Table 20-1. Postfilter Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
CSP Driver Path .\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXARM11_FSL_V1\I
PU\PF
CSP Static Library pf_mxarm11_fsl_v1.lib
Platform Driver Path .\PLATFORM\< TGTPLAT>\SRC\DRIVERS\IPU\PF
Import Library N/A
Driver DLL pf.dll
Catalog ltems N/A
SYSGEN Dependency N/A
BSP Environment Variables BSP_PF=1

20.2 Requirements

The Postfilter driver should meet the following requirements:
» Support 3 postfiltering modes. H.264 deblocking, MPEG4 deblocking, and MPEG4 deblocking
and deringing.
» Support pause functionality for H.264 debl ocking, allowing the programmer to specify apause row
on which the operation will be paused. The paused operation may then be resumed at any time.

» Function as a stream interface driver implementing the programming interface defined in this
document.

* Support two power management modes, full on and full off.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-1

Postfilter Driver

20.3 Hardware Operation

Refer to the chapter on IPU in the hardware specification document for detailed operation and
programming information.

20.3.1 Conflicts with other SoC peripherals

20.3.1.1 Peripheral Conflicts

There are no peripheral conflicts on this SoC.

20.4 Software Operation

20.4.1 Communicating with the Postfilter Driver

The Postfilter is astream interface driver, and is thus accessed through the file system APIs. To
communicate using the Postfilter, ahandle to the device must first be obtained using the PFOpenHandle
function. Subsequent commands to the device are issued using various APIs supported by this driver.

20.4.2 Creating a Handle to the Postfilter Driver

To communicate with the PF driver, ahandleto the device must first be created using the PFOpenHandle
API. The default PF port is 1.

To open a Handle to the PF:

/! Handle to the PF device
HANDLE g_hPF = NULL;

/1 opening the default PF port.
g_hPF = PFOpenHandl e();

For more information on this API, see the PFOpenHandle section under the PF API reference.

20.4.3 Configuring the Postfilter Driver

The PFConfigure APl must be called to configure several important settingsfor the Postfilter driver. The
pfConfigData data structure must be filled out and passed as a parameter to PFConfigure.
Following are important pieces of information needed to configure a Postfilter operation:

» The postfiltering mode (for example, H.264 deblocking or MPEG4 deblocking).

» Theinput frame parameters, including width, height, and stride.

» Parameters for the input buffer containing quantization parameter and boundary strength data,
including the physical address and size of the buffer.

Note: The Postfiltering hardware requires the physical address of a physically contiguous buffer.
PFAllocPhysMem() API is provided to alow auser mode Postfilter application to alocate a
physically contiguous buffer on Windows CE 6.0.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-2 Freescale Semiconductor

Postfilter Driver
The following code example shows how to configure the Postfilter driver.

/] Configure Postfilter for MPEX4 debl ocking
pf Confi gDat a confi gDat a;
U NT32 i Wdth, iHeight;

iWdth = 176;
i Hei ght = 144;
i QPBytesPerFrane = iHeight / 16 * iWdth / 16;

/1 Set up configuration data

confi gDat a. ode = pf Mode_MPEG&ADebl ock;
configData.franeSize.width = i Wdt h;
configDat a. franeSi ze. hei ght = i Hei ght;
configData.franeStride = i Wdt h;

confi gDat a. gpBuf = pQPPhysAddr; // Start address of a physically contiguous buffer
configDat a. qpSi ze = i QPByt esPer Fr ane;

PFConfi gure(hPF, &configData);

20.4.4 Executing Postfilter Operations

Once the Postfilter driver has been configured, a postfiltering task can be commenced. A call to the
PFSart function will begin the configured operation. PFStart takes as parametersinformation about the
input and output buffersfor the current postfiltering task. Thisinformation includesthe size of the buffer,
apointer thephysical addressof the start of the'Y databuffer, and offsetstothe U and Y databuffers (Note:
For theplanar Y UV dataprovided asinput for postfiltering, the Y, U, and V databuffers must be physically
contiguous in memory). Additionally, for the case of H.264 deblocking operations, a pause row may be
specified. When the pause row is reached during the deblocking operation, the task will be paused, and
will not resume until the PFResume API iscalled. To disable pausing, the pause row should be set to O.

/] Set up Start Data Structure for MPEGA debl ocki ng operation

pf Start Paranms start Dat a;
pf Buf fer inBuf, outBuf;
DWORD i YUVByt esPerFrame = iWdth * iHeight * 3/2;

/1 Set up input and output buffers.

i nBuf.size = i YUVByt esPer Fr ane;

i nBuf . yBuf Ptr pl nput Fr amePhysAddr; // Physical address of input buffer
i nBuf . uf f set i Wdth * i Height;

i nBuf . vOr f set i nBuf . uOff set * 5/ 4;

out Buf . si ze = i YUVByt esPer Fr ane;

out Buf . yBuf Pt r pQut put Fr anePhysAddr; // Physical address of output buffer
out Buf . uOf f set i nBuf . uCf f set ;

out Buf . vOF f set inBuf .vOf f set ;

startData.in = & nBuf;
st art Dat a. out = &out Buf;
startData. h264_pause_row = O;

/]l Start PF

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-3

Postfilter Driver

PFStart (hPF, &startData);

Three different events are signal ed, representing the completion of 3 different phases of the Postfilter task:
the completion of the Y component, the completion of the Cr componment, and the completion of the Cb
component, which corresponds to the End-Of-Frame (EOF) of the Postfilter task. These events are
signaled through named Windows CE Event objects. A WinCE Handle must be created, using either
PF_Y_EVENT_NAME, PF_CR_EVENT_NAME or PF_EOF _EVENT_NAME strings defined in the
pf.h header file, so that the application may be signaled when the postfilter task has completed. This
handle will be used in a cal to the WaitFor SingleObject function.

The following sample code creates a handle to the Postfilter EOF event, and waits for that event to be
signaled.
HANDLE g_hPFECFEvent ;

/!l Create event for Postfilter ECF
g_hPFEOFEvent = CreateEvent (NULL, FALSE, FALSE, PF_EOF_EVENT_NAME);

/1 Wait for End of Frame
Wi t For Si ngl ebj ect (g_hPFEOFEvent, | NFI NI TE);

20.4.5 Closing the Handle to the Postfilter Driver

Call the PFCloseHandle function to close a handle to the Postfilter driver when an application is done
using it.

20.4.6 Postfilter Registry Settings

The following registry keys are required to properly load the Postfilter driver module.
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ PF]

"Prefix"="POF"

"D I"="pf.dll"

" Or der " =dwor d: 20

"I ndex"=dword: 1

20.4.7 Power Management

The Postfilter driver consumes power primarily through the operation of the Postfilter IPU sub-module. If
the Postfilter driver isincluded in the OSimage, the Postfilter submodule will be enabled during boot-up,
and will remain enabled until the system is shut down. No additional power management is supported at
thistime.

20.4.7.1 PowerUp

This function is not implemented for the Postfilter driver.

20.4.7.2 PowerDown

This function is not implemented for the Postfilter driver.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-4 Freescale Semiconductor

Postfilter Driver

20.4.7.3 IOCTL_POWER_SET

This function is not implemented for the Postfilter driver.

20.5 Unit Test

The Postfilter driver unit tests verify the proper operation of the Postfilter driver modes of operation.

For H.264 deblocking mode, a full set of input and output reference data are provided to perform a
bitmatch verification of the Postfilter operation. For MPEG4 operations, input data is provided, but no
reference output datais provided. Thus, for MPEG4 postfiltering modes, an output Y UV fileis generated
(and may be viewed using a YUV viewer too), but no bitmatching is performed.

20.5.1 Unit Test Software

The following table lists the required software to run the Postfilter driver tests.
Table 20-2. Unit Test Software Requirements

Requirements Description

pftest.exe Postfilter test execution file.

20.5.2 Building the Postfilter Tests

20.5.2.1 Unit Test in Windows CE
To build the Postfilter unit test, complete the following steps.

Build an OSimage for the desired configuration:
* Within Microsoft Visual Studio, go to the “Build” menu option and select the “ Open Release
Directory in Build Window” menu option. Thiswill open a DOS prompt.
» Change to the Postfilter test directory (“\WINCEG600\SUPPORT\MX31\TEST S\PF").

* Enter“set WINCEREL=1" onthe command prompt and hit <return>. Thiswill copy the generated
“.exe” to theflat release directory.

» Enter “build —” at the prompt, and then press <return>. The pftest.dll filewill belocated in the
$(_FLATRELEASEDIR) directory.

* Copy all test datafiles (CIF_six_frames_h264.bs, CIF_six_frames_h264.qgp,
CIF_six_frames_h264.yuv, H264RefOutput.yuv, QCIF_twenty frames_mpeg4.qp,
QCIF_twenty _frames _mpeg4.yuv) from “\WINCEG600\SUPPORT\MX3L\TESTS\PF’ to the
$(_FLATRELEASEDIR) directory.

20.5.3 Running the Postfilter Tests

After downloading an OS image to the board, the unit test can be executed from the* Target Control” shell
with the following command:

“s \release\pftest.exe”

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-5

Postfilter Driver

20.6 Postfilter Driver APl Reference

20.6.1 Postfilter Driver Functions

20.6.1.1 PFOpenHandle

This API creates a handle to the Postfilter stream driver:
HANDLE PFQpenHandl e(
voi d
)
Parameters
This API accepts no parameters.
Return Values

An open handle to the specified file indicates success. INVALID_HANDLE_VALUE indicates
failure.

Remarks

A handle returned successfully from this function call isrequired in all subsequent calls to other
PF APl functions. Use the PFCloseHandle function to close the handle returned by
PFOpenHandle.

20.6.1.2 PFCloseHandle

This API function closes a handle to the PF driver:

BOOL PFCl oseHandl e(
HANDLE hPF

);
Parameters
hPF
[in] Handle to the PF driver returned by PFOpenHandle API.
Return Values
TRUE indicates success.
FALSE indicatesfailure.
To get extended error information, call GetL astError.
An open handle to the specified file indicates success.
Remarks
None.

20.6.1.3 PFConfigure

This API configures the Postfilter driver:
voi d PFConfi gur e(

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-6 Freescale Semiconductor

Postfilter Driver

HANDLE hPF,
pPf Confi gDat a pConfigData

)
Parameters

hPF
[in] Handle to the PF driver returned by PFOpenHandle API.

pConfigData

[in] An object of the pfConfigData structure.
Return Values

None.
Remarks

This function performs configuration steps that are required before starting a Post-Filtering
operation. Calling PFSart without previously calling PFConfigure will result in an error.

20.6.1.4 PFStart

This API function starts a Postfilter operation.

void PFStart (
HANDLE hPF,
pPf St art Par ans pSt art Par ns

)
Parameters

hPF
[in] Handle to the PF driver returned by PFOpenHandle API.

pSartParms
[in] An object of the pfStartParams structure. For H.264 Postfilter mode, no output buffer is
required, as the input buffer is used for input and outpui.

Return Values
None.
Remarks
Calling PFSart without previously calling PFConfigure will result in an error.

Completion of the Postfilter operation is signaled through a named event using the name
PF_EOF EVENT_NAME. A user cancal CreateEvent and WaitFor SingleObject to create and
wait on the PostFilter end-of-frame event.

20.6.1.5 PFStart2

This API function starts a Postfilter operation.

void PFStart2(
HANDLE hPP,
pPf Start Parans pStart Parns,

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-7

Postfilter Driver

unsi gned int Virtual Fl ag,
unsi gned int yO fset

)
Parameters

hPF
[in] Handle to the PF driver returned by PFOpenHandle API.

pSartParms
[in] An object of the pfStartParams structure. For H.264 Postfilter mode, no output buffer is
required, as the input buffer is used for input and outpui.

VirtualFlag
[in] Flag to indicate if virtual memory pointer.

yOffset
[in] offset to the pointer, in byte.

Return Values
None.
Remarks
PFSart2 extends PFStart by passing two more parameters.

20.6.1.6 PFSetAttributeEx

This APl modifies the attributes of virtual memory in upper layer applicas's context:

BOOL PFSet Attri but eEx(
HANDLE hPF,
pPf Set Attri but eExData pData

)
Parameters

hPF
[in] Handle to the PF driver returned by PFOpenHandle API.

pData

[in] An object of the pPfSetAttributeExData structure.
Return Values

TRUE indicates success.

FALSE indicatesfailure.
Remarks

This function gives the upper layer applications a chance to change their virtual memory’s
attributes.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-8 Freescale Semiconductor

Postfilter Driver

20.6.1.7 PFResume

This API function resumes an H.264 deblocking operation that was previously started with a pause row
specified. A new pause row may be specified, or the operation may be alowed to run to completion.

DWORD PFResune(
HANDLE hPF,
U NT32 h264_pause_r ow
)
Parameters

hPF
[in] Handle to the PF driver returned by PFOpenHandle API.

h264 pause row

[in] Integer indicating the Y row at which to pause the operation. Should be set to O to disable an
additional pause.

Return Values
If successful, PF_ SUCCESS.
If failure, one of the following:
PF_ERR_NOT_RUNNING — The Postfilter operation is not running.
PF_ERR_PAUSE NOT_ENABLED — The H.264 pause is not enabled.
PF_ERR_INVALID_PARAMETER — The pause row parameter isnot in avalid
range.

Remarks

Calling PFResumewithout previously calling PFSart with the pause row enabled will result in
an error.

20.6.1.8 PFAllocPhysMem

This API function alocates physically contiguous memory.

BOOL PFAI | ocPhysMem(

HANDLE hPF,

U NT32 si ze,

pPf Al | ocMenor yPar anms pBit sStreanBuf MenPar ans
)

Parameters
hPF
[in] Handle to the PF driver returned by PFOpenHandle API.
Sze
[in] Number of bytes to be allocated.
pBitsSreamBufMemParams
gﬂtg[(]:alit’ioci)gter toapPfAllocMemoryParams struct that storesthe memory parameters of the memory

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-9

Postfilter Driver

Return Values
If successful, return TRUE.
If failure, return FALSE.

Remarks
None.

20.6.1.9 PFFreePhysMem

This API function frees the memory allocated by PFAIllocPhysM em.

BOOL PFFreePhysMen(
HANDLE hPF,
pPf Al | ocMenor yPar ans bi t sSt r eanBuf MenPar ans
)
Parameters
hPF

[in] Handle to the PF driver returned by PFOpenHandle API.

bitsSreamBufMemParams

[in] Virtual memory address parameters returned by PFAllocPhysMem API.
Return Values

If successful, return TRUE.

If failure, return FALSE.

Remarks
None.

20.6.2 PF Driver Enumerations

20.6.2.1 pfMode

Enumeration of Postfilter operation modes.

typedef enum pf ModeEnum
{

pf Type_Di sabl ed, /1 No post-filtering
pf Type_MPEGADebl ock, /1 MPE&A Debl ock only
pf Type_MPEGADer i ng, /'l MPE&A Dering only
pf Type_MPEGADebl ockDering, // MPEGA Debl ock and Dering
pf Type_H264Debl ock, /1 H 264 Debl ock
} pf Mode;
Elements

pfType Disabled
Postfiltering disabled.

pfType_MPEG4Deblock

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-10 Freescale Semiconductor

Postfiltering operation is MPEG4 Deblock only.

pfType MPEG4Dering
Postfiltering operation is MPEG4 Dering only.

pfType MPEG4DeblockDering
Postfiltering operation is MPEG4 Deblock and Dering.
pfType_H264Deblock

Postfiltering operation is H.264 Deblock.
Remarks

None.

20.6.3 PF Driver Structures

20.6.3.1 pfBuffer

Structure to describe the YUV buffers used in Postfilter operations.

typedef struct pfBufferStruct
{

int si ze;
U NT32 *yBufPtr;
Ul NT32 udf f set ;
Ul NT32 vOFf set

} pfBuffer, *pPfBuffer;

Members
size
Size of the allocated buffer, in bytes.

yBufPtr
Pointer to the start of the Y buffer.

uBufOffset

Postfilter Driver

Offset, in bytes, of the U buffer, relative to the start of the Y buffer. If set to 0, adefault calculation will be

made based on the height and stride of the frame.
vBufOffset

Offset, in bytes, of theV buffer, relativeto the start of the Y buffer. If set to O, adefault calculation

will be made based on the height and stride of the frame.

20.6.3.2 pfConfigData

Structure used to configure the Postfilter driver for an operation.

typedef struct pfConfigDataStruct

{
pf Mbde node;

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

20-11

Postfilter Driver

pf FrameSi ze franmeSi ze;
U NT32 franmeStride;
Ul NT32 *qgpBuf;
U NT32 qpSi ze;
} pfConfigbData, *pPfConfigData;

Members

mode
The Postfilter operation desired.

frameSize
The dimensions of the frame for Postfiltering.

frameStride
The stride of the frame, in bytes.

gpBuf
A pointer to a buffer containing, sequentially, the quantization parameter (QP) and boundary
strength (BS) data for the Postfilter operation.

gpSize
The size of the buffer containing the QP and BS data.

Remarks

For H.264 deblocking, there is one 32-bit quantization parameter word for each 16x16 pixel
macroblock. Additionally, there is one 8-bit boundary strength word for each 4x4 pixel block.

For MPEG4 deblocking and deringing, there is one 8-bit quantization parameter word for each
16x16 pixel macroblock. No boundary strength datais needed for MPEG4 deblocking and
deringing.

20.6.3.3 pfFrameSize

Structure for the Postfiltering frame size.

typedef struct pfFraneSizeStruct {
U NT16 wi dt h;
U NT16 hei ght;

} pf FrameSi ze, *pPfFrameSi ze;

Members
width

Frame width, in pixels.
height

Frame height, in pixels.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-12 Freescale Semiconductor

Postfilter Driver

20.6.3.4 pfStartParams

This structureisused in callsto PFStart to provide information needed to start the Postfilter operation.

typedef struct PfStartParanmsStruct

{
pPfBuffer in;

pPf Buf fer out;
U NT32 h264_pause_r ow,
voi d* qp_buf;
voi d* bs_buf;
int gp_size;
} pfStartParans, *pPfStartParans;

Members
in
Pointer to the input buffer.

out
Pointer to the output buffer.

h264 pause_row

Row to pause at for H.264 mode. Set to O to disable pause. For more information, refer to the
Postfilter Flow Control section of the MX31/M X 32 hardware specification.

gp_buf
Pointer to current gb buffer

bs buf
Pointer to current bs buffer

gp_size
gb and bs buffer size

20.6.3.5 pfAllocMemoryParams
This structureis used in callsto PFAllocPhysM em/PFFreePhysM em to allocate/free physically

contiguous memory in Windows CE 6.0.

typedef struct pfFraneSizeStruct {
U NT physAddr;
Ul NT user Vi rt Addr;
U NT driverVirtAddr;
U NT si ze;
} pf All ocMenoryParans, *pPfAll ocMenoryPar ans;

Members

physAddr
A physical memory address of the memory allocation.

user VirtAddr
A virtual memory address of the memory allocation.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 20-13

Postfilter Driver

driverVirtAddr

A virtual memory address to be used in the kernel mode inside the driver.

size
A memory size to be allocated.

20.6.3.6 pfSetAttributeExData

This structureis used in cals to PFSetAttributeEx.

typedef struct pfSetAttributeExDataStruct {
LPVO D | pvAddress;
DWORD cbSi ze;

} pfSetAttributeExData, *pPfSetAttributeExDat a;

Members

[pvAddress
The starting address of virtual memory.

cbSize
The size of virtual memory.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

20-14

Freescale Semiconductor

Power Management IC (PMIC)

Chapter 21
Power Management IC (PMIC)

This chapter provides the information that you need to:

» Developdevicedriversthat interfacedirectly with the hardware components provided by Freescale
Semiconductor’s power management | Cs (PMICs). The PMIC that isspecifically referenced inthis
document is the MC13783.

» Develop applications that make use of the special hardware capabilities that are provided by the
PMIC (for example, audio I/O and USB on-the-go connectivity).

This chapter fully describes the API provided by Freescale which allows complete access to the full
functionality of the PMICs.

This document isintended for device driver and application developers who need to understand and gain
access to the functionality provided by the PMICs.

21.1 PMIC Driver Summary

The following table provides a summary of source code location, library dependencies and other BSP
information.

Table 21-1. PMIC Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
CSP Driver Path .\PLATFORM\common\src\soc\freescale\pmic\mc13783_fsl_v1
CSP Static Library pmicPdk_mc13783_fsl_v1.lib
pmicSdk_mc13783_fsl_v1.lib
Platform Driver Path - \PLATFORM\<TGTPLAT>\SRC\DRIVERS\PMIC\MC13783\PDK
- \PLATFORM\<TGTPLAT>\SRC\DRIVERS\PMIC\MC13783\SDK
Import Library N/A
Driver DLL pmicPdk_MC13783.dll
pmicSdk_MC13783.dll
Catalog Item N/A
SYSGEN Dependency N/A
BSP Environment Variables BSP_PMIC_MC13783=1

21.2 Requirements

The PMIC device driver framework for Windows CE is a stream interface driver and a SDK DLL. A
description of the stream interface driver may be found in the Windows CE Platform Builder
documentation at Developing a Device Driver = Windows Embedded CE Drivers - Stream
Interface Drivers.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-1

Power Management IC (PMIC)

The PMIC Stream Interface driver controls the PMIC hardware directly through the SPI bus. The Stream
Interface driver provides an IOCTL interface for SDK DLLs. The SDK DLL provide APIs for Windows
CE drivers and applications.
The API covers the PMIC functionality of the following areas:

* Register Access

* Audio
» Battery
* Regulators

* Keys(Power, PTT)
* ADC /Touch
* End of Life comparator

* Power Fail

» Battery Charger
« GPIO

« CEBus

21.21 PMIC API Framework

The API framework and the APIs defined in this document are intended to be reused for al Freescale
power management 1Cs. The current implementation of the APIs supports the MC13783 power
management |1C.

The APIs presented in this document were developed to provide a unified interface to al of the functions
and features provided by the power management | Cs. When a specific function exists on al of the power
management |Cs, then the API will behave identically (for example, selecting the USB connectivity
operating mode).

A devicedriver and API framework for Windows Embedded CE 6.0 has already been implemented for the
MC13783 PMIC. The existing MC13783 framework will be reused as-is, but the APIswill be redefined

so that asingle unified set of APIs can be used to access the features and functions provided by both the

MC13783 PMICs. The key objectives and benefits of this new generic PMIC API are asfollows:

* Providethe ability to easily accommodate additional PMICsin the future (perhaps with additional
features or configuration options) without breaking existing software.

* Provideauniform API for accessing all Freescale PMICs so that device drivers and applications
can be ported to different hardware platforms with little or no changes.

* Provide the ability to access all of the underlying hardware capabilities provided by a specific
PMIC. Of course, any software that makes use of PMIC-specific functions or configurations will
only work if the appropriate PMIC hardware is actually available. However, the software should
still provide appropriate error codes and “fail gracefully” if it is used on a platform for which the
requested function or configuration is not supported.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-2 Freescale Semiconductor

Power Management IC (PMIC)

21.3 Hardware Operation
Refer to the MC13783 datasheet for details on the MC13783 PMIC.

21.3.1 MX31 Peripheral Conflicts

There are no MX31 pin conflicts on the 3-Stack. The CSPI2 is used to communicate with the MC13783
PMIC on the MX31 platform; the CSPI2 signals are selected in the IOMUX.

21.4 Software Operation

21.41 Configuring the PMIC

The PM1C modules can be used by applications or device drivers. For example, battery APIs of the PMIC
will be used by the battery driver.

Configuring the PMIC port for communications involves some basic operations:

A handle to the desired PMIC port must be opened prior to accessing the module registers. Thishandleis
required to call the Devicel oControl function. The function parameters include the PMIC port handle,
appropriate IOCTL code, and other input and output parameters.

21.4.2 Creating a Handle to the PMIC

Before calling any of the PMIC APIs, make sure that the PMIC device is attached by calling the
CreateFile function which opens a file and returns a handle that can be used to access the MC13783
hardware. If the MC13783 hardware does not exist, CreateFile returns ERROR_FILE_NOT_FOUND.

To open a handle to the PMIC, complete the following steps:

1. Insert acolon after the PMI1 port for the first parameter, |pFileName. For example, specify PMI 1:
as the PMIC port.

2. Specify FILE_SHARE_READ |FILE_SHARE_WRITE in the dwShareMode parameter. Multiple
handlesto a PMIC port are supported by the driver.

3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. Thisflag is required.

4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter. The
following code example shows how to open a PMIC port.

hPM = CreateFi |l e(TEXT("PM 1:"), GENERIC_READ | GENERIC_WRITE, access (read-wite) node
FI LE_SHARE_READ | FI LE_SHARE WRI TE, NULL, OPEN EXI STING sharing node
FI LE_FLAG _RANDOM ACCESS, NULL); security attributes
if ((hPM == NULL) || (hPM == | NVALI D_HANDLE_VALUE))

{
ERRORMBG(1, (_T("Failed in create File()\r\n")));

}
NOTE

All the steps specified above are performed when PMIC deviceis attached.
If hPM1 handleis null, then perform the above steps.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-3

Power Management IC (PMIC)

21.4.3 Write Operations

The PMIC driver does not provide an interface to write through the PMIC_Write (stream write) function
inthe PMIC driver, and PMIC_Write is a stub function and always returns success.

21.4.4 Read Operations

Like the write operation, the PMIC driver does not provide for reading through the PMIC_Read function
inthe PMIC driver; thisis astub function and aways returns success.

21.4.5 Closing the Handle to the PMIC

Call the CloseHandle function to close a handle to the PM1C when an application is finished using it.

CloseHandle has one parameter, which the handle is returned by the CreateFile function call that opened
the PMIC port.

21.46 Power Management

The primary method for limiting power consumption in the PMIC module is to gate off all clocks to the
module when those clocks are not needed. Thisis accomplished through the DDK Clock SetGatingM ode
function call. The PM1C module clock isenabled whenever any of the PMI C registers needs to be accessed
and then disabled once it is finished.

21.4.6.1 PowerUp

This function is not implemented for the PMIC driver.

21.4.6.2 PowerDown

This function is not implemented for the PMIC driver.

21.4.6.3 IOCTL_POWER_CAPABILITIES

The power management capabilities are advertised with power manager through thisIOCTL. The PMIC
module supports only two power states. DO and D4.

21.4.6.4 IOCTL_POWER_SET

ThisOCTL requests a change from one device power state to another. DO and D4 are the only two
supported CEDEVICE_POWER_STATE valuesin the PMIC driver. Any request that isnot DO is
changed to a D4 request and will result in the system entering into suspend state, while for avalue of DO
the system will again be resumed.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-4 Freescale Semiconductor

Power Management IC (PMIC)

21.46.5 IOCTL_POWER_GET

ThisOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It will not generally issuean IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

21.4.7 PMIC Registry Settings
There are no registry settings that need to be modified to use the PMIC APIs.

21.4.8 A/D Converter and Touch

The ADC isal6-channel, 10-bit converter with astate machineto control the various models of operation.
Read and write access to the A/D converter is accomplished through the SPI bus.

MC13783 A/D Channel Definition and Scanning Table

AD_SEL ADA[2:0] Signal Read
0 000 BATT
0 001 BATTISNS
0 010 BPSNS
0 011 CHRGRAW
0 100 CHRGISNS
0 101 ADIN5/PTHEN
0 110 ADING/LICELL
0 111 ADIN7/DTHEN
1 000 ADIN8
1 001 ADIN9
1 010 ADIN10
1 011 ADIN11
1 100 TSX1
1 101 TSX2
1 110 TSY1
1 111 TSY2

MC13783 has atouch screen interrupt. Thisinterrupt occurs when a pen-down event is detected. The
Windows CE touch driver should handle these interrupt events. Refer to Section 21.6.2, “ Interrupt
Handling” for a description of interrupt handling.

21.4.8.1 Data Types

typedef enum _PM C_ADC_CONVERTOR_MODE
{

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-5

Power Management IC (PMIC)

0, 8 channels
1, reads 8 sequential values

ADC 8CHAN 1X = 0, /1 RAND
ADC_1CHAN_8X /1 RAND
} PM C_ADC_CONVERTOR MODE;
Touch Modes
typedef enum _MC13783_TOUCH MODE {
TM_I NACTI VE = 0,
TM_| NTRUPT,
TM_RESI STI VE,
TM_POSI TI ON,
} MC13783_TOUCH_MODE;

21.4.8.2 Functions

21.4.8.2.1 PmicADCGetSingleChannelOneSample

This function gets one channel and one sample.

Prototype PM C_STATUS Pni cADCGet Si ngl eChannel OneSanpl e(Ul NT16 channel, Ul NT16*
pResul t);

Parameters. channel [in]
A selected channel.

pResult [out]
Pointer to the sampled value.
Returns: PMIC _STATUS

21.4.8.2.2 PmicADCGetSingleChannelEightSamples

This function gets one channel and eight samples.

Prototype PM C_STATUS Pni cADCGet Si ngl eChannel Ei ght Sanpl es(Ul NT16 channel , U NT16*
pResul t);

Parameters. channel [in]
A selected channel.

pResult [out]
Pointer to the sampled values (up to 8 sampled values).
Returns: PMIC _STATUS

21.4.8.2.3 PmicADCGetMultipleChannelsSamples

This function gets a sample for multiple channels.

Prototype PM C_STATUS Pni cADCGet Mul ti pl eChannel sSanpl es(Ul NT16 channel s, Ul NT16*
pResul t);
Parameters. channel's [in]

Selected channels (up to 16 channels).
pResul t [out]
Pointer to the sampled values (up to 16 sampled values).

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-6 Freescale Semiconductor

Power Management IC (PMIC)

Returns: PMIC_STATUS

21.4.8.2.4 PmicADCTouchRead

This function reads a touch screen sample.
Prototype PM C_STATUS Pni cADCTouchRead(Ul NT16* x, Ul NT16* y);
Parameters. x [out]

X-coordinate of the point.

y [out]
Y-coordinate of the point.
Returns: PMIC _STATUS
Remarks This function reads 3 pairs of samplesfor MC13783.

21.4.8.2.5 PmicADCTouchStandby

This function causes the PMIC touch screen controller to enter standby mode and wait for the next pen
down condition.

Prototype PM C_STATUS Pni cADCTouchSt andby(bool i nt Ena);
Parameters. intEna [in]

interrupt enable.
Returns: PMIC _STATUS

21.4.8.2.6 PmicADCSetComparatorThresholds
This function sets WHIGH and WL OW for automatic ADC result comparators.

Prototype PM C_STATUS Pri cADCSet Conpar at or Thr eshol ds(Ul NT16 whi gh, Ul NT16 w ow);
Parameters. whigh [in]

ahigh comparator threshold.

whow [in]

alow comparator threshold.
Returns: PMIC _STATUS

21.4.8.2.7 PmicADCGetHandsetCurrent

This function gets handset battery current measurement values.

Prototype PM C_STATUS Pni cADCGet Handset Cur rent (RR_ADC_CONVERTOR_MODE node, Ul NT16
*pResul t);
Parameters. mode [in]

An ADC converter mode: ADC 8CHAN_1X or ADC _1CHAN_8X
pResult [out]
Pointer to the handset battery current measurement val ue(s)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-7

Power Management IC (PMIC)

Returns: PMIC_STATUS

Remarks ADC _8CHAN_1X Mode:
This function returns one sample for battery current channel (BATTISNS).
ADC_1CHAN_8X Mode:

For MC13783, this function returns the 8 samples for battery current channel
order like: ADAO=BATT; ADA1=BATT-BATTISNS; ADA2=BATT; ADA3=
BATT-BATTISNS; ADA4=BATT,; ADA5S= BATT-BATTISNS; ADA6=BATT,
ADA7=BATT-BATTISNS.

21.4.8.2.8 PmicADCInit

Thisfunction initializes PMIC ADC's resources.

Prototype PM C_STATUS Pni cADCI nit (voi d);
Parameters. None.
Returns: PMIC _STATUS

21.4.8.2.9 PmicADCDeinit

This function deinitializes PMIC ADC's resources.

Prototype voi d Pmi cADCDei ni t (void);
Parameters: None
Returns: PMIC _STATUS

21.4.8.3 Power Management

Thereisno additional power management implementation done specifically for Atlas ADC other than the
implementation described in the Power Management section of this document.

21.5 Unit Test
The PMIC CETK test cases verify the functionality of the various PMIC components.

21.5.1 Unit Test Hardware
The MX31 3-Stack board is required.

21.5.2 Unit Test Software

The following table lists the required software to run the unit tests.
Table 21-2. Unit Test Software Requirements

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-8 Freescale Semiconductor

Power Management IC (PMIC)

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, required for logging test data
PMICtest.dll Test .dll file

21.5.3 Building the PMIC Tests
In order to build the PMIC tests, complete the following steps:

Build an OS image for the desired configuration.

1. Within Platform Builder, go to the Build OS menu option and select the Open Release Directory
menu option. Thiswill open a DOS prompt.

2. Change to the PMIC Tests directory. \WINCEG00\SUPPORT\MX31\TESTS\PMIC)

3. Enter set WINCEREL =1 on the command prompt and hit return. Thiswill copy the built DLL to
the flat release directory.

4. Enter the build command (build -c) at the prompt and press return.
After the build completes, the pmictest.dil file will be located in the $(_FLATRELEASEDIR) directory.

21.5.4 Running the PMIC Tests

For testing PMIC, it isrequired to run the tux test suitein Kernel mode. In order to achieve this, copy the
‘ktux.dll’ file from Program Fil es\M crosoft Pl atform Buil der\ 6. 00\ cepb\ wcet k\ ddt k\ ar mv4i folder
into the release directory, and then run the test suite using the following command

Stux —o-n —d pmictest.dll

The following table describes the test cases contained in the PMIC tests.
Table 21-3. PMIC Test Cases

Test name Description

1 | PMIC Register Access This test does read/write verification of IMR register on the PMIC.

2 | PMIC Battery This test verifies the Battery Interface and control.

5 | Power Control This test verifies the power control functionality on the PMIC.

6 |AdcGetOneSample This test gets one sample from each of 16 channels by requesting the driver to
sample one channel at a time.

7 |AdcGet8Samples This test gets 8 samples from each of 16 channels.

8 | AdcGetMultiChannelSamples This test gets one sample from each of 16 channels by requesting the driver to
sample all 16 channels at once.

9 | AdcGetHandsetCurrent This test gets samples of the handset current.

10 | AdcTouchRead This test gets 3 (x,y) coordinates from the touch screen.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-9

Power Management IC (PMIC)

21.6 PMIC Reference API

21.6.1 PMIC Driver IOCTLS

This section consists of descriptionsfor the PMIC I/O control codes (IOCTLS). These IOCTLsareused in
calls to DeviceloControl to issue commands to the PMIC device modules. Only relevant parameters for
the IOCTL have a description provided. These IOCTLs are used within the APIs developed for specific
modules of the PMIC device. Most of the IOCTLswill be explained in the specific sections wherever they
aremore relevant.

21.6.1.1 PMIC_IOCTL_LLA READ_REG

This Devicel oControl request reads the register content.
Parameters hPMI

[in] Handleto the devicethat is to perform the operation. To obtain a device
handle, call the CreateFile function.

[plnBuffer
index of the register.
[pOutBuffer

[out] Long pointer to abuffer that receives the output datafor the operation. Set
to NULL if the dwloControl Code parameter specifies an operation that does not
produce output data.

21.6.1.2 PMIC_IOCTL_LLA_WRITE_REG

This Devicel oControl request writes the data to the said register of the PMIC device.
Parameters hPMI

[in] Handleto the devicethat is to perform the operation. To obtain a device
handle, call the CreateFile function.

[plnBuffer

index of the register.

[pOutBuffer

pointer to data which needs to be written to the said register.

21.6.1.3 PMIC_IOCTL_LLA_INT_REGISTER
This Devicel oControl is used to register interrupt.
Parameters hPMI

[in] Handleto the devicethat is to perform the operation. To obtain a device
handle, call the CreateFile function.

[plnBuffer

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-10 Freescale Semiconductor

Power Management IC (PMIC)

index of the register.
[pOutBuffer
pointer to event name and interrupt id.

Code example:

paramint_id = int_id;

param event _name = event_namne;

ret = DeviceloControl (hPM, PMC_| OCTL_LLA | NT_REG STER, ¶m
si zeof (param), NULL, 0, NULL, NULL);

21.6.1.4 PMIC_IOCTL_LLA_INT_DEREGISTER

This Devicel oControl is used to deregister pmic interrupt.
Parameters hPMI

[in] Handleto the devicethat is to perform the operation. To obtain a device
handle, call the CreateFile function.

|plnBuffer
index of the register.
[pOutBuffer
null.
Code example:
paramint_id = int_id;

ret = DeviceloControl (hPM, PMC_| OCTL_LLA | NT_DEREG STER, ¶m
si zeof (paran), NULL, O, NULL, NULL);

21.6.1.5 PMIC_IOCTL_LLA_INT_COMPLETE

Parameters hPMI

[in] Handleto the devicethat is to perform the operation. To obtain a device
handle, call the CreateFile function.

|plnBuffer

index of the register.
[pOutBuffer

pointer to interrupt id.

Code example:

paramint_id = int_id;
ret = DeviceloControl (hPM, PM C_| OCTL_LLA | NT_COVPLETE, ¶m
si zeof (paran), NULL, O, NULL, NULL);

21.6.1.6 PMIC_IOCTL_LLA_INT_ENABLE
This|OCTL is used to enable the interrupt.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-11

Power Management IC (PMIC)

Parameters hPMI

[in] Handleto the devicethat is to perform the operation. To obtain a device
handle, call the CreateFile function.

[plnBuffer

index of the register.
[pOutBuffer

pointer to interrupt id.

Code example:

paramint_id = int_id;
ret = DeviceloControl (hPM, PMC_| OCTL_LLA | NT_COVPLETE, ¶m
si zeof (paran), NULL, O, NULL, NULL);

21.6.1.7 PMIC_IOCTL_LLA_INT_DISABLE

ThisOCTL is used to disable the interrupt.
Parameters hPMI

[in] Handleto the devicethat is to perform the operation. To obtain a device
handle, call the CreateFile function.

|plnBuffer

index of the register.
[pOutBuffer

pointer to interrupt id.

Code example:

paramint_id = int_id;
ret = DeviceloControl (hPM, PM C_| OCTL_LLA | NT_COVPLETE, ¶m
si zeof (paran), NULL, O, NULL, NULL);

21.6.2 Interrupt Handling

21.6.2.1 Interrupt handling Overview

The PMIC has interrupt generation capability to inform the CPU when events occur. Thisissignaled to
the processors driving the primary SPI and secondary SPI busses through the PRIINT and SECINT lines,
respectively. Thereisonly oneinterrupt line connected to each processor, so the kernel can only know that
there is an interrupt from the PMIC, but without knowing exactly which module generated the interrupt.

Thereisone PMIC Interrupt Service Thread (1ST) to handle al interruptsfrom the PMIC. The PMICIST
will be invoked by the kernel once the kernel receives an interrupt from the PMIC.

ThisIST will first query the PMIC to determine the source of the interrupt. The IST maintains atable to
track if an interrupt has been registered by a driver or application. If the interrupt is registered, the IST
will then set a predefined event.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-12 Freescale Semiconductor

Power Management IC (PMIC)

For any drivers and applications that need notification of an interrupt, they must register the interrupt and
wait for the event. They aso need to reset the event after handling the event.
21.6.2.2

Drivers or applications that wish to monitor an interrupt should create a named event for each interrupt.
The event nameis passed to PMIC driver when registering the interrupt.

Interrupt Events

The PMIC IST will trigger the event when the corresponding interrupt occurs.

21.6.2.2.1
The table below shows the events and corresponding M C13783 interrupts.

PMIC Interrupt Events

Table 21-4. PMIC Interrupts

PMIC Interrupt Description
ADCDONEI ADC has finished requested conversions
ADCBISDONEI | ADCBIS has finished requested conversions
TSI Touch screen wakeup
WHI A/D word read in ADC digital comparison mode exceeding the high limit
WLI A/D word read in ADC digital comparison mode reading below the low limit
CHGDETI Charger attach and removal
CHGOVI Charger over-voltage detection
CHGREVI Charger path reverse current
CHGSHORTI Charger path short circuit
CCcvI BP regulator current or voltage regulation. Indicates that the charger has switched its mode from
CC to CV or from CV to CC. Charger removal does not trigger this interrupt.
CHGCURRI Charge current has dropped below threshold
BPONI BP turn on threshold detection
LOBATLI End of lift/low battery detection
LOBATHI Low battery warning
USBI USB VBUS detection
IDI USB ID line detection
SE1l Single ended 1 detection
CKDETI Carkit detection
1HZI 1HZ timetick
TODAI Time of day alarm. Triggered when TOD counter is equal to the value is TODA and the DAY
counter is equal to the value in DAYA.
ONOFD1I ON1B event. Connection for a power on/off button.
ONOFD2I ON2B event. Connection for an accessory power on/off button

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

21-13

Power Management IC (PMIC)

Table 21-4. PMIC Interrupts(Continued)

PMIC Interrupt Description
ONOFD3I ONS3B event. Connection for a third power on/off button.
SYSRSTI Indicates system reset has occurred
RTCRSTI Indicates RTC reset has occurred
PCI Indicates power cut has occurred
WARMI Warm start event. Indicates the application powered up from user off mode.
MEMHLDI Memory hold event. Indicates the application powered up from memory hold mode.
PWRRDYI Power gate and DVS power ready

THWARNLI Thermal warning lower threshold

THWARNHI Thermal warning higher threshold

CLKI Clock source change
SEMAFI Semaphore
MC2BI Microphone bias 2 detect
HSDETI Headset attach
HSLI Stereo headset detect
ALSPTHI Thermal shutdown Alsp. Maximum allowable junction temperature within Alsp is reached.

AHSSHORTI Short circuit on Ahs outputs

21.6.2.3 Interrupt Data Structures

t ypedef enum _PM C_MC13783_I NT_ID {
PM C_MC13783_| NT_ADCDONEI = 0,
PM C_MC13783_I NT_ADCBI SDONEI = 1,

PM C_MC13783_INT_TSI = 2,
PM C_MC13783_INT_WH = 3,
PM C_MC13783_INT_W.I = 4,

PM C_MC13783_| NT_CHGDETI = 6,
PM C_MC13783_| NT_CHGOMI = 7,
PM C_MC13783_| NT_CHGREVI = 8,
PM C_MC13783_| NT_CHGSHORTI = 9,
PM C_MC13783_I NT_CCCVI = 10,
PM C_MC13783_| NT_CHGCURRI = 11,
PM C_MC13783_| NT_BPONI = 12,
PM C_MC13783_| NT_LOBATLI = 13,
PM C_MC13783_| NT_LOBATHI = 14,
PM C_MC13783_| NT_USBI = 16,

PM C_MC13783_INT_ID = 19,

PM C_MC13783_| NT_SE1l = 21,

PM C_MC13783_| NT_CKDETI = 22,
PM C_MC13783_I NT_1HzZI = 32,

PM C_MC13783_| NT_TODAl = 33,

PM C_MC13783_| NT_ONOFDLl = 35,
PM C_MC13783_| NT_ONOFD2I = 36,
PM C_MC13783_| NT_ONOFD3l = 37,

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-14 Freescale Semiconductor

PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_MC13783_|
PM C_I NT_MAX_|

NT_SYSRSTI = 38,
NT_RTCRSTI = 39,
NT_PCl = 40,
NT_WARM = 41,
NT_MEMHLDI = 42,
NT_PWRRDY! = 43,
NT_THWARNLI = 44,
NT_THWARNHI = 45,

NT_CLKI = 46,
NT_SEMAFI = 47,
NT_MC2BI = 49,
NT_HSDETI = 50,
NT_HSLI = 51,
NT_ALSPTHI = 52,

NT_AHSSHORTI = 53,

D

} PM C_MC13783_I NT_I D

21.6.2.4 Functions

21.6.2.4.1

PmiclinterruptRegister

Power Management IC (PMIC)

PmiclInterruptRegister function registers an interrupt so that the interrupt event will be signaled when the
interrupt occurs.

All PMIC interrupts are masked at theinitialization. A driver or an application must register the interrupt
if theinterrupt is to be enabled.

Prototype

Parameters:

Return Value
Remarks:

PM C_STATUS Pmi cl nt errupt Regi ster(PM C_INT_ID int_id,

int_id
[in]

name

The interrupt to be registered

[in] The event name
Status code

LPTSTR nane);

In this function the PMIC_IOCTL_LLA_INT_REGISTER IOCTL code is used and below is the code

example.

paramint_id = int_id;

param event _nane = event _nane;
ret = Devicel oControl (hPM,
si zeof (param), NULL, 0, NULL,

if (ret)
{

return PM C_SUCCESS;

}

el se

{

return PM C_ERROR;

}

PM C_| OCTL_LLA | NT_REQ STER, ¶m

NULL) ;

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

21-15

Power Management IC (PMIC)

21.6.2.4.2 PmicinterruptDeregister

PmiclnterruptDeregister function deregistersan interrupt. If aninterrupt isnot registered by any driver or
application, it will be masked.

Prototype PM C_STATUS Pricl nterrupt Deregister(PMC INT_ID int_id);
Parameters int_id
[in] Theinterrupt to be deregistered
Return Value Status code
Remarks

In this function the PMIC_IOCTL_LLA_INT_DEREGISTE call isused and below is the code example

param = int_id;

ret = DeviceloControl (hPM, PMC_|I OCTL_LLA | NT_DEREG STER, ¶m
sizeof (param), NULL, O, NULL, NULL);

if (ret)

{

}

el se

{
}

return PM C_SUCCESS;

return PM C_ERROR;

21.6.2.4.3 PmicinterruptHandlingComplete

PmiclInterruptHandlingComplete function notifies the PMIC stream interface driver completion of an
interrupt handling, so that the stream interface driver can enable that interrupt again.

Prototype PM C_STATUS Pni cl nt er r upt Handl i ngConpl ete(PM C_INT_ID int_id);
Parameters int_id
[in] Theinterrupt index.
Return Value Status code
Remarks

In this function the PMIC_IOCTL_LLA_INT_COMPLETE call isused. The code exampleis below:

param = int_id;
ret = DeviceloControl (hPM, PM C_| OCTL_LLA | NT_COVPLETE, ¶m
sizeof (paran), NULL, 0, NULL, NULL);
if (ret)
{

}

el se

{
return PM C_ERROR;
}

return PM C_SUCCESS;

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-16 Freescale Semiconductor

Power Management IC (PMIC)

21.6.2.4.4 PmicinterruptDisable

The PmiclnterruptDisable function temporarily disables an interrupt. Theinterrupt is still registered. The
driver or application can enable the interrupt again by calling PmiclnterruptEnable().

Prototype PM C_STATUS PriclnterruptDisable(PMC INT ID int_id);
Parameters int_id
[in] Theinterrupt index.
Return Value Status code
Remarks

In this function the PMIC_IOCTL_LLA_INT_DISABLE call isused. The code exampleis below.

param = int_id;

ret = DeviceloControl (hPM, PM C_|I OCTL_LLA | NT_DI SABLE, ¶m
sizeof (paran), NULL, 0, NULL, NULL);

if (ret)

{

}

el se

{
}

return PM C_SUCCESS;

return PM C_ERROR;

21.6.2.4.5 PmicinterruptEnable

The PmiclnterruptEnable function re-enables an interrupt.

Prototype PM C_STATUS Pni cl nt errupt Enabl e(PM C INT_ID int _id);
Parameters int_id
[in] Theinterrupt index.
Return Value Status code
Remarks

In this function the PMIC_IOCTL_LLA_INT_ENABLE call isused. The code exampleis below.

param = int_id;
ret = DeviceloControl (hPM, PM C_| OCTL_LLA | NT_ENABLE, ¶m
sizeof (param), NULL, O, NULL, NULL);
if (ret)
{

}

el se

{

}

Code example of registering PMIC pen down interrupts.

if (PmiclnterruptRegister(PMC MC13783_INT_TSI, _T("EVENT_TS"))
I'= PM C_SUCCESS)

return PM C_SUCCESS;

return PM C_ERROR;

{
ERRORMSE 1, (_T("PmiclnterruptRegister failed\r\n")));

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-17

Power Management IC (PMIC)

goto cl eanUp;

}

Deregister for PMIC pen down interrupts.
Pm cl nt errupt Deregi ster (PM C_MC13783_I NT_TSI) ;

21.6.3 Register Access API

The PMIC Low Level Access API allows drivers and/or applications to read and write PMIC registers.
There are some restrictions to prohibit drivers/applications from accessing someregisters. Interrupt
registersis one example. The interrupt library functionswill beinthisLow Level AccessDLL.

21.6.3.1 Functions

21.6.3.1.1 Read Register
This function reads a PMIC register.

Prototype PM C_STATUS

Pmi cRegi st er Read(unsi gned char index, U NT32* reg);
Parameters index

[in] register index.

reg

[out] The contents of the register.
Return Value Status code

21.6.3.1.2 Write Register

This function writesa PMIC register.

Prototype PM C_STATUS
Pm cRegi sterWite(unsigned char index, U NT32 reg, U NI32 mask);
Parameters index

[in] register index.
reg

[in] datato bewritten.
mask

[in] bitmap mask to indicate which bits in parameter reg should be written to
PMIC register.

Return Value Status code

The following code example shows how to use PmicRegisterWrite / PmicRegisterRead function to
write/read to/from the PMIC module registers.

TESTPROCAPI PM CTest 1(UI NT uMsg, TPPARAM t pParam LPFUNCTI ON_TABLE_ENTRY | pFTE)

{
U NT32 reg;

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-18 Freescale Semiconductor

Power Management IC (PMIC)

Val idate that the shell wants the test to run
if (uMsg !'= TPM _EXECUTE)
{

}
g_pKat o—>Log(LOG_COWVENT, TEXT("PM CTest1() +\r\n"));

Read | MR
Pmi cRegi st er Read(1, ®q);

return TPR_NOT_HANDLED;

g_pKat o—>Log(LOG_COMMENT, TEXT("Register IMRis 0X¥%\r\n"), (reg & OxFFFFFF));

g_pKat o—>Log(LOG_COMMENT, TEXT("Now, try to change IMR to OxOFF\r\n"));
Pmi cRegi sterWite(1l, OxOFF, OxFFFFFF);
Pmi cRegi sterRead(1, ®);

g_pKat o—>Log(LOG_COMMENT, TEXT("Register IMRis 0X%\r\n"), (reg & OxFFFFFF));

Enter ISR | oop
if ((reg&XxFFFFFF) == OxFF)

{
GPT_TEST_FUNCTI ON_EXI T() ;
return TPR_PASS;

}

el se

{
GPT_TEST_FUNCTI ON_EXI T() ;
return TPR_FAIL;

}

21.6.4 Power Control Reference

21.6.4.1 PwCtrl API
This section provides information about the API provided by PwCtrl API DLL.

Using the following APIs, the MC13783 power control module can be accessed.
Table 21-5. PwCtrl APl Modules

Module Usage
PmicPwrctrISetPowerCutTimer used to set the power cut timer duration
PmicPwrctriGetPowerCutTimer used to get the power cut timer duration
PmicPwrctrIEnablePowerCut used to enable the power cut
PmicPwrctrIDisablePowerCut used to disable the power cut
PmicPwrctrISetPowerCutCounter used to set the power cut counter
PmicPwrctriGetPowerCutCounter used to get the power cut counter
PmicPwrctrlSetPowerCutMaxCounter used to set the maximum number of power cut counter
PmicPwrctriGetPowerCutMaxCounter used to get the setting of maximum power cut counter
PmicPwrctrlEnableCounter function will set PC_COUNT_EN=1
PmicPwrctriDisableCounter function will set PC_COUNT_EN=0
PmicPwrctriISetMemHoldTimer used to set the duration of memory hold timer

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

21-19

Power Management IC (PMIC)

Module

Usage

PmicPwrctriGetMemHoldTimer

Used to get the setting of memory hold timer

PmicPwrctriSetMemHoldTimerAllOn

Used to set the duration of the memory hold timer to infinity

PmicPwrctriClearMemHoldTimerAllOn

Used to clear the infinity duration of the memory hold timer

PmicPwrctrlEnableClk32kMCU

Used to enable the CLK32KMCU

PmicPwrctriDisableClk32kMCU

Used to disable the CLK32KMCU

PmicPwrctrIEnableUserOffModeWhenDelay

Used to place the phone in User Off Mode after a delay

PmicPwrctrIDisableUserOffModeWhenDelay

Used to set not to place the phone in User Off Mode after a delay

PmicPwrctriSetVBKUPRegulator

Used to set the VBKUP regulator

PmicPwrctriSetVBKUPRegulatorVoltage

Used to set the VBKUP regulator voltage

PmicPwrctrlEnableWarmStart

Used to set the phone to transit from the ON state to the User Off state
when either the USER_OFF pin is pulled high or the USER_OFF_SPI bit
is set

PmicPwrctriIDisableWarmStart

Used to disable the warm start and set the phone to transit from the ON
state to the MEMHOLD ONLY state when either the USER_OFF pin is
pulled high or the USER_OFF_SPI bit is set

PmicPwrctrIEnableRegenAssig

Used to enable the REGEN pin of selected voltage regulator

PmicPwrctrIDisableRegenAssig

Used to disable the REGEN pin of selected voltage regulator

PmicPwrctriGetRegenAssig

Used to read the REGEN pin value for said voltage regulator

21.6.4.2 Functions and Data Structures

PM C_STATUS Pmi cPwr ctrl Set Power Cut Ti mer (Ul NT8 durati on);

PM C_STATUS Pmi cPwr ctrl Get Power Cut Ti mer (Ul NT8* duration);

PM C_STATUS Pmi cPwr ct rl Enabl ePower Cut (void);

PM C_STATUS Pmi cPw ctrl Di sabl ePower Cut (void);

PM C_STATUS Pmi cPwr ct rl Set Power Cut Counter (U NT8 counter);
PM C_STATUS Pmi cPwr ct rl Get Power Cut Counter (U NT8* counter);
PM C_STATUS Pmi cPwr ct rl Set Power Cut MaxCount er (Ul NT8 counter);
PM C_STATUS Pmi cPwr ct rl Get Power Cut MaxCount er (Ul NT8* counter);
PM C_STATUS Pmi cPwr ct rl Enabl eCount er (voi d);

PM C_STATUS Pmi cPwr ct rl Di sabl eCounter (void);

PM C_STATUS Pmi cPw ctrl Set MenHol dTi mer (Ul NT8 duration);

PM C_STATUS Pmi cPwrctrl Get MentHol dTi mer (U NT8* durati on);

PM C_STATUS Pmi cPw ctrl Set MenHol dTi mer Al 1l On (voi d);

PM C_STATUS Pmi cPw ctrl C ear MenHol dTi ner ALl On (voi d);

PM C_STATUS Pmi cPw ctrl Enabl eCl k32kMCU (voi d) ;

PM C_STATUS Pmi cPw ctrl Di sabl ed k32kMCU (voi d) ;

PM C_STATUS Pmi cPw ctrl Enabl eUser Of f ModeWhenDel ay (void);

PM C_STATUS Pmi cPw ctrl Di sabl eUser O f ModeWhenDel ay (voi d);

PM C_STATUS Pm cPwr ct r| Set VBKUPRegul at or

MC13783_PWRCTRL_VBKUP_MODE) ;

PM C_STATUS Pmi cPw ct rl Set VBKUPRegul at or Vol t age (MC13783_PWRCTRL_REG VBKUP, Ul NT8);
PM C_STATUS Pmi cPw ctrl Enabl eWarnStart (void);
PM C_STATUS Pmi cPw ctrl Di sabl eWarntStart (void);

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-20

Freescale Semiconductor

(MC13783_PWRCTRL_REG VBKUP,

Power Management IC (PMIC)

PM C_STATUS Pmi cPwr ct rl Enabl eRegenAssi g (t_regul ator regu);
PM C_STATUS Pmi cPw ctrl Di sabl eRegenAssig (t_regul ator regu);
PM C_STATUS Pmi cPw ctrl Get RegenAssig (t_regul ator regu, Ul NT8* val ue);

The backup regul ators VBKUP1 and VBKUP2 provide two independent | ow power
supplies during nenory hold, user off and power cut operation.
typedef enum _MC13783_PWRCTRL_REG_VBKUP{
VBKUP1,
VBKUP2,
} MC13783_PWRCTRL_REG_VBKUP;

typedef enum _MC13783_PWRCTRL_VBKUP_MODE{

VBKUP_MODEL, Backup Regulator O f in Non Power Cut Mddes and OFf in Power Cut Mddes
VBKUP_MODE2, Backup Regulator O f in Non Power Cut Mddes and On in Power Cut Mdes
VBKUP_MODES, Backup Regulator On in Non Power Cut Mddes and OFf in Power Cut Mdes
VBKUP_MODE4, Backup Regulator On in Non Power Cut Mddes and On in Power Cut Modes

} MC13783_PWRCTRL_VBKUP_MODE;

/*]
* This enuneration define all regul ator enabl ed by regen
*/
typedef enum {
/*!
* VAudi o
*/
REGU_VAUDI O=0,
/*!
* VI CHI
*/
REGU VI OHI ,
/*!
* VI OLO
*/
REGU VI OLQ,
/*!
* VDI G
*/
REGU_VDI G,
/*!
* VGEN
*/
REGU_VGEN,
/*!
* VRFDI G
*/
REGU VRFDI G, /*5%/
/*!
* VRFREF
*/
REGU_VRFREF,
/*!
* VRFCP

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-21

Power Management IC (PMIC)

*)
REGU_VRFCP,
/%1

* VS| M

*)

REGU VSI M
/%1

* VESI M

*)
REGU_VESI M
/%1

* \VCAM

*)

REGU VCAM /*10*/
/%1

* VRFBG

*)
REGU_VRFBG,
/%1

* WI B

*)
REGU_WI B,
/%1

* VRF1

*
REGU_VRF1,
/%1

* VRF2

*)
REGU_VRF2,
/%1

* VMMVCL

*)
REGU_VMVCL,
/%1

* VMMC2

*)
REGU_VMVC2,
/%1

* GPOL

*)
REGU_GPOL,
/%1

* GPP2

*

REGU GPC2,
/%1

* GPOB

*
REGU_GPCB,
/%1

* GPO4

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-22 Freescale Semiconductor

Power Management IC (PMIC)

*/
REGU_GP(4,
[*!
* REGU_NUMBER
*/
REGU_NUMBER,
} t_regulator;
/*]
* This tab define bit for regen of all regul ator
*/
int REGULATOR REGEN BI T[REGU_NUMBER] ={
0, /* VAUDI O */
1, /* VIOH */
2, I* VIOLO */
3, /* VDG */
4, [* VGEN */
5 [/* VRFDI G */
6, /* VRFREF */
7, I* VRFCP */
-1, /* VSIM */
-1, /* VESIM */
8, /* VCAM */
9, /'* VRFBG */
-1, /* WIB */
10, /* VRF1 */
11, /* VRRF2 */
12, /* VMMC1 */
13, /* vMve2 */
16, /* VGPOL */
17, 1* VGPO2 */
18, /* VGPO3 */
19, /* vGPO4 */

}s

21.6.4.2.1 PmicPwrctriSetPowerCutTimer

Prototype PM C_STATUS Pni cPw ct rl Set Power Cut Ti mer (U NT8 durati on);
Thisfunction is used to set the power cut timer duration.
Parameters. duration [in]

Thevalueto setto power cut timer register, it'sfrom 0to 255.
The timer will be set to a duration of 0 to 31.875 seconds, in 125 ms increments.

Returns. status
PMIC_SUCCESS for success and PMIC_ERROR for failure
Remarks

21.6.4.2.2 PmicPwrctriGetPowerCutTimer

Prototype PM C_STATUS Pni cPwr ct rl Get Power Cut Ti mer (Ul NT8* duration);

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-23

Power Management IC (PMIC)

Parameters. duration [out]
The duration to set to power cut timer
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure.
21.6.4.2.3 PmicPwrctrIEnablePowerCut
Prototype PM C_STATUS Prmi cPwr ct rl Enabl ePower Cut (voi d);
This function is used to enable the power cut.
Parameters: None
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure.
21.6.4.2.4 PmicPwrctriDisablePowerCut
Prototype PM C_STATUS Pni cPwr ct rl Di sabl ePower Cut (voi d)
This function is used to disable the power cui.
Parameters: None
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
21.6.4.2.5 PmicPwrctriISetPowerCutCounter
Prototype PM C_STATUS Pmi cPwr ctrl Set Power Cut Counter (Ul NT8 counter);
Thisfunction is used to set the power cut counter.
Parameters. counter [in]
The counter number value to be set to the register. It's value from 0 to 15. The
power cut counter isa4 bit counter that keepstrack of the number of rising edges
of the UV_TIMER (power cut events) that have occurred since the counter was
last initialized.
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
21.6.4.2.6 PmicPwrctriGetPowerCutCounter
Prototype PM C_STATUS Pni cPwr ct rl Get Power Cut Counter (U NT8* counter);
Thisfunction is used to get the power cut counter.
Parameters. counter [out]
This function is used to get the counter number
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
21-24 Freescale Semiconductor

Power Management IC (PMIC)

21.6.4.2.7 PmicPwrctriSetPowerCutMaxCounter

Prototype PM C_STATUS Pni cPwr ct r| Set Power Cut MaxCounter (Ul NT8 counter);
This function is used to set the maximum number of power cut counter.
Parameters. counter [in]

Maximum counter number to set. It's value from 0 to 15. The power cut register
provides a method for disabling power cutsif this situation manifests itself.

If PC_COUNT >= PC_MAX_COUNT, then the number of resets that have
occurred since the power cut counter was last initialized exceeds the established
[imit, and power cuts will be disabled.

Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.8 PmicPwrctriGetPowerCutMaxCounter

Prototype PM C_STATUS Pri cPwr ct rl Get Power Cut MaxCount er (Ul NT8* counter);
This function is used to get the setting of maximum power cut counter.
Parameters. counter [out]
To get the maximum counter number
Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.9 PmicPwrctrlEnableCounter

Prototype PM C_STATUS Pmi cPwr ct rl Enabl eCount er (voi d) ;

The power cut register providesamethod for disabling power cutsif thissituation
manifestsitself. If PC_COUNT >=PC_MAX_COUNT, then the number of resets
that have occurred since the power cut counter was last initialized exceeds the
established limit, and power cuts will be disabled.

This function can be disabled by setting PC_COUNT_EN=0. In this case, each
power cut event will increment the power cut counter, but power cut coveragewill
not be disabled, even if PC_COUNT exceeds PC_MAX_COUNT.

This PmicPwrctrlEnableCounter function will set PC_COUNT_EN=1.
Parameters: None
Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.10 PmicPwrctriDisableCounter

Prototype PM C_STATUS Pmi cPwrctrl Di sabl eCounter (void);

The power cut register providesamethod for disabling power cutsif thissituation
manifestsitself. If PC_COUNT >=PC_MAX_COUNT, then the number of resets

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-25

Power Management IC (PMIC)

that have occurred since the power cut counter was last initialized exceeds the
established limit, and power cuts will be disabled.

This function can be disabled by setting PC_COUNT_EN=0. In this case, each
power cut event will increment the power cut counter, but power cut coverage will
not be disabled, even if PC_COUNT exceeds PC_MAX_COUNT. This
PmicPwrctrl EnableCounter function will set PC_COUNT_EN=0.

Parameters: None
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
21.6.4.2.11 PmicPwrctriISetMemHoldTimer
Prototype PM C_STATUS Pni cPwr ctrl Set MerrHol dTi mer (Ul NT8 dur ati on);
Thisfunction is used to set the duration of memory hold timer.
Parameters. duration [in]
The value to set to memory hold timer register. It'sfrom O to 15. The resolution of
the memory hold timer is 32 seconds for a maximum duration of 512 seconds.
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
21.6.4.2.12 PmicPwrctriIGetMemHoldTimer
Prototype PM C_STATUS Pni cPwr ctrl Get MenHol dTi mer (Ul NT8* duration);
This function is used to get the setting of memory hold timer
Parameters. duration [out]
To get the duration of the timer
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
21.6.4.2.13 PmicPwrctriISetMemHoldTimerAllOn
Prototype PM C_STATUS Pni cPwr ctrl Set MenHol dTi mer Al l On (voi d);
Thisfunction is used to set the duration of the memory hold timer to infinity
Parameters: None
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
21.6.4.2.14 PmicPwrctriClearMemHoldTimerAllOn
Prototype PM C_STATUS Pmi cPwr ctrl C ear MernHol dTi mer Al On (voi d);
This function is used to clear the infinity duration of the memory hold timer
Parameters: None
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
21-26 Freescale Semiconductor

Power Management IC (PMIC)

Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.2.15 PmicPwrctriEnableClk32kMCU

Prototype PM C_STATUS Pmi cPwr ctrl Enabl eCl k32kMCU (voi d) ;
Thisfunction is used to enable the CLK32KMCU

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.3 PmicPwrctriDisableClk32kMCU

Prototype PM C_STATUS Pri cPwr ctrl Di sabl ed k32kMCU (voi d);
Thisfunction is used to disable the CLK32KMCU

Parameters: None

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.4 PmicPwrctrlEnableUserOffModeWhenDelay
Prototype PM C_STATUS Pmi cPw ctrl Enabl eUser Of f ModeWhenDel ay (void);
Thisfunction is used to place the phone in User Off Mode after a delay.
Parameters: None
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.5 PmicPwrctriDisableUserOffModeWhenDelay
Prototype PM C_STATUS Pri cPwr ct rl Di sabl eUser OF f ModeWhenDel ay (voi d);
This function is used to set not to place the phone in User Off Mode after a delay.
Parameters: None
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.6 PmicPwrctriISetVBKUPRegulator

Prototype PM C_STATUS Pmi cPwr ct r| Set VBKUPRegul at or (MC13783_PWRCTRL_REG _VBKUP r eg,
MC13783_PWRCTRL_VBKUP_MODE node) ;

Thisfunction is used to set the VBKUP regulator
Parameters. reg [in]

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-27

Power Management IC (PMIC)

Returns:

the backup regulator to set

nmode [in]

the mode to set to backup regulator

VBKUP_MODE1 - VBKUPXEN = 0, VBKUPXAUTO =0

Backup Regulator Off in Non Power Cut Modes and Off in Power Cut Modes
VBKUP_MODE2 - VBKUPXEN =0, VBKUPXAUTO =1

Backup Regulator Off in Non Power Cut Modes and On in Power Cut Modes
VBKUP_MODE3 - VBKUPXEN = 1, VBKUPXAUTO =0

Backup Regulator Onin Non Power Cut Modes and Off in Power Cut Modes
VBKUP_MODE4 - VBKUPXEN = 1, VBKUPXAUTO =1

Backup Regulator Onin Non Power Cut Modes and On in Power Cut Modes
status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.7 PmicPwrctriSetVBKUPRegulatorVoltage

Prototype

Parameters:

Returns:

PM C_STATUS Pmi cPwr ct rl Set VBKUPRegul at or Vol t age
(MC13783_PWRCTRL_REG VBKUP reg, U NT8 volt);

Thisfunction is used to set the VBKUP regulator voltage

reg [in]

the backup regulator to set

volt [in]

the voltage to set to backup regulator

status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.8 PmicPwrctriIEnableWarmStart

Prototype

Parameters:
Returns:

PM C_STATUS Pmi cPwr ctrl Enabl eWarnStart (void);

Thisfunction is used to set the phone to transit from the ON state to the User Off
state when either the USER_OFF pinispulled high or the USER_OFF_SPI bitis
set (after an 8ms delay in the Memwait state).

None
status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.9 PmicPwrctriDisableWarmStart

Prototype

PM C_STATUS Pmi cPwr ctrl Di sabl eWarntStart (void);

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-28

Freescale Semiconductor

Power Management IC (PMIC)

Thisfunction isused to disable the warm start and set the phoneto transit from the
ON statetotheMEMHOLD ONLY statewhen either the USER_OFF pinispulled
high or the USER_OFF_SPI bit is set (after an 8ms delay in the Memwait state).

Parameters: None
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.10 PmicPwrctrlEnableRegenAssig

Prototype PM C_STATUS Pni cPwr ct r| Enabl eRegenAssi g (t_regul ator regu);

This function enables the REGEN pin of selected voltage regulator. The REGEN
function can be used in two ways. It can be used as aregulator enable pin as with
SIMEN where the SPI programming is static and the REGEN pin is dynamic. It
can also be used in astatic fashion where REGEN is maintained high while the
regulators get enabled and disabled dynamically through SPI. In that case REGEN
functions as a master enable.

Parameters. t _regulator regu
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.11 PmicPwrctriIDisableRegenAssig

Prototype PM C_STATUS Pri cPwr ct rl Di sabl eRegenAssig (t_regul ator regu);
This function Disable the REGEN pin of selected voltage regulator.

Parameters. t _regulator regu

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.4.12 PmicPwrctriGetRegenAssig

Prototype PM C_STATUS Pmi cPwr ct rl Get RegenAssig (t_regulator regu , U NT8* val ue);
This function reads the REGEN pin value for said voltage regul ator.

Parameters: t regul ator regu,vaue

Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.5 PowerCutTimer Functions

The maximum duration of a power cut is determined by the power cut timer PCT[7:0]. By SPI this timer
isset to apreset value. When apower cut occurs, the timer will internally be decremented until it expires,
meaning counted down to zero. The contents of PCT[7:0] does not reflect the actual counted down value
but will keep the programmed value and therefore does not have to be reprogrammed after each power cut.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-29

Power Management IC (PMIC)

Using the following functions enabl e/disable/maximum duration of a power cut is determined

PM C_STATUS Pmi cPwr ctrl Set Power Cut Ti mer (Ul NT8 durati on);
PM C_STATUS Pmi cPwr ctrl Get Power Cut Ti mer (Ul NT8* duration);
PM C_STATUS Pmi cPwr ct rl Enabl ePower Cut (voi d);

PM C_STATUS Pmi cPw ctrl Di sabl ePower Cut (void);

The following code example shows how to use the power control functions of PMI1C module.

int MC13783_power _cut _conf (struct t_power_cut_conf *pc)

{
i f(!'pc—>pc_counter_en)
{
Pm cPwr ctrl Di sabl ePower Cut () ;
}

el se

Pm cPwr ctrl Enabl ePower Cut () ;
if(!'pc—>pc_auto_user_off)

{

Pmi cPwr ct r| Di sabl eUser O f ModeWhenDel ay() ;
}

el se
Pmi cPwr ct r| Enabl eUser Of f ModeWhenDel ay() ;

if(!'pc—>pc_auto_user_off)

{
Pmi cPwr ct r1 Di sabl eCl k32kMCU() ;

}

el se
Pm cPwr ctrl Enabl ed k32kMCU() ;

i f(pc—>pc_tinmer)

Pm cPwr ctrl Set Power Cut Ti ner (pc—>pc_tinmer);

i f (pc—>pc_counter)

Pm cPwr ct rl Set Power Cut Count er (pc—>pc_counter);
i f (pc—>pc_max_nb_pc)

Pm cPwr ct rl Set Power Cut MaxCount er (pc- >pc_nmax_nb_pc);
i f(pc->pc_ext_tiner)

Pm cPwr ctrl Set MenHol dTi mer (pc->pc_ext_tiner);
i f(pc->pc_ext_tinmer_inf)

Pm cPwr ctrl Set MenHol dTi mer Al 1 On() ;

el se

Pm cPwr ctrl C ear MentHol dTi mer Al | On();
return O;

21.6.6 Memory Hold Operation functions

The Memory Hold circuit provides power to the memory during a power cut through VBKUPL. To avoid
leakage from the VBKUPL into circuitry connected to BP during a power cut, an external PMOS should
be placed between the memory supplies.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-30 Freescale Semiconductor

Power Management IC (PMIC)

Following functions are used to set/get the duration of memory hold timer.

PM C_STATUS Pmi cPwrctrl Set MenHol dTi mer (Ul NT8 dur ati on)
PM C_STATUS Pmi cPwrctrl Get MenHol dTi mer (Ul NT8* durati on)

Following functions are used to set/clear the duration of the memory hold timer to infinity

PM C_STATUS Pmi cPw ctrl Set MenHol dTi mer Al 1l On (voi d)
PM C_STATUS Pmi cPw ctrl C ear MenHol dTi ner ALl On (voi d)

The following code example shows how to use the power controller memory hold operation functions of
PMIC module.

int MC13783_power _cut _get_conf (struct t_power_cut_conf *pc)
{

U NT8 duration;

U NT8 counter;

U NT32 reg;

unsi gned char i ndex;

Pm cPwr ctrl Get Power Cut Ti ner (&duration);

pc->pc_timer = duration;

Pm cPwr ct rl Get Power Cut Counter (&counter);
pc->pc_counter = counter;

Pm cPwr ct r | Get Power Cut MaxCount er (&dur at i on) ;
pc->pc_nax_nb_pc = duration;

Pm cPwr ctrl Get MenHol dTi mer (&duration);
pc->pc_ext_timer = duration;

i ndex = OxOE; MC13783_PWR_CTL1_ADDR

Pm cRegi st er Read(i ndex, &req);

if((reg &0x00100000))
pc->pc_ext_tiner_inf
el se

pc->pc_ext _tiner_inf

1;((reg &x00100000) >> 20);

0;
pc->pc_nmax_nb_pc = ((reg &x0000F800) >> 11);

Pm cPwr ctrl Get MenHol dTi mer (&duration);
pc->pc_ext _tiner=duration;

i ndex = 0x0D; MC13783_PWR_CTLO_ADDR
Pmi cRegi st er Read(i ndex, ®);
if((reg &0x00000002))
pc->pc_counter_en = 1;

el se

pc->pc_counter_en = 0;

if((reg &0x00000008))
pc->pc_auto_user_of f =1;
el se

pc->pc_aut o_user_of f =0;

if((reg &0x00000020))

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-31

Power Management IC (PMIC)

pc->pc_user _of f _32k_en=1;
el se
pc->pc_user _of f _32k_en=0;

return O;

}

21.6.7 Power Cut Counter Functions

PwCitrl provides a method for disabling power cutsif this situation manifestsitsalf. If PC_COUNT >=
PC_MAX_COUNT, then the number of resets that have occurred since the power cut counter was last
initialized exceedsthe established limit, and power cuts will be disabled. PwCtrl counters can be disabled
by setting PC_COUNT_EN=0. In this case, each power cut event will increment the power cut counter,
but power cut coverage will not be disabled, even if PC_COUNT exceeds PC_MAX_COUNT.

The following functions are used to set/get the power cut counter values.

PM C_STATUS Pmi cPwr ctrl Set Power Cut Counter (U NT8 counter)

PM C_STATUS Pmi cPwr ct rl Get Power Cut Counter (U NT8* counter)
PM C_STATUS Pmi cPwr ct rl Set Power Cut MaxCount er (Ul NT8 counter)
PM C_STATUS Pmi cPwr ct rl Get Power Cut MaxCount er (Ul NT8* counter)

The following functions are used to enable/disable the duration of the power cut counters.

PM C_STATUS Pmi cPw ct rl Enabl ePower Cut (voi d)
PM C_STATUS Pmi cPw ctrl Di sabl ePower Cut (voi d)

The following code example shows how to use the power controller power cut counter functions of PMIC
module. Some the functions are used in the above examples.

int MC13783_power _cut _get_conf (struct t_power_cut_conf *pc)
{

Ul NT8 duration;

U NT8 counter;

U NT32 reg;

unsi gned char i ndex;

Pm cPwr ctrl Get Power Cut Ti ner (&duration);

pc->pc_timer = duration;

Pm cPwr ct rl Get Power Cut Counter (&counter);
pc->pc_counter = counter;

Pm cPwr ct r | Get Power Cut MaxCount er (&dur ati on) ;
pc->pc_nax_nb_pc = duration;

Pm cPwr ctrl Get MenHol dTi mer (&duration);
pc->pc_ext _timer = duration;

i ndex = OxOE; MC13783_PWR_CTL1_ADDR

Pmi cRegi st er Read(i ndex, ®);

if((reg &0x00100000))

pc->pc_ext_tinmer_inf = 1;((reg &x00100000) >> 20);
el se

pc->pc_ext_tinmer_inf = 0;

pc->pc_nmax_nb_pc = ((reg &x0000F800) >> 11);

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-32 Freescale Semiconductor

}

21.6.8

Pm cPwr ctrl Get MenHol dTi mer (&duration);

pc->pc_ext _ti ner=duration;

i ndex = 0x0D; MC13783_PWR_CTLO_ADDR
Pmi cRegi st er Read(i ndex, ®);
if((reg &0x00000002))
pc->pc_counter_en = 1;

el se

pc- >pc_counter_en = 0;

if((reg &0x00000008))
pc->pc_auto_user_of f =1;
el se

pc->pc_aut o_user_of f =0;

if((reg &0x00000020))
pc->pc_user _of f _32k_en=1;
el se

pc->pc_user _of f _32k_en=0;
return O;

Power Management

Power Management IC (PMIC)

Thereisno additional power management implementation done specifically for Atlas Power Control other
than the implementation described in the Power Management section of this document.

21.6.9

Voltage Regulator

The ARM11/ARM9 processor cores and memories are supposed to be supplied by the switchers. All other
building blocks are supplied either directly from the battery or through alinear regulator.

For convenience these regulators are labeled to indicate their intended purpose. This concerns VRF1 and
VRF2 for the transceiver transmit and receive supplies; VRFREF, VRFBG and VRFCP as the transceliver
references, VRFDIG, VDIG and VGEN for the different digital sections of the platform; VIOHI, VIOLO
for the different interfaces, VCAM for the camera module; VSIM1 for the SIM card; VESIM1 for the
eSIM card; and VMMC1 and VMCC2 for dual multimedia card support or peripheral supply such as
Bluetooth PA.

21.6.10 Data Structures

/'l switch node regul ator
typedef enum _MC13783_REGULATOR SREQ

SWLA
SW1B,
SW2A,
SW2B,
SWB,

:O,

} MC13783_REGULATOR SREG

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

21-33

Power Management IC (PMIC)

typedef MC13783_REGULATOR SREG PM C_REGULATOR SREG

typedef U NT8 PM C_REGULATOR SREG VOLTAGE;

/*************************************

* Switch regul ator voltage settings type:

*

*

*

*

*

SW VOLTAGE_NORMAL

SW VOLTAGE_DVS
SW VOLTAGE_STBY

*************************************/

typedef enum RR REGULATOR SREG VOLTAGE TYPE{
SW VOLTAGE_NORMAL =0,

SW VOLTAGE_DVS,

SW VOLTAGE_STBY,
} RR_REGULATOR SREG VOLTAGE_TYPE;
typedef RR REGULATOR SREG VOLTAGE TYPE PM C_REGULATOR SREG VOLTAGE_TYPE;

/'l standby input state HL
typedef enum _MC13783_ REGULATOR_SREG STBY{

LOW = 0,
H GH,

} MC13783_REGULATOR SREG STBY;
typedef MC13783 REGULATOR SREG STBY PM C_REGULATOR SREG STBY;

/***

/1 switch regul at or nopdes:

11
11
11
11

1.
2.
3.
4.

OFF

PWM node and no Pul se Ski ppi ng

PWM node and pul se Ski pping Al |l owed
Low Power PFM node

**/

typedef enum _MC13783_ REGULATOR_SREG MODE{

SW MODE_OFF,
SW MODE_PVWM

SW MODE_PULSESKI P,

SW MODE_PFM

} MC13783_REGULATOR _SREG_MODE;
typedef MC13783 REGULATOR SREG MODE PM C_REGULATOR SREG MODE;

11

l'inear vol tage regul ator
typedef enum _MC13783_REGULATOR VREE

VIOH = 0,
VI QLG

VDI G,
VGEN,
VRFDI G,
VRFREF,

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-34

Freescale Semiconductor

Power Management IC (PMIC)

VRFCP,
VSI M
VESI M
VCAM
V_VI B,
VRF1,
VRF2,
VMVCL,
VMVC2,

} MC13783_REGULATOR VREG
typedef MC13783_REGULATOR VREG PM C_REGULATOR VREG

/**

11
11
11
11
11
11
11
11

LOW POVNER
VXMODE=1, Set Low Power no matter of VxSTBY and STANDBY pin

LOW PONER _CTL_BY_PIN
VXMODE=0, VxSTBY=1, Low Power Mode is controlled by STANDBY pin

LOW POWER DI SABLED
VxMODE=0, VxSTBY=0, Low Power Mbde is di sabl ed

***/

typedef enum _MC13783_REGULATOR _VREG PONER_MODE{

LOW POVWER_DI SABLED = 0,
LOW POVER,
LOW POAER CTRL_BY_PI N,

} MC13783_REGULATOR VREG POAER MODE;
typedef MC13783_REGULATOR VREG POAER MODE PM C_REGULATOR VREG POVWER MODE;

typedef enum _MC13783_REGULATOR VREG VOLTAGE_VI OHI {

VIOH 2 775 = 0, //output 2.775V,

} MC13783_REGULATOR VREG VOLTAGE VI OHI ;

typedef enum _MC13783 REGULATOR_VREG VOLTAGE VI OLC]

VIOLO 1 20V = 0, //output 1.20V,

VI OLO 1_30V, //output 1.30V,
VI OLO_1_50V, //output 1.50V,
VI OLO_1_80V, //output 1.80V,

} MC13783_REGULATOR VREG VOLTAGE VI OLO,

typedef enum _MC13783_REGULATOR VREG VOLTAGE_VRFDI G{

VRFDIG 1 20V = 0, //output 1.20V,

VRFDI G_1_50V, /loutput 1.50V,
VRFDI G_1_80V, //output 1.80V,
VRFDI G_1_875V, /loutput 1.875V,

} MC13783_REGULATOR VREG VOLTAGE_VRFDI G

typedef enum _MC13783_REGULATOR VREG VOLTAGE_VDI {

VDIG 1 20V = 0, //output 1.20V,
VDI G 1_30V, /loutput 1.30V,
VDI G 1_50V, /loutput 1.50V,

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-35

Power Management IC (PMIC)

VDI G_1_80V, /loutput 1.80V,
} MC13783_REGULATOR VREG VOLTAGE VDI G

typedef enum _MC13783 REGULATOR _VREG VOLTAGE VGEN{
VGEN_1 20V = 0, //output 1.20V,

VGEN_1_ 30V, / / out put 1. 30V,
VGEN_1_50V, //output 1.50V,
VGEN_1_ 80V, /] out put 1. 80V,

} MC13783_REGULATOR VREG VOLTAGE_VGEN;

typedef enum _MC13783_REGULATOR VREG VOLTAGE_VRF{
VRF2_1 875V = 0, //output 1.875V,

VRF2_2_ 475V, /loutput 2.475V,
VRF2_2_700V, /loutput 2.700V,
VRF2_2_775V, /loutput 2.775V,

} MC13783_REGULATOR VREG VOLTAGE_VRF;

typedef enum _MC13783_REGULATOR VREG VOLTAGE_VRFCP{
VRFCP_2 700V = 0, //output 2.700V,
VRFCP_2_ 775V, /loutput 2.775V,

} MC13783_REGULATOR VREG VOLTAGE_VRFCP;

typedef enum _MC13783_REGULATOR VREG VOLTAGE_VRFREF{
VRFREF 2 475V = 0, //output 2.475V,

VRFREF_2_600V, /loutput 2.600V,
VRFREF_2_700V, /loutput 2.700V,
VRFREF_2_775V, /loutput 2.775V,

} MC13783_REGULATOR VREG VOLTAGE_VRFREF;

typedef enum _MC13783_ REGULATOR_VREG VOLTAGE_CAM

/1 1st silicon, 2nd silicon

VCAM 1 = 0, //output 1.50V, 1.5V.

VCAM 2, / / out put 1. 80V, 1.80V

VCAM 3, //output 2.50V, 2. 50V

VCAM 4, /| out put 2. 80V, 2.55V

VCAM 5, /| out put - 2. 60V

VCAM 6, /| out put - 2.80V

VCAM 7, /| out put - 3. 00V

VCAM 8, /] out put - TBD

} MC13783_REGULATOR VREG VOLTAGE CAM

typedef enum _MC13783_ REGULATOR_VREG VOLTAGE_SI M
VSIM 1 8V = 0, //output = 1.80V
VSI M 2_9V, //output = 2.90V

} MC13783_REGULATOR VREG VOLTAGE_SI M

typedef enum _MC13783_REGULATOR VREG VOLTAGE_ESI M
VESIM 1 8V = 0, //output = 1.80V
VESIM2 9V, //output = 2.90V

} MC13783_REGULATOR VREG VOLTAGE_ESI M

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-36 Freescale Semiconductor

Power Management IC (PMIC)

typedef enum _MC13783_REGULATOR VREG VOLTAGE_MV{

/1 1st silicon, 2nd silicon
VM\VC 1, //output 1.60V, 1. 60V
VMVC_2, // out put 1. 80V, 1.80V
VMMC_3, //output 2. 00v, 2. 00V
VM\VC 4, //out put 2.20V, 2. 60V
VM\VC 5, //output 2.40V, 2. 70V
VMMC_6, //output 2. 60V, 2. 80V
VM\VC 7, //output 2.80V, 2.90V
VMMC 8, //output 2.90v, 3. 00V

} MC13783_REGULATOR VREG VOLTAGE MVC;

typedef enum _MC13783_REGULATOR VREG VOLTAGE_VI B{
V.VIB13V=0 //output = 1.30V
V_VIB 1 8V, / 1 out put 1.

o Il |

oV
V.VIB2 0V, //output = 2.0V
V.VIB 3 0V, //output = 3.0V

} MC13783_REGULATOR VREG VOLTAGE VI B;

typedef union {
MC13783_REGULATOR_VREG VOLTAGE_VI OH vi ohi ;
MC13783_REGULATOR_VREG VOLTAGE_VI OLO vi ol o;
MC13783_REGULATOR_VREG VOLTAGE_VRFDI G vrfdi g;
MC13783_REGULATOR_VREG VOLTAGE_VDI G vdi g;
MC13783_REGULATOR_VREG VOLTAGE_VGEN vgen;
MC13783_REGULATOR_VREG VOLTAGE_VRF vrf;
MC13783_REGULATOR_VREG VOLTAGE_VRFCP vrfcp;
MC13783_REGULATOR_VREG VOLTAGE_VRFREF vrfref;
MC13783_REGULATOR_VREG VOLTAGE_CAM vcam
MC13783_REGULATOR _VREG VOLTAGE_SI M vsi m
MC13783_REGULATOR_VREG VOLTAGE_ESI M vesi m
MC13783_REGULATOR VREG VOLTAGE_MMC vt
MC13783_REGULATOR_VREG VOLTAGE_VIB v_vi b;

} MC13783_REGULATOR VREG VOLTAGE;

typedef MC13783_REGULATOR VREG VOLTAGE PM C_REGULATOR VREG VOLTAGE;

typedef enum _MC13783_REGULATOR ENABLE{
DI SABLE = 0,

ENABLE = 1,
} MC13783_REGULATOR ENABLE;

21.6.11 Switch mode regulator API’s

21.6.11.1 PmicSwitchModeRegulatorOn

Prototype PM C_STATUS Pni cSwi t chModeRegul at or On (PM C_REGULATOR_SREG r egul at or) ;
Parameters. regul ator [in]

Which switch mode regulator to turn on
Returns: status

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-37

Power Management IC (PMIC)

PMIC_SUCCESSfor successand PMIC_ERROR for failureThisfunctionisused
to turn on the switch mode regulator.

21.6.11.2 PmicSwitchModeRegulatorOff

Prototype

Parameters:

Returns:

PM C_STATUS Pmi cSwi t chMbdeRegul at or OfFf (PM C_REGULATOR_SREG regul ator);
This function is used to turn off the switch regulator

regul ator [in]

Which switch mode regulator to turn off

status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.3 PmicSwitchModeRegulatorSetVoltageLevel

Prototype

Parameters:

Returns:

PM C_STATUS Pmi cSwi t chMbdeRegul at or Set Vol t ageLevel (PM C_REGULATOR_SREG
regul at or,

PM C_REGULATOR_SREG VOLTAGE TYPE vol t ageType,

PM C_REGULATOR_SREG VOLTAGE vol tage);

This function is to set the voltage level for the switch regulator.

regul ator [in]
The regulator to be set

vol t ageType [in]
SW_VOLTAGE NORMAL/SW _VOLTAGE LVS/SW _VOLTAGE STBY

SW1 offers support for Dynamic Voltage-Frequency scaling. If thisfeatureis
activated, then assertion of the STANDBY input will automatically configure
SW1 to output the voltage defined by the 3-bit field SW1X_STBY. If
STANDBY =LOW, then assertion of the LV S input will automatically configure
SW1 to output the voltage defined by the 3-bit field SW1X_LVS. These
aternative bit fields would normally be programmed to a voltage lower than that
encoded in the SW1X bit field. When STANDBY and LV S are both de-asserted,
the output voltage will revert the that encoded by the SW1X field.

SW2 offerslimited support for Dynamic Voltage-Frequency scaling. If thisfeature
is activated, then assertion of the STANDBY input will automatically configure
SW2 to output the voltage defined by the 3-bit field SW2_STBY.

If STANDBY =LOW, then assertion of the LV S2 input will automatically
configure SW2 to output the voltage defined by the 3-bit SW2X_LV Sfield. When
STANDBY and LV S2 are both de-asserted, the output voltage will revert to that
encoded by the SW2X 3-hit field.

vol tage [in]

The voltage to be set, it depends on different regulator.

status

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-38

Freescale Semiconductor

Power Management IC (PMIC)

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.4 PmicSwitchModeRegulatorGetVoltageLevel

Prototype PM C_STATUS Pri cSwi t chMbdeRegul at or Get Vol t ageLevel (PM C_REGULATOR SREG
regul ator, PM C_REGULATOR SREG VOLTACGE_TYPE vol t ageType,
PM C_REGULATOR _SREG VOLTAGE* vol tage);

This function is to get the voltage settings.
Parameters. regul ator [in]
The regulator to get voltage from

vol t ageType [in]
SW_VOLTAGE NORMAL/SW _VOLTAGE LVS/SW _VOLTAGE STBY

vol t age [out]
the pointer to get the value
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.5 PmicSwitchModeRegulatorSetMode

Prototype PM C_STATUS Pni cSwi t chMbdeRegul at or Set Mode (PM C_REGULATOR SREG
regul ator, PM C_REGULATOR SREG STBY st andby, PM C_REGULATOR_SREG MCDE
node) ;

This function isto set the switch mode regulator into synchronous rectifier mode
or pulse-skipping mode. The synchronous rectifier can be disabled (and

pul se-skipping enabled) to improve low current efficiency. Software should
disable synchronous rectifier / enable the pul se-skipping for average loads less
than approximately 30 mA, depending on the quiescent current penalty due to
synchronous mode.

Parameters. regul ator [in]

The regulator to be set

nmode [in]

Synchronous rectifier mode or pulse skipping mode.
Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.6 PmicSwitchModeRegulatorGetMode

Prototype PM C_STATUS Pni cSwi t chMbdeRegul at or Get Mode (PM C_REGULATOR SREG
regul ator, PM C_REGULATOR_SREG MODE* nopde);

This function gets the current setting of regulator mode
Parameters. regul ator [in]

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-39

Power Management IC (PMIC)

The regulator to get voltage value from

nmode [out]

Synchronous rectifier mode or pulse skipping mode.
Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.7 PmicSwitchModeRegulatorEnableSTBYDVFS

Prototype PM C_STATUS Pni cSwi t chMbdeRegul at or Enabl eSTBYDVFS (PM C_REGULATOR _SREG
regul ator);

This function is used to enable the standby or Dynamic Voltage-Frequency
scaling.
Parameters. regul ator [in]
The regulator to be set
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.8 PmicSwitchModeRegulatorDisableSTBYDVFS

Prototype PM C_STATUS Pni cSwi t chMbdeRegul at or Di sabl eSTBYDVFS (PM C_REGULATOR SREG
regul ator);

This function is used to disable the standby or Dynamic Voltage-Frequency
scaling.
Parameters. regul ator [in]
The regulator to be set
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.11.9 PmicSwitchModeRegulatorSetDVSSpeed

Prototype PM C_STATUS Pni cSwi t chMbdeRegul at or Set DVSSpeed (PM C_REGULATOR SREG
regul ator, U NT8 dvsspeed);

Thisfunction is to set the DV S speed the regul ator.
Parameters. regul ator [in]

The regulator to be set

dvsspeed [in]

The speed settingsfor DVS
Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure
Remarks: Thisfunction is only applicable to MC13783; it is a stub function here.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-40 Freescale Semiconductor

Power Management IC (PMIC)

21.6.11.10 PmicSwitchModeRegulatorEnablePanicMode

Prototype PM C_STATUS Pni cSwi t chMbdeRegul at or Enabl ePani cMbde(PM C_REGULATOR _SREG
regul ator);
This function is used to enable the panic mode.
Parameters. regul ator [in]
The regulator to be set
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
Remarks: Thisisastub function here.

21.6.11.11 PmicSwitchModeRegulatorDisablePanicMode

Prototype PM C_STATUS Pmi cSwi t chMbdeRegul at or Di sabl ePani cMbde(PM C_REGULATOR_SREG
regul ator);
Thisfunction is used to disable the panic mode.
Parameters. regul ator [in]
the regulator to be set
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
Remarks: Thisisastub function here.

21.6.11.12 PmicSwitchModeRegulatorEnableSoftStart

Prototype PM C_STATUS Pni cSwi t chModeRegul at or Enabl eSof t St ar t (PM C_REGULATOR_SREG
regul ator);
This function is used to enable soft start.
Parameters. regul ator [in]
The regulator to be set
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
Remarks: Thisisastub function here.

21.6.11.13 PmicSwitchModeRegulatorDisableSoftStart

Prototype PM C_STATUS Pni cSwi t chMbdeRegul at or Di sabl eSof t St art (PM C_REGULATOR_SREG
regul ator);
This function is used to disable soft start.

Parameters. regul ator [in]
The regulator to be set

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-41

Power Management IC (PMIC)

Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure
Remarks: Thisis a stub function here.

21.6.12 Linear Voltage Regulator API’s

21.6.12.1 PmicVoltageRegulatorOn

Prototype PM C_STATUS Pni cVol t ageRegul at or On (PM C_REGULATOR_VREG r egul ator) ;
This function is used to turn on the voltage regul ator

Parameters. regul ator [in]
Which voltage regulator to turn on

Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: MM C does not have on/off, just directly set the voltage level.

OV=0OFF will return PMIC_INVALID_PARAMETER.

21.6.12.2 PmicVoltageRegulatorOff

Prototype PM C_STATUS Pni cVol t ageRegul at or O f (PM C_REGULATOR_VREG regul at or) ;
This function is used to turn off the regulator

Parameters. regul ator [in]
Which voltage regulator to turn off

Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

Remarks: MMC don't have on/off, just directly set the voltage level. OV=OFF will return

PMIC_INVALID_PARAMETER.

21.6.12.3 PmicVoltageRegulatorSetVoltageLevel

Prototype PM C_STATUS Pni cVol t ageRegul at or Set Vol t ageLevel (PM C_REGULATOR VREG
regul ator, PM C_REGULATOR VREG VOLTACE vol t age);

Thisfunction is used to set voltage level for the voltage regulator.
Parameters. regul ator [in]

Which switch mode regulator to be set

vol tage [in]

The voltage value to be set to the register
Returns: status

PMIC_SUCCESS for success and PMIC_ERROR for failure

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-42 Freescale Semiconductor

Power Management IC (PMIC)

21.6.12.4 PmicVoltageRegulatorGetVoltagelLevel
Prototype PM C_STATUS Pni cVol t ageRegul at or Get Vol t ageLevel (PM C_REGULATOR VREG
regul ator, PM C REGULATOR VREG VOLTAGE* vol tage);
This function is to get the current voltage settings of the regulator.
Parameters. regul ator [in]
Which switch mode regulator to get the value from
vol t age [out]
the pointer to storage the return value
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.12.5 PmicVoltageRegulatorSetPowerMode

Prototype PM C_STATUS Pni cVol t ageRegul at or Set Power Mode (PM C_REGULATOR_VREG
regul ator, PM C_REGULATOR VREG POAER_MCODE power Mbde) ;

Thisfunction isused to set low power modefor the regul ator and whether to enter
low power mode during STANDBY assertion or not.

Parameters. regul ator [in]
Which switch mode regulator to be set
power Mode[i n]
LOW_POWER
VXMODE=1, Set Low Power no matter of VXSTBY and STANDBY pin
LOW_POWER CTL_BY_PIN

VXMODE=0, VXSTBY =1, Low Power Modeiscontrolled by STANDBY pin
LOW_POWER DISABLED

VXMODE=0, VxSTBY =0, Low Power Modeis disabled.
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure

21.6.12.6 PmicVoltageRegulatorGetPowerMode

Prototype PM C_STATUS Pni cVol t ageRegul at or Get Power Mode (PM C_REGULATOR_VREG
regul ator, PM C_REGULATOR VREG POAER_MODE* power Mbde) ;

This function is to get the current power mode for the regulator
Parameters. regul ator [in]

Which switch mode regulator to get the value from

power Mode [out]

Pointer to storage the powerMode get from the register

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-43

Power Management IC (PMIC)
Returns: status
PMIC_SUCCESS for success and PMIC_ERROR for failure.

21.6.13 Power Management

There is no additional power management implementation done specifically for Atlas Voltage Regulator
other than the implementation described in the Power Management section of this document.

21.6.14 Battery Charger

21.6.15 Data Structures

typedef enum {

BATT_MAI N_CHGR = O, /1 Main battery charger
BATT_CELL_CHGR, I/l CoinCell battery charger
BATT_TRCKLE_CHGR /1 Trickle charger

} BATT_CHARGER

typedef enum {
DUAL_PATH = 0,
S| NGLE_PATH,
SERI AL_PATH,
DUAL_| NPUT_SI NGLE_PATH,
DUAL_| NPUT_SERI AL_PATH,
I NVALI D_CHARGER _MODE

} CHARGER_MODE;

typedef enum {
LOW= 0, //G\D
OPEN, [/H Z
H GH /1 VMC13783
} CHARGERMODE_PI N;

21.6.16 Battery Charger API (Compatible with SC55112 API)

21.6.16.1 PmicBatterEnableCharger

Thisfunction isused to start charging abattery. For different chargers, different voltage and current ranges
are supported.

The main battery charger supports a settable voltage and current. The coincell supports only a settable
voltage. The trickle charger only a settable current.

Prototype PM C_STATUS Pni cBat t er Enabl eChar ger (BATT_CHARGER chgr, U NT8 c_vol t age,
U NT8 c_current);
Parameters. chgr [in]

Charger asdefined in BATT_CHARGER

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-44 Freescale Semiconductor

Power Management IC (PMIC)

c_voltage [in]
Charging voltage. (main and coincell)
c_current [in]
Charging current. (main and trickle)
Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.2 PmicBatterDisableCharger

This function turns off the selected charger. Thisis done by setting the current level to zero for the main
and trickle chargers. The coincell charger is disabled.

Prototype PM C_STATUS Pni cBat t er Di sabl eChar ger (BATT_CHARGER chgr)
Parameters. chgr [in]

Charger asdefined in BATT_CHARGER.
Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.3 PmicBatterSetCharger
This function is used to change the charger setting.

Prototype PM C_STATUS Pni cBat t er Set Char ger (BATT_CHARGER chgr, UINT8 c¢_voltage,
U NT8 c_current);
Parameters. chgr [in]

Charger asdefined in BATT_CHARGER
c_voltage [in]
Charging voltage (main and coincell)
c_current [in]
Charging current (main and trickle)
Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.4 PmicBatterGetChargerSetting

Thisfunctionisused to retrieve what the charger settings are for the sel ected charger, not what is measured.

Prototype PM C_STATUS Pni cBat t er Get Char ger Set t i ng(BATT_CHARGER chgr, Ul NT8*
c_voltage, U NT8* c_current);
Parameters. chgr [in]

Charger asdefined in BATT_CHARGER

*c_voltage [out]

A pointer to what the charging voltage is set to (main and coincell)
*c_current [out]

A pointer to what the charging current is set to (main and trickle)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-45

Power Management IC (PMIC)

Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.5 PmicBatterGetChargeCurrent

This function retrieves the main charger current. Thisvalue is obtained by reading a voltage between
CHRGISNSP — CHRGISNSN. This corresponds to ADC channel 4.

Prototype PM C_STATUS Pni cBat t er Get Char geCurrent (Ul NT16* c_current);
Parameters. *c_current [out]

A pointer to what the measured charger current
Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.6 PmicBatterEnableEol

This function enables End-of-Life comparator.

Prototype PM C_STATUS Pni cBat t er Enabl eEol (voi d) ;
Parameters: None
Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.7 PmicBatterDisableEol

This function disables End-of-Life comparator.

Prototype PM C_STATUS Pni cBatt er Di sabl eEol (void);
Parameters: None
Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.8 PmicBatterLedControl

This function controls charge LED.

Prototype PM C_STATUS Pni cBat t er LedCont r ol (BOOL on);
Parameters. on [in]

If onistrue, LED will be turned on, or otherwise the LED will be turned off.
Returns: This function returns PMIC_SUCCESS if successful.

21.6.16.9 PmicBatterSetReverseSupply

This function sets reverse supply mode.

Prototype PM C_STATUS Pni cBat t er Set Rever seSuppl y(BOOL enabl e) ;

Parameters: enable [i]
If enableistrue, reverse supply mode is enable or otherwise the reverse supply
mode is disabled.

Returns: This function returns PMIC_SUCCESS if successful.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-46 Freescale Semiconductor

Power Management IC (PMIC)

21.6.16.10 PmicBatterSetUnregulated

Thisfunction sets limited charging mode on the main battery charger. If this mode is selected, the current
isno longer controlled, and it is only limited by what the charger can supply.

Prototype PM C_STATUS Pni cBat t er Set Unr egul at ed(BOOL enabl e) ;
Parameters. enabl e [in]

If enableistrue, unregulated charging mode is enabled; otherwise it is disabled.
Returns: This function returns PMIC_SUCCESS if successful.

21.6.17 Battery Charger APl (MC13783 Native For Compatibility with
SC55112)

These functions are available for compatibility with the SC55112 API. Thisis an effort to maintain one
PMIC API, regardless of which PMIC is being used. These are implemented as a stubs returning a
PMIC_STATUS of PMIC_SUCCESS.

21.6.17.1 PmicBatteryEnableAdChannel5

This function enables use of AD channel 5 to read the charge current on the SC55112 PMIC.

Prototype PM C_STATUS Pni cBat t er yEnabl eAdChannel 5();
Parameters: None.
Returns: PMIC _SUCCESS

21.6.17.2 PmicBatteryDisableAdChannel5
This function disables use of AD channel 5 to read the charge current on the SC55112 PMIC.

Prototype PM C_STATUS Pni cBat t er yDi sabl eAdChannel 5() ;
Parameters. None.
Returns: PMIC _SUCCESS,

21.6.17.3 PmicBatterySetCoincellCurrentlimit

This function limits the output current level of coincell charger on the SC55112 PMIC.

Prototype PM C_STATUS Pni cBat t erySet Coi ncel | Currentlinit (U NT8
coincell currentlevel);

Parameters. coincel lcurrentlevel [IN]
coincell current level
Returns: PMIC _SUCCESS,

21.6.17.4 PmicBatteryGetCoincellCurrentlimit
This function returns the output current limit of coincell charger on the SC55112 PMIC.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-47

Power Management IC (PMIC)

Prototype PM C_STATUS Pni cBat t er yGet Coi ncel | Currentlimit (Ul NT8*
coi ncell currentlevel);

Parameters. coincel | currentlevel [OUT]
Pointer to coincell current level

Returns: PMIC _SUCCESS,

21.6.17.5 PmicBatterySetEolTrip
This function sets the end-of-life threshold on the SC55112 PMIC.

Prototype PM C_STATUS Pni cBatterySetEol Trip (U NT8 eoltriplevel);
Parameters. eoltriplevel [IN

eol trip level
Returns: PMIC_SUCCESS,

21.6.17.6 PmicBatteryGetEolTrip
This function returns the end-of-life threshold on the SC55112 PMIC.

Prototype PM C_STATUS Pni cBatteryGetEol Trip (Ul NT8* eoltriplevel);
Parameters. eoltriplevel [OUT]

pointer to eol trip level
Returns: PMIC _SUCCESS,

21.6.18 Battery Charger API (MC13783 Native)

21.6.18.1 PmicBatterySetChargeVoltage

This function programs the output voltage of the charge regulator.
Prototype PM C_STATUS Pni cBat t er ySet Char geVol t age(Ul NT8 char gevol t agel evel) ;
Parameters. char gevol tagel evel [IN
voltage level
level 0 =4.05V
1=4.10V
2=4.15V
3=4.20V
4=4.25V
5=4.30V
6 =3.80V ... lowest setting
7 =450V
Returns: PMIC _STATUS

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-48 Freescale Semiconductor

Power Management IC (PMIC)

21.6.18.2 PmicBatteryGetChargeVoltage

This function returns the output voltage of the charge regulator.

Prototype PM C_STATUS Pni cBat t er yGet Char geVol t age(Ul NT8* char gevol t agel evel) ;
Parameters. char gevol t agel evel [OUT]

pointer to voltage level
Returns: PMIC _STATUS

21.6.18.3 PmicBatterySetChargeCurrent

This function programs the charge current limit level to the main battery.

Prototype PM C_STATUS Pni cBat t erySet Char geCurrent (Ul NT8 chargecurrentlevel);
Parameters. chargecurrentlevel [IN
current level

level 0=0mA (max value)
1=100 mA (max value)
(in increment of 100 mA)
13 =1300 mA (max value)
14 = 1800 mA (max value)
15 = disables the current limit
Returns: PMIC _STATUS

21.6.18.4 PmicBatteryGetChargeCurrent

This function returns the charge current setting of the main battery.

Prototype PM C_STATUS Pni cBat t er yGet Char geCurrent (Ul NT8* chargecurrentlevel);
Parameters. char gecurrent | evel [OUT]

pointer to current level
Returns: PMIC _STATUS

21.6.18.5 PmicBatterySetTrickleCurrent

This function programs the current of the trickle charger.

Prototype PM C_STATUS Pni cBatterySet Trickl eCurrent (U NT8 trickl ecurrentlevel);
Parameters. tricklecurrentlevel [IN]

trickle current level

level 0=0mA

1=12mA

... (inaddition of 12 mA per level)

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-49

Power Management IC (PMIC)

6=72mA
7=84mA
Returns: PMIC_STATUS

21.6.18.6 PmicBatteryGetTrickleCurrent

This function returns the current of the trickle charger.

Prototype PM C_STATUS Pni cBatteryGet Trickl eCurrent (U NT8* tricklecurrentlevel);
Parameters. trickl ecurrentl evel [OUT]

pointer to trickle current level
Returns: PMIC _STATUS

21.6.18.7 PmicBatteryFETControl
Thisfunction programs the control mode and setting of BPFET and FETOVRD BATTFET and BPFET to
be controlled by FETCTRL bit or hardware.
Prototype PM C_STATUS Pni cBatteryFETControl (U NT8 fetcontrol);
Parameters. fetcontrol [IN]
BPFET and FETOVRD control mode and setting
input = 0 (BATTFET and BPFET outputs are controlled by hardware)
=1 (BATTFET and BPFET outputs are controlled by hardware)
=2 (BATTFET low and BATTFET high, controlled by FETCTRL)
=3 (BATTFET high and BATTFET low, controlled by FETCTRL)
Returns: PMIC _STATUS

21.6.18.8 PmicBatteryReverseDisable

This function disables the reverse mode.

Prototype PM C_STATUS Pni cBatt eryRever seDi sabl e();
Parameters: None
Returns: PMIC _STATUS

21.6.18.9 PmicBatteryReverseEnable

This function enables the reverse mode.

Prototype PM C_STATUS Pri cBat t er yRever seEnabl e() ;
Parameters: None
Returns: PMIC _STATUS

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-50 Freescale Semiconductor

Power Management IC (PMIC)

21.6.18.10 PmicBatterySetOvervoltageThreshold

This function programs the overvoltage threshold value.
Prototype PM C_STATUS Pni cBatt erySet Over vol t ageThr eshol d(Ul NT8 ovt hreshol dl evel);
Parameters. ovt hreshol dl evel [IN]
overvoltage threshold level
High to low, Low to High (5.35V)
Returns: PMIC _STATUS

21.6.18.11 PmicBatteryGetOvervoltageThreshold

This function returns the overvoltage threshold value.

Prototype PM C_STATUS Pni cBat t er yGet Over vol t ageThr eshol d (Ul NT8*
ovt hreshol dl evel) ;

Parameters: ovt hreshol dl evel [OUT]
pointer to overvoltage threshold level

Returns: PMIC_STATUS

21.6.18.12 PmicBatteryUnregulatedChargeDisable

Thisfunction disablesthe unregul ated charge path. The voltage and current limitswill be controlled by the
charge path regulator.

Prototype PM C_STATUS Pmi cBat t er yUnr egul at edChar geDi sabl e() ;
Parameters. None
Returns: PMIC _STATUS

21.6.18.13 PmicBatteryUnregulatedChargeEnable

This function enables the unregul ated charge path. The settings of the charge path regulator (voltage and
current limits) will be overruled.

Prototype PM C_STATUS Pni cBat t er yUnr egul at edChar geEnabl e() ;
Parameters: None
Returns: PMIC _STATUS

21.6.18.14 PmicBatteryChargelLedDisable
This function disables the charging LED.

Prototype PM C_STATUS Pni cBat t er yChar geLedDi sabl e();
Parameters: None
Returns: PMIC _STATUS

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-51

Power Management IC (PMIC)

21.6.18.15 PmicBatteryChargelLedEnable
This function enables the charging LED.

Prototype PM C_STATUS Pni cBat t er yChar geLedEnabl e() ;
Parameters: None
Returns: PMIC _STATUS

21.6.18.16 PmicBatteryEnablePulldown
This function enables the 5k pull-down resistor used in the dual path charging.

Prototype PM C_STATUS Pni cBat t er yEnabl ePul | down() ;
Parameters: None.
Returns: PMIC_STATUS.

21.6.18.17 PmicBatteryDisablePulldown
This function disables the 5k pull-down resistor used in the dual path charging.

Prototype PM C_STATUS Pni cBat t eryDi sabl ePul | down() ;
Parameters: None.
Returns: PMIC_STATUS.

21.6.18.18 PmicBatteryEnableCoincellCharger

This function enables the coincell charger.

Prototype PM C_STATUS Pni cBat t er yEnabl eCoi ncel | Charger();
Parameters. None
Returns: PMIC _STATUS

21.6.18.19 PmicBatteryDisableCoincellCharger

This function disables the coincell charger.

Prototype PM C_STATUS Pni cBat t er yDi sabl eCoi ncel | Charger () ;
Parameters. None
Returns: PMIC _STATUS

21.6.18.20 PmicBatterySetCoincellVoltage

This function programs the output voltage level of the coincell charger.

Prototype PM C_STATUS Pni cBat t er ySet Coi ncel | Vol t age (Ul NT8 coi ncel | vol t agel evel) ;
Parameters. vot | agel evel [IN|
voltage level

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-52 Freescale Semiconductor

Power Management IC (PMIC)

level 0 =27V
1=28V
2=29V
... (in 100MV increment)
6=3.3V
Returns: PMIC _STATUS

21.6.18.21 PmicBatteryGetCoincellVoltage

This function returns the output voltage level of the coincell charger.

Prototype PM C_STATUS Pni cBat t er yGet Coi ncel | Vol t age (Ul NT8* coi ncel | vol t agel evel) ;
Parameters. vol t agel evel [OUT]

pointer to voltage level
Returns: PMIC _STATUS

21.6.18.22 PmicBatteryEnableEolComparator
This function enables the end-of-life function instead of the LOBAT.

Prototype PM C_STATUS Pni cBat t er yEnabl eEol Conpar at or () ;
Parameters. None
Returns: PMIC _STATUS

21.6.18.23 PmicBatteryDisableEolComparator

This function disables the end-of-life comparator function.

Prototype PM C_STATUS Pni cBat t er yDi sabl eEol Conpar at or () ;
Parameters. None
Returns: PMIC _STATUS

21.6.18.24 PmicBatteryGetChargerMode

Thisfunction returnsthe charger mode (ie. Dual Path, Single Path, Serial Path, Dual Input Single Path and
the Dual Input Serial Path).

Prototype PM C_STATUS Pni cBat t er yGet Char ger Mode(CHARGER_MODE *node) ;
Parameters: node [OUT]

pointer to charger mode
Returns: PMIC _STATUS

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 21-53

Power Management IC (PMIC)

21.6.19 Power Management

There is no additional power management implementation done specifically for Atlas Battery other than
the implementation described in the Power Management section of this document.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

21-54 Freescale Semiconductor

Power Manager

Chapter 22
Power Manager

The Power Manager module is used to help control the power efficiency of the system. Power Manager
provides aframework that provides interface to application programs, control of peripheral device power
states and allows peripheral devicesto self manage their power state.

22.1 Power Manager Summary

The following table provides a summary of source code location, library dependencies and other BSP
information.

Table 22-1. Power Manager Driver Attributes

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
MXARM11 CSP Driver Path N/A
CSP Driver Path N/A
CSP Static Library N/A
Platform Driver Path N/A
Import Library N/A
Driver DLL Pm.dll
Catalog ltem Core OS —>CEBase—>Core OS Services —>Power
Management —> Power Management (Full)
SYSGEN Dependency SYSGEN_PM
BSP Environment Variables N/A

22.2 Requirements
Include and test the power manager provided in the Platform Builder public directory.

22.3 Hardware Operation

Power Manager does not interface directly to peripheral devices.

22.4 3-Stack Software Operation

The Platform Builder helps documents the power manager framework and sample power manager. See
Windows Embedded CE Features> Power M anagement.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 22-1

Power Manager

For information about the system power statesimplemented in the sample power manager, see Platform
Builder help:

Windows Embedded CE Features > Power Management > Power States> System Power States>
Example System Power States

2241 Power Management

Power Manager can export the stream interface and register as ageneric power-manageabl e devicedriver.
It can receive |IO_POWER _XX notification and configure PMIC and wakeup source in thread context.
Thefollowing table describes the power consumption goal and the actionsthat can be taken to achieve that
goal.

22.4.2 Image Configuration

Table 22-2. Power Consumption Goals

Mode Action

suspend (1) keep power supply to memory, set SW2A work in low power
mode

(2) low down the voltage to ARM and QPER, set SW1 work in lower
power mode

() Set all PMIC regulators and GPO control by standby pin

(4) Close PMIC SW3 supply

audio placyback | (1) keep power supply to memory

(2) Close PIMC regulators that not been used
(3) Close GPO 1,2,3

(4) Close PMIC SW3 supply

(5) replace MSFT WMA codec with FSL codec

(6) Add DVFC mode to NK image

video playback | (1) same as audio playback

To build the audio playback power consumption image, follow these steps:
1. Remove kernel debug and KITL from the NK image.

2. Remove ATA, Camera, TV-Out and USB high-speed Host 2 driver module from the workspace,
because the power supply for those items has been gated in power policy enable.

3. Replace Microsoft WMA and MWV codec with Freescale codec.
4. Add the DVFC module to the image.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

22-2 Freescale Semiconductor

Power Manager

5. Perform asysgen.

To enable optimization for the audio playback power consumption function, follow these steps:
1. Build an "Optimization audio playback power consumption image".
2. Bootup the device and enter the eboot menu.
— Set Power Policy to Enable.
— Save the changes and boot up the device.

NOTE

The 3-Stack power policy only recognizes NAND audio/video playback
files. Modules that were not called by the audio and video playback may not
work well when power policy is enabled.

22.4.3 Registry Settings

In this system power state, the user isinteracting actively with the system.

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Power\ St at e\ On]
"Def aul t"=dword: 0 ; DO
"Fl ags" =dwor d: 10000 ; POWER_STATE_ON

In this system power state, the user may be interacting with the
system but not actively. For instance, they m ght be | ooking at
the screen or they might not. |In this power state the systemis
"idle" but still in use by the user, so all devices still be
operational (but possibly with some | atency).

[HKEY LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Power\ St at e\ User | dl €]
"Def aul t"=dword: 1 ; D1
"Fl ags" =dword: 0

In this system power state, the user is not considered to be using
the system even passively. However, the systemis not suspended
and system prograns nay be doing work on the user's behalf. In this
power state the systemis "idle" but mght still be used by system
prograns. Devices that aren't actively doing work m ght be powered
down.

[HKEY LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Power\ St at e\ Systen dl €]
"Def aul t " =dword: 2 ; D2
"Fl ags" =dword: 0

In this system power state, the systemis suspended. Devices are turned
off, interrupts are not being serviced, and the CPU is stopped.
[HKEY LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Power\ St at e\ Suspend]
"Def aul t " =dword: 3 ; D3
"Fl ags" =dwor d: 200000 ; POWER_STATE_SUSPEND

Entering this system power state reboots the systemw th a cl ean object
store. If an OEMincludes this state in their platform they mnust
support Kernel loControl () with | OCTL_HAL_REBOOT.

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont rol \ Power\ St at e\ Col dReboot]

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 22-3

Power Manager

"Def aul t " =dword: 4 ; D4
"Fl ags" =dwor d: 800000 ; POWER_STATE_RESET

Entering this system power state reboots the system |f an CEMincludes this state in
their platform they must support KernelloControl () w th | OCTL_HAL_REBOOCT.

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Power\ St at e\ Reboot]
"Def aul t " =dword: 4 ; D4
"Fl ags" =dwor d: 800000 ; POWER_STATE_RESET

Entering this system power state shuts down the system Al devices are powered off,
resum ng may require user intervention. The systemw Il cold boot on resune.
Supporting this power state requires that the CEM custoni ze the Power Manager

to recogni ze POAER_STATE_OFF and take platformspecific action to renove

power .
HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Contr ol \ Power\ St at e\ Shut Down]
"Def aul t " =dword: 4 ; D4
"Fl ags" =dwor d: 20000 ; POWER_STATE_COFF

Default Activity Timers

These registry values set up activity tinmers inside the Power Manager.

GWES and/or ot her system conponents need to reset them periodically

to keep the associated inactivity event from being set.

Defining timers causes the PMto create a set of named events for resetting
the timer and for obtaining its activity status. See the PM docunentation
for more information.

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol \ Power\ Acti vi t yTi mer s\ User Acti vi ty]
"Ti meout "=dword: 1 ; in seconds

[HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Control \ Power\ Acti vityTi mer s\ SystemActi vity]
"Ti meout "=dword: 1 ; in seconds

[HKEY_LOCAL_MACHI NE\ Syst emk Cur rent Cont r ol Set\ Cont r ol \ Power\ Ti meout s]
"ACUser | dl e" =dwor d: 00000000 ; in seconds
" ACSyst em dl e" =dwor d: 00000000 ; in seconds

"Batt User | dl e"=dwor d: 00000000 ; in seconds
"Bat t Syst enl dl e" =dwor d: 00000000 ; in seconds

22.5 Unit Test

The power applet in the control panel is used to test power manager. The timer settings to transition
between system power states can be adjusted and proper behavior can be observed.

22.6 Power Manager API Reference

The Power Manager interfaces with applications and device drivers. The following sections provide
reference to the definition of these program interfaces.

22.6.1 Application Interface
The power manager API’s for applications are documented in help at:

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

22-4 Freescale Semiconductor

Power Manager

* Windows Embedded CE Features> Power Management > Power M anager I nterfaces>
Application I nterface

* Windows Embedded CE Features > Power Management > Power Manager | nterfaces>
Notification Interface

* Windows Embedded CE Features> Power Management > Power M anagement Reference

22.6.2 DeviceDriver Interface

The interface for device driversis documented in help at:

* Windows Embedded CE Features> Power Management > Power M anager I nterfaces>
Device Driver Interface

* Windows Embedded CE Features> Power Management > Power M anagement Reference

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 22-5

Power Manager

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

22-6 Freescale Semiconductor

Secure Digital Host Controller Driver

Chapter 23

Secure Digital Host Controller Driver

The Secure Digital Host Controller (SDHC) module supports Multimedia Cards (MMC), Secure Digital
Cards (SD) and Secure Digital 1/0 and Combo Cards (SD10). The i.MX31 device hastwo SDHC
hardware modules. EAch host controller supports connection to only one card. On the 3-Stack board, only

host1isconnected to the SD card socket. The SDHC driver providestheinterface between Microsoft’'s SD
Bus driver and the SDHC hardware.

23.1 SDHC Driver Summary

Table 23-1 provides a summary of source code location, library dependencies and other BSP information.

Table 23-1. SDHC Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_VA1

MXARM11 SOC Driver Path

.\PLATFORM\COMMON\SRC\SOC\FREESCALE\MXARM11_FSL_V1\SDHC

SOC Driver Path

N/A

SOC Static Library

mxarm11_sdhc.lib

Platform Driver Path

.\PLATFORM\< TGTPLAT>\SRC\DRIVERS\SDHC

Import Library N/A
Driver DLL sdhc.dll
Catalog ltem Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > SD Controller >

SD Host Controller 1
Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > SD Controller >
SD Host Controller 2

SYSGEN Dependency

SYSGEN_SD_MEMORY=1

BSP Environment Variables

BSP_SDHC1=1 and BSP_SDHC2=1

23.2 Supported Functionality

The SDHC driver enables the 3-Stack board to provide the following software and hardware support:
Supportsthe i.MX31 Secure Digital Host Controllers
Supports two Host Controllersto be functional at the sametime

Supports SD cards

Supports Power Management modes, full on and full off only

23.3 Hardware Operation

Refer to the chapter on the Secure Digital Host Controller (SDHC) in the hardware specification document

for detailed operation and programming information.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

Secure Digital Host Controller Driver

23.3.1 Conflicts with Other Peripherals

In Alternate Mode 1, SDHCL conflictswith Memory Stick (MS1). Configure the pinsin Functional Mode

to activate SDHCL1 signals. In Functional Mode, SDHC2 conflicts with PCMCIA. Configure the pinsin
Alternate Mode 1 to activate SDHC2 signals.

23.4 Software Operation

The SDHC driver follows the Microsoft recommended architecture for Secure Digital Host Controller
drivers. The details of this architecture and its operation can be found in the Platform Builder Help under
the heading “ Secure Digital Card Driver Development Concepts’, or in the online Microsoft documenta-

tion at the following URL:
http://msdn2.microsoft.com/en-ug/library/aa925967 .aspx

23.4.1 Required Catalog Items

23.4.1.1 SD and MMC memory card support

Catalog > Device Drivers> SDIO > SD Memory.

23.4.2 SDHC Registry Settings
The following registry keys are required to properly load the SDHC driver.

#if (defined BSP_SDHC1 || defined BSP_SDHC2)
[HKEY_LOCAL_MACHI NE\ Dri ver s\ SDCARD\ Cl i ent Dri ver s\ d ass\ SDMenory_d ass]
"Bl ockTr ansf er Si ze"=dword: 100 ; Overwite fromdefault 64 bl ocks.
"Singl eBl ockWites"=dword:1 ; alternatively force the driver to use single block
access

[HKEY_LOCAL_MACHI NE\ Dri ver s\ SDCARD\ Cl i ent Dri ver s\ d ass\ MMC_Cl ass]
"Bl ockTransferSi ze"=dword: 100 ; Overwrite from default 64 bl ocks.
"SingleBl ockWites"=dword:1 ; alternatively force the driver to use single block
access

[HKEY_LOCAL_MACHI NE\ Syst eml St or ageManager\ Profi | es\ MVC]
"Name"="MMC Car d"
" Fol der " =" MVC"

[HKEY_LOCAL_MACHI NE\ Syst em St or ageManager\ Profi | es\ SDMenor y]
"Nanme"="SD Menory Card"
"Fol der"="SD Menory"

#endi f

| F BSP_SDHC1
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ SDHC_ARML1_1]
"Order"=dword: 21
"Dl "="sdhc.dlIl"
"Prefix"="SDH"
"Controllerl STPriority"=dword: FB
"l ndex" =dword: 1
ENDI F ; BSP_SDHC1

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

23-2

Freescale Semiconductor

Secure Digital Host Controller Driver

| F BSP_SDHC2
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ SDHC_ARML1_2]
"Order"=dword: 21
"Dl "="sdhc.dlI"
"Prefix"="SDH"
"Controllerl STPriority"=dword: FB
"1 ndex" =dwor d: 2
ENDI F ; BSP_SDHC2

23.4.3 DMA Support

SDHC driver supportsDM A mode and non-DMA mode of datatransfer. Thedriver defaultsto DMA mode
of transfer. The driver does not allocate or manage DMA buffersinternally. All buffers are allocated and
managed by the upper layers, the detail s of which are givenintherequest submitted to the driver. For every
request submitted to it, the driver attempts to build a DMA Scatter Gather Buffer Descriptor list for the
buffer passed to it by the upper layer. For cases where thislist cannot be built, the driver falls back to the
non-DMA mode of transfer. The default configuration is maintained in the file bsp_cfg.h using the
parametersBSP_SDMA_SUPPORT_SDHC1 and BSP_SDMA_SUPPORT_SDHC2. A value of TRUE
means DMA is the default mode, and for cases where DMA cannot be used, the driver falls back to a
non-DMA mode. A vaue of FAL SE means non-DMA mode is the default and DMA mode is not
attempted.

For the driver to attempt to build the Scatter Gather DMA Buffer Descriptors, the upper layer should
ensure that the buffer meetsthe following criteria:

» Start of the buffer should be aword aligned address

* Number of bytes to transfer should be word aligned
Dueto cache coherency issuesarising from processor and SDMA access of the memory, the above criteria
isfurther restricted for the read or receive operation (it is not applicable for write or transmit):

» Start of the buffer should be a cache line size (32 bytes) aligned address

* Number of bytesto transfer should be cache line size (32 bytes) aligned

23.4.4 Power Management

The primary methods for limiting power in the SDHC module isto gate off all clocksto the controllers
and to cut off power to the card slot when no cards are inserted. When a card isinserted into any of the
dots, that slot alone is powered and the clocks to that controller alone are gated on. While using memory
cards, the clock to the host controller and the clock to memory cards are gated off when ever the controller
isidle. For SDIO cards, both the clocks stay on all the time.

SDHC driver supports the full power on and full power off states. In full power off state, the clocksto the
controllers and the power to the inserted cards are turned off. When powered on, all cards inserted before
and after the power down is detected and mounted.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 23-3

Secure Digital Host Controller Driver

23.4.41 PowerUp

Thisfunction isimplemented to support resuming amemory card operation that was previoudly terminated
by calling PowerDown() API. When using this function, power to the card is restored and clocks to the
pertaining controller is restarted.

The SDHC driver isnotified of adevice status change. Thisresultsin signaling the SD busdriver of acard
removal followed by acard insertion. The card is re-initialized and is mounted so that all the operations
scheduled during a power down resume. SDIO cardsisinitialized on resume.

The details of this architecture and its operation can be found in the Platform Builder Help under the
heading “Power On and Off Notifications for Secure Digital Card Drivers’, or in the online Microsoft
documentation at the following URL:

http://msdn2.microsoft.com/en-ug/library/aa910129.aspx
Note that this function isintended to be called only by the Power Manager.

23.4.4.2 PowerDown

This function has been implemented to support suspending all currently active SD operations just before
the entire system enters the low power state. Note that this function isintended to be called only by the
Power Manager. This function gates off all clocks to the controllers and powers down all the card slots.
23.4.4.3 IOCTL_POWER_CAPABILITIES

N/A

23.4.44 I0CTL_POWER_GET
N/A

23.4.4.5 |IOCTL_POWER_SET
N/A

23.5 Unit Test

The SDHC driver is tested using the following tests included as part of the Windows CE 6.0 Test Kit
(CETK).

» Storage Device Block Driver Read/Write Test

» Storage Device Block Driver API Test

» File System Driver Test

* Partition Driver Test

23.5.1 Unit Test Hardware
Table 23-2 lists the required hardware to run the unit tests.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

23-4 Freescale Semiconductor

Secure Digital Host Controller Driver

Table 23-2. Hardware Requirements

Requirements Description

SD Cards SanDisk (128MB, 256MB, 512MB)
Kingston (256 MB)

NCP (128MB, 256MB, 512MB)
Transcend (128MB, 256MB, 512MB)
Toshiba (1GB)

MMC Cards Not supported on 3DS board.

23.5.2 Unit Test Software

Table 23-3 lists the required software to run the unit tests.
Table 23-3. Software Requirements

Requirements Description
tux.exe Tux test harness, which is needed for executing the test
kato.dll Kato logging engine, which is required for logging test data
rwtest.dll Storage Device Block Driver Read/Write Test dll file
disktest.dll Storage Device Block Driver API Test dll file
fsdtst.dll File System Driver Test dIl file
msparttest.dll Partition Driver Test dll file
perflog.dil Test dll for log performance data

23.5.3 Building the Tests

All the above mentioned tests come pre-built as part of the CETK. No steps are required to build these
tests. These test files can be found in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4l

23.5.4 Running the Tests

Thefollowing are the tests avail able and the test procedures for each of the tests. For detailed information
on the below tests see the relevant sub sections under “CETK Tests” in the Platform Builder Help, or view
the Microsoft online documentation at the following URL:

http://msdn2.microsoft.com/en-ug/library/aa934353.aspx

23.5.4.1 Storage Device Block Driver Read/Write Tests

Use the command line tux —0 —d rwtest —c “-z" to run the tests. Note that thistest only testsone card at a
time.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 23-5

Secure Digital Host Controller Driver

23.5.4.2 Storage Device Block Driver API Tests

Use the command line tux —0 —d disktest —c “-z” to run the tests. Note that thistest only tests one card at
atime. CETK cases #4006, #4007, #4012, #4013, and #4021 can be safely skipped

23.5.4.3 File System Driver Test

Use command linetux —o—d fsdtst —¢ “-p SDM emory —z” to run the testson an SD card. For MMC cards,
usetux —o—d fsdtst c“-p MMC —z".

Note that this function tests all the cards inserted and requires the cards to be formatted prior to running
thetest. For higher capacity cards, the test takesalong timeto complete. Thereforeit is recommended that
the system power management (from control panel) be configured so that the system does not enter
suspend state during test execution. CETL case #50119 can be safely skipped

23.5.4.4 Partition Driver Test
Use command line tux —o0 —d mspar ttest —c “-z” to run the tests.

Note that cards should be of size 256M B and higher. For higher capacity cards, the test takeslong time to
complete. Thereforeit is recommended that the system power management (from control panel) be
configured so that the system does not enter suspend state during test execution.

23.5.5 System Testing

The following system tests can be performed to verify the operation of the SD and MMC memory cards.

* Usethe Start > Settings > Control Panel > Storage Manager to format and create partitions on the
mounted memory cards

» Establish ActiveSync connection over USB and transfer files to/from the memory cards
* Write mediafiles to memory storage. Use Windows Media Player to playback mediafiles from

memory storage
23.6 Secure Digital Card Driver APl Reference

Detailed reference information for the Secure Digital Card driver may be found in Platform Builder Help
under the heading “ Secure Digital Card Driver Reference”, or in the online Microsoft documentation at
thefollowing URL:

http://msdn2.microsoft.com/en-ug/library/aa912994.aspx

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

23-6 Freescale Semiconductor

Serial Driver

Chapter 24
Serial Driver

24.1 Serial Driver Summary

Thei.MX31 device hasfive interna UARTs (Universal Asynchronous Receiver Transmitters): UART1,
UART2, UARTS3, UART4 and UART5. UARTS5 supports serial and slow infrared communication and
other UARTSs support only serial communication. All the UART modules are capable of standard RS-232
non-return-to-zero (NRZ) encoding formats and UARTS5 in addition supports slow infrared modes.

The seria port driver isimplemented as a stream interface driver and supports all the standard 1/0 control
codes and entry points. The serial port driver handles all the internal UARTs and the infrared 1/0 ports.

In the Windows CE 6.0 BSP implementation, the hardware-specific code that correspondsto the serial port

driver's lower layer is implemented as the platform-dependent driver (PDD). This PDD links with

Microsoft provided public serial MDD library (com_mdd2.lib) to form the complete serial port driver.

Table 24-1 provides a summary of source code location, library dependencies and other BSP information.
Table 24-1. Serial Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_VA1
MXARM11 SOC Driver Path .\PLATFORM\COMMON\SRC\SOC\freescale\mxarm11_fsl_v1\SERIAL
SOC Driver Path .\PLATFORM\COMMON\SRC\SOC\freescale\mx31_fs|_v1\SERIAL
SOC Static Library serial_mx31_fsl_v1.lib
serial_mxarm11_fsl_v1.lib
Platform Driver Path . \PLATFORM\<TGTPLAT>\SRC\DRIVERS\SERIAL
Import Library com_mdd2.lib
Driver DLL csp_serial.dll
Catalog Item for MGN Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I| > Device Drivers >

Serial > UART2 serial port
Third Party > BSPs > Freescale i.MX31 3DS: ARMV4I > Device Drivers >
Serial > UART3 serial port

SYSGEN Dependency N/A

BSP Environment Variables for MGN | BSP_SERIAL_UART2 =1
BSP_SERIAL_UART3=1

24.2 Supported Functionality

The seria port driver enables the 3-Stack board to provide the following software and hardware support:
» Conformsto RS232 protocol standard
* Supports RTS/CTS hardware flow control function

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 24-1

Serial Driver

» Supports up to 115200 BaudRate
* Supportsinternal UART controller
» Supports power management mode full on/ full off

24.3 Hardware Operation

Refer to the chapter on the UART in the hardware specification document for detailed operation and
programming information.

24.3.1

UART1 and UART2 do not have conflicts with any other module and are configured in functional mode.
UART3 has conflicts with SOCI1 and SOCI3 modules and must be configured in alternate mode 1.
UART4 has conflicts with ATA and USB OTG modules and must be configured in alternate mode 1.
UARTS5 has conflicts with PCM CIA and USB modules and must be configured in alternate mode 2.
Table 24-2 shows pinsto be configured for seria driver for different UARTS.

Table 24-2. UART Setting for the Serial Driver

Conflicts with Other Peripherals

U:)F:tT Pins To Be Configured I/0 MUX Settings Comment

RXD1 TXDA1 RTS1 CTSH

UARTA1 Functional Mode No support
DTR_DCE1 DSR_DCE1 RI_DCEA1 DCD_DCE1

UART2 | RXD2 TXD2 RTS2 CTS2 Functional Mode | Connectto DMB

UART3 |SOCI3_MOSI |SOCI3_MISO |SOCI3_SCLK |SOCI3_SPI_RDY |Functional Mode |No support

UART4 |ATA_CSO ATA_CS1 ATA_DIOR ATA_DIOW Alternate Mode1 No support

UART5 |PC_VS2 PC_BVD1 PC_BVD2 PC_RST Alternate Mode 2 | Connect to GPS

and SIR

24.4 Software Operation

The serial driver follows the Microsoft recommended architecture for serial drivers. The details of this
architecture and its operation can be found in the Platform Builder Help at the following location:
Developing a Device Driver > Windows CE EmbeddedDrivers> Serial Drivers> Serial Driver
Development Concepts.

24.41

The following registry keys are required to properly load the Serial driver.

| F BSP_SERI AL_UART3

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ COMB]
"Devi ceArrayl ndex" =dwor d: 0
"1 oBase" =dwor d: 5000C000
"l oLen"=dwor d: D4

Serial Registry Settings

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-2 Freescale Semiconductor

Serial Driver

"Prefix"="COM
"D |"="csp_serial.dI"
"I ndex" =dwor d: 3
"Order"=dword: 9
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ COMB\ Uni nodeni
"Tsp"="Uni nodemdl | "
"Devi ceType" =dword: 0
"Friendl yName" =" MGN COVB UNI MODEM'
"DevConfig"=hex: 10,00, 00,00, 05,00, 00,00, 10,01, 00,00, 00,4B, 00,00, 00,00, 08, 00, 00,
00, 00, 00, 00
ENDI F; BSP_SERI AL_UART3

| F BSP_SERI AL_UART2
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ COM2]
"Devi ceArrayl ndex" =dwor d: 0
"1 oBase" =dwor d: 43F94000
"l oLen"=dwor d: D4
"Prefix"="COM
"D |l"="csp_serial.dI"
"I ndex" =dwor d: 2
"Order"=dword: 9
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ COM2\ Uni nodeni
"Tsp"="Uni nodemdl | "
"Devi ceType" =dword: 0
"Friendl yName" =" MGN COVR2 UNI MODEM'
"DevConfig"=hex: 10,00, 00,00, 05,00, 00,00, 10,01, 00,00, 00, 4B, 00,00, 00,00, 08, 00, 00,
00, 00, 00, 00
ENDI F ; BSP_SERI AL_UART2

24.4.2 DMA Support

The serial driver usesthe SDMA controller to transfer the dataand minimizethe processing that isrequired
by the ARM core. The serial driver supports both DMA mode and Non-DMA mode of operation. DMA
can be enabled/disabled using the Boolean variable present in thefile
WINCEG00\PLATFORM\<TGTPLAT>\SRC\INC\bsp_cfg.h.

Individual UARTSs can be configured for DMA using the variables and it is possible that some UARTS
operate in one mode and the othersin different mode (for example, UART1 in DMA mode, UART3 in
non-DMA mode). To enable DMA, set the Boolean variable to TRUE and for Non-DMA set the variable
to FALSE. Table 24-3 shows the variables used to enable/disable the DMA:

Table 24-3. UART DMA Variables

UART Port Variable
UART2 BSP_SDMA_SUPPORT_UART2
UART3 BSP_SDMA_SUPPORT_UART3

When SDMA is enabled, buffers for Tx and Rx are allocated using Hal AllocateCommonBuffer() in the
initialization of the SIR driver. These buffers are used during the data transfer using SDMA.

DMA buffer size, both Rx and Tx, can be configured using the two variables defined in bsp_cfg.h. By
default DMA buffer sizeis configured as

#def i ne SERI AL_SDVA RX_BUFFER Sl ZE 0x200

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 24-3

Serial Driver

#def i ne SERI AL_SDVA TX_BUFFER Sl ZE 0x400

where SERIAL_SDMA_RX_BUFFER_SIZE isthereceive DMA buffer size and
SERIAL_SDMA_TX_BUFFER_SIZE isthe transmit DMA buffer size.

24.5 Unit Test

The serial driver istested using the Serial Port Driver Test and Serial Communications Test included as
part of the Windows CE 6.0 Test Kit (CETK). The Serial Port Test assesses whether the driver supports
configurable device parameters, such as baud rate and data bits. The test al so assesses additional
functionality such as COM port events, escape functions and time-outs.

24.5.1 Unit Test Hardware

Table 24-4 lists the required hardware to run the unit tests.
Table 24-4. Hardware Requirements

Requirements Description

<TGTSOC> PDK board with serial port to be tested Serial ports can be attached as COM1 through COMX.

24.5.2 Unit Test Software

Table 24-5 lists the required software to run the unit tests.
Table 24-5. Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
SerDrvBvt.dll Test .dll file for Serial Port Driver Test

24.5.3 Building the Serial Port Driver Tests

The serial port driver tests come pre-built as part of the CETK. No steps are required to build these tests.
The Pserial.dll file can be found with the other required CETK filesin the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

24.5.4 Running the Serial Port Driver Test
To run the Serial Driver Test use the following command line:
tux —o—d serdrvbvt -c"-p COM3:" .

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-4 Freescale Semiconductor

Serial Driver

For detailed information on the Seria Port tests, see Windows Embedded CE 6.0> WindowsEmbedded
CE Test Kit > CETK Testsand Test Tools> CETK Tests> Serial Port Tests> Serial Port Driver Test
in the Windows CE 6.0 Help Documentation section.

NOTE

Dueto hardware connections with the Bluetooth chip, COM2 failstest cases
16 and 18. COM 3 should pass all the serial port tests.

Serial port tests are designed to test that the serial port driver works properly and that the APIs behave
correctly. It should pass all of the test cases.

Table 24-6 describes the Seria Port driver test cases.

Table 24-6. Serial Port Driver Test Cases

Test Case

Description

11

Configures the port and writes data to the port at all possible baud rates, data bits, parities, and
stop bits. This test fails if it cannot send data on the port with a particular configuration.

12

Tests the SetCommEvent and GetCommEvent functions. This test fails if the driver does not
properly support the SetCommEvent or GetCommEvent functions.

13

Tests the EscapeCommFunction function. This test fails if the driver does not support one of
the Microsoft Win32 EscapeCommpFunction functions.

14

Tests the WaitCommEvent function on the EV_TXEMPTY event. The test creates a thread to
send data and waits for the EV_TXEMPTY event to occur when the thread finishes sending data.
This test fails if the WaitCommEvent function behaves improperly or if the EV_TXEMPTY event
does not signal appropriately.

15

Tests the SetCommBreak and ClearCommBreak functions. This test fails if the driver does not
properly support the SetCommBreak or ClearCommBreak functions.

16

Makes the WaitCommEvent function return a value when the handle for the current COM port
is cleared. This test fails if the WaitCommEvent function behaves improperly.

17

Makes the WaitCommEvent function return a value when the handle for the current COM port
is closed. This test fails if the WaitCommEvent function behaves improperly.

18

Tests the SetCommTimeouts function and verifies that the ReadFile function properly times out
when no data is received. This test fails if the COM timeouts do not function correctly.

19

Verifies that previous Device Control Block (DCB) settings are preserved when the
SetCommState function call fails with DCB settings that are not valid. This test fails if the serial
port driver does not keep previous DCB settings when DCB settings that are not valid are passed
to the driver.

20

Tests Open/Close on port share. Calls the createfile for the COMX: port with sharedmode set to
FILE_SHARE_READ and FILE_SHARE_WRITE.

21

Tests the power management abilities of a serial port. Verifies if the power management IOCTLs
and function calls are supported.

24.6 Serial Driver APl Reference

Detailed reference information for the serial driver may be found in Platform Builder Help at thefollowing

location:

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

24-5

Serial Driver

Developing a Device Driver > Windows CE Embedded Drivers> Serial Port Drivers> Serial Port

Driver Reference

24.6.1 Serial PDD Functions

Table 24-7 shows a mapping of Serial PDD functions to the functions used in the Serial driver.
Table 24-7. PDD and Serial Driver Function Mapping

PDD Function Pointer

Serial Driver Function

HWiInit SerSeriallnit
HWPostlnit SerPostlInit
HWDeinit SerDeinit
HWOpen SerOpen
HW(Close SerClose

HWGetIntrType

SL_GetIntrType

HWRxIntrHandler

SL_RxIntrHandler

HWTxIntrHandler

SL_TxIntrHandler

HWModemIntrHandler

SL_ModemintrHandler

HWLinelntrHandler

SL_LinelntrHandler

HWGetRxBufferSize SL_GetRxBufferSize
HWPowerOff SerPowerOff
HWPowerOn SerPowerOn
HWClearDTR SL_ClearDTR
HWSetDTR SL_SetDTR
HWClearRTS SL_ClearRTS

HWSetRTS SL_SetRTS
HWEnablelR SerEnablelR
HWDisablelR SerDisablelR

HWClearBreak SL_ClearBreak
HWSetBreak SL_SetBreak
HWXmitComChar SL_XmitComChar
HWGetStatus SL_GetStatus
HWReset SL_Reset
HWGetModemStatus SL_GetModemStatus
HWGetCommProperties SerGetCommProperties
HWPurgeComm SL_PurgeComm

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-6

Freescale Semiconductor

PDD Function Pointer

Serial Driver Function

HWSetDCB

SL_SetDCB

HWSetCommTimeouts

SL_SetCommTimeouts

24.6.2 Serial Driver Macros

N\A

24.6.3 Serial Driver Structures

24.6.3.1

UART_INFO

This structure contains information about the UART Module.

typedef struct {

vol atil e PSOC_UART_REG

ULONG sUSR1;
ULONG sUSR2;
BOOL bDSR;
uart Type_c

ULONG ul Di sc

pUar t Reg;

Uart Type;

ard;

BOCL Usel r DA;

ULONG HwAddr
EVENT_FUNC
PVO D pMDDCo
DCB dcb
COWITI MEOUTS
PLOOKUP_TBL
ULONG Dr oppe
HANDL E Fl ush

Event Cal | back;

nt ext;

Comfli neout s;
pBaudTabl e;
dByt es;

Done;

BOOL CTSFl owOf f;
BOOL DSRFI owCf f;

BOOL AddTXI n
COMSTAT St at
ULONG Conmer

tr;
us;
rors;

ULONG Modentt at us;

CRI TI CAL_SECTI ON
CRI TI CAL_SECTI ON

Transm tCrit Sec;
RegCri t Sec

ULONG Chipl D;
} UART_INFO, * PUART | NFO

Table 24-8 shows the members of the UART module.

Table 24-8. UART Module Members

Serial Driver

Member Description
pUartReg Pointer to UART Hardware registers
sUSR1 This value contains the UART status register
sUSR2 This value contains the UART status register
bDSR This Boolean value keeps the DSR state

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

24-7

Serial Driver

UartType This value contains the type of UART like DCE or DTE
UlDiscard This is used to discard the echo characters in IrDa Mode
UselrDA This Boolean value determines the driver is in IR mode or not
HwAddr This value contains the hardware address of the UART Module

EventCallback

This is a callback to the Model Device Driver

pMDDContext

This contains the context of the UART, which is the first parameter to the callback function

dcb

This value contains the copy of Device Control Block

CommTimeouts

This contains the copy of CommTimeouts structure used to get and set the timeout
parameters for a communication device

pBaudTable Pointer to baud rate table
DroppedBytes This value contains the number of bytes dropped

FlushDone Handle to the flush done event

CTSFlowOff This Boolean value is used to store the CTS flow control state
DSRFlowOff This Boolean value is used to Store the DSR flow control state

AddTXIntr This Boolean value is used to fake a Tx interrupt
Status This value contains the comm status
CommErrors This value contains Win32 comm error status
ModemStatus This value shows the Win32 Modem status

TransmitCritSec

This value is used as Critical Section for UART registers

RegCritSec

This value is used as Critical Section for UART

ChipID

This value contains Chip identifier (CHIP_ID_16550 or CHIP_ID_16450)

24.6.3.2 SER_INFO

Thisis a private structure contains the information about Serial.
typedef struct __ SER I NFO {

UART_I NFO uart _i nfo;

BOCL f 1 Rvbde;

DWORD dwDevl ndex;

DWORD dwl OBase;

DWORD dwl OLen;

PSOC_UART_REG pBaseAddr ess;

Ul NT8 cOpenCount ;

COMVPROP CommPr op;

PHWOBJ pHWADb] ;

BOCL useDVA;

DDK_DMVA_REQ Seri al DmaReqTx;
DDK_DMVA_REQ Seri al DmaReqRx;

PHYSI CAL_ADDRESS Seri al PhysTxDMABuUf f er Addr ;
PHYSI CAL_ADDRESS Seri al PhysRxDMABuUT f er Addr ;
PBYTE pSeri al Vi rt TxDMABUT f er Addr ;

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-8 Freescale Semiconductor

Serial Driver

PBYTE pSeri al Vi rt RxDVMABUf f er Addr ;
Ul NT8 Ser i al DmaChanRx;

Ul NT8 Ser i al DmaChanTx;

Ul NT8 cur r RxDmaBuf | d;

Ul NT8 curr TxDmaBuf | d;

Ul NT dmaRxSt art | dx;

U NT avai | RxByt eCount ;

Ul NT32 awai t i ngTx DMAConpBnp;
Ul NT32 dmaTxBuf Fi r st UseBnp;
Ul NT16 r xDMABUTf Si ze;

Ul NT16 t xDMABUTf Si ze;

} SER INFO, *PSER | NFQ

Table 24-9 shows the members of the Serial module.
Table 24-9. Serial Module Members

Member Description
uart_info This structure contains information about UART
fIRMode This Boolean value determines the module is FIR or serial
dwDevIndex This static value contains the device index value which is read from registry
dwlOBase This static value contains the |0 Base address of UART module which is read from
registry
dwlOLen This static value contains the 10 length of UART Module which is read from registry
pBaseAddress Pointer to the start address of the UART registers mapped
cOpenCount This value contains count of the concurrent open
CommProp Pointer to CommProp structure
pHWODb;j Pointer to PDDs HWODbj structure
useDMA This Boolean flag indicates if SDMA is to be used for transfers through this UART
SerialDmaReqTx SDMA request line for Tx
SerialIDmaReqRx SDMA request line for Rx

SerialPhysTxDMABufferAddr | Physical address of Tx SDMA address

SerialPhysRxDMABufferAddr | Physical address of Rx SDMA address

pSerialVirtTxDMABufferAddr | Virtual address of Tx SDMA address

pSerialVirtRxDMABufferAddr | Virtual address of Rx SDMA address

SerialDmaChanRx SDMA virtual channel indices for Rx
SerialIDmaChanTx SDMA virtual channel indices for Tx
currRxDmaBufld Index of the buffer descriptor next expected to complete its SDMA in the Rx SDMA
buffer descriptor chains
currTxDmaBufld Index of the buffer descriptor next expected to complete its SDMA in the Tx SDMA
buffer descriptor chains
dmaRxStartldx This variables keep the start index of byte to be delivered to MDD for Read
availRxByteCount This variable keeps the remaining bytes in the Rx SDMA buffer

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 24-9

Serial Driver

awaitingTxDMACompBmp This indicates if an SDMA request is in progress on Tx SDMA buffer descriptor
dmaTxBufFirstUseBmp Indicator for first time use of a Tx SDMA buffer descriptor (First use)
rxDMABufSize Receive DMA buffer size
txDMABUufSize Transfer DMA buffer size

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

24-10 Freescale Semiconductor

Touch Panel Driver

Chapter 25
Touch Panel Driver

The touch screen interface providesall the circuitry required for the readout of afour-wire resistive touch
screen. The touch screen X plate is connected to TSX1 and TSX2, and the Y plateis connected to TSY 1
and TSY 2. A local supply ADREF serves as reference.

25.1 Touch Panel Driver Summary

Table 25-1 provides a summary of source code location, library dependencies and other BSP information.
Table 25-1. Touch Panel Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
MXARM11 CSP Driver Path .\ PLATFORM\common\src\soc\freescale\common_fsl_v1\touch
CSP Driver Path N/A
CSP Static Library touch_common_fsl_v1.lib
Platform Driver Path .\PLATFORM\<TGTPLAT>\SRC\DRIVERS\TOUCH
Import Library N/A
Driver DLL touch.dll
Catalog ltem Third Party > BSP > Freescale i.MX31 3DS:ARMV4I > Device Drivers
>TOUCH > MC13783 Touch Driver
SYSGEN Dependency SYSGEN_Touch = 1
BSP Environment Variables BSP_PMIC_MC13783=1,BSP_TOUCH_MC13783=1

25.2 Supported Functionality

The touch panel driver enablesthe 3-Stack board to provide the following software and hardware support:

» Conformsto the standards described in the Platform Builder documentation: Developing a Device
Driver > Windows Embedded CE Drivers> Touch Screen Drivers

25.3 Hardware Operations

The hardware consists of a LCD Panel. Proper functioning requires an ADC module, which is used to
generate the touch samples. After calculations are performed, the touch samples are converted to the x,y
coordinates. The ADC module and the Touch Interrupt are part of the PMIC. For additional information,
see Chapter 21, “Power Management IC (PMIC)".

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 25-1

Touch Panel Driver

25.3.1 Conflicts with Peripherals

The conflicts occur only with the GPIO Pin with which the PMIC Interrupt isrouted. Therefore, those pins
cannot be used as standard GPIO. For PMIC Interrupt routing and conflicts, see Chapter 21, “ Power
Management IC (PMIC)”.

25.3.2 Conflicts with i.MX31 3-Stack

The touch driver requires atimer to obtain the time measurements among the different ADC samples. The
EPIT2 timer is dedicated for use with the touch panel and cannot be used by any other module.

25.4 Software Operation

The touch screen driver reads user input from the touch screen hardware and converts it to touch events
that are sent to the Graphics, Windowing, and Events Subsystem (GWES). The driver also converts
uncalibrated coordinates to calibrated coordinates. Calibrated coordinates compensate for any hardware
anomalies, such as skew or nonlinear sequences.

For the touch screen driver to work properly, it must submit “points’ while the user's finger or stylusis
touching the touch screen. When the user'sfinger or stylus is removed from the screen, the driver must
submit at least one final event indicating that the user's finger or stylus tip was removed. The calibrated
coordinates must be reported to the nearest one-quarter of a pixel.

The basic algorithm uses the following calls to sample and calibrate the screen with the touch screen
driver:

» Callsthe TouchPanel Enable function to start the screen sampling

» Callsthe TouchPanel GetDeviceCaps function to regquest the number of sampling points

To test every calibration point, use the following steps:

1. Cadll the TouchPanel GetDeviceCapsto obtain a calibration coordinate. A crosshair appears on the
screen. Touching the crosshair starts the calibration.

2. Cadll the TouchPanel ReadCalibrationPoint function to obtain the calibration data
3. Cadll the TouchPanel SetCalibration function to calcul ate the caibration coefficients

25.4.1 Touch Driver Registry Settings

| F BSP_NOTOUCH !

[HKEY_LOCAL _MACHI NE\ HARDWARE\ DEVI CEMAP\ TOUCH]
"Driver Name"="touch.dl "
"MaxCal Error" =dword: 7
| F BSP_PRECAL
"Cal i brationDat a"="539, 520 280, 259 280, 778 793, 781 794, 259"

; Welcone.exe: Disable tutorial and calibration pages because we already
; have the necessary calibration data.
; Touch calibration (0x02), Stylus (0x04), Popup nmenu (0x08),
Ti mezone (0x10), Conpl ete (0x20)
[HKEY LOCAL_MACHI NE\ Sof t war e\ M cr osof t \ Wl cone]

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

25-2 Freescale Semiconductor

"Di sabl e" =dwor d: FFFFFFFF
END F ; BSP_PRECAL

; For doubl e-tap default setting

[HKEY_CURRENT_USER!\ Cont r ol Panel \ Pen]

"Dbl TapDi st " =dwor d: 18
" Dbl TapTi me" =dwor d: 637

[HKEY_LOCAL_MACHI NE\ HARDWARE\ DEVI CEMAP\ TOUCH|
“Cal i brationbData"="517,526 788,249 785, 801 261, 799 250, 255 "

; For launching the TouchPanel calibration application on boot.

[HKEY_LOCAL_MACHI NE\i ni t]
"Launch80" ="t ouchc. exe"

"Depend80" =hex: 14, 00, 1e,00 ; Wait for standard initialization
; modules to load first (GWES.dlIl and
; Device. exe).

ENDI F ; BSP_NOTOUCH !

25.5 Unit Tests

25.5.1 Unit Test Hardware

Table 25-2 lists the required hardware to run the unit tests.
Table 25-2. Hardware Requirements

Touch Panel Driver

Requirements

Description

EPSON L4F00242T03 VGA LCD Panel Display panel required for display of graphics data.

25.5.2 Unit Test Software

Table 25-3 lists the required software to run the unit tests.
Table 25-3. Software Requirements

Requirements Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Touchtest.dll Library containing the test
Touch.dll Touch Panel Driver

The following errors are reported after the CETK Touch Panel test is performed:

» The Touch driver does not work after the CETK Touch Panel Test is performed. Thisisan MSFT
CETK error. After the CETK Touch Panel Test is complete, the process shell.exe generates a
"prefetch abort” exception on the touch.dll module and the touch panel driver does not work. This
isthe reason for this error are as follows:

— GWES cadlls TouchPanelEnable to register a callback function when the OS is brought up

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

25-3

Touch Panel Driver

— When CETK runs, it aso calls TouchPanel Enable to register its own callback function, and
then the callback from the original GWES is |ost

— When CETK ends, it does not call TouchPanelDisable. So the touch ISR is still running, and
the CETK callback function memory has been free. When you click the panel, the ISR thread
calsthe callback function, which causes a "prefetch abort" exception.

» Case 8011, 9001-9003 fail. The touch panel displayslines even if you are drawing acircle or arc.
Thisisasoan MSFT CETK issue. The points are actually captured, but not painted in the allotted
time.

» Case 8011 cannot draw on the right side of the screen after the screen is rotated 90 degrees. The
executable ethca.exe works well after rotation. The CETK also works well when you run the case
for the second time.

25.5.3 Building the Touch Panel Tests

To run the touch test cases, enter the following command:
tux -0 -n -d touchtest.dll -x <Test case id>

Thistest must runin Kernel mode (-n option). To Runthe CETK in kernel mode you must copy the ktux.dl|
from the CETK install directory to the release directory of your image.

For information about the test case IDs, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Testsand Test Tools> CETK Tests > Touch Panel Tests
> Touch Pandl Test

25.6 Touch Panel APl Reference
To obtain the complete API reference, see the Platform Builder documentation:

Developing a Device Driver > Windows Embedded CE Drivers> Touch Screen Drivers> Touch
Screen Driver Reference

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

25-4 Freescale Semiconductor

USB Boot and KITL

Chapter 26
USB Boot and KITL

USB Boot and KITL are supported by implementing the RNDIS client device over USB on the target
board. Thisfeature configures the USB OTG port as a USB device and implements the RNDIS USB
function driver. The USB RNDI S device acts as a standard Ethernet device and connectsto the PC over a
USB cable. Once connected, EBOOT and KITL can use the RNDIS Ethernet device.

26.1 USB Boot and KITL Summary

Table 26-1 identifies the source code location, library dependencies, and other BSP information.
Table 26-1. USB Boot and KITL Summary

Driver Attribute Definition

Target Platform (TGTPLAT) IMX313DS

Target SoC (TGTSOC) MX31_FSL_V1

MXARM11 SoC Driver Path N/A

SoC Driver Path N/A

SoC Static Library N/A
Platform Driver Path \WINCEG600\PLATFORM\<TGTPLAT>\SRC\COMMON\USBFN

\WINCEG600\PLATFORM\<TGTPLAT>\SRC\KITL
Import Library fsl_usbfn_rndiskitl.lib
Driver DLL kitl.dll
Catalog Item N/A
SYSGEN Dependency N/A

BSP Environment Variables N/A

26.2 Supported Functionality
The USB Boot and KITL enables the 3-Stack board to provide the following software and hardware
support:

» Supports image downloading over USB

e SupportsKITL over USB

* Provides menu options to determine whether to enable USB Boot and/or USB KITL

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 26-1

USB Boot and KITL

26.3 Hardware Operation

26.3.1 Conflicts with Other Peripherals

The USB Boot and KITL do not have conflicts with any other module. However, because the USB KITL
and USB OTG driversin the OS share the same USB OTG hardware, the USB OTG drivers should be
disabled in the catalog item when USB KITL isenabled. The USB Boot does not have this limitation.

26.4 Software Operation

26.4.1 Software Architecture

USB Boot and KITL are part of the EBOOT and KITL subsystem. An RNDIS client deviceis
implemented to support USB Boot and KITL. Figure 26-1 illustrates the USB Boot and KITL software
architecture.

USB Boot, KITL or other APP

'

MDD (RNDIS)

v

PDD
(Porting from USB Function Controller PDD Driver

'

USB OTG Hardware

Figure 26-1. USB Boot and KITL Software Architecture Block Diagram

Microsoft has implemented the RNDIS client MDD driver in Windows Embedded CE 6.0. The codeisin
following location:

% W NCEROOT% Publ i ¢\ Cormon\ Oak\ Dri ver s\ Et hdbg\ Rne_ndd
It generates static library Rne_ndd. 1 i b.

The USB function controller PDD driver is ported to EBOOT and KITL to support the USB Boot and
KITL. For details of the USB function controller PDD driver, see the Platform Builder for Microsoft
Windows CE 6.0 Help:

Developing a Device Driver > Windows CE Drivers> USB Function Drivers> USB Function
Controller Drivers> USB Function Controller Driver Reference > USB Function Controller PDD
Functions.

Windows Embedded CE 6.0 provides an example of USB Boot in the following location:

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

26-2 Freescale Semiconductor

USB Boot and KITL

% W NCEROOT% PI at f or M Mai nst onel | I \ Src\ Common\ Usbf n

26.4.2 Source Code Layout

The following files have been modified or added to support USB Boot and KITL.

» Thefollowing files add the USB function controller and RNDIS PDD driver:

— % W NCEROOT% PI at f or M <Tar get Pl at f or n»\ Sr ¢\ Common\ Usbf n
— % W NCEROOT% PI at f or M <Target Pl atfornp\ Src\ Common\dirs

» Thefollowing file adds the RNDI'S device to the EBOOT Ethernet initialization routines:
— % W NCEROOT% PI at f or M <Tar get Pl at f or n»\ Sr c\ Boot | oader\ Conmon\ et her . ¢

» Thefollowing fileisused to set up the KITL device LogicalLoc and PhysicalLoc to USBOTG
physical addressif USB KITL optionin EBOOT menu is selected by user:
— % W NCEROOT% PI at f or M <Tar get Pl at f or n»\ Sr c\ Boot | oader\ Cormon\ nmai n. ¢

» Thefollowing file implements the private NKCreateSaticMapping() function. This function is
defined in OS by Microsoft. It is not defined for EBOOT while USB Boot requires this function.
So it is manually defined.This function calls only OAL PAtoUA().

— % W NCEROOT% PI at f or Ml <Tar get Pl at f or n»\ Sr c\ Boot | oader\ Common\ utils.c
» Thefollowing file adds the USB and KITL options to the EBOOT menu:

— % W NCEROOT% Pl at f or M <Tar get Pl at f or n»\ Sr c\ Boot | oader \ Eboot \ nenu. c
» Thefollowing file adds fd_usbfn_rndiskitl.lib and rne_mdd.lib:

— % W NCEROOT% PI at f or M <Tar get Pl at f or n»\ Sr c\ Boot | oader \ Eboot \ sour ces
» Thefollowing files add the USB RNDIS KITL devicein the KITL initialization routines:

— % W NCEROOT% Pl at formi <Target Platfornp\Src\Kitl\kitl.c
— % W NCEROOT% Pl at formi <Target Platforne\Src\Kitl\sources

26.4.3 IOMUX and Pinout

Thei.MX31 3-Stack board system uses external ULPI PHY for USB OTG Thereare IOMUX settingsfor
USB OTG with external ULPI PHY. See the following file for information about the IOMUX settings of
the external ULPI PHY:

% W NCEROOT% PI at f or Mk <Tar get Pat f or n»\ Src\ Common\ Usbf n\rndi skitl\hwinit.c

26.4.4 Power Management
Power management is not yet implemented in USB Boot and KITL.

26.4.5 Registry Settings
There are no related register settings for the USB Boot and KITL.

26.4.6 DMA Support

Physical contiguous memory is required to support USB DMA. This memory region is hard coded in the
following:

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 26-3

USB Boot and KITL

% W NCEROOT% PI at f or mk <Tar get Pat f or n®\ Sr c\ Common\ Usbf n\ Rndi skitl\rndi s_pdd. c

It uses the BSP reserved USB image region (Start from IMAGE_SHARE_USBKITL_RAM_OFFSET).
Thisregion is dedicated for USB Boot and KITL.

26.5 Unit Test

26.5.1 Building the USB Boot and KITL

There are no special configuration optionsfor building USB Boot and USB KITL. Building the BSP with
the default configuration includes the USB Boot and KITL support. Thereis one exception: USB OTG
drivers should be de-selected from the catalog item view before building the NK image, in case the user
wants to use USB KITL. The reason for thisisthat USB KITL and OS USB drivers share the same USB
OTG hardware and they cannot exist simultaneoudly. Asaresult, USB KITL cannot be used to debug the
USB OTG drivers.

26.5.2 Testing USB Boot and KITL

To test USB Boot and KITL, use these steps:

1. Connect the target board to the PC with a USB cable, and then power on the board
2. Atthe EBOOT menu, change the boot configuration to match the following:

0) IP address: 192.168.0.2
1) Subnet Mask: 255.255.255.0
3) DHCP: Disabled
1) Kitl interrupt node: Disable
P) Kitl passive node: Disable
R) USB KI TL: Enabl e
3. Press‘u’ to download the image over USB. If thisisthe first time you have run the USB Boot or

KITL with the PC, the “Found New Hardware Wizard” dialog is displayed, and you will be
prompted to install the driver for Microsoft Windows CE RNDI S virtual adapter on the Windows
PC. For instructions on installing the driver, refer to:
W NCE600\ PUBLI C\ COMMON\ OAK\ DRI VERS\ ETHDBG\ RNDI SM NI \ HOST\ howt o. t xt

4. Afterthedriver isinstalled successfully, the Microsoft Windows CE RNDI S virtual adapter should
be displayed in the Network Connections on the PC. Configure this network connection properly.
Use a static IP address (such as 192.168.0.3) in the same subnet as the target board.

5. Check the Platform Builder Target > Connectivity options to make sure the target deviceis
selected. Now you should be able to download the image in the same way as the normal EBOOT

6. Totest USB KITL, press‘r’ in EBOOT menu to enable USB KITL. After NK startsup, theKITL
works over the USB.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

26-4 Freescale Semiconductor

USB OTG Driver

Chapter 27
USB OTG Driver

The OTG USB driver provides High Speed USB 2.0 host and device support for the USB “On The Go”
(OTG) port of thei.MX31. The OTG driver automatically selects either host or device functionality at any
given time, depending on the USB cable/mini-plug configuration. Thisis achieved by the set of three
drivers: USB OTG host controller driver, USB client driver and USB transceiver controller (“Full
Function™) driver, which performs the host/function client switching.

The USB host driver can be configured for class support for mass storage, HID, printer, and RNDIS
peripherals. The device/client portion can be configured to provide one of mass storage, serial, or RNDIS
function.

The “Full Function” OTG transceiver driver automatically selects between the host or client driver. The
host or client can a so be configured as the only mode for the OTG port, using the “Pure Host” or “Pure
Client” catalog item. All the OTG catalog items are exclusive. (See summary sections below).

27.1 USB OTG Driver Summary

27.1.1 OTG Client Driver Summary

Table 27-1 provides asummary of source code location, library dependencies and other BSP information
for the OTG Client Driver.

Table 27-1. OTG Client Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) IMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
CSP Driver Path .\SOC\Freescale\MX31_FSL_V1\USBD
.\SOC\Freescale\MX31_FSL_V1\USBFN
CSP Static Library usbfn_mx31_fsl_v1.lib
ufnmddbase_mx31_fsl_v1.lib
Platform Driver Path \PLATFORM\IMX313DS\SRC\DRIVERS\USBD
Import Library N/A
Driver DLL usbfn.dll
Catalog Iltem High Speed OTG:

Third Party > BSP > Freescale i.MX31 3DS: ARMV4| > Device Drivers >
USB Devices > USB High Speed OTG Device

To support only client/device mode, choose .. > High Speed OTG Port Pure
Client Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable BSP_USB=1
BSP_USB_HSOTG_CLIENT=1

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-1

USB OTG Driver

NOTE
USB clientsrequireafunction driver to beloaded. A client can only present
one function. Only one of the function drivers (described in Section 27.4.5,
“Function Drivers) should be configured through drag and drop. If more
than one is configured, the serial function isthe default unless the registry
is manually modified.

27.1.2 OTG Host Driver Summary

Table 27-2 provides asummary of source code location, library dependencies and other BSP information
for the OTG Host Driver.

Table 27-2. OTG Host Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) IMX313DS
Target SOC (TGTSOC) MX31
CSP Driver Path .\SOC\Freescale\MX31_FSL_V1\USBH\EHCI

.\SOC\Freescale\MX31_FSL_V1\USBH\EHCIPDD
.\SOC\Freescale\MX31_FSL_V1\USBH\USB2COM

CSP Static Library Ehcdmdd_mx31_fsl_v1.lib
ehci_lib_mx31_fsl_v1.lib
hcd2lib_mx31_fsl_v1.lib

Platform Driver Path \PLATFORM\IMX313DS\SRC\DRIVERS\USBH\HSOTG
Import Library N/A
Driver DLL hcd_hsotg.dll
Catalog ltem Third Party > BSP > Freescale i.MX31 3DS: ARMV4| > Device Drivers > USB

Devices > USB High Speed OTG Device
To support only host mode, choose .. > High Speed OTG Port Pure Host Function

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_USB=1
BSP_USB_HSOTG_HOST=1

NOTE

The host driver requires a set of class drivers to be loaded. See
Section 27.4.6, “ Class Drivers for more information.

27.1.3 OTG Transceiver Driver Summary (For HIGH-SPEED only)

Table 27-3 provides asummary of source code location, library dependencies and other BSP information
for the OTG Transceiver Driver.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-2 Freescale Semiconductor

USB OTG Driver

Table 27-3. USB Transceiver Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) IMX313DS
Target SOC (TGTSOC) MX31
CSP Driver Path .\SOC\Freescale\MX31_FSL_V1\USBXVR
CSP Static Library xvc_mx31_fsl_v1.lib
Platform Driver Path \PLATFORM\IMX313DS\SRC\DRIVERS\USBXVR
Import Library N/A
Driver DLL imx_xvc.dll
Catalog Item Third Party > BSPs > Freescale i.MX31 3DS: ARMV4| > Device Drivers > USB
Devices > USB High Speed OTG Device > High Speed OTG Port Full OTG
Function
SYSGEN Dependency SYSGEN_USBFN=1
BSP Environment Variable BSP_USB=1
BSP_USB_HSOTG_CLIENT=1
BSP_USB_HSOTG_HOST=1
BSP_USB_HSOTG_XVC=1

27.2

Supported Functionality

The OTG driver enables the 3-Stack board to provide the following software and hardware support:

The High Speed OTG driver supports USB specification 2.0

Thedriver isconfigured as client/peripheral by default, with onefunction driver defined as default.
When nothing is connected to the OTG port, the port does not drive V bus and waits attachment to
ahost by raising its D+ signal. On attachment of amini-A plug, the driver switches to host mode.

When amini-B plug is connected to the OTG port, and the cable's opposite end is connected
through mini-A plug to another OTG device, or through A-type plug to a host, then the OTG
initiates operation as peripheral and responds to USB protocol from the host

When amini-A plug is connected to the OTG port and the cable's opposite end is connected
through mini-B plug to another OTG device, then the OTG initializesre-initializesitself into host
mode and beginsto act as ahost. The OTG port remains in host mode whenever amini-A plugis
mated to the OTG socket connector.

The OTG port as client/peripheral supports mass storage, RNDIS and serial clients
The OTG port as host supports mass storage, printer, HID and RNDI S classes

When nothing isattached to the OTG port, the driver configures the controller and transceiver into
alow power state

When the system is suspended with nothing attached to the OTG port, the system wakes upon
attachment of the port to a host or attachment of a device with mini-A plug

When the system is suspended while the OTG port is connected to a host or to adevice with a
mini-A plug, the system remains suspended when the OTG port connection is unplugged

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-3

USB OTG Driver

* When the system resumes after suspend, any attached devices are enumerated and their class
drivers are loaded appropriately

» Datatransfer rates on the client port exceed 40 Mbits/sec in mass storage client mode
» Mass storage client mode passes USBCV 1.3, which is the software part of USB Logo test suite

27.3 Hardware Operation

Thereisan OTG mini socket on the 3-Stack board (J10). The i.MX31 device containsa USB 2.0 core for
handling OTG, which is connected to the external transceiversthrough 10 multiplexer (IOMUX). Options
arepossible oni.MX31 hardware (such asrouting signalson H1 signal port to OTG transceiver, with both
controllers “offline”). Thisallows external peripheralsdirect connection to atransceiver. The OTG driver
currently supports only one hardware MUX configuration.

The ID Pin Detect is supported through the Transceiver Driver (for High Speed OTG), and is constructed
as astream interface driver. The sample reference implementation that is provided with WinCE 6.0
installation contains more detail on how the USB Host controller and USB Function controller driver are
structured. Thei.MX31 processor supportsspeed translation withinthe USB 2.0 controller, anon-standard
EHCI implementation. As aresult, the software does not currently support full/low speed devices (aside
from those non-FS hub devices directly connected to the OTG port).

The 3-Stack can supply atotal of 100mA to attached devices on the OTG port and the default behavior
does not need to be modified. All bus powered hubs that have been tested require 500mA and therefore
are not supported for use with the 3-Stack. Self-powered hubs are required to expand the number of USB
sockets and also to support devices that require greater than 100mA (for example: Mini HDD devices
should be connected through self powered Hub).

27.3.1 Conflicts with Other Peripherals

The high speed OTG port conflictswith UART4. The USB controller drivers coordinate their management
of the USB peripheral block clock and processor core voltage, as described in Section 27.4.4.1, “ Special
i.MX31 Vcore Requirements and Section 27.4.4.2, “ Clock Gating.

27.3.2 Signal Quality Requirement

The USBCV test loads another USB host driver on the PC side. This one has more strict requirements for
signal quality than the original one. Therefore, the platform must pass the USB signal quality test before
the software test. The original board design has adefect. Thereisa 33 Q resister on both the DP and DM
pins, which does not follow the standard and deteriorates the signal quality. They should be substituted
with 0 Q resisters.

27.4 Software Operation

27.41 USB OTG Host Controller Driver

This driver enablesthe USB host functionality for the OTG port. It is part of the standard Windows USB
software architecture as shown in Figure 27-1.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-4 Freescale Semiconductor

USB OTG Driver

Application or e.g. Application or user
storage device interface

function/class

specific protocol
Function driver (e.g. |« » Class Driver (e.0.
Mass Storage Mass Storage Class)
Ciinnti nn)

(IssueTransfer) 1 (IssueTransfer)
logical pipes /
Vv endpoints Y

Function controller USB Host device
(client) driver - "| driver

A

A 4

(contole) Drives -

A
USB packets USB packets
USB cable physical

A 4

signalling

device controller and MX31 USB
PHY < » controller hardware
2. DUV

Figure 27-1. Windows USB Driver Architecture

For further details of the Windows CE USB driver architecture and usage, see Platform Builder Windows
CE 6.0 help topic:

Developing a Device Driver > Windows Embedded CE Drivers>USB Host Drivers
and

Developing a Device Driver > Windows Embedded CE Drivers>USB Host Drivers> USB Host
Controller Drivers> USB Host Controller Driver Development Concepts

When transceiver mode isincluded, the host driver is activated when a USB Mini-A plug is connected to
the Mini USB OTG socket. When Pure Host mode only is selected, the host driver isawaysin control of
therelevant USB controller. When aUSB deviceis connected to the Mini USB OT G socket of the 3-Stack,
the host controller driver enumerates and activates the appropriate class driver.

Windows CE 6.0 supports the following USB class drivers:

* MassStorage—SD cards, MMC cards, CF cards, HDD drive, thumb drive (disk-on-key). Note that
some card reader firmware is not supported by the Microsoft standard Mass Storage class driver.

* HID —Keyboard and mouse
e Printer
« RNDIS - Network Device Interface communication class

Hubs are supported in all configurations with full and low speed peripherals.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-5

USB OTG Driver

Thisversion of the host controller driver has been verified against the following USB 2.0 vendor devices:
» Various disk-on-key including Kingston and Memorex
* HPHS self-powered and bus-powered hub
» Externa self-powered HS hard drive

* HSandFS card reader with CF and MM C storage. Note: there are known issues formatting large
CF cards some FS card readers.

* HP Photosmart 7450 printer and Lexmark E232 Laser Printer
* A variety of cameras, including Sony Cybershot and HP717
» Logitech keyboard and mouse

27.4.1.1 User Interface

Asdescribed above, user accessto the USB host driver isthrough classdrivers. For further detailson these
Host Client Drivers refer to Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers>USB Host Drivers> USB Host
Controller Drivers> USB Host Client Drivers.

Where new class driver code is to be developed, refer to the Host client driver interface functions (for
example, IssueBulkTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers>USB Host Drivers> USB Host
Controller Drivers> USB Host Client Drivers> Host Client Driver Reference.

27.4.1.2 Host Controller Configuration

Thedriver isconfigured into the BSP build by dragging & dropping the appropriate catalog item for USB
HS OTG By default, host support isincluded along with peripheral/device and transceiver support.
Additional classesto be supported must also be selected from the Core OS catalog. See Section 27.4.1.5,
“Registry Settings for details on excluding OTG host support from the build.

Theinternal .M X31 USB OTG signals can be multiplexed to a choice of pinson the device, as described
for the IOMUX in the hardware reference manual.

27.4.1.3 Memory Configuration

The USB Host drivers (for all USB host ports) use DMA to perform all USB transfers. The physical
memory for these transfer buffersis allocated as a pool at driver initialization. Unless physical addresses
are specified in APl accesses at the class-driver interface, the driver copies data between the
user/class-provided data buffers and the DMA buffer from the driver physical memory pool.

The default DM A physical memory pool sizeis 128 kB. This value can be atered by the registry setting
Physical PageSize.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-6 Freescale Semiconductor

USB OTG Driver

27.4.1.4 Vbus/Configured Power

USB provides ameansto monitor the configured power of devices attached to aUSB host. The host driver
verifies that each attached device does not exceed the configured power limit.

This power limit isimplemented through the platform-specific function BSPUsbhCheck Conf i gPower () ,
which is described in Section 27.4.1.8.1, “BSPCheckConfigPower, and is located in the following
directory:

\ PLATFORM | MX313DS\ SRC\ DRI VERS\ USBH\ Cormon\ hwi ni t . ¢

This function must be modified to correspond with the platform hardware capabilities.

Thei.MX31 3-Stack can supply atotal of 100mA to attached devices on the OTG port and the default
behavior does not need to be modified. All bus powered hubs that have been tested require 500mA and
therefore are not supported for use with the 3-Stack. Self-powered hubs are required to expand the number
of USB sockets and also to support devices that require greater than 100mA.

27.4.1.5 Registry Settings

The USB OTG host controller settings are values |ocated under the registry key:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t | n\ HCD_HSOTG]
The values under thisregistry key are automatically included in the image through platform.reg. They do

not normally require customization. Default values are contained in hsotg.reg. Table 27-4 showsthe USB
OTG host controller registry values.

Table 27-4. USB OTG Host Controller Registry Settings

Value Type Content Description
Dl sz hcd_hsotg.dll | Driver dynamic link library
OTGSupport dword 01 This value must be set to 1 to enable host driver on the OTG. If no host

support is required (client only) then this value can be set to 0, though
the HCD_HSOTG key is not normally configured in the image at all when
pure Host function is selected.

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB
OTG instance. Only one instance of the OTG is actually supported
currently on the i.MX31 hardware.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword 20000 This value represents the number of bytes allocated for the physical
memory pool of the OTG host driver, and defaults to 128kB. From this
buffer, 75% are allocated for transfer descriptors and the remaining
buffer is available for allocation to simultaneous transfers. In most cases,
only one transfer is active at any time (for example, in the Mass Storage
Class). A good value will be at least 3x as large as the largest data buffer
transferred using IssueTransfer().

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-7

USB OTG Driver

27.4.1.6 Host USB Test Modes

The USB 2.0 specification defines PHY-level test modes for USB host ports (see definitionsin USB 2.0
specification section 7.1.20).

Thei.MX31 USB host drivers support “Packet” test mode. The test mode is configured by compiling the
BSP with the compilation flag OTG_TEST_MODE defined within bsp_cfg.h:

#def i ne OTG_TEST_MODE
This configures the appropriate host controller within the platform-specific hardware initialization
function (ConfigOTG()), located in:

\ PLATFORM | MX313DS\ SRC\ DRI VERS\ USBH\ Cormon\ hwi ni t . ¢

The test mode isentered upon initialization and cannot be exited. Normal USB operation isdisabled when
test mode support is compiled into the image.

27.41.7 Unit Test

The USB driver has many devicesto be tested. Tests are performed manually and include connecting the
devices, confirming the attach, detach (on unplug) re-attach (on subsequent plug in of device), and
transferring and verifying data (and/or functions).

To verify the RNDIS class device, a CEPC containing Netchip 2280 USB function is attached and used to
access aremote file server on the CEPC. To verify the low-level transport for Bulk, Interrupt and
Isochronoustransfers, the CETK Host test kit isperformed. Thisrequiresa CEPC configured with Netchip
2280 USB function and loopback driver.

27.41.71 USB Host Controller Driver Test

Documentation for the Windows CE 6.0 CETK USB Host testsis normally found under Platform Builder
Windows CE product documentation:

Debugging and Testing > Windows CE Test Kit > CE Test Kit

27.4.1.7.2 Build the Image to be Tested

The following steps are used to build the image to be tested:
1. Checkout the RTM to be tested or install the MSI provided
2. Add the following components from the catalog
— Freescalei.MX31 3DS: ARMV4I — Device Drivers— USB Devices— USB High Speed Host 2

— Core OS — Windows CE devices — Core OS Services— USB HOST Support and all the
sub-components of this catalog item (for example, USB Storage Class Driver)

— Core OS — Windows CE devices — File Systems And Data store — Storage Manager
(Sub-Components: FAT File System, Partition Driver, Storage Manager control panel applet)

— Device Drivers— USB Function — USB Function Clients — Serial

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-8 Freescale Semiconductor

USB OTG Driver

27.4.1.7.3 Abstract

Thistest suite can be used to test USB host controller driversthat provide the same interface asthe Window
CE USB host controller driver. The test setup and scenario is shown in Figure 27-2.

Software

USB Test
Client Driver
(usbtest.dll)

e e ﬁ ___________________

USB Bus Driver

Data loopback
Client Driver
(net2280Ipbk.dll)

ﬁ ________ R

<Client Level>

(usbd.dll)
USB Function
Bus Driver
<Bus Level> (net2280.dll)
OHCI/UHCI/EHCI
Host Controller
Driver
CEPC with
Hardware Test platform with NetChip2280 USB

USB controller

function controller

Host Side Device Side

Figure 27-2. Test Setup

This test suite acts as a client driver above USB bus driver (usbd.dll). It is loaded when the test deviceis
connected to the host through USB cable. The test device is a CEPC with a NetChip2280 USB function
controller card init. After this CEPC is booted up and net2280Ipbk.dll is |loaded, the whole CEPC acts as
ageneric USB dataloopback device. The USB test suite (the test client driver on the host side) can then
stream data or issue device requests to and from this data loopback device. Thisis how the USB host
controller and its corresponding host controller drivers are exercised.

The NetChip2280 USB function PCI controller card isa USB2.0 compatible USB function device. It can
be used to test both USB2.0 and USB1.1 host controllers (EHCI/OHCI/UHCI) and corresponding drivers.

Netchip2280 controller has six endpoints besides endpoint O. The dataloopback driver (net2280Ipback.dil)
configures these endpoints to be three pairs: one bulk IN/OUT pair, one Interrupt IN/OUT pair, and one
Isochronous IN/OUT pair. The data loopback tests are done by sending data from host side to device side
through OUT pipe, receiving it back through IN pipe, and then verifying the data.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-9

USB OTG Driver

27.41.7.4 Hardware Requirements

Test platform

Host Controller Card (if not onboard logic)
CEPC

Netchip2280 Card

USB cable

27.41.7.5 Software Requirements
Host side:

Tux.exe
Ddix.dll
Usbtest.dll
Kato.dll

USB component (usbd.dll, EHCI/OHCI/UHCI host controller driver(s)) must be included in the
run time image.

Device side:

Lufldrv.exe
Net2280Ipbk.dll
NetChip2280 USB function support (net2280.dll) must be included in the CEPC run time image.

27.41.7.6 Running the Test

The test procedure is as follows:

1. Download runtime image to CEPC with Netchip2280 card on it
2. After the system has booted up, run command s lufldrv, the tester should verify that
net2280Ipbk.dll is loaded
3. Download the runtime image to test platform with USB host controller on it
4. After the system has booted up, make sure there is no connection between host side and device
through USB cable. Then launch command stux —o —d ddIx —c “ usbtest” “—xYYYY”,“YYYY”
isthe test case(s) you want to run.
5. Thetest indicates that there should be no connection between host and device side
6. After seven seconds, the test asksto connect the two sides with USB cable and the main test body
startsto run
7. After thetest(s) is(are) done and another test is to be run, do not disconnect the two sides of the
USB cable. Just type the next test command, and the test will start directly. If the USB connection
was disconnected before the next test, the test will ask to make the connection again before the test
begins.
i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5
27-10 Freescale Semiconductor

USB OTG Driver

27.41.7.7 Test Cases

Table 27-5 shows the tests cases contained in the test suite.
Table 27-5. USB Host Controller Driver Test Cases

Test Case ID Test Description

1001-1315, 1501-1515 | Data loopback tests.

Concerning the transfer type, there are five categories:

1) Bulk pipe loopback tests (tests with ID end with 1, like xxx1),

2) Interrupt pipe loopback tests (tests with ID end with 2, xxx2),

3) Isochronous pipe loopback tests (tests with ID end with 3, xxx3),

4) All pipe transfer simultaneously (tests with ID end with 4, xxx4),

5) All three types of transfer carry on simultaneously (tests with ID end with 5, xxx5)1.

Concerning about how data is being transferred, there are also five categories:

1) Normal loopback tests (tests with ID start with 10, like 10),

2) loopback tests using physical memory (tests with ID start with 11, 11xx),

3) loopback tests using a part of allocated physical memory (tests with ID start with 12, 12xx),
4) Normal short transfer loopback tests ((tests with ID start with 13, 13xx),

5) Stress short transfer loopback tests ((tests with ID start with 15, 15xx),

Also, both synchronous and asynchronous transfer methods (test cases like xx1x using
asynchronous transfer method, test cases like xx0x using synchronous method) are
exercised.

Therefore, there are 5 x 5 x 2 = 50 test cases.

1401-1413 Some additional data loopback tests. They mainly focus on testing APIs like
GetTransferStatus(), AbortTransfer() and CloseTransfer().

2001-2013 Test related with Device requests.

9001-9004 These are some special tests that test APIs like SuspendDevice(), ResumeDevice() and

DisableDevice().

9005 This is a test that stresses EPO transfer (Vendor Transfer)

' This category of tests is designed for testing some other USB function devices which have more endpoints than host
controller driver can handle. When using Netchip2280, it should be the same as category 4). Tester can just ignore this
category.

By default the dataloopback device configures the endpoints with some often-used packet sizes;, they are
DWORD aligned, neither too big nor too small. Having all the tests listed above pass under this
configurationismorethan sufficient for aBV T-type test pass. However, testers can change the packet sizes
(these values are hard-coded in the source code for net22801 pbk.dll) for each endpoint and run the test
cases again for more comprehensive testing.

This test suite provides away to change packet sizes of on NetChip2280 device on the fly as follows:

» Test case 3001: Using some very small packet sizesin NetChip2280 device's full speed
configuration

» Test case 3002: Using some very small packet sizesin NetChip2280 device's high speed
configuration

» Test case 3003: Using some irregular packet sizes (like non DWORD-aligned size) in
NetChip2280 device's full speed configuration

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-11

USB OTG Driver

» Test case 3004: Using some irregular packet sizes (like non DWORD-aligned size) in
NetChip2280 device's high speed configuration

» Test case 3005 (High Speed only): Using some very large packet sizes (like 2 x 1024 for
Isochronous endpoints) in NetChip2280 device's full speed configuration. Note that in the real
world, Netchip2280 can not handletransfersusing such large packet size because its onboard FIFO
buffer issmall.

Run one of the test case above like running those normal tests, then after 15~20 seconds, through PB
usbtest.dll will be seen unloading and loading again automatically. This means the packets sizes on
netchip2280 side have already been changed. Then run those normal tests. You can use test case 3011 (for
full speed config) and 3012 (for high speed) to restore default packet sizes.

Another category test that isimportant for USB2.0 host controllers and driversis called golden bridge
tests, which means USB2.0 host controller isconnected with afull speed (USB1.1) device. Thisistheonly
scenario that USB2.0 host controller performs split transfers.

NetChip2280 can beforced to be afull speed device. Inthetest setup stage, instead of run slufldrv to load
loopback driver, run slufldrv —f. Thisforces Netchip2280 to be configured as afull speed device.
Also testers are encouraged to do some manual tests. Following are some examples:

* PluginaUSB device, suspend system, and then resume. USB devices should still be there.

* PluginaUSB device, suspend system, unplug it, plug in another device, then resume. System
should enumerate the new device properly.

* Run one of the data transfer tests, in the middle of transfer stage, suspend the system (host side),
then resume. Tests may fail, but system should not crash.

* Runone of the datatransfer tests, in the middle of transfer stage, disconnect the USB connection.
Tests should fail, but system should not crash.

27.4.1.8 Platform-Specific API

27.4.1.8.1 BSPCheckConfigPower
Thisfunction is used to evaluate whether a device can be supported on the specified USB port.

Parameters:
UCHAR bPort [in] Unused. Each USB controller has only one port

DWORD dwCfgPower [in] Power requirement (number of milliamps) requested by the device being
evaluated for attachment support on this port

DWORD dwTotalPower [in] current total power (number of milliamps) used by other previously
attached devices on this port

Return Value: Return TRUE if device requesting dwCfgPower can be safely attached. Return
FALSE if device can not be attached

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-12 Freescale Semiconductor

USB OTG Driver

27.4.1.8.2 BSPUsbSetWakeUp

This function does what is necessary to enable or disable wakeup on the USB port. For example, this
function does not actually enable wake-up when adevice is currently attached to the port.
Parameters:

BOOL bEnable [in] TRUE to enable wakeup, FAL SE to disable wakeup

27.4.1.8.3 BSPUsbCheckWakeUp

This function evaluates the wake-up condition for the relevant USB port, and clears the condition and
interrupt.

Parameters: None

Return Value: Return TRUE when a wake-up condition was detected. Return FALSE when no
wake-up condition was present

27.4.1.84 SetPHYPowerMgmt

Thisfunction is called by the USB driver when transitioning to or from the suspended state (for example,
during system suspend). The function does what is necessary to place the transceiver hardware into a
suspended (fSuspend == TRUE) or running (fSuspend == FAL SE) state.

The standard implementation for i.MX31/3-Stack uses a UL PI-bus based | SP1504 transceiver for the HS
OTG port, and this function configures the ULPI-busfor sleep state. If the platform hardware uses other
transceivers, this function needsto be modified appropriately.

Parameters:

BOOL fSuspend [in] TRUE: system/controller is going to suspend mode. FAL SE: resuming

27.4.2 USB Client Driver

Thisdriver enablesthe USB device functionality for thei.MX31 device. It is activated when aUSB Mini
B connector is connected to the Mini USB OTG socket. When the i.MX31 3-Stack board is connected to
aUSB host system (ex: high speed or full speed port of PC), it is enumerated according to the current
configuration settings and the appropriate classdriver isloaded on the PC. By default the 3-Stack board is
configured for USB serial class. The 3-Stack board can be configured as one of the following USB
functions by setting the appropriate environment variable during build (drag/drop from the catalog).

» Serial class— Serial ActiveSync
* Mass storage — expose local storage (ATA hard disk, RAMDISK or other store) as USB drive
* RNDISclass — Remote Network Driver Interface Specification

27.4.2.1 User Interface
The USB client driver provides astandard Windows CE USB driver implementation. For an overview see:

Developing a Device Driver > Windows CE Drivers> USB Function Drivers> USB Function
Controller Drivers.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-13

USB OTG Driver

User access to the USB client driver is through function drivers such as Mass Storage or RNDIS. For
further details on these USB Function drivers, refer to Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers> USB Function Client Drivers.

Where new function driver code is to be developed, refer to the Function controller driver interface
functions (for example, IssueTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers> USB Function Controller Drivers
> USB Function Controller Driver Reference.

27.4.2.2 Client Driver Configuration

The OTG client driver is configured into the BSP build by dragging & dropping the appropriate catalog
item (See Table 27-1). When the* Pure Client” functionality is selected, the OTG port actsonly asadevice.
When “Full OTG functionality” is selected, the OTG port can be either device or host (see transceiver
driver configuration).

27.4.2.3 Registry Settings

The USB OTG function/client settings are values located under the registry key:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t 1 n\ UFN|
The values under thisregistry key are automatically included in the image through platform.reg. They do
not normally require customization. Table 27-6 shows the USB OTG client registry values.
Table 27-6. USB OTG Client Registry Settings

Value Type Content Description
Dl sz usbfn.dll Driver dynamic link library
OTGSupport dword 01 This value must be set to 1 to enable the function/client on the OTG. If

no client support is required (host only) then this value can be 0, though
the UFN key is not normally configured in the image at all when pure
Host function is selected.

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB
OTG instance. Only one instance of the OTG is actually supported
currently on the MX31 hardware.

27.4.2.4 Device USB Test Modes

The USB 2.0 specification defines PHY-level test modesfor USB device ports (see definitionsin USB 2.0
specification section 7.1.20). This mechanism allows a host to configure adevice into test mode by
commanding the device with a specific SET_FEATURE reguest. Once test mode is entered, the device
cannot |eave test mode.

The device port does not by default support the USB test modes. Sample code for test mode support
(SET_FEATURE on the device) isincluded in:

SOC\ FREESCALE\ MX31_FSL_V1\ DRI VERS\ USBFN\ CONTRCLLER\ MDD

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-14 Freescale Semiconductor

USB OTG Driver

In addition, USBFN_TEST_MODE_SUPPORT must be defined during compilation of the CSP USBD
device driver library.

27.4.2.5 Unit Test

Thereisno CETK test case for USB client (function) drivers. The USB Function istested by configuring
thei.MX31 3-Stack board as either USB Seria function or USB Mass storage or RNDI S function and
connecting it directly to aHost PC. Thetest verifies basic USB peripheral/client functionality, including
attach, detach, and data transfer.

Separate images must be built and downloaded for each of the three peripheral function tests. Refer to
Section 27.4.1.7.2, “Build the Image to be Tested for more information.
27.4.2.5.1 Unit Test Hardware

Table 27-7 lists the required hardware to run the unit tests.
Table 27-7. Hardware Requirements

Requirements Description

Host system To test if control reaches the Host controller driver.

USB cable having Mini USB OTG plug A at one end | For connecting between the host and the device.
and Mini USB OTG plug B on the other side.

ATA drive configured in UDMA mode 2 as DSK1 This is required as a storage device when the board
is configured as mass storage class.

27.4.2.5.2 Unit Test Software

Table 27-8 shows the software requirements for the USB Function controller driver test.
Table 27-8. Software Requirements

Requirements Description

ActiveSync 4.1 and above. This is the host side software that is required to be available for
testing the Serial class functionality.

USBCV1.3. This is the host side software that is required for software part of
USB Logo Test.

27.4.2.5.3 Running the USB Function Controller Driver Tests
Table 27-9 lists USB Function controller driver tests.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-15

USB OTG Driver

Table 27-9. USB Function Controller Driver Tests

Test Cases Entry Criteria/Procedure/Expected Results
Board configured as Entry Criteria:
USB Serial class and Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait
connected to a host till the board boots-up completely.
system after the board Procedure:
boots up completely. 1. Connect the mini USB OTG plug B to the mini USB OTG socket.

2. Observe that the ActiveSync on the host side gets connected and is synchronized.

3. Copy files from Host system to the Mobile Device. Files are copied.

4. Copy files from the Mobile Device to the Host system. Files gets copied.

5. Unplug the mini USB OTG plug B from the i.MX31 mini USB OTG socket to unload the
Serial class driver.

Expected Result:

ActiveSync should get synchronized and copying of files should happen between the Host
and the 3-Stack board.

Board configured as Entry Criteria:

USB Mass storage Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait
client, with ATA drive as | till the board boots-up completely.

DSK1 mounted, and Procedure:

connected to a host 1. Connect the mini USB OTG plug B to the mini USB OTG socket.

system after the board | 2. Observe that a new disk in My Computer having as Removable Disk appearing in it.
boots up completely. 3. Copy files from Host system to the new disk drive. Files are copied.

4. Copy files from the new disk drive to the Host system. Files gets copied.

5. Unplug the mini USB OTG plug B from the 3-Stack mini USB OTG socket to unload the
mass storage class driver.

Expected Result:

Files copied into mass storage client device match those copied out (when compared on
Windows XP PC using file compare utility). Note that files are not be visible from within the
3-Stack system until the system has been reset. The file system should not be used inside the
3-Stack when it is being accessed through USB as a mass storage client.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-16 Freescale Semiconductor

USB OTG Driver

Test Cases Entry Criteria/Procedure/Expected Results
Board configured as Entry Criteria:
USB RNDIS client and | Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait
connected to a host till the board boots-up completely. See to it that the NIC’s local area connection is not having
system after the board |any IP address.
boots up completely. Procedure:

Browsing the Internet. 1. Connect the mini USB OTG plug B to the mini USB OTG socket.

2. Observe that a new Local area connection in the Network and Dial up connections appears
on the Windows XP machine. Bridge the NIC’s local area connection and the RNDIS’s local
area connection.

3. Configure the bridge by giving IP address, Subnetmask, Default gateway, DNS, and so on.
4. On the 3-Stack board, a new Local area connection can be found in the Network and dial
up connections. Configure the local area connection by giving IP address, Subnetmask,
Default gateway, DNS, and so on.

5. In the Internet explorer on the 3-Stack board, configure the LAN settings as per the local
area settings.

Expected Result:

Browsing the Internet should be possible.

Board configured as Entry Criteria:

USB Mass storage Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait
client, with SD drive as | till the board boots-up completely.

DSK1 mounted, and Procedure:

connected to a host 1. Run USBCV1.3 on PC side

system after the board | 2. Plug the mini USB OTG plug B to the mini USB OTG socket, connect it with PC.

boots up completely. 3. Run Chap-9 Test on USBCV1.3, select our board as test target.

4. Run MSC Test on USBCV1.3, select our platform as test target.

5. Unplug the mini USB OTG plug B from the 3-Stack mini USB OTG socket to unload the
mass storage class driver.

Expected Result:

all test item should get passed.

27.4.2.6 Platform-Specific API

27.4.2.6.1 InitializeMux

Thisfunction is caled to initialize the IOMUX connection within i.MX31, from USB controller to the
appropriate device pins for the transceiver.

This function isimplemented for the Pure Client situation.

Parameters
int Speed [in] Unused
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

27.4.2.6.2 HardwarePullupDP

Thisfunctioniscalled by the USB client driver when D+ must be pulled-up, in preparation for connection
to aUSB host. The standard code configuresfor |SP1504/1 SP1301 transceiver. It ispossibleto modify this
routine to conditionally soft-disable USB connection.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-17

USB OTG Driver

Parameters
CSP_USB REGS*pRegs [in] pointer to the registers for the USB controller
Return Value Return TRUE if D+ signal was pulled-up

27.4.3 USB Transceiver Driver (ID Pin Detect Driver -- XCVR)

Thisdriver isresponsiblefor detecting the type of USB connector plugged into the Mini USB OTG socket
of 3-Stack. Upon detection the driver activates the USB host controller driver or USB function controller
driver.

27.4.3.1 User Interface

There is no user interface to the transceiver driver. This driver merely manages the USB host or client
drivers, which provide the appropriate programming API. The driver can be configured through its
platform-specific routines to provide different behavior for power management (wake-up, D+ soft
connect, and so on).

27.4.3.2 Transceiver Driver Configuration

The transceiver driver is configured into the BSP automatically upon dragging and dropping the USB HS
OTG catalog item. If transceiver functionality is not required, it can be disabled as described below.

27.4.3.3 Registry Settings

The USB OTG transceiver settings are values located under the registry key:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ Xv(]
The values under thisregistry key are automatically included in the image through platform.reg. They do
not normally require customization.Table 27-10 shows the USB OTG transceiver registry values.
Table 27-10. USB OTG Transceiver Registry Settings

Value Type Content Description
DIl sz imx_xvc.dll Driver dynamic link library
OTGSupport dword 01 This value must be set to 1 to enable the transceiver-driven mode

switching on the OTG. If no transceiver support is required (host or client
only) then this value can be set to 0, though the XVC key will not
normally be configured in the image when OTG Pure Host or OTG Pure
Client is configured.

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB
OTG instance. Only one instance of the OTG is actually supported
currently on the MX31 hardware.

27.4.3.4 Unit Test

Thereisno CETK test casefor USB Transceiver driver. The Transceiver driver is tested using the Mini
USB OTG plug A and Mini USB OTG plug B. The test is done by manually plugging in the Mini USB

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-18 Freescale Semiconductor

USB OTG Driver

OTG plug into the Mini USB OTG socket of 3-Stack board. Thetest verifiesthat the USB host or Function

controller driver is activated on cable plug-in.

27.4.3.41

Table 27-11 lists the required hardware to run the unit tests.
Table 27-11. USB Client Driver Hardware Requirements

Unit Test Hardware

Requirements

Description

3-Stack board to act as a device.

3-Stack board is configured as USB Mass storage class.

USB LS Mouse

To test if control reaches the Host controller driver.

USB cable having A-type plug at one end and Mini USB
OTG plug B on the other side.

To plug in USB LS mouse, a USB extension cable having
mini-A at one end and USB A-type socket at the other end

For connecting between the host and the device.

27.4.3.4.2
Table 27-12 lists Transceiver tests.

Running the Transceiver Test

Table 27-12. Transceiver Tests

Test Cases

Entry Criteria/Procedure/Expected Results

Idle case when no
cable plugged in

Entry Criteria:

Make sure there is no mini USB OTG plug connected and the board is turned on and wait
till the board boots-up completely

Procedure:

When the board is powered and completely booted-up, the board should be idle (and as
mass storage client, not verifiable)

Expected Result:

Device boots up and is stable

Mass storage client
visible from PC

Entry Criteria:

Make sure there is no mini USB OTG plug connected and the board is turned on and wait
till the board boots-up completely

Procedure:

When the board is powered and completely booted-up, verify that board responds as a
mass storage client when plugged into PC

Expected Result:

New storage must be visible on PC

Mini USB OTG plug-A
connected to the mini
USB OTG socket of
3-Stack board and
mouse plugged into
OTG port through this
cable

Entry Criteria:

Unplug board from PC (in previous step)

Procedure:

1. Connect the USB HID device (Mouse) which has a Mini USB OTG plug-A to it. The
control goes to the USB Host controller driver.

2. The corresponding device gets enumerated and starts functioning. Foe example, if a
USB mouse is connected, on movement of the mouse, the pointer in the LCD screen is
seen moving.

Expected Result:

Device should start functioning

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

27-19

USB OTG Driver

27.4.3.5 Platform-Specific API

The transceiver driver library code contains all i.MX 31 chip-specific implementation, and is located in:
SOC\ Freescal e\ MX31_FSL_V1\ Dri ver s\ USBXVR

The transceiver driver operation can be customized through the platform-specific code located in:
PLATFORM | MX313DS\ SRC\ Dr i ver s\ USBXVR

The standard implementation located in hwinit.c is provided for the 3-Stack with 1SP1504 transceiver
attached to the High Speed OTG port. Customizations would permit different power management and
wake-up behavior, including when the device generates soft connect/disconnect (D+ pull-up) or what
wake-up conditions are supported when nothing is attached to the OTG port.

The library USB transceiver code communicates with the platform-specific code through callback
functions. Only one globally-defined specific routine (RegisterCallback) is required for using this
interface. Standard code is supplied for full transceiver operation using the 3-Stack hardware platform.

27.4.3.5.1 Structure BSP_USB_CALLBACK_FNS

Structure BSP_USB_CALLBACK_FNSisdefined in MX31_usb.h. Thisisastructure containing all the
USB callback functions as called by the USB CSP drivers. Currently only the transceiver driver
(USBXVR) uses these callback functions. The callback functions are registered using RegisterCallback()
(Section 27.4.3.6.2, “RegisterCallback).
typedef struct {

/1 pfnUSBPower Down - function pointer for platformto call during power down.

/1 pfnUSBPower Up - function pointer for platformto call during power up.
/] Paranmeter: 1) regs - USB registers

/1 2) pUSBCoreC k - pointer to Boolean to indicate the status of USB Core Ck
/1 if itisonor off. Platformis responsible to update this value if they change
/1 the status of USBCoreCl k. [TRUE - USBCoreCl k ON, FALSE - USBCoreCl k OFF]
/1 3) pPani cMbde - pointer to Boolean to indicate the status of panic node

/1 if itisonor off. Platformis responsible to update this value if they change
/1 the status of panic nmode. [TRUE - Pani cMbde ON, FALSE - USBCoreCl k OFF]

voi d (*pfnUSBPower Down) (CSP_USB_REGS *regs, BOOL *pUSBCoreCl k, BOOL *pPani cVbde) ;

voi d (*pfnUSBPower Up) (CSP_USB_REGS *regs, BOOL *pUSBCor eCl k, BOOL *pPani cMode) ;

/'l pfnUSBSet PhyPower Mode - function pointer for platformto call when they want to
suspend/ resume the PHY

/] Parameter: 1) regs - USB registers

/1 2) bResune - TRUE - request to resume, FALSE - request suspend

voi d (*pfnUSBSet PhyPower Mode) (CSP_USB_REGS *regs, BOOL bResun®);
} BSP_USB_CALLBACK_FNS;

27.43.5.2 pfnUSBPowerDown

This callback functionis called during the Windows Embedded CE 6.0 power down sequence. The actual
platform specific power down routine should be registered asthis callback function. Thisfunctionisonly
called if the system isin USB transceiver mode only (i.e. when nothing is attached to the OTG port).

Thereisno standard implementation for this callback, since by default the transceiver driver automatically
suspends the port when nothing is attached. This enables wake-up on device or host attachment, and
enables the D+ pull-up during the suspended condition.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-20 Freescale Semiconductor

USB OTG Driver

Parameters

CSP_USB _REGS*regs
[in] Mapped pointer to the USB registersini.MX31, from physical address space
to a non-paged, process-dependent address space. Thisis mapped during the
transceiver initialization routine (XV C_Init).

BOOL *pUSBCoreClock

[in/out] Pointer to a Boolean variable in transceiver to indicate whether the USB
Core Clock has been stopped.

The platform-specific callback function must update thisflag to reflect the current
USB Core Clock status, if the status of the USB Core Clock is changed within the
platform code (for example using DDK ClockSetGatingMode()). This ensures
consistency of the clock status within the CSP transceiver driver.

TRUE —USB Core Clock is running
FALSE — USB Core Clock is stopped
BOOL *pPanicMode

[in/out] Pointer to a Boolean variable to indicate whether the USB has requested
for system voltage to remain in Panic Mode or not. The callback function must
update this flag to reflect the current Panic Mode status, if this statusis changed
within the platform code (for example using DDK ClockEnablePanicMode(). This
ensures consistency of the Panic Mode status within the CSP transceiver driver.

TRUE: Panic mode is currently requested for the USB.
FALSE: Panic modeis not currently requested for the USB

27.4.3.6 pfnUSBPowerUp

Similar to pfnUSBPowerDown, thisis called during the Windows Embedded CE 6.0 power up sequence.
The actual platform specific power up (resume) routine should be registered to this pointer. Thisisonly
called when USB isin transceiver mode (i.e. when nothing is attached to the OTG port).

Thereisno standard implementation for this callback, since by default the transceiver driver automatically
suspends the port when nothing is attached and the port need not perform any wake-up activity until a
device or host attachment is detected.

Parameters For parameter details Section 27.4.3.5.2, “pfnUSBPowerDown.

27.43.6.1 pfnUSBSetPhyPowerMode

Thisfunction is called when the system isin USB transceiver mode, with no USB activity. With standard
implementation on 3-Stack, if the system is in transceiver mode and there is no activity in USB port for
one second, the transceiver driver suspends the ULPI PHY (in this case, it is1SP1504, disable the USB
Clock gating, and set the system to non-panic mode allowing core voltage to drop).

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-21

USB OTG Driver

When there is USB activity (for example, device attach), the transceiver driver sets the system to panic
mode (requiring core voltage to stay high using DDK ClockEnablePanicMode(), supported for i.MX31),
enables USB Clock gating and puts the ULPI PHY transceiver to resume.

This callback function is responsible for handling the suspend and resume of ULPI PHY transceiver. The
developer must register this pointer with the actual platform specific function for suspend and resume of
ULPI PHY transceiver. Custom wake-up conditions can be enabled here.

Parameters
CSP_USB REGS*regs

[in] Mapped pointer to the USB registersini.MX31, from physical address space
to a non-paged, process-dependent address space. Thisis mapped during the
transceiver initialization routine (XV C_Init).

BOOL resume [in] ThisBoolean variableindicates whether the callback function must resume or
suspend the ULPI PHY transceiver.

TRUE: callback function must resume transceiver activity.
FALSE: callback function must suspend transceiver activity

27.4.3.6.2 RegisterCallback

Thisisused to register all the callback functions defined in BSP_USB_CALLBACK_FNS. Thisfunction
is caled by the USB driver during the initialization process of the transceiver driver (XVC_Init). The
developer must implement a function by this name in their platform directory.

A standard implementation is provided for the |SP1504 transceiver of the 3-Stack. When no callback
function is required, those elements of the BSP_USB_CALLBACK_FNS structure should be initialized
toNULL.

Parameters
BSP_USB_CALLBACK_FNS*pFn

[in/out] Pointer to BSP_USB_CALLBACK_FNS structure for the developer to
register the callback function insidethe BSP_USB_CALLBACK_FNS. The
callback function inside this structure is used by the CSP transceiver code.

27.4.4 Power Management

The following are the aspects of power management for the USB device drivers:
» Specia i.MX31 Vcore requirements
» Clock gating to the USB periphera block within thei.MX31
» Setting the transceiver to alower power mode or suspend
» Transceiver auto-power-down on inactivity
The USB device driver(s) support an ON and OFF/standby (low power) state, with wake-up capability.

The ON state is entered whenever a host or device is attached to the relevant USB port. The driver enters
the standby state automatically after timeout with no device or host attached to the USB port. Aswell, the

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-22 Freescale Semiconductor

USB OTG Driver

standby state is entered when the system suspends. In the latter case, system wake-up capability isenabled
for the port.

27.4.41 Special i.MX31 Vcore Requirements

When ULPI-bus transceivers are used with the USB controller (for example, | SP1504 transceivers for
High Speed OTG port and High Speed Host 2 port on i.MX31/3-Stack), normal DVFS scaling of the
1.MX31V core must be suspended whenever thereispotential of UL PI bus communication. Thisisthe case
whenever adevice is connected (in host mode) or the device is connected to a host (in client mode). The
USB OTG Transceiver driver and USB Host and Client drivers constrain the DV FS behavior by calling
DDK ClockEnablePanicM ode() whenever a device or host connection is detected and by calling

DDK ClockDisablePanicM ode() when a timeout period expires with no device or host connected to the
port. Thereis no user configuration required here; only the effect on DVFS (DV FC driver) behavior need
be noted.

27.4.4.2 Clock Gating

The USB driver(s) for the various USB ports automatically manage clock gating to thei.MX31 USB
controller cores. Thedriversfor the ports coordinate their use of the USB core clock, and when nothing is
connected on any of the ports (all driversarein their lowest power state) the clock is gated on or off using:

DDKCl ock Set Gat i ngMbde(DDK_CLOCK_GATE_| NDEX_USBOTG, DDK_CLOCK_GATE_MODE_ENABLED ALL)
DDKCl ock Set Gat i ngMbde(DDK_CLOCK_GATE_| NDEX_USBOTG, DDK_CLOCK_GATE_MODE_DI SABLED)

27.4.4.3 Transceiver Auto Power Down

The USB transceivers automatically enter alower-power/suspended mode when no USB traffic isdetected
for several milliseconds. Thisinternally sets a suspended state for the USB port. Software timeout is used
to establish whether the driver power mode can be switched to itslowest power state (see Section 27.4.4.4,
“Transceiver Power Mode).

27.4.4.4 Transceiver Power Mode

Softwaretimeout isused to establish whether thetransceivers and their related bus (for example, ULPI-bus
for 1ISP1504 connection to i.MX31) needs to be set to a suspended condition. In the lowest-power stete,
the transceiver is configured to generate wake-up signalling on attachment of devicesor host (to the OTG
port). The transceiver driver provides callback routines to manage this transition.

27.4.45 PowerUp

Each of the OTG client, host and transceiver drivers have PowerUp routine associated. For the host driver,
thisis referenced through the MDD to afunction PowerMgmtCallback().
For the host, the routine does the following:

* Verify the wake-up conditions through the BSPUsbCheckWakeUp() platform routine

* Stop the host controller

* Suspend the relevant port

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-23

USB OTG Driver

* Setthe PHY to low power mode using SetPHY PowerM gmt(TRUE) platform routine
» Disable panic mode for the core voltage (DDK ClockDisablePanicM ode())
» Gate the USB peripheral block clock

For the client, the routine does the following:
» Ungate the USB peripheral block clock
» Enable panic mode for the core voltage (DDK ClockEnablePanicMode())
» Forcethe port to resume
* Disable the wake-up conditions
* Enable the interrupts and start the USB controller

For the transceiver driver, the PowerUp routine calls the relevant platform-specific callback routine,
pfnUSBPowerUp().

Under normal circumstances there is nothing to be done in thisroutine, since the OTG port isnormally in
asuspended state within the transceiver mode. It isonly in transceiver mode when nothing is connected to
the port, and thus has already been automatically suspended.

27.4.4.6 PowerDown

As with the PowerUp routine, OTG client, host and transceiver drivers have PowerDown routine
associated. For the host driver, thisis referenced through the MDD to a function PowerMgmtCallback().
For the host, the routine does the following:

* Verify the wake-up conditions through the BSPUsbCheckWakeUp() platform routine

» Stop the host controller

* Suspend the relevant port

* Setthe PHY to low power mode using SetPHY PowerM gmt(TRUE) platform routine

» Disable panic mode for the core voltage (DDK ClockDisablePanicM ode())

» Gate the USB peripheral block clock

For the client, the routine does the following:
* Stop the USB controller
» Clear any outstanding interrupts
» Enable appropriate wake-up condition
» Suspend the relevant port (suspends the PHY')
» Disable core voltage panic mode (DDK ClockDisablePanicM ode())
» Gate the USB peripheral block clock

For the transceiver driver, the PowerDown routine calls the relevant platform-specific callback routine,
pfnUSBPowerDown().

Under normal circumstancesthereis nothing to be doneinthisroutine, since thetransceiver remainsin its
suspended state while nothing is connected to the port. Should any attachment be made, the transceiver
would wake through its wake-up mechanism and launch the appropriate (client or host) driver.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-24 Freescale Semiconductor

USB OTG Driver

27.4.4.7 Suspend/Resume Operations
» Mass Storage Host/Client: Device is mounted automatically, but any unfinished browse/copy is
terminated

» ActiveSync Client: Once browsing into the content of device. A system suspend/resume causes
device to not be mounted until unplug and plug cable again

* HID Host: client is recognized again automatically

27.4.5 Function Drivers

The function drivers can be configured into the image through the Windows CE 6.0 Platform Builder
catalog, and are located at:

Device Drivers> USB Function > USB Function Clients

The default function driver is launched when the USB device port is attached to a host. This default
function driver is selected by the registry key (the last instance of this value in reginit.ini applies):
[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri vers]
"DefaultientDriver"=- ; erase previous default

[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri vers]
"DefaultdientDriver"="Mass_Storage_Cl ass"

or

"DefaultClientDriver"="RND S"

or
"DefaultCientDriver"="Serial _Class"
Unless the BSP is configured with persistent registry storage, it only makes sense to configure asingle
function driver into the image and this one becomes defauilt.
NOTE

When no USB client functionality isincluded in the image (No OTG port,
or OTG Pure Host only), then ensure that no function drivers have been
configured. If function drivers are configured, then USB client driver
libraries are also included in the image through logic in:

PUBL IC\CEBASE\OAK\Misc\winceos.bat

27.4.5.1 Mass Storage Function
Table 27-13. Mass Storage Function

Driver Attribute Definition
CSP Driver Path N/A
CSP Static Library N/A
Platform Driver Path \PLATFORM\IMX313DS\SRC\DRIVERS\USBMSFN
Import Library USBMSFN_LIB.lib
UFNCLIENTLIB.LIB

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-25

USB OTG Driver

Driver DLL usbmsfn.dll
Catalog Item Device Drivers —> USB Function —> USB Function Clients —> Mass Storage
SYSGEN Dependency SYSGEN_USBFN_STORAGE

The Mass Storage function exposes alocal data store asa USB peripheral storage device. Thisdevice uses
by default for thislocal datastoreis“DSK1”, and could be configured as ATA driveor RAMDISK or even
aUSB drive attached to a different USB host port, depending on the BSP configuration.

The name DSK 1 isassociated with the M ass Storage function through the value “ DeviceName” under the
key:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri ver s\ Mass_St or age_Cl ass]

which isimported by default when SY SGEN_USBFN_STORAGE is defined, from:
PUBLI C\ Conmmon\ OAK\ Fi | es\ common. r eg

For commercial products, this default registry entry must be copied into platform.reg and modified to
override the defaults. Thisallows customizing the following values which must be properly configured for
acommercial device:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri ver s\ Mass_St or age_Cl ass]
; 1 dVendor nust be changed. 045E bel ongs to Mcrosoft and is only to be used for
; prototype devices in your labs. Visit http://ww. usb.org to obtain a vendor id.
"i dVendor" =dwor d: 045E
"Manuf acturer"="Generic Manufacturer (PROTOTYPE--Renmenber to change idVendor)"
"i dProduct " =dwor d: FFFF
"Product"="Ceneric Mass Storage (PROTOTYPE--Remenber to change idVendor)"
"bcdDevi ce" =dwor d: 0

27.4.5.2 Serial Function

The primary use for Serial function is ActiveSync.
Table 27-14. Serial Function

Driver Attribute Definition
CSP Driver Path N/A
PUBLIC driver path PUBLIC\Common\OAK\Drivers\USBFN\CLASS\SERIAL
CSP Static Library N/A
Platform Driver Path N/A
Export Library serialusbfn.lib
Import Library com_mdd2.lib
serpddcm.lib
ufnclientlib.lib
Driver DLL SerialUsbFn.dll
Catalog Iltem Device Drivers —> USB Function —> USB Function Clients —> Serial Client
SYSGEN Dependency SYSGEN_USBFN_SERIAL

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-26 Freescale Semiconductor

USB OTG Driver

NOTE

ActiveSync has been tested using connection to PC with ActiveSync
version 4.1 installed. See microsoft.com to download the latest ActiveSync
software for the PC. In some cases, DEBUGCHK may be triggered during
attachment to ActiveSync in DEBUG builds.

When SY SGEN_USBFN_SERIAL is defined, the default registry entry is automatically included from:
PUBLI C\ Conmon\ OAK\ FI LES\ common. r eg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercia device:
[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri vers\ Seri al _O ass]
; 1 dVendor nust be changed. 045E bel ongs to Mcrosoft and is only to be used for
; prototype devices in your labs. Visit http://ww. usb.org to obtain a vendor id.
"i dVendor " =dwor d: 045E
"Manuf acturer"="Generic Manufacturer (PROTOTYPE--Renmenber to change idVendor)"
"i dProduct "=dwor d: 00ce

"Product"="Generic Serial (PROTOTYPE--Renmenber to change idVendor)"
"bcdDevi ce" =dwor d: 0

27.4.5.3 RNDIS Function

The RNDI S function allows communication over USB to be supplied to Ethernet NDI S interface of
protocol stack.

Table 27-15. RNDIS Function

Driver Attribute Definition
CSP Driver Path N/A
CSP Static Library N/A
Platform Driver Path N/A
PUBLIC Driver Path PUBLIC\\OAK\Drivers\USBFN\Class\RNDIS
Import Library ndis.lib
Driver DLL RNDISFN.DLL
Catalog ltem Device Drivers —> USB Function —> USB Function Clients —> RNDIS Client
SYSGEN Dependency SYSGEN_USBFN_ETHERNET

Note: RNDIS function has been tested using PC RNDI S class driver as located at:

PUBLI C\ Cormon\ OAK\ Dri ver s\ ETHDBG Rndi sni ni \ HOST\ usb8023. i nf
9N NDI R Syst enB2\ dri ver s\ usb8023. sys

When SYSGEN_USBFN_ETHERNET is defined, the default registry entry is automatically included
from:

PUBLI C\ Common\ OAK\ FI LES\ common. r eg

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-27

USB OTG Driver

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercia device:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Functi onDri ver s\ RNDI S]

; 1dVendor nust be changed. 045E bel ongs to Mcrosoft and is only to be used for

; prototype devices in your labs. Visit http://ww. usb.org to obtain a vendor id.

"i dVendor " =dwor d: 045E

"Manuf acturer"="Generic Manufacturer (PROTOTYPE--Renmenber to change idVendor)"

"i dProduct " =dwor d: 0301

"Product"="CGeneri ¢ RNDI S (PROTOTYPE- - Renenber to change i dVendor)"

"bcdDevi ce" =dwor d: 0

27.4.6 Class Drivers

All host ports (OTG Host, High Speed Host (H2), and Full Speed Host (H1)) support the same class
drivers, and this configuration is common to all host ports. Class drivers must also be configured for the
USB host ports. Class driver configuration is common to all host ports; there is no port-specific
configuration to be completed on any class driver.

Table 27-16 shows the standard Microsoft-supplied drivers that are available by drag & drop from the
catal og.

Table 27-16. Class Drivers

Class Driver Configuration Flag Catalog Item

HID SYSGEN_USB_HID Core OS—>Windows CE devices —>Core OS Services —> USB Host
Support
—> USB Human Input Device (HID) Class Driver

Printer SYSGEN_USB_PRINTER .. —> USB Printer Class Driver
(and see additional configuration in Section 27.4.6.1, “Printer)

Keyboard SYSGEN_USB_HID_KEYBOARD |.. —> Keyboard HID Device
(and see additional configuration in Section 27.4.6.3, “HID Keyboard)

Mouse SYSGEN_USB_HID_MOUSE .. —> Mouse HID Device

(and see additional configuration in Section 27.4.6.2, “HID Mouse)
RNDIS SYSGEN_ETH_USB_HOST .. —> USB Remote NDIS Class Driver
Storage SYSGEN_USB_STORAGE .. —> USB (mass) Storage Class Driver

Drag and drop all the class drivers required for the USB Host class.

NOTE

When no USB host ports are configured in the image, ensure that no class
drivers are selected, otherwise host libraries are included by default from
logic in: PUBLI C\ CEBASE\ OAK\ M sc\ wi nceos. bat

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-28 Freescale Semiconductor

USB OTG Driver

27.4.6.1 Printer

For printer support, printer driver/protocol support is required. For example, include PCL shownin
Table 27-17.

Table 27-17. Printer Class Driver

Catalog Item Configuration Flag Catalog ltem

PCL SYSGEN_PCL Device Drivers —> Printer Devices —> PCL Printer Driver

For more information, see Windows CE Platform Builder help topic:

Developing a Device Driver > Windows CE Drivers>USB Host Drivers> USB Host Client Drivers
> USB Host Printer Client Driver

27.4.6.2 HID Mouse

For mouse support, the cursor is required in order to test/use the mouse.
Table 27-18. HID Mouse Class Driver

Catalog Item Configuration Flag Catalog Item

HID SYSGEN_CURSOR Core OS —> Shell and User Interface —> User Interface —>
Customizable Ul—> Mouse

27.4.6.3 HID Keyboard

The 3-Stack Keyboard key mapping conflicts with that used for the HID keyboard. When USB keyboard
supportisincluded, removethe 3-Stack Keyboard (Table 27-19) and include the appropriate stub keyboard
and keyboard .dll (Table 27-20).

Table 27-19. HID Keyboard Driver to Remove

Remove Iltem Remove Catalog ltem

Keyboard Third Party —> Freescale 3DS: ARMV4|—> Device Drivers —>
Input Devices —> Keyboard/Mouse —> EVB Keypad

Table 27-20. HID Keyboard Driver to Include

Catalog Item Configuration Flag Catalog Item

NOP Stub Keyboard BSP_KEYBD_NOP Device Drivers —> Input Devices —> Keyboard/Mouse
—> NOP (Stub) Keyboard/Mouse English

Also include the appropriate keyboard .dll. For example, define SY SGEN_KBD_US and add the
following linesin your platform.bib (immediately before the FILES section):

| F BSP_KEYBD_NOP
kbdmouse. dl | $(_FLATRELEASEDI R) \ KbdnopUs. dl | NK SH
ENDI F; BSP_KEYBD NOP

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 27-29

USB OTG Driver

27.5 IRAM Patch

The USB link in the i.MX31 device uses very specific data structures, that is QH and TD. Data memory
isalso prepared before atransfer is primed. In the origina design, memory is alocated in DRAM. HC
locks the EMI AHB of DRAM when it performs the transfer. The lock prevents another module from
accessing the DRAM. This causes problem for IPU module, which has strict real-time requirements. If HC
occupiesthe DRAM AHB for too long, underflow occurs for the IPU module, which resultsin LCD
display flicker. The problem becomes serious when a complex codec is used, which givesthe IPU very
high loadings. The IC should have wider bandwidth or a smarter arbiter to avoid such problem in the root.

A software workaround isto move all the USB related data structures and datamemory to the IRAM area.
Thisway, USB and IPU do not create such conflicts. Thetrade-off isthat, asIRAM areastotal sizeis 16K,
all the data needed cannot be pulled into the IRAM simultaneously. Large transfers need to be split into

smaller ones and primed one by one. The limited size of the IRAM memory also restricts the number of

USB devices that can be used .

The detailed implementation of IRAM patch not in the scope of thisdocument. To enable the patch, simply
add an environment variable “BSP_USB_IRAM_PATCH” =*"1" in the project settings. As described,
attach two more devicesin one USB port to weaken the effect of this patch.

27.6 Basic Elements for Driver Development

This section provides the details of the basic elements for driver development in the 3-Stack BSP.

27.6.1 BSP Environment Variables

Table 27-21. 3-Stack BSP Environment Variables Summary

Names Definition

BSP_USB Set to configure USB in BSP

BSP_USB_HSOTG_XVC Set to enable Full OTG functionality (transceiver host-client switching) on
the High Speed OTG port

BSP_USB_HSOTG_CLIENT | Set to include USB client functionality on High Speed OTG port

BSP_USB_HSOTG_HOST Set to include USB host functionality on High Speed OTG port.

Pin conflicts between default driver implementations for the i.MX 31 pin muxing (platform-specific
implementation) mean certain configurations are mutually exclusive, as listed in the following table.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-30 Freescale Semiconductor

USB OTG Driver

Table 27-22. Mutual Exclusive Driver Summary

=
> [
S i 3
x | I
0 | (8] |
> S ! 0]
< m m = o -
= s |5 | 3 o 2
Functionality’ | 73 | e] @
o (8] o I T I
0 I 7] m | .
m o m 7] m 7]
(/2] S 7]
0 | 3 3
o | o
@ &%]
o 0
ATA disk drive yes no
High Speed OTG Port full function (Host + Client) yes yes yes yes
High Speed OTG Port Pure Host only yes yes
High Speed OTG Port Pure Client only yes yes
Full Speed Host (H1) no no
High Speed Host (H2) no no
' yes = Required, no = Not permitted, — = Don't care
27.6.2 Dependencies of Drivers

Table 27-23 summarizes the Microsoft defined environment variables used in the BSP,

Table 27-23. . USB Driver

Names

Definition

SYSGEN_USBFN_SERIAL

Set to support serial class for USB Function controller

SYSGEN_USBFN_STORAGE

Set to support mass storage class for USB Function controller

SYSGEN_USBFN_ETHERNET

Set to support RNDIS class for USB Function controller

SYSGEN_CURSOR

Set to support mouse cursor

SYSGEN_FATFS

Set to support FAT16 file system

SYSGEN_PCL

Set to support PCL printing

SYSGEN_PRINTING

Set to support printer

SYSGEN_STOREMGR

Set to support storage manager

SYSGEN_UDFS

Set to support Universal Disc File System

SYSGEN_USB

Set to support USB driver

SYSGEN_USB_HID

Set to support Human Interface driver (HID) class

SYSGEN_USB_HID_CLIENTS

Set to support HID clients

SYSGEN_USB_HID_KEYBOARD

Set to support HID keyboards
(keyboard stub and associated .dll are required)

SYSGEN_USB_HID_MOUSE

Set to support HID mouse

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

27-31

USB OTG Driver

Table 27-23. . USB Driver(Continued)

Names

Definition

SYSGEN_USB_PRINTER

Set to support Printer

(printer driver support, such as PCL (SYSGEN_PCL), may be required)

SYSGEN_USB_STORAGE

Set to support storage medium

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

27-32

Freescale Semiconductor

Chapter 28
WLAN Driver

WLAN Driver

The WLAN driver is used to drive the APM 6628 module to implement Wi-FI functionality. The WLAN
module exchanges data with the i.MX31 device through the SDHC 2 port. The APM 6628 modul e adopts
Unifi V5 solution of Cambrige Silicon Radio company.

28.1

WLAN Driver Summary

WLAN driver is provided in binary form instead of source codes. Table 28-1 provides a summary of the
source code location, library dependencies, and other BSP information.

Table 28-1. WLAN Client Driver Summary

Driver Attribute Definition
Target Platform (TGTPLAT) |iMX313DS
Target SOC (TGTSOC) MX31_FSL_V1
CSP Driver Path N/A
CSP Static Library N/A

Platform Driver Path

.\PLATFORM\<TGTPLAT > \SRC\DRIVERS\wifi\csr

Import Library

N.A

Driver DLL

LoadDriveriMX31.exe loader.xbv sta.xbv ufmib.dat ufmp.dIl ufsdio.dll

Catalog ltem

Third Party > BSPs -> Freescale i.MX31 3DS: ARMV4I| > Device Drivers > WiFi. >
CSR > CSR APM6628 WiFi

Core OS > CE BASE > Communication Services and Networking > Networking
-Local Area Network [LAN] > Wireless LAN (802.11) STA - Automatic Configuration
and 802.1x

Core OS > CE BASE > Communication Services and Networking >
Networking-General > Extensible Authentication Protocol

Core OS > CE BASE > Security > Authentication Services (SSPI) > NTLM

Core OS > CE BASE > Security > Authentication Services (SSPI) > Schannel
(SSL/TLS)

Core OS > CE BASE > Security > Microsoft Certificate Enrollment Tool Sample
Core OS > CE BASE > Internet Client Services > Internet Explorer 6 for Windows
CE Embedded Components > Windows Internet Services

Core OS > CE BASE > Communication Services and Networking >
Networking-General > Network Utilities (IpConfig, Ping, Route)

SYSGEN Dependency

SYSGEN_ETH_80211
SYSGEN_EAP
SYSGEN_AUTH_NTLM
SYSGEN_AUTH_SCHANNEL
SYSGEN_ENROLL
SYSGEN_WININET

BSP Environment Variable

BSP_CSR_WIFI=1
BSP_SDHC2 =1

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor

28-1

WLAN Driver

The Recommended Catalog Items listed in Table 28-1 should be included in the OS design in order to
provide Wi-Fl functionality.

28.2 Supported Functionality

The Wi-FI driver enables the 3-Stack board to provide the following software and hardware support:
» Driveswifi module in APM 6628 chip
» Supports scanning and connection to 802.11b AP with open security
» Supports scanning and connection to 802.11b/g AP with open security
» Supports scanning and connection to 802.11b/g AP with WEP(64/128/256) security
» Supports scanning and connection to 802.11b/g AP with WPA-PSK' security
» Supports scanning and connection to adhoc laptop with open security
» Supports scanning and connection to adhoc laptop with WEP security
» Supports scanning and connection to 802.11g-only AP with open security

28.3 Hardware Operation

The Wi-Fl client driver exchanges data and commands between the SD stack and the Wi-FI hardware
through SDIO port.

28.3.1 Conflicts with Other Peripherals
Wi-FI shares one reset pin with the Bluetooth module in the 3-Stack board.

28.4 Software Operation
The overall software architecture with WLAN Unifi driver for APM 6628 is depicted in Figure 28-1.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

28-2 Freescale Semiconductor

WLAN Driver

Key:

UserMode
Application

WLAN Client

NDISWUIO

20211
D=

Miniport Driver™

ufmsca.dll

SOI0 Now T APT ' s
—— Silicon

SD Bus Driver

Pliypsical SO0CH Eus/l

LniFi

TCP/IP Stack

GENMIZ 2

Figure 28-1. Software Architecture with WLAN Unifi Driver

The main component is the miniport driver. The driver provides the means to configure the UniFi device
for connecting to awireless network to send and receive data. A suitable wireless client, such as Microsoft
Wireless Zero Configuration can:

» Actively scan for wireless networks in the local area

» Connect to an unsecured or WEP-enabled infrastructure or ad-hoc network
» Connect to WPA-enabled networks using pre-shared key (PSK)

» Start an unsecured or WEP-enabled ad-hoc network (I1BSS)

The device driver conforms to the following:

» TheNDIS5.1 specification (defined by the IEEE 802.11 Network Adapter Design Guidelines for
Windows XP) for integration into the Windows operating system

* The UniFi Host Interface Protocol Specification for the exchange of signal primitives with the
UniFi WLAN card.

» Network connections are set up using awireless LAN client. The client issues a set of NDIS
defined 802.11 OIDs to the miniport driver so that it can configure the UniFi device appropriately
28.4.1 Wi-Fl Registry setting

The following registry keys are required to properly load and configure WLAN driver

[HKEY_LOCAL_MACHI NE\ Conmi uf np]
"Di spl ayNane"="CSR Uni Fi v5.0"

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 28-3

WLAN Driver

"G oup"="ND S"

"l magePat h"="ufnp.dl | "
"D ="ufnmp.dl "
"Prefix"="NDL"

[HKEY_LOCAL_MACHI NE\ Conm uf np\ Li nkage]

"Route"=multi_sz:""

[HKEY_LOCAL_MACHI NE\ Corm uf np1]

"Di spl ayNane"="CSR Uni Fi v5.0"

"G oup"="ND S"
"l magePat h"="ufnp. dl "

[HKEY_LOCAL_MACHI NE\ Corm uf np1\ Par ms\ Tcpl p]

" Enabl eDHCP" =dwor d: 1

"l pAddress"="0.0.0.0"

"Def aul t Gat eway" ="0. 0. 0. 0"
"UseZer oBr oadcast " =dword: 0
"Subnet mask"="0. 0. 0. 0"

[HKEY_LOCAL_MACHI NE\ Corm uf np1\ Par ns]

"BusType" =dwor d: 0

" BusNunber " =dwor d: 0

" Power Mbbi | eMbde" =dwor d: 0
"Pol | i ngMbdeEnabl ed" =dwor d: 0
" Sdi oBusW dt h" =dwor d: 4

" SmeDebug" =dwor d: 0

" Cor eDebug" =dwor d: 0

" Dr vDebug" =dwor d: 0

[HKEY_LOCAL_MACHI NE\ Dri ver s\ SDCARD\ Cl i ent Dri ver s\ Cust om MANF- 032A- CARDI D- 0001- FUNC- 1]

"Dl ="ufnp.dl "
"Prefix"="NDL"

"I nst ance0" =" uf np: uf npl"
" mgLeVel " =ll 1"

28.5 Unit Test

WLAN test includes CETK test and manual WLAN connection without protection.

28.5.1

Unit Test Hardware

Table 28-2 lists the required hardware on the 3-Stack board to run the unit tests.

Table 28-2. Hardware Requirements

Requirement

Description

3 access points

The Access point supports open/wep/wpa-psk.

laptop

Used to setup adhoc network.

3-Stack board

Test board.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

28-4

Freescale Semiconductor

WLAN Driver

28.5.2 Unit Test Software
Table 28-3 lists the required software on the 3-Stack board to run the unit tests.

Table 28-3. Software Requirements

Requirement Description
Tux.exe Tux text harness, which is required for executing the test.
Kato.dll Kato logging engine, which is required for logging test data.
Tooltalk.dll Application required by Tux.exe and Kato.dll. Handles the transport between the
target device and the development workstation.
ufmp.dll Test ufmp.dll file for the test client

28.5.3 Running the WLAN Driver Tests

The Wi-Fi test suite requires three Wi-Fi access points to be present simultaneously, each configured for
different encryption schemes. In case there is only one access point available, the tests can be split into
three parts, depending upon encryption disabled: WEP 40-bit or WPA-PSK. Follow the steps below:

1.

o 0k w

~

8.
9.

10.

11.
12.
13.
14.

15.
16.

Create an ad-hoc Wi-Fi link (SSID: CE-ADHOC1) on a WLAN supported laptop or other
WLAN-supporting device

Power On 3DS board, and click LoadDriveriM X31.exe to load the wifi. If the Wireless driver can
be successfully loaded, Windows CE 6.0 displaysaWindow listing the avail able wirel ess networks

Select CE-ADHOC1 to connect, config the IPaddress
Use Ping tool to test the connection
Create an Open security AP, SSID: CE-OPEN, DHCP enable

Power On 3DS board, and click LoadDriveriM X31.exe to load the wifi. If the Wireless driver can
be successfully loaded, Windows CE 6.0 displays aWindow listing the avail able wireless networks

Select CE-ADHOC1 to connect
Use Ping tool to test the connection
Create an WEP 40-bit security AP, SSID:CE-OPEN,DHCP enable, key 0x1234567890

Power On 3DS board, and click LoadDriveriM X31.exe to load the wifi. If the Wirelessdriver can
be successfully loaded, Windows CE 6.0 displays aWindow listing the avail able wirel ess networks

Select CE-ADHOCIL to connect, set WEP , KEY 0x1234567890
Use Ping tool to test the connection
Create an WPA-PSK security AP, SSID:CE-OPEN,DHCP enable, key 12345678

Power On 3DS board, and click LoadDriveriM X31.exe to load the wifi. If the Wirelessdriver can
be successfully loaded, Windows CE 6.0 displays aWindow listing the avail able wirel ess networks

Select CE-ADHOCL to connect, set WEP , KEY 12345678
Use Ping tool to test the connection.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor 28-5

WLAN Driver

28.5.4 Test the WLAN Communication without Protection

This test covers the practical functionality of the Wireless LAN driver to connect to any public wireless
network for internet access. For thistestitisrequired to have a3-Stack board and any wirel ess access point
(maybe awirelessrouter) without any protection to theinternet access. The test is considered passed if the
user can access http://www.google.com and view its contents. To run the test:

1. Turn on the board
2. If Windows CE 6.0 was correctly configured

3. Click LoadDriveriMX31.exeto load the wifi. If the Wireless driver can be successfully loaded,
Windows CE 6.0 displays a Window listing the available wireless networks

4. Select the wireless network without protection that you can use to navigate through the Internet
Open Internet Explorer from the desktop icon
6. Navigate through the Internet to http://www.google.com

o

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

28-6 Freescale Semiconductor

http://www.google.com
http://www.google.com

Frequently Asked Questions

Appendix A
Frequently Asked Questions

A.1 How to Deal with Different Resolutions of the Display Panel?

The DirectDraw display driver does not support dynamic resolution change. You can specify the screen
resolution in either of two locations during boot up:

* Thesdc. c file specifies the hardware-level register settings. Set the width and height using the
variables PANEL_INFO.width and PANEL_INFO.height; these parameters identify to the SDC
the size of the LCD panel. For more information about the register settings, see the chapter on the
Image Processing Unit (1PU) inthe MCIMX31 and MCIMX31L Applications Processor s Reference
Manual.

* Thesdc. h file specifies the actual panel size in the software settings. Set the size values using
SCREEN_PI X_W DTH and SCREEN_PI X_HEI GHT.

NOTE

If the user selects alarge resolution, such as VGA (640x480), remember to
adjust the video memory size, which is set in the registry. For details, see
Section 10.4.2.2, “Display Registry Settings.”

A.2 How to Deal with Different Display Interface Formats?

The current driver setting uses the RGB565 interface format. It is recommended that you use the RGB565
interface, asit uses much less memory than the RGB888 interface, and it al so provides ahigh quality color
representation.

Currently, the display driver supports only RGB565 and Y UV 422 surface. Better performance cannot be
obtained using the RGB666 and RGB888 display interfaces.

If the display panel does not support the RGB565 format, use other RGB format. Map RGB565 to
RGBXXX by changing threeregisters: DI_DISP3 BO_MAP,DI_DISP3 B1 MAPR,DI_DISP3 B2 MAP.
These control the DI bus mapping unit. The setting of theseregistersisin thefunction InitializeSDC in the
sdc. c file. For further information about settings, see Section 44.4.6.4, “Bus M apping Unit,” in MCIMX31
and MCIMX31L Applications Processors Reference Manual.

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

Freescale Semiconductor A-1

Frequently Asked Questions

i.MX31 PDK 1.5 Windows Embedded CE 6.0 Reference Manual, Rev 1.5

A-2 Freescale Semiconductor

	Contents
	About This Book
	Audience
	Suggested Reading
	Conventions
	Acronyms and Abbreviations

	Chapter 1 Introduction
	1.1 Getting Started
	1.2 SDK System Architecture
	1.2.1 Tools and Bootloader
	1.2.2 BSP Layer
	1.2.3 Middleware and Core OS Service Layer
	1.2.4 Application Layer

	1.3 Windows Embedded CE 6.0 Architecture

	Chapter 2 ACC Driver
	2.1 ACC Driver Summary
	2.2 Supported Functionality
	2.3 Hardware Operation
	2.4 Software Operation
	2.4.1 Application / User Interface to ACC drives
	2.4.2 ACC Driver Configuration
	2.4.3 Loading and Initialization
	2.4.4 Mode Selection
	2.4.5 G-Level Selection
	2.4.6 Output Resolution
	2.4.7 Detection Axis
	2.4.8 Calibration
	2.4.9 Power Management

	Chapter 3 ATA Driver
	3.1 ATA Driver Summary
	3.2 Requirements
	3.3 Hardware Operation
	3.3.1 Conflicts with other Peripherals and Catalog Options
	3.3.2 Cabling

	3.4 Software Operation
	3.4.1 Application / User Interface to ATA drives
	3.4.2 ATA Driver Configuration
	3.4.3 Power Management
	3.4.4 Registry Settings
	3.4.5 DMA Support

	3.5 Unit Test
	3.5.1 Unit Test Hardware
	3.5.2 Unit Test Software
	3.5.3 Building the Storage Device Tests
	3.5.4 Running the Storage Device Tests

	3.6 Basic Elements for Driver Development
	3.6.1 BSP Environment Variables
	3.6.2 Mutual Exclusive Drivers
	3.6.3 Dependencies of Drivers

	3.7 Block Device API Reference
	3.7.1 IOCTL_DISK_DEVICE_INFO
	3.7.2 IOCTL_DISK_GET_STORAGEID
	3.7.3 IOCTL_DISK_GETINFO
	3.7.4 IOCTL_DISK_GETNAME
	3.7.5 IOCTL_DISK_READ
	3.7.6 IOCTL_DISK_SETINFO
	3.7.7 IOCTL_DISK_WRITE
	3.7.8 IOCTL_DISK_FLUSH_CACHE

	Chapter 4 Audio Driver
	4.1 Audio Driver Summary
	4.2 Requirements
	4.3 Hardware Operation
	4.3.1 Audio Playback
	4.3.2 Speaker output
	4.3.3 Required SoC Peripherals
	4.3.4 Conflicts with Other SoC Peripherals
	4.3.5 Known Issues
	4.3.6 Required MC13783 PMIC Components

	4.4 Software Operation
	4.4.1 Audio Playback
	4.4.2 Audio Recording
	4.4.3 Audio Driver Compile-time Configuration Options
	4.4.4 DMA Support
	4.4.5 Power Management
	4.4.6 Audio Driver Registry Settings

	4.5 Unit Test
	4.5.1 Unit Test Hardware
	4.5.2 Unit Test Software
	4.5.3 Building the Audio Driver CETK Tests
	4.5.4 Running the Audio Driver CETK Tests

	4.6 System-level Audio Driver Tests
	4.6.1 Checking for a Boot-time Musical Tune
	4.6.2 Confirming Touchpanel Taps and Keypad Key Presses
	4.6.3 Playing Back Sample Audio and Video Files Using the Media Player
	4.6.4 Using the SDK Sample Audio Applications for Testing

	4.7 Audio Driver API Reference
	4.8 Audio Driver Troubleshooting Guide
	4.8.1 Checking Build-time Configuration Options
	4.8.2 Confirming Audio Driver Loading During Device Boot
	4.8.3 Media Player Application Not Found
	4.8.4 Media Player Fails to Load and Play an Audio File

	Chapter 5 Backlight Driver
	5.1 Backlight Driver Summary
	5.2 Requirements
	5.3 Hardware Operation
	5.4 Software Operation
	5.4.1 Backlight Driver Registry Settings

	5.5 Unit Test
	5.5.1 Unit Test Hardware
	5.5.2 Unit Test Software
	5.5.3 Running the Backlight Application Test

	5.6 Backlight API Reference

	Chapter 6 Battery Driver
	6.1 Battery Driver Summary
	6.2 Requirements
	6.3 Hardware Operation
	6.3.1 Conflicts with other SoC Peripherals

	6.4 Software Operation
	6.4.1 Battery Driver Registry Settings
	6.4.2 Power Management

	6.5 Unit Test
	6.5.1 Unit Test Hardware

	6.6 Battery API Reference
	6.6.1 Battery PDD Functions
	6.6.2 Battery Driver Structures

	Chapter 7 Bluetooth Driver
	7.1 Bluetooth Driver Summary
	7.2 Supported Functionality
	7.3 Hardware Operation
	7.4 Software Operation
	7.5 Unit Test

	Chapter 8 Camera Driver
	8.1 Camera Driver Summary
	8.2 Supported Functionality
	8.3 Hardware Operation
	8.4 Software Operation
	8.4.1 Communicating with the Camera
	8.4.2 Camera Registry Settings
	8.4.3 Power Management

	8.5 Unit Test
	8.5.1 Unit Test Hardware
	8.5.2 Unit Test Software
	8.5.3 Building the Camera Tests
	8.5.4 Running the Camera Tests

	8.6 Camera Driver API Reference

	Chapter 9 Chip Support Package Driver Development Kit (CSPDDK)
	9.1 CSPDDK Driver Summary
	9.2 Supported Functionality
	9.3 Hardware Operation
	9.3.1 Conflicts with Other Peripherals

	9.4 Software Operation
	9.4.1 Communicating with the CSPDDK
	9.4.2 Compile-Time Configuration Options
	9.4.3 Registry Settings
	9.4.4 Power Management

	9.5 CSPDDK DLL Reference
	9.5.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
	9.5.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
	9.5.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
	9.5.4 CSPDDK DLL SDMA (DDK_SDMA) Reference

	Chapter 10 Display Driver
	10.1 Display Driver Summary
	10.2 Supported Functionality
	10.3 Hardware Operation
	10.3.1 Rotation Control
	10.3.2 TV Output Mode

	10.4 Software Operation
	10.4.1 Communicating with the Display
	10.4.2 Configuring the Display
	10.4.3 Power Management

	10.5 Unit Test
	10.5.1 Unit Test Hardware
	10.5.2 Unit Test Software
	10.5.3 Building the Display Tests
	10.5.4 Running the Display Tests

	10.6 Display Driver API Reference

	Chapter 11 Dynamic Voltage and Frequency Control (DVFC) Driver
	11.1 DVFC Driver Summary
	11.2 Supported Functionality
	11.3 Hardware Operation
	11.3.1 Pin Settings and Conflicts

	11.4 Software Operation
	11.4.1 Loading and Initialization
	11.4.2 Clock Tree Dependency
	11.4.3 Processor Workload Tracking
	11.4.4 Setpoint Consideration
	11.4.5 Lock and Performance
	11.4.6 DDK Interface
	11.4.7 Power Management

	11.5 Unit Test

	Chapter 12 FM Radio Driver
	12.1 Radio Driver Summary
	12.2 Supported Functionality
	12.3 Hardware Operation
	12.4 Software Operation
	12.4.1 Radio Driver Registry Settings
	12.4.2 Power Management

	12.5 Unit Test
	12.5.1 Unit Test Hardware
	12.5.2 Building the Radio Tests
	12.5.3 Running the Radio Tests

	12.6 Radio IOCTL Reference
	12.6.1 Radio Driver IOCTLS
	12.6.2 Radio Driver Structures

	Chapter 13 General Purpose Timer (GPT) Driver
	13.1 GPT Driver Summary
	13.2 Supported Functionality
	13.3 Hardware Operation
	13.3.1 Conflicts with Other Peripherals

	13.4 Software Operation
	13.4.1 Communicating with the GPT
	13.4.2 Creating a Handle to the GPT
	13.4.3 Configuring the GPT
	13.4.4 Write Operations
	13.4.5 Closing the Handle to the GPT
	13.4.6 Power Management
	13.4.7 GPT Registry Settings

	13.5 Unit Test
	13.5.1 Unit Test Hardware
	13.5.2 Unit Test Software
	13.5.3 Building the GPT Tests
	13.5.4 Running the GPT Tests

	13.6 GPT Driver API Reference
	13.6.1 GPT Driver Functions
	13.6.2 GPT Driver Structures

	Chapter 14 Global Positioning System Driver
	14.1 GPS Driver Summary
	14.1.1 Application layer
	14.1.2 GPS Core Driver Layer
	14.1.3 GPS HAL driver layer

	14.2 Supported Functionality
	14.3 Hardware Operation
	14.3.1 UART Port
	14.3.2 GPIO Control
	14.3.3 Conflicts with Other Peripherals

	14.4 Software Operation
	14.4.1 Communicating with the GPS Module
	14.4.2 Power Management
	14.4.3 GPS Driver Registry Settings

	14.5 Unit Test

	Chapter 15 Inter-Integrated Circuit (I2C) Driver
	15.1 I2C Driver Summary
	15.2 Requirements
	15.3 Hardware Operation
	15.3.1 Conflicts with other SoC peripherals

	15.4 Software Operation
	15.4.1 Communicating with the I2C
	15.4.2 Creating a Handle to the I2C
	15.4.3 Configuring the I2C
	15.4.4 Data Transfer Operations
	15.4.5 Closing the Handle to the I2C
	15.4.6 Power Management
	15.4.7 I2C Registry Settings

	15.5 Unit Test
	15.6 I2C Driver API Reference
	15.6.1 I2C Driver IOCTLS
	15.6.2 I2C Driver Macros
	15.6.3 I2C Driver Structures

	Chapter 16 Keypad Driver
	16.1 Keypad Driver Summary
	16.2 Requirements
	16.3 Hardware Operation
	16.3.1 The Keypad
	16.3.2 Conflicts with other SoC peripherals

	16.4 Software Operation
	16.4.1 Keypad Scan Codes and Virtual Keys
	16.4.2 Power Management
	16.4.3 Keypad Registry Settings

	16.5 Unit Test
	16.5.1 Unit Test Hardware
	16.5.2 Unit Test Software
	16.5.3 Building the Keyboard Tests
	16.5.4 Running the Keyboard Tests

	16.6 Keypad Driver API Reference
	16.6.1 Keypad PDD Functions

	Chapter 17 LAN9217 Product Ethernet Driver
	17.1 LAN9217 Product Ethernet Driver Summary
	17.2 Requirements
	17.3 Hardware Operation
	17.3.1 Conflicts with other SoC peripherals

	17.4 Software Operation
	17.4.1 Power Management
	17.4.2 Product Ethernet Registry Settings

	17.5 Unit Test
	17.5.1 Unit Test Hardware
	17.5.2 Unit Test Software
	17.5.3 Building the LAN9217 Product Ethernet Tests
	17.5.4 Running the LAN9217 Product Ethernet Tests

	17.6 LAN9217 Product Ethernet Driver API Reference

	Chapter 18 MBX Direct3D Mobile/OpenGL ES Drivers
	18.1 Direct3D Mobile/OpenGL ES Drivers Summary
	18.2 Supported Functionality
	18.3 Hardware Operation
	18.3.1 Conflicts with other Peripherals

	18.4 Software Operation
	18.4.1 Application / User Interface to MBX Drivers
	18.4.2 Configuring the LCD Display Panels
	18.4.3 Float Pointing Acceleration using the ARM VFP Library

	18.5 Unit Test
	18.5.1 Unit Test Hardware
	18.5.2 Unit Test Software
	18.5.3 Building the Direct3D Mobile Tests
	18.5.4 Running the Direct3D Mobile Tests
	18.5.5 Direct3D Mobile/OpenGL ES Application Samples/Demos
	18.5.6 Direct3D Mobile Application Samples
	18.5.7 Known Issues for MBX CE6 Driver

	18.6 Drivers API Reference
	18.6.1 Direct3D Mobile
	18.6.2 OpenGL ES

	Chapter 19 NAND Flash Media Driver (FMD)
	19.1 NAND FMD Summary
	19.2 Requirements
	19.2.1 Conflicts with other SoC peripherals

	19.3 Software Operation
	19.3.1 Compile-Time Configuration Options
	19.3.2 Registry Settings
	19.3.3 DMA Support
	19.3.4 Power Management

	19.4 Unit Test
	19.4.1 CETK Testing
	19.4.2 System Testing

	Chapter 20 Postfilter Driver
	20.1 Postfilter Driver Summary
	20.2 Requirements
	20.3 Hardware Operation
	20.3.1 Conflicts with other SoC peripherals

	20.4 Software Operation
	20.4.1 Communicating with the Postfilter Driver
	20.4.2 Creating a Handle to the Postfilter Driver
	20.4.3 Configuring the Postfilter Driver
	20.4.4 Executing Postfilter Operations
	20.4.5 Closing the Handle to the Postfilter Driver
	20.4.6 Postfilter Registry Settings
	20.4.7 Power Management

	20.5 Unit Test
	20.5.1 Unit Test Software
	20.5.2 Building the Postfilter Tests
	20.5.3 Running the Postfilter Tests

	20.6 Postfilter Driver API Reference
	20.6.1 Postfilter Driver Functions
	20.6.2 PF Driver Enumerations
	20.6.3 PF Driver Structures

	Chapter 21 Power Management IC (PMIC)
	21.1 PMIC Driver Summary
	21.2 Requirements
	21.2.1 PMIC API Framework

	21.3 Hardware Operation
	21.3.1 MX31 Peripheral Conflicts

	21.4 Software Operation
	21.4.1 Configuring the PMIC
	21.4.2 Creating a Handle to the PMIC
	21.4.3 Write Operations
	21.4.4 Read Operations
	21.4.5 Closing the Handle to the PMIC
	21.4.6 Power Management
	21.4.7 PMIC Registry Settings
	21.4.8 A/D Converter and Touch

	21.5 Unit Test
	21.5.1 Unit Test Hardware
	21.5.2 Unit Test Software
	21.5.3 Building the PMIC Tests
	21.5.4 Running the PMIC Tests

	21.6 PMIC Reference API
	21.6.1 PMIC Driver IOCTLS
	21.6.2 Interrupt Handling
	21.6.3 Register Access API
	21.6.4 Power Control Reference
	21.6.5 PowerCutTimer Functions
	21.6.6 Memory Hold Operation functions
	21.6.7 Power Cut Counter Functions
	21.6.8 Power Management
	21.6.9 Voltage Regulator
	21.6.10 Data Structures
	21.6.11 Switch mode regulator API’s
	21.6.12 Linear Voltage Regulator API’s
	21.6.13 Power Management
	21.6.14 Battery Charger
	21.6.15 Data Structures
	21.6.16 Battery Charger API (Compatible with SC55112 API)
	21.6.17 Battery Charger API (MC13783 Native For Compatibility with SC55112)
	21.6.18 Battery Charger API (MC13783 Native)
	21.6.19 Power Management

	Chapter 22 Power Manager
	22.1 Power Manager Summary
	22.2 Requirements
	22.3 Hardware Operation
	22.4 3-Stack Software Operation
	22.4.1 Power Management
	22.4.2 Image Configuration
	22.4.3 Registry Settings

	22.5 Unit Test
	22.6 Power Manager API Reference
	22.6.1 Application Interface
	22.6.2 Device Driver Interface

	Chapter 23 Secure Digital Host Controller Driver
	23.1 SDHC Driver Summary
	23.2 Supported Functionality
	23.3 Hardware Operation
	23.3.1 Conflicts with Other Peripherals

	23.4 Software Operation
	23.4.1 Required Catalog Items
	23.4.2 SDHC Registry Settings
	23.4.3 DMA Support
	23.4.4 Power Management

	23.5 Unit Test
	23.5.1 Unit Test Hardware
	23.5.2 Unit Test Software
	23.5.3 Building the Tests
	23.5.4 Running the Tests
	23.5.5 System Testing

	23.6 Secure Digital Card Driver API Reference

	Chapter 24 Serial Driver
	24.1 Serial Driver Summary
	24.2 Supported Functionality
	24.3 Hardware Operation
	24.3.1 Conflicts with Other Peripherals

	24.4 Software Operation
	24.4.1 Serial Registry Settings
	24.4.2 DMA Support

	24.5 Unit Test
	24.5.1 Unit Test Hardware
	24.5.2 Unit Test Software
	24.5.3 Building the Serial Port Driver Tests
	24.5.4 Running the Serial Port Driver Test

	24.6 Serial Driver API Reference
	24.6.1 Serial PDD Functions
	24.6.2 Serial Driver Macros
	24.6.3 Serial Driver Structures

	Chapter 25 Touch Panel Driver
	25.1 Touch Panel Driver Summary
	25.2 Supported Functionality
	25.3 Hardware Operations
	25.3.1 Conflicts with Peripherals
	25.3.2 Conflicts with i.MX31 3-Stack

	25.4 Software Operation
	25.4.1 Touch Driver Registry Settings

	25.5 Unit Tests
	25.5.1 Unit Test Hardware
	25.5.2 Unit Test Software
	25.5.3 Building the Touch Panel Tests

	25.6 Touch Panel API Reference

	Chapter 26 USB Boot and KITL
	26.1 USB Boot and KITL Summary
	26.2 Supported Functionality
	26.3 Hardware Operation
	26.3.1 Conflicts with Other Peripherals

	26.4 Software Operation
	26.4.1 Software Architecture
	26.4.2 Source Code Layout
	26.4.3 IOMUX and Pinout
	26.4.4 Power Management
	26.4.5 Registry Settings
	26.4.6 DMA Support

	26.5 Unit Test
	26.5.1 Building the USB Boot and KITL
	26.5.2 Testing USB Boot and KITL

	Chapter 27 USB OTG Driver
	27.1 USB OTG Driver Summary
	27.1.1 OTG Client Driver Summary
	27.1.2 OTG Host Driver Summary
	27.1.3 OTG Transceiver Driver Summary (For HIGH-SPEED only)

	27.2 Supported Functionality
	27.3 Hardware Operation
	27.3.1 Conflicts with Other Peripherals
	27.3.2 Signal Quality Requirement

	27.4 Software Operation
	27.4.1 USB OTG Host Controller Driver
	27.4.2 USB Client Driver
	27.4.3 USB Transceiver Driver (ID Pin Detect Driver -- XCVR)
	27.4.4 Power Management
	27.4.5 Function Drivers
	27.4.6 Class Drivers

	27.5 IRAM Patch
	27.6 Basic Elements for Driver Development
	27.6.1 BSP Environment Variables
	27.6.2 Dependencies of Drivers

	Chapter 28 WLAN Driver
	28.1 WLAN Driver Summary
	28.2 Supported Functionality
	28.3 Hardware Operation
	28.3.1 Conflicts with Other Peripherals

	28.4 Software Operation
	28.4.1 Wi-FI Registry setting

	28.5 Unit Test
	28.5.1 Unit Test Hardware
	28.5.2 Unit Test Software
	28.5.3 Running the WLAN Driver Tests
	28.5.4 Test the WLAN Communication without Protection

