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About This Book

This manual describes the central processing unit of the DSP56800 Family in detail. It isintended to be
used with the appropriate DSP56800 Family member user’s manual, which describes the central
processing unit, programming models, and details of the instruction set. The appropriate DSP56800
Family member technical data sheet provides timing, pinout, and packaging descriptions.

This manual provides practical information to help the user accomplish the following:
* Understand the operation and instruction set of the DSP56800 Family
»  Write code for DSC algorithms
»  Write code for general control tasks
»  Write code for communication routines
*  Write code for data manipulation algorithms

Audience

Theinformation in thismanual is intended to assist design and software engineers with integrating a
DSP56800 Family device into adesign and with devel oping application software.

Organization
Information in this manual is organized into chapters by topic. The contents of the chapters are as follows:

Chapter 1, “Introduction.” This section introduces the DSP56800 core architecture and its application. It
also provides the novice with a brief overview of digital signal processing.

Chapter 2, “ Core Architecture Overview.” The DSP56800 core architecture consists of the data
arithmetic logic unit (ALU), address generation unit (AGU), program controller, bus and bit-manipulation
unit, and a JTAG/On-Chip Emulation (OnCE™) port. This section describes each subsystem and the buses
interconnecting the major components in the DSP56800 central processing module.

Chapter 3, “Data Arithmetic Logic Unit.” This section describes the data ALU architecture, its
programming model, an introduction to fractional and integer arithmetic, and a discussion of other topics
such as unsigned and multi-precision arithmetic on the DSP56800 Family.

Chapter 4, “ Address Generation Unit.” This section specifically describes the AGU architecture and its
programming model, addressing modes, and address modifiers.

Chapter 5, “Program Controller.” Thissection describesin detail the program controller architecture, its
programming model, and hardware looping. Note, however, that the different processing states of the
DSP56800 core, including interrupt processing, are described in Chapter 7, “Interrupts and the Processing
States.”
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Chapter 6, “Instruction Set Introduction.” This section presents an introduction to parallel movesand a
brief description of the syntax, instruction formats, operand and memory references, data organization,
addressing modes, and instruction set. It also includes a summary of the instruction set, showing the
registers and addressing modes available to each instruction. A detailed description of each instructionis
givenin Appendix A, “Instruction Set Details.”

Chapter 7, “Interruptsand the Processing States.” This section describes five of the six processing
states (normal, exception, reset, wait, and stop). The sixth processing state (debug) is covered more
completely in Chapter 9, “JTAG and On-Chip Emulation (OnCE™).”

Chapter 8, Software Techniques.” This section teaches the advanced user techniques for more efficient
programming of the DSP56800 Family. It includes a description of useful instruction sequences and
macros, optimal loop and interrupt programming, topics related to the stack of the DSP56800, and other
useful software topics.

Chapter 9, “JTAG and On-Chip Emulation (OnCE™).” This section describes the combined
JTAG/ONCE port and its functions. These two areintegrally related, sharing the same pinsfor 1/0, and are
presented together in this section.

Appendix A, “Instruction Set Details.” This section presents a detailed description of each DSP56800
Family instruction, its use, and its effect on the processor.

Appendix B, “DSP Benchmarks.” DSP56800 Family benchmark example programs and results are listed
in this appendix.

Suggested Reading

A list of DSC-related booksisincluded here as an aid for the engineer who is new to the field of DSC:
Advanced Topicsin Sgnal Processing, Jae S. Lim and Alan V. Oppenheim (Prentice-Hall: 1988).
Applications of Digital Sgnal Processing, A. V. Oppenheim (Prentice-Hall: 1978).

Digital Processing of Sgnals. Theory and Practice, Maurice Bellanger (John Wiley and Sons; 1984).
Digital Sgnal Processing, Alan V. Oppenheim and Ronald W. Schafer (Prentice-Hall: 1975).

Digital Sgnal Processing: A System Design Approach, David J. DeFatta, Joseph G. Lucas, and William S.
Hodgkiss (John Wiley and Sons: 1988).

Discrete-Time Sgnal Processing, A. V. Oppenheim and R.W. Schafer (Prentice-Hall: 1989).
Foundations of Digital Sgnal Processing and Data Analysis, J. A. Cadzow (Macmillan: 1987).
Handbook of Digital Sgnal Processing, D. F. Elliott (Academic Press. 1987).

Introduction to Digital Sgnal Processing, John G. Proakis and Dimitris G. Manolakis (Macmillan: 1988).
Multirate Digital Sgnal Processing, R. E. Crochiere and L. R. Rabiner (Prentice-Hall: 1983).

Sgnal Processing Algorithms, S. Stearns and R. Davis (Prentice-Hall: 1988).

Sgnal Processing Handbook, C. H. Chen (Marcel Dekker: 1988).

Sgnal Processing: The Modern Approach, JamesV. Candy (McGraw-Hill: 1988).

Theory and Application of Digital Sgnal Processing, Lawrence R. Rabiner and Bernard Gold
(Prentice-Hall: 1975).
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Conventions

This document uses the following notational conventions:

Bitswithin registersare always|isted from most significant bit (M SB) to least significant bit (L SB).

Bitswithin aregister are formatted AA[n:0] when more than one bit isinvolved in a description.
For purposes of description, the bits are presented asif they are contiguous within aregister.
However, thisis not aways the case. Refer to the programming model diagrams or to the
programmer’s sheets to see the exact location of bits within aregister.

When abit isdescribed as “ set,” itsvalueis set to 1. When abit is described as “cleared,” its value
issetto 0.

Memory addresses in the separate program and data memory spaces are differentiated by a
one-letter prefix. Data memory addresses are preceded by “X:” while program memory addresses
have a“P:” prefix. For example, “P:$0200" indicates alocation in program memory.

Hex values are indicated with adollar sign ($) preceding the hex value, asfollows: $FFFB isthe X
memory address for the Interrupt Priority Register (IPR).

Code examples are displayed in a monospaced font, as follows:

BFSET #$0007,X:PCC ; Configure: line 1
; MISOO, MOSIO, SCKO for SPI master line 2
; ~SS0 as PC3 for GPIO line 3

Definitions, Acronyms, and Abbreviations

The following terms appear frequently in this manual:

DSC digital signal controller
JTAG Joint Test Action Group
OnCE™ On-Chip Emulation
ALU arithmetic logic unit
AGU address generation unit

A complete list of relevant termsisincluded in the Glossary at the end of this manual.
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Chapter 1
| ntroduction

The DSP56800 Digital Signal Controllers provide low cost, low power, mid-performance computing,
combining DSC power and parallelism with M CU-like programming simplicity. The DSP56800 coreis a
general-purpose central processing unit, designed for both efficient digital signal processing and a variety

of controller operations.

1.1 DSP56800 Family Architecture

The DSP56800 Family uses the DSP56800 16-bit DSC core. This core is a general-purpose central
processing unit (CPU), designed for both efficient DSC and controller operations. Its instruction-set
efficiency asa DSC is superior to other low-cost DSC architectures and has been designed for efficient,
straightforward coding of controller-type tasks.

Memory

Peripherals

GPIO

.

|:|| PLL

16-Bit DSC

CPU Core

External
Bus

Interface

> 1/0 Pins

G

Debug
Port

G

> Address
> Data

> JTAGI/O

Figure1-1. DSP56800-Based DSC Microcontroller Chip

AA0012

The genera-purpose MCU-style instruction set, with its powerful addressing modes and bit-manipulation
instructions, enables a user to begin writing code immediately, without having to worry about the
complexities previously associated with DSCs. A software stack allows for unlimited interrupt and
subroutine nesting, as well as support for structured programming techniques such as parameter passing
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and the use of local variables. The veteran DSC programmer sees a powerful DSC instruction set with
many different arithmetic operations and flexible single- and dual-memory movesthat can occur in parallel
with an arithmetic operation. The general -purpose nature of the instruction set also allows for an efficient
compiler implementation.

A variety of standard peripherals can be added around the DSP56800 core (see Figure 1-1 on page 1-1)
such as serial ports, general-purpose timers, real-time and watchdog timers, different memory
configurations (RAM, FLASH, or both), and general-purpose 1/0 (GPIO) ports.

On-Chip Emulation (OnCE™) capability is provided through a debug port conforming to the Joint Test
Action Group (JTAG) standard. This provides rea -time, embedded system debugging with on-chip
emulation capability through the five-pin JTAG interface. A user can set hardware and software
breakpoints, display and change registers and memory locations, and single step or step through multiple
instructions in an application.

The DSP56800’ s efficient instruction set, multiple internal buses, on-chip program and data memories,
external bus interface, standard peripherals, and industry-standard debug support make the DSP56800
Family an excellent solution for real-time embedded control tasks. It isan excellent fit for wireless or
wireline DSC applications, digital control, and controller applications in need of more processing power.

1.1.1 CoreOverview

The DSP56800 core is a programmable 16-bit CMOS digital signal controller that consists of a 16-bit data
arithmetic logic unit (ALU), a 16-bit address generation unit (AGU), a program decoder, On-Chip
Emulation (OnCE), associated buses, and an instruction set. Figure 1-2 on page 1-3 shows ablock diagram
of the DSP56800 core. The main features of the DSP56800 core include the following:

*  Processing capability of up to 35 million instructions per second (MIPS) at 70 MHz
* Requiresonly 2.7-3.6 V of power

» Single-instruction cycle 16-bit x 16-bit parallel multiply-accumulator

»  Two 36-bit accumulators including extension bits

» Single-instruction 16-bit barrel shifter

» Pardllel instruction set with unique DSC addressing modes

* Hardware DO and REP loops

» Two externa interrupt request pins

» Four 16-bit internal core data buses

* Three 16-bit internal address buses

* Instruction set that supports both DSC and controller functions

»  Controller-style addressing modes and instructions for smaller code size

» Efficient C compiler and local variable support

»  Software subroutine and interrupt stack with unlimited depth

*  On-Chip Emulation for unobtrusive, processor-speed-independent debugging
* Low-power wait and stop modes

*  Operating frequency downto DC

» Single power supply
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DSP56800 Family Architecture

Program AGU
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Figure 1-2. DSP56800 Core Block Diagram

1.1.2 Peripheral Blocks

The following peripheral blocks are available for members of the DSP56800 16-bit Family:
e Program FLASH and RAM modules

* Bootstrap FLASH for program RAM parts
 DataFLASH and RAM modules

» Phase-locked loop (PLL) module

»  Genera purpose Quad Timers

e Computer operating properly (COP) module
e Serial Communication Interfaces (SCls)

e Synchronous serial interface module (SSI)

e Serial peripheral interface (SPI)

e Quadrature Decoders

» Controller Area Network (CAN) Modules
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Multiple channels Pulse Width Modulation (PWM) Modules
External Memory Interface (EMI)

Multiple channels Analog-to-Digital Converters (ADC)
Programmabl e general-purpose 1/0 (dedicated & shared)
JTAG/OnCE port for debugging

More blocks will be defined in the future to meet customer needs.

1-4
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Introduction to Digital Signal Processing

1.1.3 Family Members

The DSP56800 core processor is designed as a core processor for afamily of Freescale DSCs. An example
of achip (56F807) built with this core is shown in Figure 1-3.

COP/Watchdog

Ext Memory I/F

Up'-tu-?? GPIO
; 56800 Core
(4) 16-Bit Quad 40 MIPS
Timers

56F807 | writirtn

(2) 4-Channel
Quad Decoder

(2) 6-Channel
. PWM .

JTAG/OnCE

Figure 1-3. Example of Chip Built Around the DSP56800 Core

1.2 Introduction to Digital Signal Processing

DSC isthe arithmetic processing of real-time signals sampled at regular intervals and digitized. Examples
of DSC processing include the following:

» Filtering

e Convolution (mixing two signals)

e Correlation (comparing two signals)

» Rectification, amplification, and transformation

Figure 1-4 on page 1-6 shows an example of analog signal processing. The circuit in theillustration filters
asignal from a sensor using an operational amplifier and controls an actuator with the result. Since the
ideal filter isimpossible to design, the engineer must design the filter for acceptabl e response by
considering variationsin temperature, component aging, power-supply variation, and component accuracy.
The resulting circuit typically has low noise immunity, requires adjustments, and is difficult to modify.
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Figure 1-4. Analog Signal Processing

AA0003

The equivaent circuit using a DSC is shown in Figure 1-5 on page 1-7. This application requires an

analog-to-digital (A/D) converter and digital-to-analog (D/A) converter in addition to the DSC. Even with
these additional parts, the component count can be lower using a DSC due to the high integration available
with current components.
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Figure 1-5. Digital Signal Processing

Processing in this circuit begins by band limiting the input signal with an anti-alias filter, eliminating
out-of-band signals that can be aliased back into the pass band due to the sampling process. The signal is
then sampled, digitized with an A/D converter, and sent to the DSC.

Thefilter implemented by the DSC is strictly a matter of software. The DSC can directly employ any filter
that can also be implemented using anal og techniques. Also, adaptive filters can be easily put into practice
using DSC, whereas these filters are extremely difficult to implement using analog techniques. (Similarly,
compression can also be implemented on a DSC.)
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The DSC output is processed by a D/A converter and is low-pass filtered to remove the effects of
digitizing. In summary, the advantages of using the DSC include the following:

*  Fewer components

e Stable, deterministic performance

* Nofilter adjustments

*  Widerange of applications

*  Filterswith much closer tolerances
» High noiseimmunity

» Adaptivefilters easily implemented
o Sdf-test can bebuilt in

» Better power-supply rejection

The DSP56800 Family is not a custom IC designed for a particular application; it is designed as a
genera-purpose DSC architecture to efficiently execute commonly used DSC benchmarks and controller
code in minimal time.

Asshown in Figure 1-6, the key attributes of a DSC are as follows:
e Multiply/accumulate (MAC) operation
»  Fetching up to two operands per instruction cycle for the MAC
*  Program control to provide versatile operation
* Input/output to move datain and out of the DSC

FIR Filter

N-1
— q» c(k)X(n k) —>
x(t) y(®
x(n) / / y(n)

Program

AAQ0005

Figure 1-6. Mapping DSC Algorithmsinto Hardware
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Summary of Features

The multiply-accumulation (MAC) operation is the fundamental operation used in DSC. The DSP56800
Family of processors has adual Harvard architecture optimized for MAC operations. Figure 1-6 on

page 1-8 shows how the DSP56800 architecture matches the shape of the MAC operation. The two
operands, ¢( ) and x( ), are directed to amultiply operation, and the result is summed. This processis built
into the chip by allowing two separate data-memory accessesto feed asingle-cycle MAC. The entire
process must occur under program control to direct the correct operands to the multiplier and save the
accumulated result as needed. Since the memory and the MAC are independent, the DSC can perform two
memory moves, a multiply and an accumulate, and two address updates in a single operation. As aresult,
many DSC benchmarks execute very efficiently for asingle-multiplier architecture.

1.3 Summary of Features

The high throughput of the DSP56800 Family processors makes them well-suited for wireless and wireline
communication, high-speed control, low-cost voice processing, numeric processing, and computer and
audio applications. The main features that contribute to this high throughput include the following:

»  Speed—The DSP56800 supports most mid-performance DSC applications.

* Precison—Thedatapathsare 16 bitswide, providing 96 dB of dynamic range; intermediate results
held in the 36-bit accumulators can range over 216 dB.

» Parallelism—Each on-chip execution unit, memory, and peripheral operates independently and in
parallel with the other units through a sophisticated bus system. The dataALU, AGU, and program
controller operate in parallel so that the following can be executed in a single instruction:

— Aningtruction pre-fetch

— A 16-hit x 16-bit multiplication

— A 36-bit addition

— Two data moves

— Two address-pointer updates using one of two types of arithmetic (linear or modulo)
— Sending and receiving full-duplex data by the serial ports

— Timers continuing to count in parallel

*  Flexibility—While many other DSCs need external communications circuitry to interface with
peripheral circuits (such as A/D converters, D/A converters, or host processors), the DSP56800
Family provides on-chip serial and parallel interfaces that can support various configurations of
memory and peripheral modules. The peripherals are interfaced to the DSP56800 core through a
peripheral interface bus, designed to provide a common interface to many different peripherals.

» Sophisticated debugging— Freescale's On-Chip Emulation technology (OnCE) allows simple,
inexpensive, and speed-independent access to theinternal registers for debugging. OnCE tells
application programmers exactly what the statusiswithin theregisters, memory locations, and even
the last instructions that were executed.

* Phase-locked loop (PLL)—-based clocking—The PLL allowsthe chip to use almost any available
external system clock for full-speed operation while aso supplying an output clock synchronized
to asynthesized internal core clock. It improves the synchronous timing of the processors’ external
memory port, eliminating the timing skew common on other processors.

* Invisible pipeline—Thethree-stageinstruction pipelineis essentialy invisibleto the programmer,
allowing straightforward program development in either assembly language or high-level
languages such as C or C++,
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* Instruction set—The instruction mnemonics are M CU-like, making the transition from
programming microprocessors to programming the chip as easy as possible. New microcontroller
instructions, addressing modes, and bit-field instructions alow for significant decreasesin program
code size. The orthogonal syntax controls the parallel execution units. The hardware DO loop
instruction and the repeat (REP) instruction make writing straight-line code obsol ete.

* Low power—Designed in CMOS, the DSP56800 Family inherently consumes very low power.
Two additional low power modes, stop and wait, further reduce power requirements. Wait isa
low-power mode where the DSP56800 coreis shut down but the peripheralsand interrupt controller
continueto operate so that an interrupt can bring the chip out of wait mode. In stop mode, even more
of the circuitry is shut down for the lowest power-consumption mode. There are also several
different ways to bring the chip out of stop mode.

1.4 For the Latest Information

For the latest electronic version of this document, as well as other DSC documentation (including user’s
manuals, product briefs, data sheets, and errata) please consult the inside front cover of this manual for
contact information for the following services:

»  Freescale DSC World Wide Web site
* Freescale DSC Helpline
The DSC Web site maintain the most current specifications, documents, and drawings.
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Chapter 2
Core Architecture Overview

The DSP56800 core architecture is a 16-bit multiple-bus processor designed for efficient real-time digital
signal processing and general purpose computing. The architecture is designed as a standard
programmeable core from which various DSC integrated circuit family members can be designed with
different on-chip and off-chip memory sizes and on-chip peripheral requirements. This chapter presents
the overall core architecture and the general programming model. More detailed information on the data
ALU, AGU, program controller, and JTAG/OnCE blocks within the architecture are found in later
chapters.

2.1 CoreBlock Diagram

The DSP56800 core is composed of functional units that operate in paralléel to increase the throughput of
the machine. The program controller, AGU, and data ALU each contain their own register set and control
logic, so each may operate independently and in parallel with the other two. Likewise, each functional unit
interfaces with other units, with memory, and with memory-mapped peripherals over the core’ s internal
address and data buses. The architecture is pipelined to take advantage of the parallel units and
significantly decrease the execution time of each instruction.

For example, it is possible for the data ALU to perform amultiplication in afirst instruction, for the AGU
to generate up to two addresses for a second instruction, and for the program controller to be fetching a
third instruction. In asimilar manner, it is possible for the bit-manipulation unit to perform an operation of
the third instruction described above in place of the multiplication in the data ALU.

The major components of the core are the following:
e DaaALU
e AGU
»  Program controller and hardware looping unit
* Busand bit-manipulation unit
*  OnCE debug port
* Address buses
» Databuses
Figure 2-1 on page 2-2 shows a block diagram of the CPU architecture.
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Figure 2-1. DSP56800 Core Block Diagram

Note that Figure 2-1 illustrates two methods for connecting peripherals to the DSP56800 core: using the
Freescale-standard IP-BUS interface or via a dedicated Peripheral Global Data Bus (PGDB). The interface
method used to connect to peripheralsis dependent on the specific DSP56800-based device being used.
The latest products have chosen the IP-BUS interface. Consult your device user’s manual for more
information on peripheral interfacing.
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2.1.1 Data Arithmetic Logic Unit (ALU)

The data arithmetic logic unit (ALU) performs al of the arithmetic and logical operations on data
operands. It consists of the following:

e Three 16-bit input registers (X0, YO, and Y1)
»  Two 36-bit accumulator registers (A and B)
— 16-bit registers (A0 and BO)
— 16-bit registers (A1 and B1)
— 4-hit extension registers (A2 and B2)
e Anaccumulator shifter (AS)
* Onedatalimiter
*  One 16-bit barrel shifter
* Onepardléd (single cycle, non-pipelined) multiply-accumulator (MAC) unit
Thedata ALU is capable of multiplication, multiply-accumulation (with positive or negative
accumulation), addition, subtraction, shifting, and logical operationsin one instruction cycle. Arithmetic

operations are done using two’ s-complement fractional or integer arithmetic. Support is aso provided for
unsigned and multi-precision arithmetic.

Data ALU source operands may be 16, 32, or 36 bits and may individually originate from input registers,
memory locations, immediate data, or accumulators. ALU results are stored in one of the accumulators. In
addition, some arithmetic instructions store their 16-hbit results either in one of the three data ALU input
registers or directly in memory. Arithmetic operations and shifts can have a 16-bit or a 36-bit result.
Logical operations are performed on 16-bit operands and always yield 16-bit results.

Data ALU register values can be transferred (read or write) across the core global data bus (CGDB) as
16-bit operands. The X0 register value can also be written by X memory data bus two (XDB2) as a 16-bit
operand. Refer to Chapter 3, “Data Arithmetic Logic Unit,” for a detailed description of the data ALU.

2.1.2 Address Generation Unit (AGU)

The address generation unit (AGU) performs all of the effective address calculations and address storage
necessary to address data operands in memory. The AGU operates in parallel with other chip resources to
minimize address-generation overhead. It contains two AL Us, alowing the generation of up to two 16-bit
addresses every instruction cycle: one for either X memory address bus one (XAB1) or program address
bus (PAB) and one for X memory address bus two (XAB2). The ALU can directly address 65,536
locations on the XAB1 or XAB2 and 65,536 |ocations on the PAB, totaling 131,072 sixteen-bit datawords.
It supports a complete set of addressing modes. Its arithmetic unit can perform both linear and modulo
arithmetic.

The AGU contains the following registers:
»  Four addressregisters (RO-R3)
» A stack pointer register (SP)
» Anoffset register (N)
* A modifier register (M01)
* A modulo arithmetic unit
* Anincrementer/decrementer unit
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The address registers are 16-bit registers that may contain an address or data. Each address register can
provide an addressfor the XAB1 and PAB address buses. For instructionsthat read two valuesfrom X data
memory, R3 provides an address for the XAB2, and RO or R1 provides an address for the XABL. The
modifier and offset registers are 16-bit registers that control updating of the address registers. The offset
register can also be used to store 16-hit data. AGU registers may be read or written by the CGDB as 16-bit
operands. Refer to Chapter 4, “ Address Generation Unit,” for a detailed description of the AGU.

2.1.3 Program Controller and Hardwar e L ooping Unit

The program controller performs the following:
* Instruction prefetch
* Instruction decoding
» Hardware loop control
* Interrupt (exception) processing

Instruction execution is carried out in other core units such as the data ALU, AGU, or bit-manipulation
unit. The program controller consists of the following:

¢ A program counter unit
* Instruction latch and decoder
e Hardware looping control logic
* Interrupt control logic
e Statusand control registers
L ocated within the program controller are the following:
» Four user-accessible registers:
— Loop addressregister (LA)
— Loop count register (LC)
— Status register (SR)
— Operating mode register (OMR)
e A program counter (PC)
* A hardware stack (HWS)

In addition to the tasks listed above, the program controller also controls the memory map and operating
mode. The operating mode and memory map are programmable viathe OMR, and are established after
reset by external interface pins.

The HWSisaseparate internal last-in-first-out (L1FO) buffer of two 16-bit words that stores the address of
thefirst instruction in a hardware DO loop. When a new hardware loop is begun by executing the DO
instruction, the address of the first instruction in the loop is stored (pushed) on the “top” location of the
HWS, and the LF bit in the SR is set. The previous value of the loop flag (LF) bit is copied to the OMR’s
NL bit. When an ENDDO instruction is encountered or a hardware loop terminates naturally, the 16-bit
address in the “top” location of the HWS is discarded, and the LF bit is updated with the value in the
OMR’s nested looping (NL) bit.

The program controller is described in detail in Chapter 5, “ Program Controller.” For more details on
program looping, refer to Section 5.3, “Program Looping,” on page 5-14 and Section 8.6, “Loops,” on
page 8-20. For information on reset and interrupts, refer to Chapter 7, “Interrupts and the Processing
States.”
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2.1.4 Busand Bit-Manipulation Unit

Transfers between internal buses are accomplished in the bus unit. The bus unit is similar to a switch
matrix and can connect any two of the three internal data buses together without introducing delays. This
alows data to be moved from program to data memory, for example. The bus unit is also used to transfer
datato the IP-Bus (or PGDB) on those devices that use it to connect to on-chip peripherals.

The bit-manipulation unit performs bit-field manipulations on X (data) memory words, peripheral
registers, and all registers within the DSP56800 core. It is capable of testing, setting, clearing, or inverting
any bits specified in a 16-bit mask. For branch-on-bit-field instructions, this unit tests bits on the upper or
lower byte of a 16-bit word (that is, the mask can only test up to 8 bits at atime).

Note that when the IP-BUS (or PGDB) interface is used, peripheral registers may be memory mapped into
any data (X) memory address range and are accessed with standard X-memory reads and writes. If the
peripheral registers are mapped to the last 64 locations in X memory, these can be accessed with a special
memory addressing mode (see Section 4.2.4.3, “1/O Short Address (Direct Addressing): <pp>,” on

page 4-23).

2.1.5 On-Chip Emulation (OnCE) Unit

The On-Chip Emulation (OnCE) unit allows the user to interact in a debug environment with the
DSP56800 core and its peripherals non-intrusively. Its capabilities include examining registers, on-chip
peripheral registers or memory, setting breakpoints on program or data memory, and stepping or tracing
instructions. It provides simple, inexpensive, and speed-independent access to the internal DSP56800 core
by interacting with auser-interface program running on a host workstation for sophisticated debugging and
economical system development.

Dedicated pins through the JTAG port allow the user accessto the DSC in atarget system, retaining debug
control without sacrificing other user-accessible on-chip resources. This technique eliminates the costly
cabling and the access to processor pins required by traditional emulator systems. Refer to Chapter 9,
“JTAG and On-Chip Emulation (OnCE™),” for a detailed description of the JTAG/OnCE port. Consult
your development system’s documentation for information on debugging using the JTAG/OnCE port
interface.

2.1.6 Address Buses

Addresses are provided to the internal X data memory on two unidirectional 16-bit buses, X memory
address bus one (XAB1) and X memory address bus two (XAB2). Program memory addresses are
provided on the 16-bit program address bus (PAB). Note that XAB1 can provide addresses for accessing
both internal and external memory, whereas XAB2 can only provide addresses for accessing internal
memory.

2.1.7 Data Buses

Inside the chip, dataistransferred using the following:
» Bidirectiona 16-bit buses:
— Coreglobal databus (CGDB)
— Program data bus (PDB)
— IB-BUS or Periphera Globa data bus (PGDB) — dependent on chip implementation
* Oneunidirectional 16-bit bus: X memory data bus two (XDB2)
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Data transfer between the data ALU and the X data memory uses the CGDB when one memory accessis
performed. When two simultaneous memory reads are performed, the transfers use the CGDB and the
XDB2. All other data transfers occur using the CGDB, except transfers to and from peripherals on
DSP56800-based devices that implement the IP-BUS or PGDB peripheral data bus. Instruction word
fetches occur simultaneously over the PDB. The bus structure supports general register-to-register moves,
register-to-memory moves, and memory-to-register moves, and can transfer up to three 16-bit wordsin the
same instruction cycle. Transfers between buses are accomplished in the bus and bit-manipulation unit. As
ageneral rule, when any register lessthan 16 bitswide is read, the unused bits are read as zeros. Reserved
and unused bits should always be written with zeros to insure future compatibility.

2.2 Memory Architecture

The DSP56800 has a dual Harvard memory architecture, with separate program and data memory spaces.
Each address space supports up to 216 (65,536) memory words. Dedicated address and data buses for each
address space alow for simultaneous accesses to both program memory and data memory. Thereisaso a
support for asecond read-only data path to data memory. In DSP56800 Family devices that implement this
second bus, it is possible to initiate two simultaneous data read operations, allowing for atotal of three
parallel memory accesses.

$FFFF 64K or 216 $FFFF 64K or 216
Optimized for
$rFco | Heipherds (64K - 64)
Program
Memory
Space X Data
Memory
Space
$7F 127
Interrupt
$0 Vectors 0 $0 0

NOTE: The placement of the peripheral space is dependent on the specific system
implementation for the DSP56800 core. When the IP-BUS interface is used,
peripheral registers may be memory mapped into any data (X) memory address
range and are accessed with standard X-memory reads and writes.

Figure 2-2. DSP56800 M emory Spaces

Locations $0 through $007F in the program memory space are available for reset and interrupt vectors.
Peripheral registers are located in the data memory address space as memory-mapped registers. This
peripheral space can be located anywhere in the data address space, although the address range
$FFCO-$FFFF provides faster access when using an addressing mode optimized for this region; however,
the location of the peripheral space is dependent on the specific peripheral busimplementation of the
DSP56800 core. See Section 4.2.4.3, “1/O Short Address (Direct Addressing): <pp>,” on page 4-23 for
more information.
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Blocks Outside the DSP56800 Core

2.3 Blocks Outside the DSP56800 Core

The following blocks are optionally found on DSP56800-based DSC chips and are considered peripheral
and memory blocks, not part of the DSP56800 core. These and other blocks are described in greater detail
in the appropriate chip-specific user's manual. Figure 2-3 shows an example DSP56800-based device.
Note that this device uses the Freescale IP-BUS interface to connect to peripherals. Other chips may use
the PGDB peripheral bus.

Program Data On-Chip
—» PLL RAM/FLASH RAM/FLASH Expansion
Expansion Expansion Area
AAA
Clock
Generator N
= Peripheral
< Modules
XAB1
Address XAB2
Generation
. PAB
Unit DSC T
y A .
16-Bit v
Core
Internal PDB IP-BUS
DataBus ——Pp .
) CGDB Bridge
Switch < >
A 4 l A 4 ‘ l A 4
DataALU
Program 16 x 16 + 36 — 36-Bit MAC ITAG/ < S
Controller Three 16-Bit Input Registers OnCE™
Two 36-Bit Accumulators
A A f
@ —— 16-Bit DataBus
IRQA
RESET

Figure 2-3. Sample DSP56800-Family Chip Block Diagram

2.3.1 External Data Memory

External data memory (data RAM, data FLASH, or both) can be added around the core on a chip.
Addresses are received from the XAB1 and XAB2. Data transfers occur on the CGDB and XDB2. One
read, one write, or two reads can be performed during one instruction cycle using the internal data
memory. Depending upon the particular on-chip peripherals found on a device, some portion of the data
address space may be reserved for peripheral registers, and not be accessible as external data memory. A
total of 65,536 memory locations can be addressed.
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2.3.2 Program Memory

Program memory (program RAM, program FLASH, or both) can be added around the core on a chip.
Addresses are received from the PAB and data transfers occur on the PDB. The first 128 locations of the
program memory are available for interrupt vectors, although it is not necessary to use all 128 locations for
interrupt vectors. Some can be used for the user program if desired. The number of |ocations required for
an application depends on what peripherals on the chip are used by an application and the locations of their
corresponding interrupt vectors. The program memory may be expanded off chip, and up to 65,536
locations can be addressed.

2.3.3 Bootstrap Memory

A program bootstrap FLASH is usually found on chips that have on-chip program RAM. The bootstrap
FLASH isused for initially loading application code into the on-chip program RAM so it can be run from
there. Refer to Section 5.1.9.1, “Operating Mode Bits (MB and MA) — Bits 1-0,” on page 5-10 and to the
user’s manual of the particular DSC chip for a description of the different bootstrapping modes.

2.3.4 |P-BUSBridge

Some devices based on the DSP56800 architecture connect to on-chip peripherals using the
Freescale-standard IP-BUS interface. These devices contain an IP-BUS bridge unit, which alows
peripherals to be accessed using the CGDB data bus and XAB1 address bus. Peripheral registers are
memory-mapped into the data address space. Consult the appropriate DSP56800-based device User’s
Manual for more information on peripheral interfacing for a particular chip.

2.3.5 PhaseLock Loop (PLL)

The phase lock loop (PLL) alowsthe DSC chip to use an external clock different from theinternal system
clock, while optionally supplying an output clock synchronized to a synthesized internal clock. This PLL
alows full-speed operation using an external clock running at a different speed. The PLL performs
frequency multiplication, skew elimination, and reduces overall system power by reducing the frequency
on the input reference clock.

2.4 DSP56800 Core Programming M odel

Theregistersin the DSP56800 core that are considered part of the DSP56800 core programming model are
shown in Figure 2-4 on page 2-9. There may also be other important registers that are not included in the
DSP56800 core, but mapped into the data address space. These include registers for peripheral devicesand
other functions that are not bound into the core.
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Figure 2-4. DSP56800 Core Programming Model
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Chapter 3
Data Arithmetic Logic Unit

This chapter describes the architecture and the operation of the data arithmetic logic unit (ALU), the block
where the multiplication, logical operations, and arithmetic operations are performed. (Addition can also
be performed in the address generation unit, and the bit-manipulation unit can perform logical operations.)
The data ALU contains the following:

Three 16-bit input registers (X0, YO0, and Y1)

Two 36-hit accumulator registers (A and B)

— 16-hit registers (A0 and BO)

— 16-bit registers (Al and B1)

— 4-hit extension registers (A2 and B2)

An accumulator shifter (AS)

One data limiter

One 16-hit barrel shifter

One parallé (single cycle, non-pipelined) multiply-accumulator (MAC) unit

Multiple busesin the data ALU perform complex arithmetic operations (such as a multiply-accumulate
operations) in parallel with up to two memory transfers. A discussion of fractional and integer data
representations; signed, unsigned, and multi-precision arithmetic; condition code generation; and the
rounding modes used in the data ALU are also described in this section.

The data ALU can perform the following operations in a single instruction cycle:

Multiplication (with or without rounding)

Multiplication with negated product (with or without rounding)
Multiplication and accumulation (with or without rounding)
Multiplication and accumulation with negated product (with or without rounding)
Addition and subtraction

Compares

Increments and decrements

Logical operations (AND, OR, and EOR)

One's-complement

Two's-complement (negation)

Arithmetic and logical shifts

Rotates

Multi-bit shifts on 16-bit values
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Rounding

Absolute value

Division iteration

Normalization iteration
Conditional register moves (Tcc)
Saturation (limiting)

3.1 Overview and Architecture

The major components of the data ALU are the following:

Three 16-bit input registers (X0, YO, and Y1)
Two 36-hit accumulator registers (A and B)
— 16-hit registers (A0 and BO)

— 16-bit registers (A1 and B1)

— 4-hit extension registers (A2 and B2)

An accumulator shifter (AS)

One data limiter

One 16-bit barrel shifter

One parallé (single cycle, non-pipelined) multiply-accumulator (MAC) unit

A block diagram of the data ALU unit is shown in Figure 3-1 on page 3-3, and its corresponding
programming model is shown in Figure 3-2 on page 3-4. In the programming model, accumulator “A”
refers to the entire 36-bit accumulator register, whereas“A2,” “Al1,” and “AQ" refer to the directly
accessible extension, most significant portions, and least significant portions of the 36-bit accumulator,
respectively. Instructions can access the register as awhole or by these individual portions (see

Section 3.1.2, “Data ALU Accumulator Registers,” on page 3-4 and Section 3.2, “Accessing the
Accumulator Registers,” on page 3-7). The blocks and registers within the data ALU are explained in the
following sections.

DSP56800 Family Manual
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Figure3-1. Data ALU Block Diagram
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Figure 3-2. Data ALU Programming M odel

3.1.1 Data ALU Input Registers (X0, Y1, and YO)

Thedata ALU registers (X0, Y1, and YO0) are 16-hit registers that serve asinputs for the data ALU. Each
register may be read or written by the CGDB as aword operand. They may be treated as three independent
16-bit registers, or as one 16-bit register and one 32-bit register. Y1 and Y 0 can be concatenated to form
the 32-hit register Y, with Y 1 being the most significant word and Y O being the least significant word.
Figure 3-2 shows this arrangement.

These data ALU input registers are used as source operands for most data ALU operations and allow new
operands to be loaded from the memory for the next instruction while the register contents are used by the
current instruction. X0 may also be written by the XDB2 during the dual read instruction. Certain
arithmetic operations also allow these registers to be specified as destinations.

3.1.2 Data ALU Accumulator Registers

Thetwo 36-bit data AL U accumulator registers can be accessed either as a 36-bit register (A or B) or asthe
following, individual portions of the register:

* 4-hit extension register (A2 or B2)
« 16-bit MSP (Al or B1)
e 16-bit LSP (A0 or BO)
The three individual portions make up the entire accumulator register, as shown in Figure 3-2.

These two techniques for accessing the accumul ator registers provide important flexibility for both DSC
algorithms and general-purpose computing tasks. Accessing these registers as entire accumulators (A or B)
is particularly useful for DSC tasks, because this preserves the full precision of multiplication and other
ALU operations. Data limiting and saturation are also possible using the full registers, in cases where the
final result of a computation that has overflowed is moved (see Section 3.4.1, “Data Limiter,” on page
3-26).
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Accessing an accumulator through itsindividual portions (A2, A1, A0, B2, B1, or BO) isuseful for systems
and control programming. When accumulators are manipulated using their constituent components,
saturation and limiting are disabled. This allows for microcontroller-like 16-hit integer processing for
non-DSC purposes.

Section 3.2, “ Accessing the Accumulator Registers,” provides a complete discussion of the ways in which
the accumulators can be employed. A description of the data limiting and saturation features of the data
ALU isprovided in Section 3.4, “ Saturation and Data Limiting.”

3.1.3 Multiply-Accumulator (MAC) and Logic Unit

The multiply-accumulator (MAC) and logic unit is the main arithmetic processing unit of the DSC. Thisis
the block that performs all multiplication, addition, subtraction, logical, and other arithmetic operations
except shifting. It accepts up to three input operands and outputs one 36-bit result of the form
EXT:MSP:LSP (extension : most significant product : least significant product). Arithmetic operationsin
the MAC unit occur independently and in parallel with memory accesses on the CGDB, XDB2, and PDB.
The data ALU registers provide pipelining for both data ALU inputs and outputs. An input register may be
written by memory in the same instruction where it is used as the source for adata ALU operation. The
inputs of the MAC and logic unit can come from the X and Y registers (X0, Y 1, Y0), the accumulators
(A1, B1, A, B), and also directly from memory for common instructions such as ADD and SUB.

The multiplier executes 16-bit x 16-bit parallel signed/unsigned fractional and 16-bit x 16-bit parallel
signed integer multiplications. The 32-bit product is added to the 36-bit contents of either the A or B
accumulator or to the 16-bit contents of the X0, YO, or Y 1 registers and then stored in the same register.
This multiply-accumulate is a single cycle operation (no pipeline). For integer multiplication, the 16 LSBs
of the product are stored in the M SP of the accumulator; the extension register is filled with sign extension
and the LSP of the accumulator remains unchanged.

If amultiply without accumulation is specified by aMPY or MPY R instruction, the unit clears the
accumulator and then adds the contents to the product. The results of al arithmetic instructions are valid
(sign extended) 36-bit operandsin the form EXT:MSP.LSP (A2:A1:A0 or B2:B1:BO0).

When a 36-bit result is to be stored as a 16-bit operand, the L SP can simply be truncated, or it can be
rounded into the M SP. The rounding performed is either the convergent rounding (round to the nearest
even) or two’s-complement rounding. The type of rounding is specified by the rounding bit in the
operating mode register. See Section 3.5, “Rounding,” for amore detailed discussion of rounding.

The logic unit performs the logical operations AND, OR, EOR, and NOT on data ALU registers. It is 16
bits wide and operates on data in the MSP of the accumulator. The least significant and EXT portions of
the accumulator are not affected. Logical operations can also be performed in the bit-manipulation unit.
The bit-manipulation unit is used when performing logical operations with immediate values and can be
performed on any register or memory location.

3.1.4 Barrel Shifter

The 16-bit barrel shifter performs single-cycle, 0- to 15-bit arithmetic or logical shifts of 16-bit data. Since
both the amount to be shifted aswell as the value to shift come from registers, it is possible to shift data by
avariable amount. See Figure 3-3 on page 3-6. It isalso possible to use this unit to right shift 32-bit values
using the ASRAC and LSRAC instructions, as demonstrated in Section 8.2, “ 16- and 32-Bit Shift
Operations,” on page 8-8.
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$SAAAA $4 SAAAA $4
Multi-Bit Multi-Bit
Shifting Unit Shifting Unit
EXT MSP LSP EXT MSP LSP
A|F|FAAA|OOOO| A|F|AAAO|0000
35 32 31 16 15 0 35 32 31 16 15 0
Example: Right Shifting (ASRR) Example: Left Shifting (ASLL) AA0039

Figure 3-3. Right and L eft Shifts Through the M ulti-Bit Shifting Unit

The barrel shifter performs all multi-bit shifts operations: arithmetic shifts (ASLL, ASRR), and logical
shift (LSRR). When the destination is a 36-bit accumulator, the extension register is always loaded with
sign extension from bit 31 for arithmetic shifts (and zero extended for logical shift). The LSPis always set
to zero for these operations. Note that the LSLL isimplemented asan ASLL instruction but only accepts
16-bit registers as destinations. For information on LSLL, refer to Section 6.5.2, “LSLL Alias,” on page
6-12 and Appendix A.

3.1.5 Accumulator Shifter
The accumulator shifter is an asynchronous parallel shifter with a 36-bit input and a 36-bit output. The
operations performed by this unit are as follows:
* No shift performed — ADD, SUB, MAC, and so on
o 1-bitleft shift — ASL, LSL, ROL
* 1-hitright shift — ASR, LSR, ROR
e Forceto zero— MPY, IMPY 16
The output of the shifter goes directly to the MAC unit as an input.

3.1.6 DataLimiter and MAC Output Limiter

The data ALU contains two units that implement optional saturation of mathematical results, the Data
Limiter and the MAC Output Limiter. The Data Limiter saturates values when datais moved out of an
accumulator with amoveinstruction or parallel move. The MAC Output Limiter saturates the output of the
data ALU’s MAC unit.

Section 3.4, “ Saturation and Data Limiting,” provides an in-depth discussion of saturation and limiting, as
well as a description of the operation of the two limiter units.
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3.2 Accessing the Accumulator Registers

An accumulator register can be accessed in two different ways:
» asan entireregister, F (representing accumulator A or B)
» by theindividual register portion: F2, F1, or FO (representing A2 or B2, A1 or B1 and AO or BO)

The ability to access the accumulator registers in both ways provides important flexibility, allowing for
powerful DSC algorithms as well as general-purpose computing tasks.

Accessing an entire accumulator register (A or B) is particularly useful for DSC tasks, since it preserves
the complete 36-bit register—and thus the entire precision of a multiplication or other ALU operation. It
also provides limiting (or saturation) capability in cases when storing aresult of a computation that would
overflow the destination size. See Section 3.4, “ Saturation and Data Limiting.”

Accessing an accumulator through its individual portions (F2, F1, or FO) is useful for systems and control
programming. For example, if a DSC agorithm isin progress and an interrupt is received, it is usually
necessary to save every accumulator used by the interrupt service routine. Since an interrupt can occur at
any step of the DSC task (that is, right in the middle of a DSC algorithm), it isimportant that no saturation
takes place. Thus, an interrupt service routine can store the individual accumulator portions on the stack,
effectively saving the entire 36-bit value without any limiting. Upon completion of the interrupt routine,
the contents of the accumulator can be exactly restored from the stack.

The DSP56800 instruction set transparently supports both methods of access. An entire accumulator may
be accessed simply through the specification of the full-register name (A or B), while portions are accessed
through the use of their respective names (A0, B1, and so on).

Table 3-1 provides a summary of the various access methods. These are described in more detail in
Section 3.2.1, “Accessing an Accumulator by Its Individual Portions,” and Section 3.2.2, “ Accessing an
Entire Accumulator.”

Table 3-1. Accessing the Accumulator Registers

Register Read of an Accumulator Register Writeto an Accumulator Register

A For a MOVE instruction: For a MOVE instruction:

B If the extension bits are not in use for the accumu- | The 16 bits of the CGDB bus are written into the
lator to be read, then the 16-bit contents of the F1 16-bit F1 portion of the register.
portion of the accumulator are read onto the The extension portion of the same accumul ator,
CGDB bus. F2, isfilled with sign extension. The FO portion is
If the extension bits are in use, then a 16-bit “lim- set to zero.
ited” value isinstead read onto the CGDB. See
Section 3.4.1, “Data Limiter.”
When used in an arithmetic operation:
All 36 bits are sent to the MAC unit without limit-
ing.

A2 For a MOVE instruction: For a MOVE instruction:

B2 The 4-bit register is read onto the 4 L SBs of the The 4 LSBs of the CGDB are written into the 4-bit
CGDB bus. register; the upper 12 bits are ignored.
The upper 12 bits of the bus are sign extended. The corresponding F1 and FO portions are not
See Figure 3-5 on page 3-9. modified.

See Figure 3-4 on page 3-8.
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Table 3-1. Accessing the Accumulator Registers (Continued)

Register Read of an Accumulator Register Writeto an Accumulator Register
Al For a MOVE instruction: For a MOVE instruction:
B1 The 16-hit F1 portion isread onto the CGDB bus. | The contents of the CGDB bus are written into the
16-bit F1 register.
When used in an arithmetic operation: The corresponding F2 and FO portions are not
The F1 register is used as a 16-bit source operand modified.
for an arithmetic operation.
F1 can be used in the following:
MOVE
Parallel Move
Several different arithmetic
A0 For a MOVE instruction: For a MOVE instruction:
BO The 16-hit FO register is read onto the CGDB bus. | The contents of the CGDB bus are written into the
16-bit FO register.
The corresponding F2 and F1 portions are not
modified.

In all casesin Table 3-1 where a MOVE operation is specified, it is understood that the function is
identical for parallel moves and bit-field operations.

3.2.1 Accessing an Accumulator by ItsIndividual Portions

Theinstruction set provides instructions for loading and storing one of the portions of an accumulator
register without affecting the other two portions. When an instructions usesthe F1 or FO notation instead of
F, the instruction only operates on the 16-bit portion specified without modifying the other two portions.
When an instruction specifies F2, then the instruction operates only on the 4-bit accumulator extension
register without modifying the F1 or FO portions of the accumulator. Refer to Table 3-1 for a summary of
accessing the accumulator registers.

Data limiting, as outlined in Section 3.4, “ Saturation and Data Limiting,” is enabled only when an entire
accumulator is being stored to memory. When only a portion of an accumulator is being stored (by using
an instruction which specifies F2, F1, or FO), limiting through the data limiter does not occur.

When F2 iswritten, the register receives the low-order portion of the word; the high-order portion is not
used. See Figure 3-4.

15 43 0
CGDB Bus Contents
N~——"] 4LSBof
Not Used word Y
15 43 0
Register F2 Used No Bits P e _
as a Destination o Bits Present Register F2

Figure3-4. Writing the Accumulator Extension Registers (F2)

When F2 isread, the register contents occupy the low-order portion (bits 3-0) of the word; the high-order
portion (bits 15-4) is sign extended. See Figure 3-5.
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15 43 0
Register F2 ] _
Used as a Source No Bits Present F2 Register F2
4 LSB of
Y word Y
15 43 0
Sign Extension | Contents
of E2 of E2 CGDB Bus Contents

Figure 3-5. Reading the Accumulator Extension Registers (F2)

Figure 3-6 shows the result of writing values to each portion of the accumulator. Note that only the portion

specified in the instruction is modified; the other two portions remain unchanged.

Writing the F2 Portion Example: MOVE #S$SABCD, A2

Before Execution After Execution
A2 Al A0 A2 Al A0
Al XX x X X|x X X X| AlD]X X X X|X X X X
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F1 Portion Example: MOVE #$1234,A1

Before Execution After Execution
A2 Al A0 A2 Al A0
Al X [x x X X[x x X X| Al Xx]1 2 3 4[x x x X
35 32 31 16 15 0 35 32 31 16 15 0

Writing the FO Portion Example: MOVE #S$SA987,A0

Before Execution After Execution
A2 Al A0 A2 Al A0
Al X [x x x X[x X X X Al X[x x x X[A 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0

Figure 3-6. Writing the Accumulator by Portions

See Section 3.2, “Accessing the Accumulator Registers,” for adiscussion of when it is appropriate to

access an accumulator by itsindividual portions and when it is appropriate to access it as an entire
accumulator.
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3.2.2 Accessing an Entire Accumulator

3.2.2.1 Accessing for Data ALU Operations

The complete accumulator is accessed to provide a source, a destination, or both for an ALU or
multiplication operation in the data ALU. In this case, the accumulator is written as an entire 36-bit
accumulator (F), not as an individual register (F2, F1, or FO). The accumulator registers receive the
EXT:MSP:LSP of the multiply-accumulator unit output when used as a destination and supply a source
accumulator of the same form. Most data ALU operations specify the 36-bit accumulator registers as
source operands, destination operands, or both.

3.2.2.2 Writing an Accumulator with a Small Operand

Automatic sign extension of the 36-bit accumulatorsis provided when the accumulator is written with a
smaller size operand. This can occur when writing F from the CGDB (MOVE instruction) or with the
results of certain data ALU operations (for example, ADD, SUB, or TFR from a 16-hit register to a 36-bit
accumulator). If aword operand isto be written to an accumulator register (F), the F1 portion of the
accumulator is written with the word operand, the LSP is zeroed, and the EXT portion receives sign
extension. Thisis aso the case for aMOVE instruction that moves one accumulator to another, but is not
the case for a TFR instruction that moves one entire accumulator to another. No sign extension is
performed if anindividual 16-bit register iswritten (F1 or FO).

NOTE:

A read of the F1 register inaMOVE instruction isidentical to aread of the
F accumulator for the case where the extension bits of that accumulator
only contain sign-extension information. In this case there is no need for
saturation or limiting, so reading the F accumulator produces the same
result as reading the F1 register.

3.2.2.3 Extension Registersas Protection Against Over flow

The F2 extension registers offer protection against 32-bit overflow. When the result of an accumulation
crossesthe MSB of MSP (bit 31 of F), the extension bit of the status register (E) is set. Up to 15 overflows
or underflows are possible using these extension bits, after which the sign islost beyond the MSB of the
extension register. When this occurs, the overflow bit (V) in the status register is set. Having an extension
register allows overflow during intermediate cal culations without losing important information. Thisis
particularly useful during execution of DSC algorithms, when intermediate cal culations (but not the final
result that is written to memory or to a peripheral) may sometimes overflow.

Thelogic detection of “extension register in use” isalso used to determine when to saturate the value of an
accumulator when it is being read onto the CGDB or transferred to any data ALU register. If saturation
occurs, the content of the original accumulator is not affected (except if the same accumulator is specified
as both source and destination); only the value transferred over the CGDB islimited to afull-scale positive
or negative 16-bit value ($7FFF or $8000).

When limiting occurs, aflag is set and latched in the status register (L). The limiting block is explained in
more detail in Section 3.4.1, “Data Limiter.”

NOTE:

Limiting will be performed only when the entire 36-bit accumulator
register (F) is specified as the source for a parallel data move or aregister
transfer. It is not performed when F2, F1 or FO is specified.
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3.2.2.4 Examplesof Writing the Entire Accumulator

Figure 3-7 shows the result of writing a 16-bit signed value to an entire accumulator. Note that all three
portions of the accumulator are modified. The LSP (BO) is set to zero, and the extension portion (B2) is
appropriately sign extended.

Writing a Positive Value into 36-Bit Accumulator Example: MOVE #$1234,B

Before Execution After Execution
B2 B1 BO B2 B1 BO
B X [x x x x[x x x X B{o]|1 2 3 4][0 0 0 0
35 32 31 16 15 0 35 32 31 16 15 0

Writing a Negative Value into 36-Bit Accumulator Example: MOVE #$A987,B

Before Execution After Execution
B2 Bl BO B2 B1 BO
B X [x x x Xx[x x X X B{F|[A 9 8 7][0 0 0 0
35 32 31 16 15 0 35 32 31 16 15 0

Figure 3-7. Writing the Accumulator asa Whole

Successfully using the DSP56800 Family requires a full understanding of the methods and implications of
the various accumulator-register access methods. The architecture of the accumulator registers offers a
great deal of flexibility and power, but it is necessary to completely understand the access mechanisms
involved to fully exploit this power.

3.2.3 General Integer Processing

General integer and control processing typically involves manipulating 16- and 32-bit integer quantities.
Rarely will such code use afull 36-bit accumulator such as that implemented by the DSP56800 Family.
The architecture of the DSP56800 supports the manipulation of 16-bit integer quantities using the
accumulators, but care must be taken when performing such manipulation.

3.2.3.1 Writing Integer Data to an Accumulator

When loading an accumulator, it ismost desirable for the 36 bits of the accumulator to correctly reflect the
16-bit data. To thisend, it is recommended that all accumulator loads of 16-bit data clear the |east
significant portion of the accumulator and a so sign extend the extension portion. This can be
accomplished through specifying the full accumulator register as the destination of the move, as shown in
Example 3-1.

Example 3-1. Loading an Accumulator with a Word for Integer Processing

MOVE X:(RO),A ; A2 receives sign extension
; Al receives the 16-bit data
; A0 receives the value $0000
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Loading a 16-hit integer value into the A1 portion of the register is generally discouraged. In aimost all
cases, it is preferable to follow Example 3-1 on page 3-11. One notable exception is when 36-bit
accumulator values must be stored temporarily. See Section 3.2.5, “ Saving and Restoring Accumulators,”
for more details.

3.2.3.2 Reading Integer Data from an Accumulator

Integer and control processing algorithms typically involve the manipulation of 16-bit quantities that
would be adversely affected by saturation or limiting. When such integer calculations are performed, it is
often desirable not to have overflow protection when results are stored to memory. To ensure that the data
ALU’sdatalimiter is not active when an accumulator is being read, it is necessary to store not the full
accumulator, but just the MSP (A1 portion). See Example 3-2.

Example 3-2. Reading a Word from an Accumulator for Integer Processing

MOVE Al,X:Variable 1 ; Saturation is disabled

Note that with the use of the A1 register instead of the A register, saturation isdisabled. Thevaluein Alis
written “asis’ to memory.

3.2.4 Using 16-Bit Results of DSC Algorithms

A DSC algorithm may use the full 36-bit precision of an accumulator while performing DSC calculations
such as digital filtering or matrix multiplications. Upon completion of the algorithm, however, sometimes
the result of the calculation must be saved in a 16-bit memory location or must be written to a 16-bit D/A
converter. Since DSC algorithms process digital signals, it isimportant that when the 36-bit accumul ator
valueis converted to a 16-bit value, saturation is enabled so signals that overflow 16 bits are appropriately
clipped to the maximum positive or negative value. See Example 3-3.

Example 3-3. Correctly Reading a Word from an Accumulator to a D/A

MOVE A,X:D to A data ; Saturation is enabled

Note the use of the A accumulator instead of the A1 register. Using the A accumulator enables saturation.

3.2.5 Saving and Restoring Accumulators

Interrupt service routines offer one example of atimewhen it is critical that an accumulator be saved and
restored without being altered in any way. Since an interrupt can occur at any time, the exact usage of an
accumulator at that instant is unknown, so it cannot be altered by the interrupt service routine without
adversely affecting any calculation that may have beenin progress. In order for an accumulator to be saved
and restored correctly, it must be done with limiting disabled. Thisis accomplished through sequentially
saving and restoring the individual parts of the register, and not the whole register at once. See

Example 3-4 on page 3-13.
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Example 3-4. Correct Saving and Restoring of an Accumulator — Word Accesses

; Saving the A Accumulator to the Stack

LEA (SP) + ; Point to first empty location
MOVE A2,X: (SP)+ ; Save extension register

MOVE Al,X: (SP)+ ; Save MSP register

MOVE A0,X: (SP) ; Save LSP register

; Restoring the A Accumulator from the Stack

MOVE X:(SP)-,A0 ; Restore LSP register

MOVE X: (SP)-,Al ; Restore MSP register

MOVE X: (SP)-,A2 ; Restore extension register

It isimportant that interrupt service routines do not use the MOVE A, X:(SP)+ instruction when saving to
the stack. Thisinstruction operates with saturation enabled, and may inadvertently store the value $7FFF
or $8000 onto the stack, according to the rules employed by the Data Limiter. This could have catastrophic
effects on any DSC calculation that was in progress.

3.2.6 Bit-Field Operationson Integersin Accumulators

When bit-manipulation operations on accumul ator registers are performed, as is done for integer
processing, care must be taken. The bit-manipulation instructions operate as a“ Read-M odify-Write”
sequence, and thus may be affected by limiting during the “Read” portion of this sequence. In order for
bit-manipulation operations to generate the expected results, limiting must be disabled. To ensure that this
isthe case, the MSP (A1 portion) of an accumulator should be used as the target operand for the ANDC,
EORC, ORC, NOTC, BFCLR, BFCHG, and BFSET instructions, not the full accumulator. See

Example 3-5.

Example 3-5. Bit Manipulation on an Accumulator

; BFSET using the Al register
BFSET #SO0F00,Al ; Reads Al with saturation disabled
; Sets bits 11 through 8 and stores back to Al
; Note: A2 and A0 unmodified

; BFSET using the A register
BFSET #S$0F00,A ; Reads Al with saturation enabled - may limit
; Sets bits 11 through 8 and stores back to Al
; A2 is sign extended and A0 is cleared

Since the BFTSTH, BFTSTL, BRCLR, and BRSET instructions only test the accumulator value and do
not modify it, it is recommended to do these operations on the A1 register where no limiting can occur
when integer processing is performed.

3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion

There are two types of instructions that are useful for converting the 36-bit contents of an accumulator to a
16-bit value, which can then be stored to memory or used for further computations. Thisis useful for
processing word-sized operands (16 bits), since it guarantees that an accumulator contains correct sign
extension and that the least significant 16 bits are al zeros. The two techniques are shown in Example 3-6
on page 3-14.
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Example 3-6. Converting a 36-Bit Accumulator to a 16-Bit Value

;Converting with No Limiting
MOVE Al,A ;Sign Extend A2, A0 set to $0000
MOVE Al,B ;Sign Extend B2, BO set to $0000

;Converting with Limiting Enabled
A ;Sign Extend A2, Limit if Required
B ;Sign Extend B2, Limit if Required

MOVE A,
MOVE A,

Where limiting is enabled, as in the second example in Example 3-6, limiting only occurs when the
extension register isin use. Y ou can determine if the extension register isin use by examining the
extension bit (E) of the status register. Refer to Section 5.1.8, “ Status Register,” on page 5-6.

3.3 Fractional and Integer Data ALU Arithmetic

The ability to perform both integer and fractional arithmetic is one of the strengths of the DSP56800
architecture; there is a need for both types of arithmetic.

Fractional arithmetic is typically required for computation-intensive algorithms such as digital filters,
speech coders, vector and array processing, digital control, and other signal-processing tasks. In this mode
the dataisinterpreted as fractional values, and the computations are performed interpreting the data as
fractional. Often, saturation is used when performing calculations in this mode to prevent the severe
distortion that occurs in an output signal generated from a result where a computation overflows without
saturation (see Figure 3-14 on page 3-28). Saturation can be selectively enabled or disabled so that
intermediate cal culations can be performed without limiting, and limiting is only done on final results (see
Example 3-7).

Example 3-7. Fractional Arithmetic Examples

0.5x0.25=0.125
0.625+ 0.25=0.875
0.125/05=0.25
05>>1=025

Integer arithmetic, on the other hand, isinvaluable for controller code, for array indexing and address
computations, compilers, periphera setup and handling, bit manipulation, bit-exact algorithms, and other
general-purpose tasks. Typically, saturation is not used in this mode, but is available if desired. (See
Example 3-8.)

Example 3-8. Integer Arithmetic Examples

4x3=12

1201 + 79=1280
63/9=7
100<<1=200

The main difference between fractional and integer representationsis the location of the decimal (or
binary) point. For fractional arithmetic, the decimal (or binary) point is always located immediately to the
right of the MSP’s most significant bit; for integer values, it is always located immediately to the right of
the value’'s LSB. Figure 3-8 on page 3-15 shows the location of the decimal point (binary point), bit
weights and operands alignment for different fractional and integer representations supported on the
DSP56800 architecture.
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16-Bit Word Operand 20 15
X0,Y0,Y1,A1,B1,
16-Bit Memory
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36-Bit Accumulator
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16-Bit Word Operand 215 o4 20
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1 1
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36-Bit Accumulator 2% 2% 216 1215 20!
]
Integer Two’s-Complement Representations AAQOAL

Figure 3-8. Bit Weightingsand Operand Alignments

The representation of numbers allowed on the DSP56800 architecture are as follows:
« Two’'s-complement values
» Fractiona or integer values
e Signed or unsigned values
*  Word (16-hit), long word (32-bit), or accumulator (36-bit)

The different representations not only affect the arithmetic operations, but also the condition code
generation. These numbers can be represented as decimal, hexadecimal, or binary numbers.

To maintain alignments of the binary point when aword operand is written to an accumulator A or B, the
operand is written to the most significant accumulator register (A1 and B1) and its most significant bit is
automatically sign extended through the accumulator extension register. The least significant accumulator
register is automatically cleared.

Some of the advantages of fractional data representation are as follows:
*  The MSP (left half) has the same format as the input data.
» TheLSP (right half) can be rounded into the M SP without shifting or updating the exponent.
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» Conversion to floating-point representation is easier because the industry-standard floating-point
formats use fractional mantissas.

» Coefficients for most digital filters are derived as fractions by DSC digital-filter design software
packages. Theresultsfrom the DSC design tool s can be used without the extensive data conversions
that other formats require.

» A significant bit is not lost through sign extension.

3.3.1 Interpreting Data

Datain amemory location or register can beinterpreted as fractional or integer, depending on the needs of
auser’s program. Table 3-2 shows how a 16-bit value can be interpreted as either afractional or integer
value, depending on the location of the binary point.

Table 3-2. Interpretation of 16-Bit Data Values

Hexadecimal I nteger Fractional

Representation Binary Decimal Binary Decimal
$7FFF 01111111 11111111 32767 0.111 111111111112 0.99997
$7000 0111 0000 0000 0000. 28672 0.111 0000 0000 0000 0.875
$4000 0100 0000 0000 0000. 16384 0.100 0000 0000 0000 0.5
$2000 0010 0000 0000 0000. 8,192 0.010 0000 0000 0000 0.25
$1000 0001 0000 0000 0000. 4,096 0.001 0000 0000 0000 0.125
$0000 0000 0000 0000 0000. 0 0.000 0000 0000 0000 0.0
$F000 1111 0000 0000 0000. - 4096 1.111 0000 0000 0000 -0.125
$EO000 1110 0000 0000 0000. - 8192 1.110 0000 0000 0000 -0.25
$C000 1100 0000 0000 0000. - 16384 1.100 0000 0000 0000 -05
$9000 1001 0000 0000 0000. - 28672 1.001 0000 0000 0000 -0.875
$8000 1000 0000 0000 0000. - 32768 1.000 0000 0000 0000 -10

The following equation shows the relationship between a 16-bit integer and a fractional value:
Fractional Value = Integer Value/ (2%°)

Thereisasimilar equation relating 36-bit integers and fractional values:
Fractional Value = Integer Value/ (2%Y)

Table 3-3 shows how a 36-bit value can be interpreted as either an integer or afractional value, depending
on the location of the binary point.

Table 3-3. Interpretation of 36-bit Data Values

3-16

Hexadecimal 3§'Bit Integer in 16-Bit Integer in MSP Fractional
4 Entire Accumulator | Value
Representation (decimal) (decimal) (decimal)
$7 FFFF FFFF 34,359,738,367 (Overflows) ~16.0
$1 4000 0000 5,368,709,120 (Overflows) 25
$0 4000 0000 1,073,741,824 16,384 05
$0 2000 0000 536,870,912 8,192 0.25
$0 0000 0000 0 0 0.0
$F C000 0000 -1,073,741,824 - 16,384 -05
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Table 3-3. Interpretation of 36-bit Data Values (Continued)

Hexadecimal SG-Bit Integer in 16-Bit Integer inMsp | Fractiona
R 9 Entire Accumulator decimal Value
epresentation (decimal) (decimal) (decimal)
$F E00O 0000 - 536,870,912 - 8,192 -0.25
$E C000 0000 - 5,368,709,120 (Overflows) -2.5
$8 0000 0001 -34,359,738,367 (Overflows) -16.0

1. When the accumul ator extension registers arein use, the data contained in the accu-
mulators cannot be stored exactly in memory or other registers. In these cases the data
must be limited to the most positive or most negative number consistent with the size
of the destination.

3.3.2 Data Formats

Four types of two’ s-complement data formats are supported by the 16-bit DSC core:

* Signed fractional

* Unsigned fractional

» Signed integer

* Unsigned integer
The ranges for each of these formats, discussed in the following subsections, apply to all data stored in
memory and to data stored in the data ALU registers. The extension registers associated with the
accumulators allow word growth so that the most positive signed fractional number that can be represented
in an accumul ator is approximately 16.0 and the most negative signed fractional number is-16.0 as shown
in Table 3-3. An important factor to consider is that when the accumulator extension registers are in use,
the data contained in the accumul ators cannot be stored exactly in memory or other registers. In these cases

the data must be limited to the most positive or most negative number consistent with the size of the
destination and the sign of the accumul ator, the MSB of the extension register.

3.3.2.1 Signed Fractional

In thisformat the N bit operand is represented using the 1.[N-1] format (1 sign bit, N-1 fractional hits).
Signed fractional numbers lie in the following range:

-1.0< SF<+1.0- 2N
For words and long-word signed fractions, the most negative number that can be represented is-1.0, whose

internal representation is $8000 and $8000_0000, respectively. The most positive word is $7FFF or 1.0 -
215 and the most positive long word is $7FFF_FFFF or 1.0 - 23,

3.3.2.2 Unsigned Fractional

Unsigned fractional numbers may be thought of as positive only. The unsigned numbers have nearly twice
the magnitude of a signed number with the same number of bits. Unsigned fractional numbersliein the
following range:

0.0<UF<20-2[N1

Examples of unsigned fractional numbers are 0.25, 1.25, and 1.999. The binary word is interpreted as
having a binary point after the MSB. The most positive 16-bit unsigned number is $FFFF formul ated
as{1.0+ (1.0- 2Ny} = 1.99997. The smallest unsigned number is zero ($0000).
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3.3.2.3 Signed Integer

Thisformat is used when datais being processed as integers. Using this format, the N-bit operand is
represented using the N.O format (N integer bits). Signed integer numbers lie in the following range:

2N < g < [2IN-11]

For words and long-word signed integers the most negative word that can be represented is -32768
($8000), and the most negative long word is-2147483648 ($8000_0000). The most positiveword is 32767
($7FFF), and the most positive long word is 2147483647 ($7FFF_FFFF).

3.3.2.4 Unsigned I nteger

Unsigned integer numbers may be thought of as positive only. The unsigned numbers have nearly twice
the magnitude of a signed number of the same length. Unsigned integer numbersliein the following range:
o< Ul <[2MN-1]

Examples of unsigned integer numbers are 25, 125, and 1999. The binary word isinterpreted as having a
binary point immediately to the right of the LSB. The most positive, 16-bit, unsigned integer is 65535
($FFFF). The smallest unsigned number is zero ($0000).

3.3.3 Addition and Subtraction

For fractional and integer arithmetic, the operations are performed identically for addition, subtraction, or
comparing two values. This means that any add, subtract, or compare instruction can be used for both
fractional and integer values.

To perform fractional or integer arithmetic operations with word-sized data, the datais |oaded into the
MSP (Al or B1) of the accumulator as shown in Figure 3-9.

Before Execution After Execution
$0 $0020 $0000 $0 $0060 $0000
A2 Al A0 A2 Al A0
X0 $0040 X0 $0040

Load integer value 64 ($40) into XO

Load integer value 32 ($20) into A Accumulator
(correctly sign extends into A2 and zeros A0)
Perform Integer Word Addition

Save Result (without saturating) to Memory

MOVE  #64,X0
MOVE #32,A

ADD X0,A
MOVE Al,X:RESULT

AA0045

Figure3-9. Word-Sized Integer Addition Example
Fractional word-sized arithmetic would be performed in asimilar manner. For arithmetic operations where

the destination is a 16-bit register or memory location, the fractional or integer operation is correctly
calculated and stored in its 16-bit destination.
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3.3.4 Logical Operations

For fractional and integer arithmetic, the logical operations (AND, OR, EOR, and bit-manipulation
instructions) are performed identically. This means that any DSP56800 logical or bit-field instruction can
be used for both fractional and integer values. Typicaly, logical operations are only performed on integer
values, but there is no inherent reason why they cannot be performed on fractional values as well.

Likewise, shifting can be done on both integer and fractional data values. For both of these, an arithmetic
left shift of 1 bit corresponds to a multiplication by two. An arithmetic right shift of 1 bit correspondsto a
division of asigned value by two, and alogical right shift of 1 bit correspondsto adivision of an unsigned
value by two.

3.3.5 Multiplication

The multiplication operation is not the same for integer and fractional arithmetic. The result of afractional
multiplication differsin a simple manner from the result of an integer multiplication. This difference
amounts to a 1-bit shift of the final result, asillustrated in Figure 3-10. Any binary multiplication of two
N-bit signed numbers gives asigned result that is 2N-1 bitsin length. This 2N-1 bit result must then be
correctly placed into afield of 2N bits to correctly fit into the on-chip registers. For correct fractional
multiplication, an extra 0 bit is placed at the LSB to givea2N bit result. For correct integer multiplication,
an extrasign bit is placed at the MSB to give a 2N bit result.

Signed Multiplication: N X N A& 2N - 1 Bits

Integer Fractional
s | [s e | [s
Signed Multiplier Signed Multiplier
[s MSP LSP s MSP LSP |
<«— 2N—1 Product —» <«— 2N—1 Product —»
Sign Extension Zero Fill
- 2N Bits > - 2N Bits >

Figure3-10. Comparison of Integer and Fractional Multiplication

The MPY, MAC, MPYR, and MACR instructions perform fractional multiplication and fractional
multiply-accumulation. The IMPY 16 instruction performs integer multiplication. Section 3.3.5.2, “Integer
Multiplication,” explains how to perform integer multiplication.

3.3.5.1 Fractional Multiplication

Figure 3-11 on page 3-20 shows the multiply-accumul ation implementation for fractional arithmetic. The
multiplication of two 16-bit, signed, fractional operands gives an intermediate 32-bit, signed, fractional
result with the LSB always set to zero. This intermediate result is added to one of the 36-bit accumulators.
If rounding is specified in the MPY or MAC instruction (MACR or MPY R), the intermediate results will
be rounded to 16 bits before being stored back to the destination accumulator, and the L SP will be set to
zero.
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Input Operand 1 ! Input Operand 2 '
Signed Fractional
S S
Input Operands
| €———— 16Bits o B 16 Bits ————>
1 ,I [}
1 1 i
Signed ! 16 ! 16 I
Intermediate sls 0
Multiplier Result e .
A 32 Bits 1
L7 1 1
. 1 1
’ 1 I
7
. ) , 1 1
Signed Fractional
MPY Result EXP MSP LSP 0
:< 36 Bits ::
AA0043

Figure3-11. MPY Operation — Fractional Arithmetic

3.3.5.2 Integer Multiplication

Two techniques for performing integer multiplication on the DSC core are as follows:
» Using the IMPY 16 instruction to generate a 16-bit result in the MSP of an accumulator
e Using the MPY and MAC instructions to generate a 36-bit full precision result

Each technique has its advantages for different types of computations.

An examination of the instruction set shows that for execution of single precision operations, most often
the instructions operate on the M SP (bits 31-16) of the accumulator instead of the LSP (bits 15-0). Thisis
truefor the LSL, LSR, ROL, ROR, NOT, INCW, and DECW instructions and others. Likewise, for the
parallel MOVE instructions, it is possible to move data to and from the M SP of an accumulator, but thisis
not true for the LSP. Thus, an integer multiplication instruction that places its result in the MSP of an
accumulator allowsfor more efficient computing. Thisisthe reason why the IMPY 16 instruction placesits
resultsin bits 31-16 of an accumulator. The limitation with the IMPY 16 instruction is that the result must
fit within 16 bits or there is an overflow.

Figure 3-12 on page 3-21 shows the multiply operation for integer arithmetic. The multiplication of two
16-bit signed integer operands using the IMPY 16 instruction gives a 16-bit signed integer result that is
placed inthe MSP (A1 or B1) of the accumulator. The corresponding extension register (A2 or B2) isfilled
with sign extension and the LSP (A0 or BO) remains unchanged.
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I Input Operand 1 Input Operand 2

Signed Integer
Input Operands

—— 16 Bits >t 16 Bits —»I

I
I

<« 16Bits —— 3|

Signed
Intermediate s 0

Multiplier Result -

b - = 31 Bits =

- -
- -
- -
_ - _ -
S Ext. - -

Signed Integer
Output EXP MSP Unchanged

~——— 16 Bits ———

AAD044
Figure 3-12. Integer Multiplication (IMPY)

At other timesit is necessary to maintain the full 32-bit precision of an integer multiplication. To obtain
integer results, an MPY instruction is used, immediately followed by an ASR instruction. The 32-bit long
integer result isthen correctly located into the MSP and L SP of an accumulator with correct sign extension
in the extension register of the same accumulator (see Example 3-9).

Example 3-9. Multiplying Two Signed Integer Values with Full Precision

Generates correct answer shifted
1 bit to the left

Leaves Correct 32-bit Integer
Result in the A Accumulator

and the A2 register contains
correct sign extension

MPY X0,Y0,A

ASR A

I
I
7
2
I
I

When a multiply-accumulate is performed on a set of integer numbers, there is afaster way for generating
the result than performing an ASR instruction after each multiply. The technique is to use fractiona
multiply-accumul ates for the bulk of the computation and to then convert the final result back to integer.
See Example 3-10.

Example 3-10. Fast Integer MACs using Fractional Arithmetic

MOVE X:(RO)+,YO X:(R3)+,X0
DO #Count , LABEL ; Count defined as number of repetitions
MAC X0,Y0,A X:(RO)+,YO0 X:(R3)+,X0
LABEL:
ASR A ; Convert to Integer only after MACs are
; completed
3.3.6 Division

Fractional and integer division of both positive and signed values is supported using the DIV instruction.
The dividend (numerator) is a 32-bit fractional or 31-bit integer value, and the divisor (denominator) is a
16-hit fractional or integer value, respectively. See Section 8.4, “Division,” on page 8-13 for a complete

discussion of division.
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3.3.7 Unsigned Arithmetic

Unsigned arithmetic can be performed on the DSP56800 architecture. The addition, subtraction, and
compare instructions work for both signed and unsigned values, but the condition code computation is
different. Likewise, there is a difference for unsigned multiplication.

3.3.7.1 Conditional Branch Instructionsfor Unsigned Oper ations

Unsigned arithmetic is supported on operations such as addition, subtraction, comparison, and logical
operations using the same ADD, SUB, CMP, and other instructions used for signed computations. The
operations are performed the same for both representations. The difference lies both in which status bits
are used in comparing signed and unsigned numbers and in how the dataiis interpreted, for which see
Section 3.3.2, “Data Formats.”

Four additional Bcc instruction variants are provided for branching based on the comparison of two
unsigned numbers. These variants are:

» HS(High or same) — unsigned greater than or equa to
* LS(Low or same) — unsigned less than or equal to

* HI (High) — unsigned greater than

* LO(Low)— unsigned lessthan

The variants used for comparing unsigned numbers, HS, LS, HI, and LO, are used in place of GE, LE, GT,
and LT respectively, which are used for comparing signed numbers. Note that the HS condition is exactly
the same as the carry clear (CC), and that LO is exactly the same as carry set (CS).

Unsigned comparisons are enabled when the CC bit in the OMR register is set. When this bit is set, the
value in the extension register isignored when generating the C, V, N, and Z condition codes, and the
condition codes are set using only the 32 LSBs of the result. Typically, this modeis very useful for
controller and compiled code.

NOTE:

The unsigned branch condition variants (HS, LS, HI, and LO) may only be
used when the CC bit is set in the program controller’'s OMR register. If
this bit is not set, then these condition codes should not be used.

In cases whereit is necessary to maintain al 36 bits of the result and the extension register is required, any
unsigned numbers must first be converted to signed when loaded into the accumulator using the technique
in Section 8.1.6, “Unsigned Load of an Accumulator,” on page 8-7. In these cases, the extension register
will contain the correct value, and since values are now signed, it is possible to use the signed branch
conditions: GE, LE, GT, or LT. Typically, thismode is more useful for DSC code.

3.3.7.2 Unsigned Multiplication

Unsigned multiplications are supported with the MACSU and MPY SU instructions. If only one operand is
unsigned, then these instructions can be used directly. If both operands are unsigned, an
unsigned-times-unsigned multiplication is performed using the technique demonstrated in Example 3-11
on page 3-23.
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Example 3-11. Multiplying Two Unsigned Fractional Values

MOVE X:FIRST, X0 ; Get first operand from memory
ANDC #S7FFF, X0 ; Force first operand to be positive
MOVE X:SECOND,YO0 ; Get second operand from memory
MPYSU XO,YO0,A
TSTW X:FIRST ; Perform final addition if MSB of first operand was a one
BGE OVER ; If first operand is less that one, jump to OVER
MOVE #50,B
MOVE YO,B1 ; Move Y0 to B without sign extension
ADD B,A
OVER:
; (ASR A) ; Optionally convert to integer result

3.3.8 Multi-Precision Operations

The DSP56800 instruction set contains several instructions which simplify extended- and multi-precision
mathematical operations. By using these instructions, 64-bit and 96-bit calcul ations can be performed, and
calculations involving different-sized operands are grestly smplified.

3.3.8.1 Multi-Precision Addition and Subtraction

Two instructions, ADC and SBC, assist in performing multi-precision addition (Example 3-12) and
subtraction (Example 3-13), such as 64-bit or 96-bit operations.

Example 3-12. 64-Bit Addition

X:$L:X:$0:YLYO + A2AL:A0:B1:BO=A2:A1:A0:B1:BO
(B2 must contain only sign extension before addition begins;
that is, bits 35-31 are al 1sor 0s)

MOVE X:$21,B ; Correct sign extension

MOVE X:$20,B0

ADD Y,B ; First 32-bit addition

MOVE X:$0,Y0 ; Get second 32-bit operand from memory
MOVE X:81,Y1

ADC Y,A ; Second 32-bit addition

Example 3-13. 64-Bit Subtraction

A2:A1:A0:B1:BO- X:$1:X:$0:Y1:YO = A2:A1:A0:B1:BO
(B2 must contain only sign extension before addition begins;
that is, bits 35-31 are all 1sor 0s)

MOVE X:$21,B ; Correct sign extension

MOVE X:$20,B0

SUB Y,B ; First 32-bit subtraction

MOVE X:$0,Y0 ; Get second 32-bit operand from memory
MOVE X:%81,Y1

SBC Y,A ; Second 32-bit subtraction

3.3.8.2 Multi-Precision Multiplication

Two instructions are provided to assist with multi-precision multiplication. When these instructions are
used, the multiplier accepts one signed and one unsigned two’ s-complement operand. The instructions are:

*  MPY SU — multiplication with one signed and one unsigned operand
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e MACSU — multiply-accumulate with one signed and one unsigned operand

The use of these instructions in multi-precision multiplication is demonstrated in Figure 3-13, with
corresponding examples shown in Example 3-14, Example 3-15 on page 3-24, and Example 3-16 on
page 3-25.

~€— 16 Bits —»

X0

~¢— 32 Bits —»

Y1 YO

X

Signed x Unsigned

X0 x YO
Signed x Signed
X0 x Y1
+
Sign Ext.
A2 Al A0 B1
- 48 Bits > AA0046

Figure3-13. Single-Precision Times Double-Precision Signed Multiplication

Example 3-14. Fractional Single-Precision Times Double-Precision Value — Both Signed

(5 Ieyce, 5 Instruction Words)

MPYSU XO0,Y0,A ; Single Precision times Lower Portion

MOVE AOQ,B

MOVE Al,A0 ; 16-bit Arithmetic Right Shift

MOVE A2,Al ; (note that A2 contains only sign extension)
MAC X0,Y1,A ; Single Precision times Upper Portion

; and added to Previous

Example 3-15. Integer Single-Precision Times Double-Precision Value — Both Signed

(7 leyc, 7 Instruction Words)

MPYSU XO0,YO0,A ; Single Precision times Lower Portion
MOVE AO0,B
MOVE Al,A0 ; 16-bit Arithmetic Right Shift
MOVE A2,Al ; (note that A2 contains only sign
; extension)
MAC X0,Y1,A ; Single Precision x Upper Portion and add to Previous
ASR A ; Convert result to integer, A2 contains sign extension
ROR B ; (52-bit shift of A2:A1:A0:B1)
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Example 3-16. Multiplying Two Fractional Double-Precision Values

Signed 32x32 => 64 Multiplication Subroutine

;  Parameters:
; Rl = ptr to lowest word of one operand
; R2 = ptr to lowest word of one operand
; R3 = ptr to where results are stored
MULT S32 X S32:

CLR B ; clears B2 portion

; Multiply lwrl * lwr2 and save lowest 16-bits of result

; Operation ;X0 Y1l YO A
MOVE X:(R1),YO --- --- lwrl  -----
ANDC #CLRMSB, YO --- --- lwrl' -----

MOVE X: (R2)+,Y1
MPYSU Y0,Y1l,A
TSTW X: (R1)+

--- lwr2 lwrl' 1wrl'.s * lwr2.u
check if MSB set in original lwrl value

BGE CORRECT RES1 perform correction if this was true

MOVE Y1l,B1 -—- lwr2 lwrl' -----

ADD B,A --- 1wr2 Iwrl' 1lwrl.u * lwr2.u
CORRECT RES1:

MOVE AO0,X: (R3)+ ;  --- lwr2 lwrl' lwrl.u * lwr2.u

; Multiply two cross products and save next lowest 16-bits of result
; Operation ;X0 Y1l YO A

MOVE Al,X:TMP
MOVE A2,A
MOVE X:TMP, A0

(arithmetic 16-bit right shift of 36-bit accum)

--=- -—=- ---- A = productl >> 16

MOVE X:(R1)-,X0 ;  uprl lwr2 lwrl' A productl >> 16
MACSU X0,Y1,A ; uprl 1wr2 Iwrl' A+uprl.s*lwr2.u

uprl 1wrl lwrl' A+uprl.s*lwr2.u

MOVE X:(R1),Y1 ;
0 ;  uprl lwrl upr2 A+uprl.s*lwr2.u

MOVE X: (R2),Y
MACSU YO, Y1,A
MOVE A0,X: (R3) +

uprl lwrl upr2 A+uprl.s*lwr2.u+upr2.s*lwrl.u
uprl 1wrl upr2 A = result w/ cross prods

; Multiply uprl * upr2 and save highest 32-bits of result

; Operation ; X0 Y1 YO A

MOVE Al,X:TMP ;  (arithmetic 16-bit right shift of 36-bit accum)
MOVE A2,A ;  uprl lwrl upr2 -----

MOVE X:TMP, A0 ;  uprl 1wrl upr2 A = result >> 16

MAC X0,Y0,A ;  uprl lwrl upr2 A + uprl.s * upr2.s

MOVE  A0,X: (R3)+ ; --- --- ——— mmee-
MOVE  Al,X: (R3)+ ; --- - .

RTS
; The corresponding algorithm for integer multiplication of 32-bit wvalues

; would be the same as for fractional with the addition of a final arithmetic
; right shift of the 64-bit result.
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3.4 Saturation and Data Limiting

DSC agorithms are sometimes capable of calculating values larger than the data precision of the machine
when processing real data streams. Normally, a processor would allow the value to overflow when this
occurred, but this creates problems when processing real-time signals. The solution is saturation, a
technique whereby values that exceed the machine data precision are “clipped,” or converted to the
maximum value of the same sign that fits within the given data precision.

Saturation is especially important when data is running through a digital filter whose output goesto a
digital-to-analog converter (DAC), sinceit “clips’ the output data instead of allowing arithmetic overflow.
Without saturation, the output datamay incorrectly switch from alarge positive number to alarge negative
value, which can cause problems for DAC outputs in embedded applications.

The DSP56800 architecture supports optional saturation of results through two limiters found within the
data ALU:

e theDataLimiter
* the MAC Output Limiter

The Data Limiter saturates values when data is moved out of an accumulator with a MOV E instruction or
parallel move. The MAC Output Limiter saturates the output of the data ALU’s MAC unit.

3.4.1 DataLimiter

The data limiter protects against overflow by selectively limiting when reading an accumulator register as
a source operand in aMOVE instruction. When a MOV E instruction specifies an accumulator (F) asa
source, and if the contents of the selected source accumulator can be represented in the destination operand
size without overflow (that is, the accumulator extension register is not in use), the data limiter is enabled
but does not saturate, and the register contents are placed onto the CGDB unmadified. If aMOVE
instruction is used and the contents of the selected source accumulator cannot be represented without
overflow in the destination operand size, the data limiter will substitute a“limited” data value onto the
CGDB that has maximum magnitude and the same sign as the source accumulator, as shown in Table 3-4
on page 3-27.

The FO portion of an accumulator isignored by the data limiter.
Consider asimple example, shown in Example 3-17.

Example 3-17. Demonstrating the Data Limiter — Positive Saturation

MOVE  #$1000,R0 ; Store results starting in address $1000
MOVE #S7FFC,A ; Initialize A = $0_7FFC 0000

INC A ; A = $0_7FFD 0000

MOVE A,X: (RO)+ ; Write $7FFD to memory (limiter enabled)
INC A ; A = $0_7FFE 0000

MOVE A,X:(RO)+ ; Write $7FFE to memory (limiter enabled)
INC A ; A = $0_7FFF_0000

MOVE A,X:(RO)+ ; Write S$7FFF to memory (limiter enabled)
INC A ; A = $0 8000 0000 <=== Overflows 16-bits
MOVE A,X:(RO)+ ; Write S$7FFF to memory (limiter saturates)
INC A ; A = $0 8001 0000

MOVE A,X: (RO)+ ; Write S$7FFF to memory (limiter saturates)
INC A ; A = $0 8002 0000

MOVE A,X:(RO)+ ; Write $7FFF to memory (limiter saturates)
MOVE Al,X:(RO)+ ; Write $8002 to memory (limiter disabled)
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Once the accumulator increments to $8000 in Example 3-17, the positive result can no longer be written to
a 16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the
value of the most positive 16-bit number, $7FFF, iswritten instead by the data limiter block. Note that the
datalimiter block does not affect the accumulator; it only affects the value written to memory. In the last
instruction, the limiter is disabled because the register is specified as A L.

Consider a second example, shown in Example 3-18 on page 3-27.

Example 3-18. Demonstrating the Data Limiter — Negative Saturation

MOVE #$1008,R0 ; Store results starting in address $1008
MOVE #$8003,A ; Initialize A = $F 8003 0000

DEC A ; A = $F 8002 0000

MOVE A,X:(RO)+ ; Write $8002 to memory (limiter enabled)
DEC A ; A = $F 8001 0000

MOVE A,X:(RO)+ ; Write $8001 to memory (limiter enabled)
DEC A ; A = $F 8000 0000

MOVE A,X:(RO)+ ; Write $8000 to memory (limiter enabled)
DEC A ; A = $F_7FFF_OOOO <=== Overflows 16-bits
MOVE A,X:(RO)+ ; Write $8000 to memory (limiter saturates)
DEC A ; A = SF_7FFE_0000

MOVE A,X:(RO)+ ; Write $8000 to memory (limiter saturates)
DEC A ; A = SF_7FFD 0000

MOVE A,X:(RO)+ ; Write $8000 to memory (limiter saturates)
MOVE Al,X:(RO)+ ; Write $7FFD to memory (limiter disabled)

Once the accumulator decrements to $7FFF in Example 3-18, the negative result can no longer fit into a
16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the value
of the most negative 16-bit number, $8000, is written instead by the data limiter block.

Test logic exists in the extension portion of each accumulator register to support the operation of the
limiter circuit; the logic detects overflows so that the limiter can substitute one of two constants to
minimize errors due to overflow. This processis caled “ saturation arithmetic.” When limiting does occur,
aflagisset and latched in the status register. The value of the accumulator is not changed.

Table 3-4. Saturation by the Limiter Using the MOVE Instruction

Extension bitsin usein selected MSB of F2 Output of Limiter onto the CGDB Bus
accumulator ?
No n‘a Same as | nput — Unmodified MSP
Yes 0 $7FFF — Maximum Positive Value
Yes 1 $8000 — Maximum Negative Value

It is possible to bypass this limiting feature when reading an accumul ator by reading it out through its
individual portions.

Figure 3-14 on page 3-28 demonstrates the importance of limiting. Consider the A accumulator with the
following 36-bit value to be read to a 16-bit destination:

0000 1.000 0000 0000 0000 OO0 0000 0000 0000 (in binary)
(+1.0in fractional decimal, $0_8000_0000 in hexadecimal)

If this accumulator is read without the limiting enabled by aMOVE A1,X0 instruction, the 16-bit X0
register after the MOV E instruction would contain the following, assuming signed fractional arithmetic:

1.000 0000 0000 0000 (- 1.0 fractional decimal, $8000 in hexadecimal)
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Thisisclearly in error because the value -1.0 in the X0 register greatly differsfrom thevalue of +1.0inthe
source accumulator. In this case, overflow has occurred. To minimize the error due to overflow, itis
preferable to write the maximum (“limited”) value the destination can assume. In this example, the limited
value would be;

0.111 11111111 1111 (+ 0.999969 fractional decimal, $7FFF in hexadecimal)

Thisisclearly closer to the original value, +1.0, than -1.0 is, and thus introduces less error. Saturation is
equally applicable to both integer and fractional arithmetic.

Thus, saturation arithmetic can have alarge effect in moving from register A1 to register X0. The
instruction MOV E A1,X0 performs a move without limiting, and the instruction MOVE A, X0 performs a
move of the same 16 bits with limiting enabled. The magnitude of the error without limiting is 2.0; with
limiting it is 0.000031.

Without Limiting — MOVE A1,X0 With Limiting — MOVE A, X0
35 0 35 0
0...0/100.......... 00[00........... 00|A=+10 [0...0]100.......... 00[{00........... 00|A=+1.0
3 015 @ 015 0 3 015 @ 015 0
100.......... 00| X0=-1.0 011.......... 11| X0 =+0.999969
Y \
15 0 IERRORI = 2.0 15 0 IERRORI =.000031

*Limiting automatically occurs when the 36-bit operands A and B are read with a MOVE instruction. Note that the
contents of the original accumulator are not changed.

Figure 3-14. Example of Saturation Arithmetic

3.4.2 MAC Output Limiter

The MAC output limiter optionally saturates or limits results calculated by data AL U arithmetic operations
such as multiply, add, increment, round, and so on.

The MAC Output Limiter can be enabled by setting the SA bit in the OMR register. See Section 5.1.9.3,
“Saturation (SA) — Bit 4,” on page 5-11.

Consider asimple example, shown in Example 3-19.

Example 3-19. Demonstrating the MAC Output Limiter

BFSET #3$0010,0MR ; Set SA bit —- enables MAC Output Limiter
MOVE #S7FFC,A ; Initialize A = $0_7FFC 0000

NOP

INC A ; A = $0_7FFD_0000

INC A ; A = $0_7FFE_0000

INC A ; A = $0_7FFF_0000

INC A ; A = $O_7FFF_FFFF <=== Saturates to 16-bits!
INC A ; A = $0_7FFF _FFFF <=== Saturates to 16-bits!
ADD #9,A ; A = $0_7FFF _FFFF <=== Saturates to 16-bits!
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Once the accumulator increments to $7FFF in Example 3-19, the saturation logic in the MAC Output
limiter preventsit from growing larger because it can no longer fit into a 16-bit memory location without
overflow. So instead of writing an overflowed value to back to the A accumulator, the value of the most
positive 32-bit number, $7FFF_FFFF, iswritten instead as the arithmetic result.

The saturation logic operates by checking 3 bits of the 36-hit result out of the MAC unit: EXT[3], EXT[0],
and MSP[15]. When the SA bit is set, these 3 bits determine if saturation is performed on the MAC unit’s
output and whether to saturate to the maximum positive value ($7FFF_FFFF) or the maximum negative
value ($8000_0000), as shown in Table 3-5.

Table 3-5. MAC Unit Outputs with Saturation Enabled

EXTI[3] EXTI[OQ] M SP[15] Result Stored in Accumulator

0 0 0 Result out of MAC Array with no limiting
occurring

0 0 1 $0_7FFF_FFFF

0 1 0 $0_7FFF_FFFF

0 1 1 $0_7FFF_FFFF

1 0 0 $F_8000_0000

1 0 1 $F_8000_0000

1 1 0 $F_8000_0000

1 1 1 Result out of MAC Array with no limiting
occurring

The MAC Output Limiter not only affects the results calculated by the instruction, but can also affect
condition code computation as well. See Appendix A.4.2, “Effects of the Operating Mode Register’s SA
Bit,” on page A-11 for more information.

3.4.3 Instructions Not Affected by the M AC Output Limiter
The MAC Output Limiter is always disabled (even if the SA bit is set) when the following instructions are
being executed:

e ASLL,ASRR, LSRR

e ASRAC,LSRAC

« IMPY

e MPYSU, MACSU

¢ AND, OR, EOR

e LSL,LSR,ROL, ROR, NOT

e TST

The CMP is not affected by the OMR’s SA bit except for the case when the first operand is not aregister
(that is, it isamemory location or an immediate value) and the second operand isthe X0, YO, or Y1
register. In this particular case, the U bit calculation is affected by the SA bit. No other bits are affected by
the SA bit for the CMP instruction.
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Also, the MAC Output Limiter only affects operations performed in the data ALU. It has no effect on
instructions executed in other blocks of the core, such as the following:

» Bit Manipulation Instructions (Table 6-30 and Table 6-31 on page 6-26)
* Moveinstructions (Table 6-18 through Table 6-21)

» Looping instructions (Table 6-33 on page 6-27)

* Change of flow instructions (Table 6-32 on page 6-27)

»  Contral instructions (Table 6-34 on page 6-28)

NOTE:

The SA bit affects the TFR instruction when it is set, optionally limiting
dataasit is transferred from one accumulator to another.

3.5 Rounding

The DSP56800 provides three instructions that can perform rounding— RND, MACR, and MPYR. The
RND instruction smply rounds a value in the accumulator register specified by the instruction, whereas
the MPYR or MACR instructions round the result calculated by the instruction in the MAC array. Each
rounding instruction rounds the result to a single-precision value so the value can be stored in memory or
in a 16-bit register. In addition, for instructions where the destination is one of the two accumulators, the
L SP of the destination accumulator (A0 or BO) is set to $0000.

The DSC core implements two types of rounding: convergent rounding and two’ s-complement rounding.
For the DSP56800, the rounding point is between bits 16 and 15 of a 36-bit value; for the A accumulator, it
is between the Al register’s LSB and the AO register’s MSB. The usua rounding method rounds up any
value above one-half (that is, LSP > $8000) and rounds down any value below one-half (that is, LSP <
$8000). The question arises as to which way the number one-half (L SP = $8000) should berounded. If itis
always rounded one way, the results will eventually be biased in that direction. Convergent rounding
solves the problem by rounding down if the number is even (bit 16 equals zero) and rounding up if the
number is odd (bit 16 equals one), whereas two' s-complement rounding always rounds this number up.
The type of rounding is selected by the rounding bit (R) of the operating mode register (OMR) in the
program controller.

3.5.1 Convergent Rounding

Thisisthe default rounding mode. This rounding is aso called “round to nearest even number.” For most
values, this mode rounds identically to two’ s-complement rounding; it only differs for the case where the
least significant 16 bitsis exactly $8000. For this case, convergent rounding prevents any introduction of a
bias by rounding down if the number is even (bit 16 equals zero) and rounding up if the rounding is odd
(bit 16 equals one). Figure 3-15 on page 3-31 shows the four possible cases for rounding anumber in the A
or B accumulator.
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Case I: If A0 < $8000 (1/2), then round down (add nothing)

Before Rounding After Rounding
0
A2 Al AO A2 Al AO*
XX . XXX XX, .. XXX0100[011XXX....XxXX| [XX. . XX]XXX...xXX0100[000......... 000
35 32 31 16 15 0 35 32 31 16 15 0

Case Il: If A0 > $8000 (1/2), then round up (add 1 to A1)

Before Rounding After Rounding
1
A2 Al A0 A2 Al AO*
XX..XXXXX...XXXOlOOllllOXX....XXX| |XX..XXXXX...XXX0101000 ......... 000
35 3231 16 15 0 35 3231 16 15 0

Case lll: If A0 = $8000 (1/2), and the LSB of A1 = 0 (even), then round down (add nothing)

Before Rounding After Rounding
0
A2 Al A0 A2 Al AO*
XX . XX[XXX...xXxx0100[1000........ 000]| [Xx .. xx|xxx...xxx0100[000......... 000
35 3231 16 15 0 35 3231 16 15 0

Case IV: If A0 = $8000 (1/2), and the LSB = 1 (odd), then round up (add 1 to A1)

Before Rounding After Rounding
1
A2 Al AO A2 Al AO*
[XX. . XX|XXX...xXxX0101[1000........ 000] [XX. . XX]XXX...xXX0110[000......... 000
35 3231 16 15 0 35 3231 16 15 0

*A0 is always clear; performed during RND, MPYR, and MACR
AA0048

Figure 3-15. Convergent Rounding

3.5.2 Two's-Complement Rounding

When thistype of rounding is selected by setting the rounding bit in the OMR, oneis added to the bit to the
right of the rounding point (bit 15 of AQ) before the bit truncation during a rounding operation. Figure 3-16
shows the two possible cases.
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Case I: A0 < 0.5 ($8000), then round down (add nothing)

Before Rounding

N7 w

After Rounding

A2 Al A2 Al AO*
XX XX[XXX...XXX0100[0110X....... X X A [XX. . XX|XXX...XXX0100[000......... 000
35 3231 16 15 0 35 3231 16 15 0
Case Il: A0 >= 0.5 ($8000), then round up (add 1 to A1)

Before Rounding After Rounding
1

A2 Al ‘ AO A2 Al AO*

XX . XX[XXX...XXX0101[1110X...... X X X| [XX. . XX|XXX...xXX0101[000......... 000
35 32 31 16 15 0 35 32 31 16 15 0

*A0 is always clear; performed during RND, MPYR, MACR

AA0050

Figure 3-16. Two's-Complement Rounding

Once the rounding bit has been programmed in the OMR register, there is adelay of one instruction cycle
before the new rounding mode becomes active.
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3.6 Condition Code Generation

The DSC core supports many different arithmetic instructions for both word and long-word operations.
The flexible nature of the instruction set means that condition codes must also be generated correctly for
the different combinations allowed. There are three questions to consider when condition codes are
generated for an instruction:

* Isthe arithmetic operation’s destination an accumulator, or a 16-bit register or memory location?
» Doestheinstruction operate on the whole accumulator or only on the upper portion?
* Isthe CC hit set in the program controller’s OMR register?

The CC bit in the OMR register allows condition codes to be generated without an examination of the
contents of the extension register. This sets up a computing environment where there is effectively no
extension register because its contents are ignored. Typically, the extension register is most useful in DSC
operations. For the case of general-purpose computing, the CC bit is often set when the program is not
performing DSC tasks. However, it is possible to execute any instruction with the CC bit set or cleared,
except for instructions that use one of the unsigned condition codes (HS, LS, HI, or LO).

This section covers different aspects of condition code generation for the different instructions and
configurations on the DSC core. Note that the L, E, and U bits are computed the same regardless of the size
of the destination or the value of the CC bit:

e Lissetif overflow occurs or limiting occursin aparalel move.
» Eissetif theextension registerisin use (that is, if bits 35-31 are not all the same).
e U isset according to the standard definition of the U bit.

3.6.1 36-Bit Destinations— CC Bit Cleared

Most arithmetic instructions generate aresult for a 36-bit accumulator. When condition codes are being
generated for this case and the CC bit is cleared, condition codes are generated using all 36 bits of the
accumulator. Examples of instructionsin this category are ADC, ADD, ASL, CMP, MAC, MACR, MPY,
MPYR, NEG, NORM, and RND.

The condition codes for 36-bit destinations are computed as follows:

* Nissetif bit 35 of the corresponding accumulator is set except during saturation. During a
saturation condition, the V (overflow) bit is set and the N bit is not set.

» Zissetif bits 35-0 of the corresponding accumulator are all cleared.
* Vissetif overflow has occurred in the 36-bit result.
» Cissetif acarry (borrow) has occurred out of bit 35 of the result.
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3.6.2 36-Bit Destinations— CC Bit Set

Most arithmetic instructions generate aresult for a 36-bit accumulator. When condition codes are being
generated for this case and the CC bit is set, condition codes are generated using only the 32 bits of the
accumulator located in the MSP and L SP. The contents of the extension register areignored. It is
effectively the same asif thereis no extension register. Examples of instructionsin this category are ADC,
ADD, ASL, CMP, MAC, MACR, MPY, MPYR, NEG, NORM, and RND.

The condition codes for 32-bit destinations (CC equals one) are computed as follows:
* Nissetif bit 31 of the corresponding accumulator is set.
» Zissetif bits 31-0 of the corresponding accumulator are all cleared.
* Vissetif overflow has occurred in the 32-bit result.
 Cissetif acarry (borrow) has occurred out of bit 31 of the result.

3.6.3 20-Bit Destinations— CC Bit Cleared

Two arithmetic instructions generate a result for the upper two portions of an accumul ator, the MSP and
the extension register, leaving the L SP of the accumulator unchanged. When condition codes are being
generated for this case and the CC bit is cleared, condition codes are generated using the 20 bitsin the
upper two portions of the accumulator. The two instructions in this category are DECW and INCW.

The condition codes for DECW and INCW (CC equals zero) are computed as follows:

* Nissetif bit 35 of the corresponding accumulator is set except during saturation. During a
saturation condition, the V (overflow) bit is set and the N bit is not set.

* Zissetif bits 3516 of the corresponding accumulator are all cleared.
* Vissetif overflow has occurred in the 20-bit result.
 Cissetif acarry (borrow) has occurred out of bit 35 of the result.

3.6.4 20-Bit Destinations — CC Bit Set

Two arithmetic instructions generate a result for the upper two portions of an accumulator, the M SP and
the extension register, leaving the LSP of the accumulator unchanged. When condition codes are being
generated for this case and the CC bit is set, the bitsin the extension register and the L SP of the
accumulator are not used to cal cul ate condition codes. Thetwo instructionsin this category are DECW and
INCW.

The condition codes for 16-hit destinations (CC equals one) are computed as follows:
* Nissetif bit 31 of the corresponding accumulator is set.
* Zissetif bits 31-16 of the corresponding accumulator are all cleared.
e Vissetif overflow has occurred in the 16-bit result.
* Cissetif acarry (borrow) has occurred out of bit 31 of the result.
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3.6.5 16-Bit Destinations

Some arithmetic instructions can generate aresult for a 36-bit accumulator or a 16-bit destination such asa
register or memory location. When condition codes for a 16-bit destination are being generated, the CC bit
isignored and condition codes are generated using the 16 bits of the result. Instructionsin this category are
ADD, CMP, SUB, DECW, INCW, MAC, MACR, MPY, MPYR, ASR, and ASL.

The condition codes for 16-bit destinations are computed as follows:
* Nissetif bit 15 of the result is set.
e Zissetif bits 15-0 of theresult are all cleared.
* Vissetif overflow has occurred in the 16-bit result.
 Cissetif acarry (borrow) has occurred out of bit 15 of the result.

Other instructions only generate results for a 16-bit destination such asthe logical instructions. When
condition codes are being generated for this case, the CC hit isignored and condition codes are generated
using the 16 bits of the result. Instructionsin this category are AND, EOR, LSL, LSR, NOT, OR, ROL,
and ROR. Therules for condition code generation are presented for the cases where the destination is a
16-hit register or 16 bits of a 36-bit accumulator.

The condition codes for logical instructions with 16-bit registers as destinations are computed as follows:
* Nissetif bit 15 of the corresponding register is set.
» Zissetif bits 15-0 of the corresponding register are all cleared.
* Visawayscleared.
e C— Computation dependent on instruction.

The condition codes for logical instructions with 36-bit accumulators as destinations are computed as
follows:

* Nissetif bit 31 of the corresponding accumulator is set.

» Zissetif bits 31-16 of the corresponding accumulator are all cleared.
* Visawayscleared.

e C— Computation dependent on instruction.

3.6.6 Special Instruction Types

Some instructions do not follow the preceding rules for condition code generation, and must be considered
separately. Examples of instructions in this category are the logical and bit-field instructions (ANDC,
EORC, NOTC, ORC, BFCHG, BFCLR, BFSET, BFTSTL, BFTSTH, BRCLR, and BRSET), the CLR
instruction, the IMPY 16 instruction, the multi-bit shifting instructions (ASLL, ASRR, LSLL, LSRR,
ASRAC, and LSRAC), and the DIV instruction.

The bit-field instructions only affect the C and the L bits. The CLR instruction only generates condition
codes when clearing an accumul ator. The condition codes are not modified when clearing any other
register. Some of the condition codes are not defined after executing the IMPY 16 and multi-bit shifting
instructions. The DIV instruction only affects a subset of al the condition codes. See Appendix A.4,
“Condition Code Computation,” on page A-6 for details on the condition code computation for each of
these instructions.
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3.6.7 TST and TSTW Instructions

There aretwo instructions, TST and TSTW, that are useful for checking the value in aregister or memory
location.

The condition codes for the TST instruction (on a 36-bit accumulator) with CC equal to zero are computed
asfollows:

L issetif limiting occursin a paralel move.

E isset if the extension register isin use — that is, if bits 35-31 are not all the same.
U is set according to the standard definition of the U bit.

N issetif bit 35 of the corresponding accumulator is set except during saturation.
Zisset if bits 35-0 of the corresponding accumulator are all cleared.

V isaways cleared.

Cisawayscleared.

The condition codes for the TST instruction (on a 36-bit accumulator) with CC equal to one are computed
asfollows:

L issetif limiting occursin a parallel move.

E issetif the extension register isin use, that is, if bits 35-31 are not all the same.
U is set according to the standard definition of the U bit.

N issetif bit 31 of the corresponding accumulator is set.

Z issetif bits 31-0 of the corresponding accumulator are al cleared.

V isaways cleared.

C isaways cleared.

The condition codes for the TSTW instruction (on a 16-hit value) are computed as follows:

L isset if limiting occurs while reading an accumulator.
N isset if the MSB of the 16-bit valueis set.

Zissetif al 16 bits of the 16-bit value are cleared.

V isaways cleared.

Cisawayscleared.

3.6.8 Unsigned Arithmetic

When arithmetic on unsigned operands is being performed, the condition codes used to compare two
values differ from those used for signed arithmetic. See Section 3.3.7, “Unsigned Arithmetic,” for a
discussion of condition code usage for unsigned arithmetic.
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Chapter 4
Address Generation Unit

This chapter describes the architecture and the operation of the address generation unit (AGU). The
address generation unit is the block where all address calculations are performed. It contains two
arithmetic units — a modul o arithmetic unit for complex address calculations and an
incrementer/decrementer for simple calculations. The modulo arithmetic unit can be used to calculate
addresses in a modulo fashion, automatically wrapping around when necessary. A set of pointer registers,
special-purpose registers, and multiple buses within the unit allow up to two address updates or amemory
transfer to or from the AGU in asingle cycle.

The capabilities of the address generation unit include the following operations:
» Provide one addressto X data memory on the XAB1 bus
»  Post-update an address after providing the original address value on XAB1 bus
e Calculate an effective address which is then provided on the XAB1 bus

* Providetwo addresses to X data memory on the XAB1 and XAB2 buses and post-update both
addresses

»  Provide one address to program memory for program memory data accesses and post-update the
address

* Increment or decrement a counter during normalization operations
» Provide a conditional register move (Tcc instruction)

Note that in the cases where the address generation unit is generating one or two addressesto access X data
memory, the program controller generates a second or third address used to concurrently fetch the next
instruction.

The AGU provides many different addressing modes, which include the following:

e Indirect addressing with no update e Immediate data

» Indirect addressing with post-increment e Immediate short data

» Indirect addressing with post-decrement e Absolute addressing

» Indirect addressing with post-update by a * Absolute short addressing
register e Periphera short addressing

. Io??;te(:t addressing with index by a 16-bit «  Register direct

* Indirect addressing with index by a 6-bit mplicit
offset

» Indirect addressing with index by aregister

Freescale Semiconductor Address Generation Unit 4-1



h -

Address Generation Unit

This chapter covers the architecture and programming model of the address generation unit, its addressing
modes, and a discussion of the linear and modulo arithmetic capabilities of this unit. It concludes with a
discussion of pipeline dependencies related to the address generation unit.

4.1 Architecture and Programming M odel

The major components of the address generation unit are as follows:

Four address registers (RO-R3)

A stack pointer register (SP)

An offset register (N)

A modifier register (M01)

A modulo arithmetic unit

An incrementer/decrementer unit

The AGU uses integer arithmetic to perform the effective address cal culations necessary to address data
operandsin memory. The AGU also contains the registers used to generate the addresses. It implements
linear and modulo arithmetic and operates in parallel with other chip resources to minimize
address-generation overhead.

Two AL Us are present within the AGU: the modulo arithmetic unit and the incrementer/decrementer unit.
Thetwo arithmetic units can generate up to two 16-bit addresses and two address updates every instruction
cycle: onefor XAB1 and one for XAB2 for instructions performing two parallel memory reads. The AGU
can directly address 65,536 locations on XAB1 and 65,536 locations on the PAB. The AGU can directly
address up to 65,536 locations on XAB2, but can only generate addresses to on-chip memory. The two
ALUswork with the data memory to access up to two locations and provide two operandsto the data ALU
inasingle cycle. The primary operand is addressed with the XAB1, and the second operand is addressed
with the XAB2. The datamemory, in turn, placesits data on the core global data bus (CGDB) and the
second external databus (XDB2), respectively (see Figure 4-1 on page 4-3). See Section 6.1, “ Introduction
to Moves and Parallel Moves,” on page 6-1 for more discussion on parallel memory moves.
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CGDB(15:0)
v SP
MO1 N RO
Modulo R1
Arithmetic
Unit R2
R3 ) ]
| T T Inc./Dec.
R3 Onl
| Lo 77
PAB(15:0) XAB1(15:0) XAB2(15:0)

AA0014

Figure4-1. Address Generation Unit Block Diagram

All four address pointer registers and the SP are used in generating addresses in the register indirect
addressing modes. The offset register can be used by all four address pointer registers and the SP, whereas
the modulo register can be used by the RO or by both the RO and R1 pointer registers.

Whereas all the address pointer registers and the SP can be used in many addressing modes, there are some
instructions that only work with a specific address pointer register. These cases are presented in Table 4-5
on page 4-9.

The address generation unit is connected to four major buses: CGDB, XAB1, XAB2, and PAB. The
CGDB is used to read or write any of the address generation unit registers. The XAB1 and XAB2 provide
aprimary and secondary address, respectively, to the X data memory, and the PAB provides the address
when accessing the program memory.

A block diagram of the address generation unit is shown in Figure 4-1, and its corresponding programming
model is shown in Figure 4-2. The blocks and registers are explained in the following subsections.

15 0

RO

R1

R2

R3 15 0 15 0

SP N Mo1

Pointer Offset Modifier

Registers Register Register AA0O15

Figure4-2. Address Generation Unit Programming M odel
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4.1.1 AddressRegisters (R0-R3)

The address register file consists of four 16-hit registers RO-R3 (denoted as Rj) which usually contain
addresses used as pointers to memory. Each register may be read or written by the CGDB. High speed
accessto the XAB1, XAB2, and PAB busesisrequired to alow minimum access time for the internal and
external X data memory and program memory. Each address register may be used asinput for the modulo
arithmetic unit for aregister update calculation. Each register may be written by the output of the modulo
arithmetic unit.

The R3 register may be used as input to a separate incrementer/decrementer unit for an independent
register update calculation. This unit is used in the case of any instruction that performs two data memory
readsin its paralel move field. For instructions where two reads are performed from the X data memory,
the second read using the R3 pointer must always access on-chip memory.

NOTE:

Due to pipelining, if an address register (Rj, SP, or M01) is changed with
aMOVE or bit-field instruction, the new contents will not be available for
use asapointer until the second following instruction. If the SPis changed,
no LEA or POP instructions are permitted until the second following
instruction.

4.1.2 Stack Pointer Register (SP)

The stack pointer register (SP) isasingle 16-bit register that is used implicitly in all PUSH instruction
macros and POP instructions. The SP is used explicitly for memory references when used with the
address-register-indirect modes. It is post-decremented on all POPs from the software stack. The SP
register may be read or written by the CGDB.

NOTE:

Thisregister must beinitialized explicitly by the programmer after coming
out of reset.

Due to pipelining, if an address register (Rj, SP, or M01) is changed with
aMOVE or bit-field instruction, the new contents will not be available for
use as apointer until the second following instruction. If the SPischanged,
no LEA or POP instructions are permitted until the second following
instruction.

4.1.3 Offset Regigter (N)

The offset register (N) usually contains offset values used to update address pointers. This single register
can be used to update or index with any of the address registers (RO-R3, SP). This offset register may be
read or written by the CGDB. The offset register is used as input to the modulo arithmetic unit. It is often
used for array indexing or indexing into atable, as discussed in Section 8.7, “ Array Indexes,” on page
8-26.
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NOTE:

If the N address register is changed with a MOVE instruction, this
register’s contents will be available for use on the immediately following
instruction. In this case the instruction that writes the N address register
will be stretched one additional instruction cycle. Thisistrue for the case
when the N register is used by the immediately following instruction; if N
is not used, then the instruction is not stretched an additional cycle. If the
N address register is changed with a bit-field instruction, the new contents
will not be available for use until the second following instruction.

4.1.4 Modifier Register (M01)

The modifier register (M01) specifies whether linear or modulo arithmetic is used when calculating a new
address and may be read or written by the CGDB. This modifier register is automatically read when the RO
address register is used in an address calculation and can optionally be used also when R1 isused. This
register has no effect on address cal culations done with the R2, R3, or SP registers. It isused asinput to the
modulo arithmetic unit. This modifier register is preset during a processor reset to $FFFF (linear
arithmetic).

NOTE:

Due to pipelining, if an address register (Rn, SP, or M0O1) is changed with
aMOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SPischanged,
no LEA or POP instructions are permitted until the following instruction.

4.1.5 Modulo Arithmetic Unit

The modulo arithmetic unit can update one address register or the SP during one instruction cycle. It is
capable of performing linear and modulo arithmetic, as described in Section 4.3, “AGU Address
Arithmetic.” The contents of the modifier register specifies the type of arithmetic to be performed in an
address register update calculation. The modifier value is decoded in the modulo arithmetic unit and
affects the unit’s operation. The modulo arithmetic unit’ s operation is data-dependent and requires
execution cycle decoding of the selected modifier register contents. Note that the modulo capability isonly
allowed for RO or R1 updates; it is not allowed for R2, R3, or SP updates.

The modulo arithmetic unit first calculates the result of linear arithmetic (for example, Rn+1, Rn-1, Rn+N)
which is selected as the modul o arithmetic unit’s output for linear arithmetic. For modulo arithmetic, the
modulo arithmetic unit will perform the function (Rn+N) modulo (M01+1), where N can be 1, -1, or the
contents of the offset register N. If the modulo operation requires “wraparound” for modulo arithmetic, the
summed output of the modulo adder will give the correct, updated address register value; otherwise, if
wraparound is not necessary, the linear arithmetic calculation gives the correct result.

4.1.6 Incrementer/Decrementer Unit

The incrementer/decrementer unit is used for address-update calculations during dual data-memory read
instructions. It is used either to increment or decrement the R3 register. This adder performs only linear
arithmetic; it performs no modulo arithmetic.
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4.2 Addressing Modes

The DSP56800 instruction set contains a full set of operand addressing modes, optimized for
high-performance signal processing as well as efficient controller code. All address calculations are
performed in the address generation unit to minimize execution time.

Addressing modes specify where the operand or operands for an instruction can be found — whether an
immediate value, located in aregister, or in memory — and provide the exact address of the operand(s).

The addressing modes are grouped into four categories:
» Register direct — directly references the processor registers as operands

» Addressregister indirect — uses an address register as a pointer to reference alocation in memory
as an operand

* Immediate — the operand is contained as a value within the instruction itself

»  Absolute — uses an address contained within the instruction to reference alocation in memory as
an operand

An effective address in an instruction will specify an addressing mode (that is, where the operands can be
found), and for some addressing modes the effective address will further specify an address register that
pointsto alocation in memory, how the address is calculated, and how the register is updated.

These addressing modes are referred to extensively in Section 6.6.4, “Instruction Summary Tables,” on
page 6-17.

Severa of the examples in the following sections demonstrate the use of assembler forcing operators.
These can be used in an instruction to force a desired addressing mode, as shown in Table 4-1.

Table4-1. Addressing Mode Forcing Operators

Desired Action Forcing Operator Syntax Example

Force immediate short data #<XX #<$07
Force 16-bit immediate data H>XXXX #>$07
Force absolute short address X:<xx X:<$02
Force I/O short address X:i<<xx X:<<$FFE3
Force 16-bit absolute address XI>XXXX X:>$02
Force short offset X:(SP-<xx) X:(SP-<$02)
Force 16-bit offset X:(RN+>XXXX) X:(RO+>$03)

Other assembler forcing operators are available for jump and branch instructions, as shown in Table 4-2.

Table4-2. Jump and Branch Forcing Operators

Desired Action Forcing Operator Syntax Example
Force 7-bit relative branch offset <XX <LABEL1
Force 16-bit absolute jump address SXXXX >LABEL5
Force 16-hit absolute loop address SXXXX >LABEL4
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4.2.1 Register-Direct Modes

The register-direct addressing modes specify that the operand isin one (or more) of the nine data ALU
registers, seven address registers, or four control registers. The various options are shown in Table 4-3 on

page 4-7.

Table4-3. Addressing Mode — Register Direct

Addressing M odes

Addressing Mode: Notation for Register Direct in the
) . . 1 Examples
Register Direct Instruction Set Summary
Any register DD A, A2, AL A0
DDDDD B, B2, B1, BO
HHH Y,Y1Y0
HHHH X0
F RO, R1, R2, R3
F1 SP
N
F1DD Mo01
FDD
PC
Rj OMR, SR
Rn LA,LC
HWS

1. The register field notations found in the middle column are explained in more detail in
Table 6-16 on page 6-15 and Table 6-15 on page 6-14.

4.2.1.1 Dataor Control Register Direct

The operand isin one, two, or three data ALU register(s) as specified in the operands or in a portion of the
data bus movement field in the instruction. This addressing mode is also used to specify a control register
operand. Thisreferenceis classified as a register reference.

4.2.1.2 Address Register Direct
The operand isin one of the seven address registers (R0O-R3, N, MOL, or SP) specified by an effective

address in the instruction. This reference is classified as aregister reference.

NOTE:

Due to pipelining, if any address register is changed with a MOVE or
bit-field instruction, the new contents will not be available for use as a
pointer until the second following instruction. If the SP is changed, no
LEA or POP instructions are permitted until the second following

instruction.

4.2.2 Address-Register-Indirect Modes

When an address register is used to point to a memory location, the addressing mode is called address

register indirect. The term indirect is used because the operand is not in the address register itself, but the
contents of the memory location pointed to by the address register. The effective addressin the instruction
specifies the address register Rj or SP and the address calculation to be performed. These addressing
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modes specify that the operand is (or operands are) in memory and provide the specific address(es) of the
operand(s). A portion of the data bus movement field in the instruction specifies the memory reference to
be performed. The type of address arithmetic used is specified by the address modifier register.

Table4-4. Addressing Mode— Address Register Indirect

Addressing Mode: Notation in the Instruction Set E |
Address Reglster Indirect Summaryl xamples
Accessing Program (P) Memory
Post-increment P:.(Rj)+ P:(RO)+
Post-update by offset N P:(Rj)+N P:(R3)+N

Instructions that access P memory are not allowed when the XP bit in the OMR is set (that is, when the
instructions are executing from data memory).

Accessing Data (X) Memory

No update X:(Rn) X:(R3)
X:(SP)
Post-increment X:(Rn)+ X:(RD)+
X:(SP)+
Post-decrement X:(Rn)- X:(R3)-
X:(SP)-
Post-update by offset N X:(Rn)+N X:(R1)+N
available for word accesses only
Indexed by offset N X:(Rn+N) X:(R2+N)
X:(SP+N)
Indexed by 6-hit displacement X:(R2+xx) X:(R2+15)
R2 and SP registers only X:(SP-xx) X:(SP-$1E)
Indexed by 16-bit displacement X:(Rn+xxxx) X:(R0-97)
X:(SP+$03F7)

1. Rj represents one of the four pointer registers RO-R3; Rn is any of the AGU address registers
RO-R3 or SP.

Address-register-indirect modes may require an offset and amodifier register for use in address
calculations. The addressregister (Rj or SP) is used asthe address register, the shared offset register is used
to specify an optional offset from this pointer, and the modifier register is used to specify the type of
arithmetic performed.

Some addressing modes are only available with certain address registers (Rn). For example, although all
address registers support the “indexed by long displacement” addressing mode, only the R2 address
register supports the “indexed by short displacement” addressing mode. For instructions where two reads
are performed from the X data memory, the second read using the R3 pointer must always be from on-chip
memory. The addressed register sets are summarized in Table 4-5.
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Table4-5. Address-Register-Indirect Addressing M odes Available

Register Set Arithmetic Types Addressing M odes Allowed Notes

RO/MOY/N Linear or modulo (RO) RO always uses the MO1 register to
(RO)+ specify modulo or linear arithmetic.
(RO)- RO can optionally be used as a
(RO)+N source register for the Tcc instruc-
(RO+N) tion. RO isthe only register allowed
(RO+xxxX) as a counter for the NORM instruc-

tion.

RUMOY/N Linear or modulo (RY) R1 optionally uses the MO1 register
(RL)+ to specify modulo or linear arith-
(RD)- metic. R1 can optionally be used as
(RL)+N adestination register for the Tcc
(R1+N) instruction.
(R1+xxxx)

R2/N Linear (R2) R2 supports a one-word indexed
(R2)+ addressing mode. R2 is not allowed
(R2)- as either pointer for instructions that
(R2)+N perform two reads from X data
(R2+N) memory. No modulo arithmetic is
(R2+xx) alowed.
(R2+xxxXx)

R3/N Linear (R3) R3 provides a second address for
(R3)+ instructions with two reads from
(R3)- data memory. This second address
(R3)+N can only access internal memory. It
(R3+N) can also be used for instructions that
(R3+xxxx) perform one access to data memory.

No modulo arithmetic is allowed.

SP/IN Linear (SP) The SP supportsaone-word indexed
(SP)- addressing mode, which isuseful for
(SP)+ accessing local variables and passed
(SP)+N parameters. No modulo arithmeticis
(SP+N) allowed.
(SP-xx)
(SP+xxxx)

The type of arithmetic to be performed is not encoded in the instruction, but it is specified by the address
modifier register (MO1 for the DSP56800 core). It indicates whether linear or modulo arithmeticis
performed when doing address calculations. In the case where there is not a modifier register for a
particular register set (R2 or R3), linear addressing is always performed. For address cal cul ations using RO,
the modifier register is always used; for calculations using R1, the modifier register is optionally used.

Each address-register-indirect addressing mode isillustrated in the following subsections.

4.2.2.1 No Update: (Rj), (SP)

The address of the operand isin the address register Rj or SP. The contents of the Rn register are
unchanged. The M01 and N registers are ignored. Thisreferenceis classified as a memory reference. See
Figure 4-3.
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4-10

No Update Example: MOVE Al,X: (RO)

Before Execution

After Execution

A2 Al AO A2 Al AO
Alo |1 2 3 a5 6 7 8 Alo |1 2 3 afs 6 7 8
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/\/ /\/
$1000 | X X X X [ $1000 |1 2 3 4 [
/—\—/ /\_/
RO | $1000 — RO | $1000 —
15 0 15 0
N | (a) | N | (a) |
15 0 15 0
Mot | (Wa) | Mot | (Wa) |
15 0 15 0

Assembler syntax: X:(Rj), X:(SP)
Additional instruction execution cycles: 0
Additional effective address program words: 0

Figure4-3. AddressRegister Indirect: No Update

DSP56800 Family Manual
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4.2.2.2 Post-Increment by 1: (Rj)+, (SP)+

The address of the operand isin the address register Rj or SP. After the operand addressisused, itis
incremented by one and stored in the same address register. The type of arithmetic (linear or modulo) used
to increment Rn is determined by MO1 for RO and R1 and is always linear for R2, R3, and SP. The N
register isignored. Thisreferenceis classified as amemory reference. See Figure 4-4.

Post-Increment Example: MOVE BO,X: (R1)+

Before Execution After Execution
B2 B1 BO B2 B1 BO
B|Aale 5 4 3|]F E D C B[A|6 5 4 3|]F E D C
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/\—/ /\—/
$2501 | X X X X $2501 | X X X X |-
$2500 | X X X X [ $2500
/_\/ /—\/
RL | $2500 — RL | $2501 —
15 0 15 0
N | (a) | N | (a) |
15 0 15 0
Mot | $FFFF | mot | $FFFF |
15 0 15 0

Assembler syntax: X:(Rj)+, X:(SP)+, P:(Rj)+
Additional instruction execution cycles: 0

Additional effective address program words: 0
AA0017

Figure4-4. Address Register Indirect: Post-1ncrement
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4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)-

The address of the operand isin the address register Rj or SP. After the operand addressis used, itis
decremented by one and stored in the same address register. The type of arithmetic (linear or modul o) used
to decrement Rn is determined by MO1 for RO and R1 and is always linear for R2, R3, and SP. The N
register isignored. Thisreferenceis classified as amemory reference. See Figure 4-5.

Post-Decrement Example: MOVE B,X: (R1) -

Before Execution After Execution
B2 B1 BO B2 B1 BO
B[o|e 5 4 s|]F E D c Blo |6 5 4 3|]F E D c
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
$4735 [ X X X X |- $4735
#4734 | X X X X $4734 | X X X X |-
RL | $4735 — RL | $4734 —
15 0 15 0
N | (a) | N | (a) |
15 0 15 0
MOL | S$FFFF | Mol | SFFFF |
15 0 15 0

Assembler syntax: X:(Rj)-, X:(SP)-
Additional instruction execution cycles: 0

Additional effective address program words: 0
AA0018

Figure4-5. Address Register Indirect: Post-Decrement
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4.2.2.4 Post-Update by Offset N: (Rj)+N, (SP)+N

The address of the operand isin the address register Rj or SP. After the operand address is used, the
contents of the N register are added to Rn and stored in the same address register. The content of N is
treated as a two’ s-complement signed number. The contents of the N register are unchanged. The type of
arithmetic (linear or modul o) used to update Rn is determined by MOL1 for RO and R1 and is always linear
for R2, R3, and SP. Thisreferenceis classified as a memory reference. See Figure 4-6.

Post-Update by Offset N Example: MOVE Y1,X: (R2) +N

Before Execution

Y1 YO
y|5 5 5 5[A A A A Y
31 16 15 0
X Memory
15 0
/‘\/
$3204 [ X X X X
$3200 [ X X X X
/\/
R2 | $3200
15 0
N | $0004 |
15 0
MOL [ sFFFF |
15 0

Assembler syntax: X:(Rj)+N, X:(SP)+N, P:(Rj)+N
Additional instruction execution cycles: 0
Additional effective address program words: 0

Figure4-6. Address Register Indirect:

Freescale Semiconductor
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After Execution

Y1 YO
5 5 5 5]A A A A
31 16 15 0
X Memory
$3204 X X X X |-

$3200 5 5 5 5

/\/

R2 | $3204 —
15 0
N | $0004 |
15 0
Mot | $FFFF |
15 0

AA0019

Post-Update by Offset N

4-13
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4.2.2.5 Index by Offset N: (Rj+N), (SP+N)

The address of the operand is the sum of the contents of the address register Rj or SP and the contents of
the address offset register N. This addition occurs before the operand can be accessed and, therefore,
inserts an extrainstruction cycle. The content of N istreated as atwo’ s-complement signed number. The
contents of the Rn and N registers are unchanged by this addressing mode. The type of arithmetic (linear or
modulo) used to add N to Rnis determined by MO1 for RO and R1 and is alwayslinear for R2, R3, and SP.
Thisreference is classified as amemory reference. See Figure 4-7.

Indexed by Offset N Example: MOVE Al,X: (RO+N)

Before Execution After Execution
A2 Al AO A2 Al AO
Al F|eE b c B|la 9 8 7 AlF|eE b c B|la 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/_\J /—\J
$7003 | X X X X —— 3 3003 [E D C B
$7000 | X X X X $7000 | X X X X
/\/ /\/
RO | $7000 RO | $7000 |
15 0 15 0
N | $0003 N | $0003 |
15 0 15 0
mot | S$FFFF Mot | S$FFFF |
15 0 15 0

Assembler syntax: X:(Rj+N), X:(SP+N)
Additional instruction execution cycles: 1

Additional effective address program words: 0
AA0020

Figure4-7. AddressRegister Indirect: Indexed by Offset N
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4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xx)

This addressing mode contains the 6-bit short immediate index within the instruction word. Thisfield is
always one-extended to form a negative offset when the SP register is used and is always zero-extended to
form a positive offset when the R2 register is used. The type of arithmetic used to add the short
displacement to R2 or SP is always linear; modulo arithmetic is not allowed. This addressing mode
requires an extrainstruction cycle. Thisreferenceis classified as an X memory reference. See Figure 4-8.

Indexed by Short Displacement Example: MOVE Al,X: (R2+3)

Before Execution After Execution
A2 Al AO A2 Al AO
Al F|]eE b c B|la 9 8 7 Al F|]eE b c B|la 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/_\/ /\/
$7003 [ X X X X — % $003 |[E D C B
$7000 | X X X X $7000 | X X X X
— —
r2 | $7000 R2 | $7000 |
15 0 15 0
N | $4567 | N $4567 |
15 0 15 0
MOL | SFFFF | mor | $FFFF |
15 0 15 0

Short Immediate Value
from the Instruction Word

Assembler syntax: X:(R2+xx), X:(SP-xx)
Additional instruction execution cycles: 1

Additi fecti 3
dditional effective address program words: 0 AA0021

Figure4-8. Address Register Indirect: Indexed by Short Displacement
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4.2.2.7 Index by Long Displacement: (Rj+xxxX), (SP+XxxxXx)

This addressing mode contains the 16-bit long immediate index within the instruction word. This second
word istreated as a signed two’ s-complement value. The type of arithmetic (linear or modul o) used to add
the long displacement to Rn is determined by MO1 for RO and R1 and is always linear for R2, R3, and SP.
This addressing mode requires two extrainstruction cycles. This addressing modeis available for MOVEC
instructions. Thisreferenceis classified as an X memory reference. See Figure 4-9.

Indexed by Long Displacement Example: MOVE Al,X: (RO+$10CF)

Before Execution After Execution

A2 Al AO A2 Al AO
Al F|]eE b c B|la 9 8 7 Al F|]eE b c B|la 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
$0CF | X X X —— $80CF |E D C B
/\/ /\/

$7000 | X X X X

$7000 [ X X X X

/\/ /\_/

RO | $7000 RO | $7000 |
15 0 15 0

N | $4567 | N $4567 |
15 0 15 0

MOL | SFFFF | Mor | $FFFF |
15 0 15 0

Long Immediate Value
from the Instruction Word

Assembler syntax: X:(Rj+xxxx), X:(SP+xxxx)
Additional instruction execution cycles: 2
Additional effective address program words: 1

Figure4-9. AddressRegister Indirect: Indexed by L ong Displacement
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4.2.3 Immediate Data M odes

The immediate data modes specify the operand directly in afield of the instruction. That is, the operand
value to be used is contained within the instruction word itself (or words themselves). There are two types

of immediate data modes. immediate data, which uses an extension word to contain the operand, and

Addressing M odes

immediate short data, where the operand is contained within the instruction word. Table 4-6 summarizes

these two modes.

Table4-6. Addressing Mode — Immediate

Addressing Mode: Notation in the Instruction Set
. Examples
Immediate Summary
Immediate short data— 5, 6, 7-bit H#XX #14
(unsigned and signed) #<3
Immediate data— 16-bit HXXXX #$369C
(unsigned and signed) #>1234

Freescale Semiconductor
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4.2.3.1 Immediate Data; #xxxx

This addressing mode requires one word of instruction extension. This additional word contains the 16-bit
immediate data used by the instruction. This reference is classified as a program reference. Examples of
the use and effects of immediate-data mode are shown in Figure 4-10 on page 4-18.

Immediate into 16-Bit Register Example: MOVE #S$A987,B1

Before Execution After Execution

B2 B1 BO B2 B1 BO
B[ x [x x x x[x x x x B x |[Aa 9 8 7[x x x x
35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate into 36-Bit Accumulator Example: MOVE #$1234,B

Before Execution

After Execution

B2 Bl BO B2 Bl

BO

B[ x [x x x x|x x

X X Blo |1 2 3 4o

0 O

35 32 31 16 15

0 35 32 31 16 15

0

Negative Immediate into 36-Bit Accumulator Example: MOVE #SA987,B

Before Execution

After Execution

B2 Bl BO B2 Bl

B[ x [x x x x|x x

X X B[F [A o 8 7]0

35 32 31 16 15

Assembler syntax: #xxxx
Additional instruction execution cycles: 1
Additional effective address program words: 1

Figure4-10

4-18

0 35 32 31 16 15

. Special Addressing: Immediate Data
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Immediate Short into 16-Bit Address Register Example: MOVE #$0027,N

Before Execution After Execution

N XXXX N | $0027
15 0 15 0

Immediate Short into 16-Bit Data Register Example: MOVE #S$SFFC6,X0

Before Execution After Execution

X0 XXXX xo | sFFos
15 0 15 0

Immediate Short into 16-Bit Accumulator Register Example: MOVE #$001C,B1

Before Execution After Execution
B2 B1 BO B2 B1 BO
B[ x [x x x x|[x x x x B[ x]o o 1 c|[x x x x
35 32 3l 16 15 0 35 32 31 16 15 0

Positive Immediate Short into 36-Bit Accumulator Example: MOVE #$001C,B

Before Execution After Execution
B2 B1 BO B2 B1 BO
B[ x [x x x x[x x x x Blo]o o 1 clo o o o
35 32 31 16 15 0 35 32 31 16 15 0

Negative Immediate Short into 36-Bit Accumulator Example: MOVE #$FFCé6,B

Before Execution After Execution
B2 B1 BO B2 B1 BO
B[ x [x x x x[x x x x B F|F F c e6]o 0o 0o o
35 32 31 16 15 0 35 32 31 16 15 0

Assembler syntax: #xx
Additional instruction execution cycles: 0
Additional effective address program words: 0
AA0024

Figure4-11. Special Addressing: Immediate Short Data
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4.2.3.2 Immediate Short Data: #xx

The immediate-short-data operand is located within the instruction operation word. A 6-bit unsigned
positive operand is used for DO and REP instructions, and a 7-bit signed operand is used for an immediate
move to an on-core register instruction. This referenceis classified as a program reference. See

Figure 4-11 on page 4-19.

4.2.4 Absolute Addressing M odes

Similar to the direct addressing modes, the absol ute addressing modes specify the operand value within the
instruction or instruction-extension words. Unlike the direct modes, these values are not used as the
operands themselves, but are interpreted as absolute data memory addresses for the operand values. The
different absolute addressing modes are shown in Table 4-7.

Table4-7. Addressing Mode — Absolute

Addressing Mode: Notation in the Instruction Set Examples
Absolute Summary P

Absolute short address — 6 bit X:aa X:$0002
(direct addressing) X:<$02
/O short address! — 6 bit X:<<pp X:<<$FFE3
(direct addressing)
Absolute address — 16-bit XiXXXX X:$C002
(extended addressing)

1. 1/O short addressing mode is used when the peripheral registers are mapped to the last 64 |o-
cations in X memory. When IP-BUS (or PGDB) interface maps these registers outside the
X:$FFCO-X:$FFFF range, they are then accessed with other suitable standard addressing mode.
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4.2.4.1 Absolute Address (Extended Addressing): XXxx

This addressing mode requires one word of instruction extension, which contains the 16-bit absolute
address of the operand. No registers are used to form the address of the operand. Absolute address
instructions are used with the bit-manipulation and move instructions. Thisreference is classified asa
memory reference and a program reference. See Figure 4-12.

Absolute Address Example: MOVE X:$5079,X0

Before Execution After Execution
X0 XXXX X0 $1234
15 0 15 0
X Memory X Memory
15 0 15 0
/\/ /\/
$5079 1 2 3 4 $5079 1 2 3 4
/\/ /—\/

Assembler syntax: X:xxxx
Additional instruction execution cycles: 1
Additional effective address program words: 1
AA0025

Figure4-12. Special Addressing: Absolute Address

Freescale Semiconductor Address Generation Unit 4-21



h -

Address Generation Unit

4.2.4.2 Absolute Short Address (Direct Addressing): <aa>

For the absolute short addressing mode, the address of the operand occupies 6 bitsin the instruction
operation word and is zero-extended. This allows direct access to the first 64 locationsin X memory. No
registers are used to form the address of the operand. Absolute short instructions are used with the bit-field
manipulation and move instructions. See Figure 4-13.

Absolute Short Address Example: MOVE R2,X:<$0003

Before Execution

R2 $ABCD
15 0

X Memory
15 0
P

$0003 X X X X

$0000

Assembler syntax: X:<aa>
Additional instruction execution cycles: 0
Additional effective address program words: 0

R2

$0003

$0000

After Execution

$ABCD

15

X Memory

AA0026

Figure4-13. Special Addressing: Absolute Short Address
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4.2.4.3 1/0O Short Address (Direct Addressing): <pp>

When the peripheral registers are mapped to the last 64 locationsin X memory, these can be accessed with
short addressing mode. For the I/O short addressing mode, the address of the operand occupies 6 bitsin the
instruction operation word and is one-extended. This allows direct access to the last 64 locationsin X
memory, which may contain the on-chip peripheral registers. No registers are used to form the address of
the operand. See Figure 4-14 for examples of using the 1/0O short direct addressing mode. Note that when
peripherals are connected to the DSP56800 core using the Freescale-standard IP-BUS (or PGDB)
interface, peripheral registers may be mapped into any other data (X) memory range. Note that if the
peripheral registers are mapped to an area of memory outside the range X:$FFCO-X:$FFFF, this address
mode will not be available and the registers are then accessed with other suitable standard addressing
mode.

I/O Short Address Example: MOVE X:<<S$FFFB,R3

Before Execution After Execution
R3 XXXX R3 | $5678
15 0 15 0
Memory Mapped Registers Memory Mapped Registers
15 0 15 0
$FFFF $FFFF
$FFFB 5 6 7 8 $FFFB 5 6 7 8

Assembler syntax: X:<pp>
Additional instruction execution cycles: 0
Additional effective address program words: O
AA0027

Figure4-14. Special Addressing: 1/0O Short Address

4.2.5 Implicit Reference

Some instructions make implicit reference to the program counter (PC), software stack, hardware stack
(HWS), loop address register (LA), loop counter (LC), or status register (SR). The implied registers and
their use are defined by the individual instruction descriptions. See Appendix A, “Instruction Set Details,”
for more information.

4.2.6 Addressing Modes Summary

Table 4-8 on page 4-24 contains a summary of the addressing modes discussed in the preceding
subsections of Section 4.2.
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Table4-8. Addressing Mode Summary

4-24

DSP56800 Family Manual

Uses Operand Reference
Addressing Mode M1t Assembler Syntax
| c2|Dp*| AS | PO | X7 | xx8
Register Direct
Data or control register No X X
Addressregister (Rj, SP) No X Rn
Address modifier register (M01) No X MO01
Address offset register (N) No X N
Hardware stack (HWS) No X HWS
Software stack No X
Address Register Indirect
No update No X (Rn)
Post-increment by 1 Yes X X X (Rn)+
Post-decrement by 1 Yes X (Rn)-
Post-update by offset N Yes X X X (RN)+N
Index by offset N Yes X (Rn+N)
Index by short displacement No X (R2+xx) or (SP-xx)
Index by long displacement Yes X (Rn+xxxx)
Immediate, Absolute, and I mplicit

Immediate data No X HXXXX
Immediate short data No X #XX
Absolute address No X X XXXX
Absolute short address No X <aa>
1/O short address No X <pp>
Implicit No X X X X

1. TheMO01 modifier can only be used on the RO/N/MO1 or R1/N/MO1 register sets

2. Hardware stack reference

3. Program controller register reference

4. DataALU register reference

5.  Address Generation Unit register reference

6. Program memory reference

7. X memory reference

8. Dua X memory read
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4.3 AGU Address Arithmetic

When an arithmetic operation is performed in the address generation unit, it can be performed using either
linear or modulo arithmetic. Linear arithmetic is used for general-purpose address computation, asfound in
all microprocessors. Modulo arithmetic is used to create data structuresin memory such as circular buffers,
first-in-first-out queues (FIFOs), delay lines, and fixed-size stacks. Using these structures allows datato be
manipulated simply by updating address register pointers, rather than by moving large blocks of data.

Linear versus modulo arithmetic is selected using the modifier register, M0O1. Arithmetic on the RO and R1
AGU registers may be performed using either linear or modulo arithmetic. The R2, R3, and SP registers
can be modified using linear arithmetic only.

4.3.1 Linear Arithmetic

Linear arithmetic is“normal” address arithmetic, as found on general-purpose microprocessors. It is
performed using 16-bit two’ s-complement addition and subtraction. The 16-bit offset register N, or
immediate data (+1, -1, or adisplacement value), is used in the address calculations. Addresses are
normally considered unsigned; offsets are considered signed.

Linear arithmetic is enabled for the RO and R1 registers by setting the modifier register (M01) to $FFFF.
The MO1 register is set to $FFFF on reset.

NOTE:

To ensure compatibility with future generations of DSP56800-compatible
DSC devices, care should be taken to avoid address arithmetic operations
that can cause address register values to overflow. On DSP56800 Family
chips, register values can be expected to “wrap” appropriately. Future
generations may support addressranges > 64K, however, causing potential
address-calculation errors.

4.3.2 Modulo Arithmetic

Many DSC and standard control algorithms require the use of specialized data structures, such as circular
buffers, FIFOs, and stacks. The DSP56800 architecture provides support for these algorithms by
implementing modulo arithmetic in the address generation unit.

4.3.2.1 Modulo Arithmetic Overview

To understand modul o address arithmetic, consider the example of acircular buffer. A circular bufferisa
block of sequential memory locations with a specia property: a pointer into the buffer islimited to the
buffer’s address range. When a buffer pointer is incremented such that it would point past the end of the
buffer, the pointer is“wrapped” back to the beginning of the buffer. Similarly, decrementing a pointer that
islocated at the beginning of the buffer will wrap the pointer to the end. This behavior is achieved by
performing modul o arithmetic when incrementing or decrementing the buffer pointers. See Figure 4-15 on
page 4-26.
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Upper Boundary: Lower Boundary + MO1

Address o Circular
Pointer Buffer MO1 = Size of Modulo Region Minus One

Lower Boundary: “K” LSBs Are All “0s’

Address of Lower Boundary:
15 kkil - 10
| Base Address [o]o]o]o]o]

Figure4-15. Circular Buffer

The modulo arithmetic unit in the AGU simplifies the use of a circular buffer by handling the address
pointer wrapping for you. After establishing a buffer in memory, the RO and R1 address pointers can be
made to wrap in the buffer area by programming the MOL register.

Modulo arithmetic is enabled by programming the MO1 register with avalue that is one less than the size
of the circular buffer. See Section 4.3.2.2, “Configuring Modulo Arithmetic,” for exact details on
programming the MOL register. Once enabled, updates to the RO or R1 registers using one of the
post-increment or post-decrement addressing modes are performed with modulo arithmetic, and will wrap
correctly in the circular buffer.

The address range within which the address pointers will wrap is determined by the value placed in the
MO1 register and the address contained within one of the pointer registers. Due to the design of the modulo
arithmetic unit, the address range is not arbitrary, but limited based on the value placed in MO1. The lower
bound of the rangeis calculated by taking the size of the buffer, rounding it up to the next highest power of
two, and then rounding the address contained in the RO or R1 pointers down to the nearest multiple of that
value.

For example: for abuffer size of M, avalue 2K is cal culated such that 2K > M. Thisisthe buffer size
rounded up to the next highest power of two. For avalue M of 37, 2% would be 64. The lower boundary of
the range in which the pointer registers will wrap isthe value in the RO or R1 register with the low-order k
bits all set to zero, effectively rounding the value down to the nearest multiple of 2K (64 inthiscase). This
is shown in Figure 4-16 on page 4-27.
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Memory
$00BO
(Unavailable
Addresses)
Upper Boundary:  $00A4 - Lower Bound + Size- 1 = Upper Bound
$O09F < Initiad RO Pointer Value
Circular
Buffer
Lower Boundary:  $0080 <€~ Lower Bound Relative to RO

Figure4-16. Circular Buffer with Size M =37

When modulo arithmetic is performed on the buffer pointer register, only the low-order k bits are
modified; the upper 16 - k bits are held constant, fixing the address range of the buffer. The algorithm used
to update the pointer register (RO in this case) is as follows:

RO[15:K] = RO[15:K]

RO[k-1:0] = (RO[k-1:0] + offset) MOD (MO01 + 1)
Note that this algorithm can result in some memory addresses being unavailable. If the size of the buffer is
not an even power of two, there will be arange of addresses between M and 21 (37 and 63 in our

example) that are not addressable. Section 4.3.2.7.3, “Memory Locations Not Available for Modulo
Buffers,” addressesthisissue in greater detail.

4.3.2.2 Configuring Modulo Arithmetic

Asnoted in Section 4.3.2.1, “Modulo Arithmetic Overview,” modulo arithmetic is enabled by
programming the address modifier register, MO1. This single register enables modulo arithmetic for both
the RO and R1 registers, although in order for modulo arithmetic to be enabled for the R1 register it must
be enabled for the RO register as well. When both pointers use modul o arithmetic, the sizes of both buffers
are the same. They can refer to the same or different buffers as desired.

The possible configurations of the MO1 register are givenin Table 4-9.
Table4-9. Programming MOl for Modulo Arithmetic

16-Bit M01 Address Arithmetic Pointer Registers
Register Contents Performed Affected
$0000 (Reserved) —
$0001 Modulo 2 RO pointer only
$0002 Modulo 3 RO pointer only
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Table4-9. Programming MOL1 for Modulo Arithmetic (Continued)

16-Bit M01 Address Arithmetic Pointer Registers
Register Contents Performed Affected
$3FFE Modulo 16383 RO pointer only
$3FFF Modulo 16384 RO pointer only
$4000 (Reserved) —
$7FFF (Reserved) —
$8000 (Reserved) —
$8001 Modulo 2 RO and R1 pointers
$8002 Modulo 3 RO and R1 pointers
$BFFE Modulo 16383 RO and R1 pointers
$BFFF Modulo 16384 RO and R1 pointers
$C000 (Reserved) —
$FFFE (Reserved) —
$FFFF Linear Arithmetic RO and R1 pointers both set
up for linear arithmetic

The high-order two bits of the MO1 register determine the arithmetic mode for RO and R1. A value of 00
for M01[15:14] selects modulo arithmetic for RO. A value of 10 for M01[15:14] selects modulo arithmetic
for both RO and R1. A value of 11 disables modulo arithmetic. The remaining 14 bits of M0O1 hold the size
of the buffer minus one.

NOTE:

The reserved val ues ($0000, $4000-$8000, and $C000-$FFFE) should not
be used. The behavior of the modulo arithmetic unit is undefined for these
values, and may result in erratic program execution.
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4.3.2.3 Supported Memory Access | nstructions

The address generation unit supports modulo arithmetic for the following address-register-indirect modes:

(Rn) (Rn)+
(Rn)- (Rn)+N
(Rn+N) (RN+xxxx)

As noted in the preceding discussion, modulo arithmetic is only supported for the RO and R1 address
registers.

4.3.2.4 Simple Circular Buffer Example

Suppose a five-location circular buffer is needed for an application. The application locates this buffer at
X:$800 in memory. (Thislocation isarbitrary — any location in an allowable data memory would suffice.)
In order to configure the AGU correctly to manage this circular buffer, the following two pieces of
information are needed:

The size of the buffer: five words
The location of the buffer: X:$0800 — X:$0804 (assume allowable memory locations)

Modulo addressing is enabled for the RO pointer by writing the size minus one ($0004) to M01[13:0], and
00 to M01[15:14]. See Figure 4-17.

$0804
Circular . !
Buffer MO1 Register = Size- 1 =5- 1 = $0004
RO ——\—>» $!800

Figure4-17. Simple Five-Location Circular Buffer

Thelocation of the buffer in memory is determined by the value of the RO pointer when it is used to access
memory. The size of the memory buffer (fivein this case) isrounded up to the nearest power of two (eight
in this case). The value in RO isthen rounded down to the nearest multiple of eight. For the base addressto
be X:$0800, the initial value of RO must be in the range X:$0800 — X:$0804. Note that the initial value of
RO does not have to be X:$0800 to establish this address as the lower bound of the buffer. However, it is
often convenient to set RO to the beginning of the buffer. The source code in Example 4-1 shows the
initialization of the example buffer.

Example4-1. Initializing the Circular Buffer

Initialize the buffer for five locations
RO can be initialized to any location

MOVE  #(5-1),M01 H
; within the buffer. For simplicity, RO

MOVE  #$0800,R0

is initialized to the value of the lower
boundary
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The buffer is used simply by accessing it with MOV E instructions. The effect of modulo address
arithmetic becomes apparent when the buffer is accessed multiple times, as in Example 4-2 on page 4-30.

Example 4-2. Accessing the Circular Buffer

MOVE X:(RO)+,X0 ; First time accesses location $0800

; and bumps the pointer to location $0801
MOVE X:(RO)+,X0 ; Second accesses at location $0801
MOVE X: (RO)+,X0 ; Third accesses at location $0802
MOVE X: (RO)+,X0 ; Fourth accesses at location $0803
MOVE X:(RO)+,X0 ; Fifth accesses at location $0804

; and bumps the pointer to location $0800
MOVE X: (RO)+,X0 ; Sixth accesses at location $0800 <=== NOTE
MOVE X: (RO)+,X0 ; Seventh accesses at location $0801
MOVE X: (RO)+,X0 ; and so forth...

For the first several memory accesses, the buffer pointer isincremented as expected, from $0800 to $0801,
$0802, and so forth. When the pointer reaches the top of the buffer, rather than incrementing from $0804 to
$0805, the pointer value “wraps’ back to $0800.

The behavior is similar when the buffer pointer register isincremented by avalue greater than one.
Consider the source code in Example 4-3, where RO is post-incremented by three rather than one. The
pointer register correctly “wraps’ from $0803 to $0801 — the pointer does not have to land exactly on the
upper and lower bound of the buffer for the modulo arithmetic to wrap the value properly.

Example 4-3. Accessing the Circular Buffer with Post-Update by Three

MOVE #(5-1),M01 ; Initialize the buffer for five locations
MOVE #$0800,R0 ; Initialize the pointer to $0800

MOVE #3,N ; Initialize “bump value” to 3

NOP

NOP

MOVE X:(RO)+N,X0 ; First time accesses location $0800
; and bumps the pointer to location $0803
MOVE X:(RO)+N,X0 ; Second accesses at location $0803

; and wraps the pointer around to $0801

MOVE X:(RO)+N,X0 ; Third accesses at location $0801
; and bumps the pointer to location $0804
MOVE X:(RO)+N,X0 ; Fourth accesses at ...

In addition, the pointer register does not need to be incremented; it could be decremented instead.
Instructions that post-decrement the buffer pointer also work correctly. Executing the instruction MOVE
X: (RO) -, x0 when the value of RO is $0800 will correctly set RO to $0804.

4.3.2.5 Setting Up a Modulo Buffer

The following steps detail the process of setting up and using the 37-location circular buffer shown in
Figure 4-16 on page 4-27.

1. Determine the value for the MO1 register.

— Sdlect the size of the desired buffer; it can be no larger than 16,384 locations. If modulo
arithmetic is to be enabled only for the RO address register, this gives the following:
MO1 = #locations- 1 = 37 - 1 = 36 = $0024

— If modulo arithmeticisto be enabled for both the RO and R1 addressregisters, be sureto set the
high-order bit of MO1:
MO1 = # locations - 1 + $8000 = 37 - 1 + 32768 = 32804 = $8024
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2. Find the nearest power of two greater than or equal to the circular buffer size. In this
example, the value would be oK > 37, which givesus avalue of k = 6.

3. Fromk, derivethe characteristics of thelower boundary of the circular buffer. Sincethe“k”
|east-significant bits of the address of the lower boundary must all be Os, then the buffer

base address must be some multiple of 2K Inthis case, k = 6, so the base address is some
multiple of 2° = 64.

4. Locatethecircular buffer in memory.

— Thelocation of the circular buffer in memory is determined by the upper 16 - k bits of the
address pointer register used in a modulo arithmetic operation. If there is an open area of
memory from locations 111 to 189 ($006F to $00BD), for example, then the addresses of the
lower and upper boundaries of the circular buffer will fit in this open areafor J= 2:

Lower boundary = (J x 64) = (2 x 64) = 128 = $0080
Upper boundary = (Jx 64) + 36 = (2 x 64) + 36 = 164 = $00A4

— Theexact area of memory in which acircular buffer is prepared is specified by picking avalue
for the address pointer register, RO or R1, whosevalueisinclusively between the desired lower
and upper boundaries of the circular buffer. Thus, selecting a value of 139 ($008B) for RO
would locate the circular buffer between locations 128 and 164 ($0080 to $00A4) in memory
since the upper 10 (16 - k) bits of the address indicate that the lower boundary is 128 ($0080).

— Insummary, the size and exact location of the circular buffer is defined onceavalueisassigned
to the MOL1 register and to the address pointer register (RO or R1) that will be used in amodulo
arithmetic calculation.

5. Determine the upper boundary of the circular buffer, which is the lower boundary + #
locations - 1.

6. Select avaluefor the offset register if it is used in modul o operations.

— If the offset register is used in amodulo arithmetic calculation, it must be selected as follows:
[N £MO1 + 1 [where |N| refers to the absolute value of the contents of the offset register]

— The special case where N isamultiple of the block size, 2k, isdiscussed in Section 4.3.2.6,
“Wrapping to a Different Bank.”

7. Perform the modulo arithmetic calculation.

— Once the appropriate registers are set up, the modul o arithmetic operation occurs when an
instruction with any of the following addressing modes using the RO (or R1, if enabled) register
is executed:

(Rn)
(Rn)+
(Rn)-
(Rn)+N
(Rn+N)
(RN+XxXX)

— If theresult of the arithmetic cal culation would exceed the upper or lower bound, then wrapping
around is correctly performed.

4.3.2.6 Wrapping to a Different Bank

For the normal case where [N| is less than or equal to MO1, the primary address arithmetic unit will
automatically wrap the address pointer around by the required amount. Thistype of address modificationis
useful in creating circular buffersfor FIFOs, delay lines, and sample buffers up to 16,384 words long. It is
also used for decimation, interpolation, and waveform generation.
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If N|is greater than MOL, the result is data dependent and unpredictable except for the special case where
N=L* (2"), amultiple of the block size, 2% whereL isa positive integer. For this special case when using
the (Rn)+N addressing mode, the pointer Rn will be updated using linear arithmetic to the same relative
addressthat isL blocks forward in memory (see Figure 4-18). Note that this case requires that the offset N
must be a positive two’ s-complement integer.

M
\ / (Rn) + N MOD MO1
( thereN=2k(L=l)

N7 M

Figure4-18. Linear Addressing with a Modulo Modifier

Thistechnique is useful in sequentially processing multiple tables or N-dimensional arrays. The special
modulo case of (Rn)+N withN = L* (2") isuseful for performing the same algorithm on multiple blocks of
datain memory (e.g., implementing abank of parallel IIR filters).

4.3.2.7 Side Effects of Modulo Arithmetic

Due to the way modulo arithmetic isimplemented by the DSP56800 Family, there are some side effects of
using modulo arithmetic that must be kept in mind. Specifically, since the base address of a buffer must be
apower of two, and since the modulo arithmetic unit can only detect a single wraparound, there are some
restrictions and limitations that must be considered.

4.3.2.7.1 When a Pointer Lies Qutside a Modulo Buffer

If apointer is outside the valid modulo buffer range and an operation occurs that causes RO or R1 to be
updated, the contents of the pointer will be updated according to modulo arithmetic rules. For example, a
MOVE B, X: (R0) +N instruction, where RO=6, MO1 =5, and N = O, would apparently leave RO unchanged
since N = 0. However, since RO is above the upper boundary, the AGU calculates RO + N - (MO1 + 1) for
the new contents of RO and sets RO = 0.

4.3.2.7.2 Restrictionson the Offset Register

The modulo arithmetic unit in the AGU is only capable of detecting a single wraparound of an address
pointer. As aresult, if the post-update addressing mode, (Rn)+N, is used, care must be taken in selecting
the value of N. The 16-bit absolute value [N| must be less than or equal to MO1 + 1 for proper modulo
addressing. Values of |N| larger than the size of the buffer may result in the Rn address value wrapping
twice, which the AGU cannot detect.
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4.3.2.7.3 Memory Locations Not Availablefor Modulo Buffers

For cases where the size of a buffer is not a power of two, there will be arange of memory locations
immediately after the buffer that are not accessible with modulo addressing. Lower boundaries for modulo
buffers always begin on an address where the lowest k bits are zeros— that is, a power of two. This means
that for buffers that are not an exact power of two, there are locations above the upper boundary that are
not accessible through modul o addressing.

In Figure 4-16 on page 4-27, for example, the buffer sizeis 37, which is not a power of two. The smallest
power of two greater than 37 is 64. Thus, there are 64 - 37 = 27 memory |ocations which are not accessible
with modulo addressing. These 27 locations are between the upper boundary + 1 = $00A5 and the next
power of two boundary address - 1 = $00CO - 1 = $00BF.

Theselocations are still accessible when no modulo arithmetic is performed. Using linear addressing (with
the R2 or R3 pointers), absolute addresses, or the no-update addressing mode makes these locations
available.

4.4 Pipeline Dependencies

There are some cases within the address generation unit where the pipelined nature of the DSC core can
affect the execution of a sequence of instructions. The pipeline dependencies are caused by awrite to an
AGU register immediately followed by an instruction that uses that same register in an address arithmetic
calculation. When there is a dependency caused by awrite to the N register, the DSC automatically stalls
the pipeline one cycle. If adependency is caused by awrite to the RO-R3, SP, or MO1 registers, however,
thereisno pipeline stall. Thisisalso trueif abit-field operation is performed on the N register. Instead, the
user must take care to avoid this case by rearranging the instructions or by inserting a NOP instruction to
break the instruction sequence.

Several instruction sequences are presented in the following examples to examine cases where their
pipeline dependency occurs, how this affects the machine, and how to correctly program to avoid these
dependencies.

In Example 4-4 there is no pipeline dependency since the N register is not used in the second instruction.
Since there is no dependency, no extrainstruction cycles are inserted.

Example 4-4. No Dependency with the Offset Register

MOVE #$7,N ; Write to the N register
MOVE X:(R2)+,X0 ; N not used in this instruction

In Example 4-5 there is no pipeline dependency since the R2 and N registers, used in the address
calculation, are not written in the previous instruction. Since there is no dependency, no extrainstruction
cycles areinserted.

Example 4-5. No Dependency with an Address Pointer Register

MOVE  #S7,R1 ; Write to R1 register
MOVE X: (R2)+N, X0 ; R1 not used in this instruction

In Example 4-6 there is no pipeline dependency since there is no address cal culation performed in the
second instruction. Instead, the R1 register is used as the source operand in a MOV E instruction, for which
there is no pipeline dependency. Since there is no dependency, no extrainstruction cycles are inserted.

Freescale Semiconductor Address Generation Unit 4-33



Address Generation Unit

Example 4-6. No Dependency with No Address Arithmetic Calculation

MOVE #$7,R1 ; Write to R1 register
MOVE R1,X:$0004 ; No address arithmetic calculation
; performed

Example 4-7 represents a specia case. For the X:(Rn+xxxx) addressing mode, thereis no pipeline
dependency even if the same Rn register iswritten on the previous cycle. Thisistrue for RO-R3 aswell as
the SP register. Since there is no dependency, no extrainstruction cycles are inserted.

Example 4-7. No Dependency with (Rn+xxxx)

MOVE #$7,R1 ; Write to R1 register
MOVE X: (R1+$3456),X0 ; X: (Rn+xxxx) addressing mode using R1

In Example 4-8 there is a pipeline dependency since the N register is used in the second instruction. Thisis
true for using N to update RO-R3 as well as the SP register. For the case where a dependency is caused by
awriteto the N register, the DSC core automatically stalls the pipeline by inserting one extrainstruction
cycle. Thus, this sequenceis allowed. This dependency aso exists for the (Rn+N) addressing mode.

Example 4-8. Dependency with a Writeto the Offset Register

MOVE #$7,N ; Write to the N register
MOVE X: (R2)+N, X0 ; N register used in address arithmetic calculation

In Example 4-9 there is a pipeline dependency since the N register is used in the second instruction. Thisis
true for using N to update RO-R3 as well as the SP register. For the case where a dependency is caused by
a bit-field operation on the N register, this sequence is not allowed and is flagged by the assembler. This
sequence may be fixed by rearranging the instructions or inserting a NOP between the two instructions.
This dependency only appliesto the BFSET, BFCLR, or BFCHG instructions. Thereis no dependency for
the BFTSTH, BFTSTL, BRCLR, or BRSET instructions. This dependency a so exists for the (Rn+N)
addressing mode.

Example 4-9. Dependency with a Bit-Field Operation on the Offset Register

BFSET #3$7,N ; Bit-field operation on the N register
MOVE X: (R2)+N, X0 ; N register used in address arithmetic calculation

In Example 4-10 there is a pipeline dependency since the address pointer register written in the first
instruction is used in an address calculation in the second instruction. For the case where a dependency is
caused by awrite to one of these registers, this sequence is not allowed and is flagged by the assembler.
This sequence may be fixed by rearranging the instructions or inserting a NOP between the two
instructions.

Example 4-10. Dependency with a Writeto an Address Pointer Register

MOVE #S$7,R2 ; Write to the R2 register
MOVE X:(R2)+,X0 ; R2 register used in address
; arithmetic calculation

In Example 4-11 there is a pipeline dependency since the MOL1 register written in the first instruction is
used in an address calculation in the second instruction. For the case where a dependency is caused by a
writeto the MO1 register, this sequenceis not allowed and is flagged by the assembler. This sequence may
be fixed by rearranging the instructions or inserting a NOP between the two instructions.

Example4-11. Dependency with aWritetothe Modifier Register

MOVE #$7,M01 ; Write to the M0l register
MOVE X: (RO)+,X0 ; MOl register used in address arithmetic calculation
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In Example 4-12 there is a pipeline dependency since the SP register written in the first instruction is used
by the immediately following JSR instruction to store the subroutine return address. The stack pointer will
not be updated with the immediate value in this case. This sequence may be fixed by inserting a NOP
between the two instructions.

Example 4-12. Dependency with a Writeto the Stack Pointer Register

MOVE  #$3800,SP ; Write to the SP register
JSR LABEL ; SP implicitly used to save the return address
; of the subroutine call

In Example 4-13 there is a pipeline dependency due to contention in the LF bit of the SR register. During
the first execution cycle of the BFSET instruction, the SR, whose LF bit is zero, isread. At the same time,
the first operand of the DO instruction is fetched. During the second execution cycle of the BFSET
instruction, the SR’ s content is modified and written back to the SR. Thisisalso the DO instruction decode
cycle, when the LF bit is set. In this case, the LF bit isfirst set by the DO decode, then cleared by the
BFSET SR modification. A cleared LF bit signals the end of a DO loop, so the DO loop is executed only
once. This sequence can be fixed by inserting a NOP instruction between these two instructions.

Example 4-13. Dependency with a Bit-Field Operation and DO L oop

BFSET #$0200,SR ; Write to the SR register
DO #8, ENDLOOP ; Repeat 8 times body of loop
; (instructions)
ENDLOOP :
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Chapter 5
Program Controller

The program controller unit is one of the three execution unitsin the central processing module. The
program controller performs the following:

e Instruction fetching
» Instruction decoding
e Hardware DO and REP loop control
»  Exception (interrupt) processing
This section covers the following:
» Thearchitecture and programming model of the program controller
* The operation of the software stack
» A discussion of program looping

Details of the instruction pipeline and the different processing states of the DSC chip, including reset and
interrupt processing, are covered in Chapter 7, “Interrupts and the Processing States.”

5.1 Architecture and Programming M odel

A block diagram of the program controller is shown in Figure 5-1 on page 5-2, and its corresponding
programming model is shown in Figure 5-2 on page 5-3. The programmer views the program controller as
consisting of five registers and a hardware stack (HWS). In addition to the standard program flow-control
resources such as a program counter (PC) and status register (SR), the program controller features registers
dedicated to supporting the hardware DO loop instruction — loop address (LA), loop counter (LC), and the
hardware stack — and an operating mode register (OMR) defining the DSC operating modes.

The blocks and registers within the program controller are explained in the following subsections.
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Figure5-1. Program Controller Block Diagram
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Program Controller
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Figure5-2. Program Controller Programming Model

5.1.1 Program Counter

The program counter (PC) is a 16-bit register that contains the address of the next location to be fetched
from program memory space. The PC may point to instructions, data operands, or addresses of operands.
Reference to this register is always implicit and isimplied by most instructions. This special-purpose
addressregister is stacked when hardware DO looping isinitiated (on the hardware stack), when ajump to
asubroutine is performed (on the software stack), and when interrupts occur (on the software stack).

5.1.2 Instruction Latch and Instruction Decoder

Theinstruction latch isa 16-bit internal register used to hold all instruction opcodes fetched from memory.
Theinstruction decoder, in turn, uses the contents of the instruction latch to generate al control signals
necessary for pipeline control — for normal instruction fetches, jumps, branches, and hardware looping.

5.1.3 Interrupt Control Unit

Theinterrupt control unit receives all interrupt requests, arbitrates among them, and then checks the
highest-priority interrupt request against the interrupt mask bits for the DSC core (I1 and 10 in the SR). If
the requesting interrupt has higher priority than the current priority level of the DSC core, then exception
processing begins. When exception processing begins, the interrupt control unit provides the address of the
interrupt vector for interrupts generated on the DSC core, whereas the peripherals generate the vector
address for interrupts generated by an on-chip peripheral.

Interrupts have a simple priority structure with levels zero or one. Level 0 isthe lowest interrupt priority
level (IPL) and ismaskable. Level 1isthe highest level and isnot maskable. Two interrupt mask bitsin the
SR reflect the current IPL of the DSC core and indicate the level needed for an interrupt source to interrupt
the processor.

The DSP56800 core provides support for internal (on-chip) peripheral interrupts and two external interrupt
sources, IRQA and IRQB. Theinterrupt control unit arbitrates between interrupt requests generated
externally and by the on-chip peripherals.

Asserting the reset pin causes the DSC core to enter the reset processing state. This has higher priority and
overrides any activity in the interrupt control unit and the exception processing state.
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Details of interrupt arbitration and the exception processing state are discussed in Section 7.3, “ Exception
Processing State,” on page 7-5. The reset processing state is discussed in Section 7.1, “Reset Processing
State,” on page 7-1.

5.1.4 Looping Control Unit

The looping control unit provides hardware dedicated to support loops, which are frequent constructsin
DSC agorithms.

The repeat instruction (REP) loads the 13-bit L C register with avalue representing the number of timesthe
next instruction isto be repeated. The instruction to be repeated is only fetched once per loop, so power
consumption is reduced, and throughput is increased when running from external program memory by
decreasing the number of external fetches required.

The DO ingtruction loads the 13-bit L C register with a value representing the number of times the loop
should be executed, loads the LA register with the address of the last instruction word in the loop (fetched
only once per loop), and sets the loop flag (LF) bit in the SR. The top-of-loop address is stacked on the
HWS so the loop can be repeated with no overhead. When the LF in the SR is asserted, the loop state
machinewill compare the PC contentsto the contents of the LA to determineif the last instruction word in
the loop was fetched. If the last word was fetched, the LC contents are tested for one. If LC is not equal to
one, then it is decremented, and the contents of the HWS (the address of the first instruction in the loop)
areread into the PC, effectively executing an automatic branch to the top of the loop. If the LC isequal to
one, then the LF in the SR isrestored with the contents of the OMR’ s nested looping (NL) bit, the
top-of-loop address is removed from the HWS, and instruction fetches continue at the incremented PC
value (LA +1).

Nested loops are supported by stacking the address of the first instruction in the loop (top of loop) in the
HWS and copying the LF bit into the OMR’s NL bit prior to the execution of the first instruction in the
loop. The user, however, must explicitly stack the LA and LC registers as described in Section 8.6.4,
“Nested Loops,” on page 8-22.

L ooping is described in more detail in Section 5.3, “Program Looping,” and Section 8.6, “Loops,” on page
8-20.

5.1.5 Loop Counter

The loop counter (LC) isaspecia 13-bit down counter used to specify the number of timesto repeat a
hardware program loop (DO and REP loops). When the end of a hardware program loop is reached, the
contents of the loop counter register are tested for one. If the loop counter is one, the program loop is
terminated. If the loop counter is not one, it is decremented by one and the program loop is repeated.

The loop counter may be read and written under program control. This gives software programs access to
the value of the current loop iteration. It also allows for saving and restoring the LC to and from the
software stack when nesting DO loops in software. Note that since the LC is only a 13-bit counter, it is
zero-extended when read; when written, the top three bits of the source word areignored. Thisisshownin
Figure 5-3 on page 5-5.
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Figure5-3. Accessing the Loop Count Register (LC)

Thisregister is not stacked by a DO instruction and not unstacked by end-of-loop processing, asis done on
other Freescale DSCs. Section 5.3, “Program Looping,” discusses what occurs when the loop count is zero.
See Section 8.6.4, “Nested Loops,” on page 8-22 for a discussion of nesting loops in software.

The upper three bits of this register will read as zero during DSC read operations and should be written as
zero to ensure future compatibility.

5.1.6 Loop Address

The loop address (LA) register indicates the location of the last instruction word in a hardware program
loop (DO loop only). When the instruction word at the address contained in this register isfetched, the LC
is checked. If it isnot equal to one, the LC is decremented, and the next instruction is taken from the
address at the top of the system stack; otherwise the PC isincremented, the LF isrestored with thevauein
the OMR’s NL bit, one location from the Hardware Stack is purged, and instruction execution continues
with the instruction immediately after the loop.

The LA register is aread/write register written into by the DO instruction. The LA register can be directly
accessed by the MOV E instructions as well. This also alows for saving and restoring the LA to and from
the stack during the nesting of loops. This register is not stacked by a DO instruction and is not unstacked
by end-of-loop processing. See Section 8.6.4, “Nested Loops,” on page 8-22 for a discussion of nesting
loops in software.
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5.1.7 Hardwar e Stack

The hardware stack (HWS) is a 2-deep, 16-bit wide, last-in-first-out (L1FO) stack. It isused for supporting
hardware DO looping; the software stack is used for storing return addresses and the SR for subroutines
and interrupts.

When aDO instruction is executed, the 16-bit address of the first instruction in the DO loop is pushed onto
the hardware stack, the value of the LF bit is copied into the NL bit, and the LF bit is set. Each ENDDO
instruction or natural end-of-loop will pop and discard the 16-bit address stored in the top location of the
hardware stack, copy the NL bit into the LF bit, and clear the NL bit. One hardware stack location is used
for each nested DO loop, and the REP instruction does not use the hardware stack. Thus, a two-deep
hardware stack allows for a maximum of two nested DO loops and a nested REP [oop within a program.
Note that thisincludes any looping that may occur dueto aDO loop in an interrupt service routine.

When a write to the hardware stack would cause the stack limit to be exceeded, the write does not take
place, and a non-maskabl e hardware-stack-overflow interrupt occurs. There is no interrupt on hardware
stack underflow.

5.1.8 Status Register

The statusregister (SR) isa 16-bit register consisting of an 8-bit mode register (MR) and an 8-bit condition
code register (CCR). The MR register is the high-order 8 bits of the SR; the CCR register is the low-order
8 hits.

The mode register is a special-purpose register that defines the operating state of the DSC core. Itis
conveniently located within the SR so that isit stacked correctly on an interrupt. This allows an interrupt
service routine to set up the operating state of the DSC core differently.

The mode register bits are affected by processor reset, exception processing, DO, ENDDO, any type of
jump or branch, RTI, RTS, and SWI instructions, and instructions that directly reference the MR register.
During processor reset, the interrupt mask bits of the mode register will be set, and the LF bit will be
cleared.

The condition code register is a special-purpose control register that defines the current status of the
processor at any given time. Its bits are set as aresult of status detected after certain instructions are
executed. The CCR bits are affected by data ALU operations, bit-field manipulation instructions, the
TSTW instruction, parallel move operations, and instructions that directly reference the CCR register. In
addition, the computation of the C, V, N, and Z condition code bits are affected by the OMR’s CC hit,
which specifies whether condition codes are generated using the information in the extension register. The
CCR bits are not affected by data transfers over the CGDB unless data limiting occurs when reading the A
or B accumulators. During processor reset, all CCR bits are cleared. The standard definitions of the CCR
bits are given in the following subsections, and more information about condition code bitsisfound in
Section 3.6, “Condition Code Generation,” on page 3-33. Refer to Appendix A, “Instruction Set Details,”
for computation rules.

The SR register is stacked on the software stack when a JSR is executed or when an interrupt occurs. The
SR register isrestored from the stack upon completion of an interrupt service routine by the
return-from-interrupt instruction (RTI). The program extension bits in the SR are restored from the stack
by the return-from-subroutine (RTS) instruction — all other SR bits are unaffected.

The SR format is shown in Figure 5-4 on page 5-7 and is also described in the following subsections.
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* Indicates reserved bits that are read as zero and should be written with zero for future compatibility AA0011

Figure5-4. Status Register Format

51.8.1 Carry(C)—BitO0

The carry (C) bit (SR bit 0) isset if acarry is generated out of the M SB of the result for an addition. It aso
issetif aborrow isgenerated in asubtraction. If the CC bit in the OMR register is zero, the carry or borrow
is generated out of bit 35 of the result. If the CC bit in the OMR register is one, the carry or borrow is
generated out of bit 31 of the result. The carry bit is also modified by bit manipulation and shift
instructions. Otherwise, thishit is cleared.

5.1.8.2 Overflow (V) —Bit 1

If the CC bit in the OMR register is zero and if an arithmetic overflow occurs in the 36-bit result, the
overflow (V) bit (SR bit 1) is set. If the CC bit in the OMR register is one and an arithmetic overflow
occurs in the 32-bit result, the overflow bit is set. Thisindicates that the result is not representable in the
accumulator register and the accumulator register has overflowed. Otherwise, this bit is cleared.

51.8.3 Zero(Z)— Bit 2

The zero (Z) bit (SR bit 2) is set if the result equals zero. Otherwise, this bit is cleared. The number of bits
checked for the zero test depends on the OMR’s CC bit and which instruction is executed, as documented
in Section 3.6, “Condition Code Generation,” on page 3-33.

5.1.8.4 Negative (N) — Bit 3

If the CC bit inthe OMR register is zero and if bit 35 of the result is set, the negative (N) bit (SR bit 3) is
set. If the CC hit in the OMR register isone and if bit 31 of the result is set, the negative bit is set.
Otherwise, thishit is cleared.
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5.1.8.5 Unnormalized (U) — Bit 4

The unnormalized (U) bit (SR bit 4) is set if the two most significant bits of the most significant product
portion of the result are the same, and is cleared otherwise. The U bit is computed as follows: U = (Bit 31
XOR Bit 30).

If the U bit is cleared, then a positive fractional number, p, satisfiesthe following relation: 0.5<p<1.0. A
negative fractional number, n, it satisfies the following equation: -1.0 < n < -0.5.

This bit is not affected by the OMR’s CC hit.

5.1.8.6 Extension (E) —Bit5

The extension (E) bit (SR bit 5) is cleared if all the bits of the integer portion (bits 35-31) of the 36-bit
result are the same (the upper five bits of the value are 00000 or 11111). Otherwise, thisbit is set.

If Eiscleared, then the MS and LS portions of an accumulator contain all the bits with information — the
extension register only contains sign extension. In this case, the accumulator extension register can be
ignored. If E is set, then the extension register in the accumulator isin use.

This bit is not affected by the OMR’s CC hit.

5.1.8.7 Limit (L) — Bit 6

Thelimit (L) bit (SR bit 6) is set if the overflow bit is set or if the data limiters perform alimiting
operation; it is not affected otherwise. The L bit is cleared only by a processor reset or an instruction that
specifically clearsit. Thisallowsthe L bit to be used as alatching overflow bit. Note that L is affected by
data movement operations that read the A or B accumulator registers onto the CGDB.

This bit is not affected by the OMR’s CC hit.

5188 Size(SZ)—Bit7

The size (SZ) bit (SR bit 7) is set when moving a 36-bit accumulator to data memory if bits 30 and 29 of
the source accumulator are not the same — that is, if they are not both ones or zeros. This bit islatched, so
it will remain set until the processor isreset or an instruction explicitly clearsit.

By monitoring the SZ bit, it is possible to determine whether avalue is growing to the point where it will
be saturated or limited when moved to data memory. It is designed for use in the fast Fourier transform
(FFT) agorithm, indicating that the next pass in the algorithm should scale its results before computation.
Thisalows FFT datato be scaled only on passes where it is necessary instead of on each pass, whichin
turn helps guarantee maximum accuracy in an FFT calculation.

5.1.8.9 Interrupt Mask (I1and 10) — Bits8-9

The interrupt mask (11 and 10) bits (SR bits 9 and 8) reflect the current priority level of the DSC core and
indicate the interrupt priority level (IPL) needed for an interrupt source to interrupt the processor. The
current priority level of the processor may be changed under software control. Interrupt mask bit 10 must
always be written with a one to ensure future compatibility and compatibility with other family members.
Theinterrupt mask bits are set during processor reset. See Table 5-1 on page 5-9 for interrupt mask bit
definitions.

When disabling interrupts, 1 inthe SR register isset to *1'. Interrupts will be disabled on the second cycle
after update as shown in Example 5-1.
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Example5-1. Disabling Maskable Interrupts

; Disabling Maskable Interrupts

BFSET #$0200, SR ; request to disable, 16-bit mask to set Il
; interrupts can still occur here

NOP ; 1 cycle is required to disable interrupts

NOP ; interrupts will not occur here

Table5-1. Interrupt Mask Bit Definition

11 10 Exceptions Per mitted Exceptions Masked
0 0 (Reserved) (Reserved)

0 1 IPLO, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL 1 IPLO

5.1.8.10 Reserved SR Bits— Bits 10-14

The reserved SR bits 10-14 are reserved for future expansion and will read as zero during DSC read
operations. These bits should be written with zero for future compatibility.

5.1.8.11 Loop Flag (LF) — Bit 15

Theloop flag (LF) bit (SR bit 15) is set when aprogram loop isin progress and enables the detection of the
end of aprogram loop. The LF bit isthe only SR bit that is restored when terminating a program loop.
Stacking and restoring the LF when initiating and exiting a program loop, respectively, allows the nesting
of program loops; see Section 5.1.9.7, “Nested Looping Bit (NL) — Bit 15.” REP looping does not affect
thisbit. The LF is cleared during processor reset.

NOTE:

TheLFisnot cleared at the start of aninterrupt serviceroutine. Thisdiffers
from the DSP56100 Family, where this hit is cleared upon entering an
interrupt service routine. This will not cause a problem as long as the
interrupt service routine code does not fetch the instruction whose address
is stored in the LA register. Thisistypically the case because usually the
interrupt service routine is located in a separate portion of program
memory.

This bit should never be explicitly cleared by a MOVE or bit-field
instruction when the NL bit in the OMR register is set to aone.

The LF bit isaso affected by any accesses to the hardware stack register. Any move instruction that writes
this register copies the old contents of the LF bit into the NL bit and then setsthe LF bit. Any reads of this
register, such asfromaMOVE or TSTW instruction, copy the NL bit into the LF bit and then clear the NL
bit.
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5.1.9 Operating Mode Register

The operating mode register (OMR) is a 16-hit register that defines the current chip operating mode of the
processor. The OMR bhits are affected by processor reset, operations on the HWS, and instructions that
directly reference the OMR. A DO loop will also affect the OMR, specifically the NL bit.

During processor reset, the chip operating mode bits will beloaded from the external mode select pins. The
operating mode register format is shown in Figure 5-5 on page 5-10 and is described in the subsequent
discussion.

NOTE:

When a bit of the OMR is changed by an instruction, a delay of one
instruction cycleis necessary before the new mode comes into effect.

<€ OMR >
OMR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operating Mode
Register NLf « | » | « | « | » | « |CcC| « |SD|] R |[SA]|EX| « | MB|MA
Reset = $0000
Read/Write | | |

NL — Nested Looping

CC — Condition Codes

SD — Stop Delay

R — Rounding

SA — Saturation

EX — External X Memory

MA,MB — Operating Mode

* Indicates reserved bits that are read as zero and should be written with zero for future compatibility AA0013

Figure5-5. Operating Mode Register (OMR) Format

5.1.9.1 Operating Mode Bits(MB and MA) — Bits 1-0

The chip operating mode (MB and MA) bits (OMR bits 1 and 0) indicate the operating mode and memory
maps of a DSC chip that has an external bus. Their initial values are typically established after reset by
external mode select pins. After the chip leavesthe reset state, MB and MA can be changed under program
control. Consult the specific DSP56800 Family device manual for more detailed information about how
these bits are established on reset and about their specific effect on operation.

Possible operating modes for a program RAM part are shown in Table 5-2.
Table5-2. Program RAM Operating Modes

Program Memory
Configuration

MB MA Chip Operating Mode Reset Vector (consult specific 56800
Family device manual)
0 0 Bootstrap 0 BOOTROM P:$0000 Internal P-RAM is write only

(Boot from External Bus)

0 1 Bootstrap 1 BOOTROM P:$0000 Internal P-RAM is write only
(Boot from Peripheral)
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Table5-2. Program RAM Operating M odes (Continued)

Program Memory
MB MA Chip Operating Mode Reset Vector (cons(fj(l)tn;iggzz?gii:r;%oo
Family device manual)
1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled
1 1 Development External Pmem P:$0000 Internal Pmem disabled

The bootstrap modes are used to initially load an on-chip program RAM upon exiting reset from external
memory or through a peripheral. Operating modes 0 and 1 typically would be different for a program
FLASH part because no bootstrapping operation is required for a FLASH part. An example of possible
operating modes for a program FLASH part are shown in Table 5-3 on page 5-11.

Table5-3. Program FLASH Operating Modes

MB MA Chip Operating Mode Reset Vector Prgg:]?irgul\r/laetrig?]ry
0 0 Single Chip Internal PROM P:$0000 Internal Pmem enabled
0 1 (Reserved) (Reserved) (Reserved)
1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled
1 1 Development External Pmem P:$0000 Internal Pmem disabled

The MB and MA hit values are typically established on reset from an external input. Once the chip leaves
reset, they can be changed under software control. For more information about how they are configured on
reset, consult the appropriate device' s user’s manual.

5.1.9.2 External X Memory Bit (EX) — Bit 3

The external X memory (EX) bit (OMR bit 3), when set, forces al primary data memory accesses to be
external. The only exception to thisruleisthat if aMOVE or bit-field instruction is executed using the I/O
short addressing mode, then the EX bit isignored, and the accessis performed to the on-chip location. The
EX bit allows accessto internal X memory with all addressing modes when this bit is cleared. Thisbit is
cleared by processor reset.

The EX bit isignored by the second read of adual-read instruction, which usesthe XAB2 and XDB2 buses
and always accesses on-chip X data memory. For instructions with two parallel reads, the second read is
always performed to internal on-chip memory. Refer to Section 6.1, “Introduction to Moves and Parallel
Moves,” on page 6-1 for adescription of the dual-read instructions.

5.1.9.3 Saturation (SA) —Bit 4

The Saturation (SA) bit enables automatic saturation on 32-bit arithmetic results, providing a user-enabled
Saturation mode for DSC algorithms that do not recognize or cannot take advantage of the extension
accumulator. When the SA bit is set, automatic saturation occurs at the output of the MAC unit for basic
arithmetic operations such as multiplication, addition, and so on. The SA bit is cleared by processor reset.
Automatic limiting as outlined in Section 3.4.1, “Data Limiter,” on page 3-26 is not affected by the state of
the SA bit.
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Saturation is performed by a dedicated circuit inside the MAC unit. The saturation logic operates by
checking 3 bits of the 36-bit result out of the MAC unit — EXT[3], EXT[0], and MSP[15]. When the SA
bit is set, these 3 bits determine if saturation is performed on the MAC unit’ s output and whether to
saturate to the maximum positive or negative value, as shown in Table 5-4.

Table5-4. MAC Unit Outputs With Saturation Mode Enabled (SA = 1)

EXTI[3] EXTI[Q] M SP[15] Result Stored in Accumulator

0 0 0 (Unchanged)

0 0 1 $0 7FFF FFFF
0 1 0 $0 7FFF FFFF
0 1 1 $0 7FFF FFFF
1 0 0 $F 8000 0000
1 0 1 $F 8000 0000
1 1 0 $F 8000 0000
1 1 1 (Unchanged)

NOTE:

Saturation mode is always disabled during the execution of the following
instructions: ASLL, ASRR, LSLL, LSRR, ASRAC, LSRAC, IMPY 16,
MPY SU, MACSU, AND, OR, EOR, NOT, LSL, LSR, ROL, and ROR.
For theseinstructions, no saturation is performed at the output of the MAC
unit.

5.1.9.4 RoundingBit (R) —Bit5

Therounding (R) bit (OMR bit 5) selects between convergent rounding and two’ s-complement rounding.
When set, two’ s-complement rounding (always round up) is used. The two rounding modes are discussed
in Section 3.5, “Rounding,” on page 3-30. Thisbit is cleared by processor reset.

5.1.9.5 Stop Delay Bit (SD) — Bit 6

The stop delay (SD) bit (OMR bit 6) is used to select the delay that the DSC needs to exit the stop mode.
When set, the processor exits quickly from stop mode. This bit is cleared by processor reset.

5.1.9.6 Condition CodeBit (CC) — Bit 8

The condition code (CC) bit (OMR hit 8) selects whether condition codes are generated using a 36-bit
result from the MAC array or a 32-bit result. When thisbit is set, the C, N, V, and Z condition codes are
generated based on bit 31 of the data ALU result. When this bit is cleared, the C, N, V, and Z condition
codes are generated based on bit 35 of the data ALU result. The generation of the L, E, and U condition
codes are not affected by the CC bit. Thisbit is cleared by processor reset.

NOTE:

The unsigned condition tests used when branching or jumping (HI, HS,
LO, and L S) can only be used when the condition codes are generated with
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this bit set to one. Otherwise, the chip will not generate the unsigned
conditions correctly.

The effects of the CC bit on the condition codes generated by data ALU arithmetic operations are
discussed in more detail in Section 3.6, “ Condition Code Generation,” on page 3-33.

5.1.9.7 Nested Looping Bit (NL) — Bit 15

The nested looping (NL) bit (OMR bit 15) is used to display the status of program DO looping and the
hardware stack. If this bit is set, then the program is currently in a nested DO loop (that is, two DO loops
are active). If thisbit is cleared, then there may be a single or no DO loop active. This bit is necessary for
saving and restoring the contents of the hardware stack, which is described further in Section 8.13,
“Multitasking and the Hardware Stack,” on page 8-34. REP looping does not affect this bit.

It isimportant that the user never put the processor in theillegal combination specified in Table 5-5. This
can be avoided by ensuring that the LF bit is never cleared when the NL bit is set.

The NL bit is cleared on processor reset. Also see Section 5.1.8.11, “Loop Flag (LF) — Bit 15,” which
discusses the LF bit in the SR.

Table5-5. Looping Status

NL LF DO Loop Status
0 0 No DO loops active
0 1 Single DO loop active
1 0 (lllegal combination)
1 1 Two DO loops active

If both the NL and LF bits are set (that is, two DO loops are active) and a DO instruction is executed, a
hardware-stack-overflow interrupt occurs because there is no more space on the hardware stack to support
athird DO loop.

The NL bit is also affected by any accesses to the hardware stack register. Any MOV E instruction that
writes this register copies the old contents of the LF bit into the NL bit and then sets the LF bit. Any reads
of thisregister, such asfromaMOVE or TSTW instruction, copy the NL bit into the LF bit and then clear
the NL bit.

5.1.9.8 Reserved OMR Bits— Bits2, 7 and 9-14

The OMR bits 2, 7, and 9-14 are reserved. They will read as zero during DSC read operations and should
be written as zero to ensure future compatibility.

5.2 Software Stack Operation

The software stack is alast-in-first-out (L1FO) stack of arbitrary depth implemented using memory
locationsin the X data memory. It is accessed through the POP instruction and the PUSH instruction
macro (see Section 8.5, “Multiple Value Pushes,” on page 8-19) and will read or write the location in the X
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data memory pointed to by the stack pointer (SP) register. The PUSH instruction macro (two instruction
cycles) pre-increments the SP register, and the POP instruction (oneinstruction cycle) will post-decrement
the SP register.

The program counter and the SR are pushed on this stack for subroutine calls and interrupts. These
registers are pulled from the stack for returns from subroutines using the RTS instruction (which pulls and
discards the original SR). For returns from interrupt service routines that use the RTI instruction (the entire
SR isrestored from the stack).

The software stack is also used for nesting hardware DO loops in software on the DSP56800 architecture.
On the DSP56800 architecture, the user must push and pop the LA and L C registers explicitly if DO loops
are nested. In this case, the software stack is typically used for this purpose, as demonstrated in

Section 8.6.4, “Nested Loops,” on page 8-22. The hardware stack is used, however, for stacking the
address of the first instruction in the loop. Because this stack isimplemented using locationsin the X data
memory, thereis no limit to the number of interrupts or jump-to subroutines or combinations of these that
can be accommodated by this stack.

NOTE:

Care must be taken to allocate enough space in the X data memory so that
stack operations do not overlap other areas of data used by the program.
Similarly, it may be desirable to locate the stack in on-chip memory to
avoid delays due to wait states or bus arbitration.

See Section 8.5, “Multiple Vaue Pushes,” on page 8-19 and Section 8.8, “Parameters and Local
Variables,” on page 8-28 for recommended techniques for using the software stack.

5.3 Program L ooping

The DSC core supports looping on a single instruction (REP looping) and looping on a block of
instructions (DO looping). Hardware DO looping allows fast looping on ablock of instructionsand is
interruptible. Once the loop is set up with the DO instruction, there is no additional execution timeto
perform the looping tasks. REP looping repeats a one-word instruction for the specified number of times
and can be efficiently nested within a hardware DO loop. It allows for excellent code density because
blocks of in-line code of a single instruction can be replaced with a one-word REP instruction followed by
the instruction to be repeated. The correct programming of loopsis discussed in detail in Section 8.6,
“Loops,” on page 8-20.

5.3.1 Repeat (REP) Looping

The REP instruction is a one-word instruction that performs single-instruction repeating on one-word
instructions. It repeats the execution of asingle instruction for the amount of times specified either with a
6-bit unsigned value or with the 13 least significant bits of a DSC core register. When arepeat loop is
begun, the instruction to be repeated is only fetched once from the program memory; it is not fetched each
time the repeated instruction is executed. Repeat |0oping does not use any locations on the hardware stack.
It al'so has no effect on the LF or NL bitsin the SR and OMR, respectively. Repeat looping cannot be used
on an instruction that accesses the program memory; it is necessary to use DO looping in this case.
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NOTE:

REP loops are not interruptible since they are fetched only once. A DO
loop with a single instruction can be used in place of a REP instruction if
it is necessary to be able to interrupt while the loop isin progress.

For the case of REP looping with a register value, when the register
contains the value zero, then the instruction to be repeated is not executed
(asis desired in an application), and instruction flow continues with the
next sequential instruction. Thisis also true when an immediate value of
zero is specified.

5.3.2 DO Looping

The DO instruction is atwo-word instruction that performs hardware looping on a block of instructions. It
executes this block of instructions for the amount of times specified either with a 6-bit unsigned value or
using the 13 least significant bits of aDSC core register. DO looping isinterruptible and uses one location
on the hardware stack for each DO loop. For cases where an immediate value larger than 63 is desired for
the loop count, it is possible to use the technique presented in Section 8.6.1, “Large Loops (Count Greater
Than 63),” on page 8-20.

The program controller register’s 13-bit loop count and 16-bit loop address register are used to implement
no-overhead hardware program loops. When a program loop is initiated with the execution of aDO
instruction, the following events occur:

1. ThelLCand LA registers are loaded with values specified in the DO instruction.
2. TheSR'sLFbitisset, anditsold valueis placed in the NL bit.
3. Theaddress of the first instruction in the program loop is pushed onto the hardware stack.

A program loop begins execution after the DO instruction and continues until the program address fetched
equals the loop address register contents (the last address of program loop). The contents of the loop
counter are then tested for one. If the loop counter is not equal to one, the loop counter is decremented and
the top location in the DO Loop Stack isread (but not pulled) into the PC to return to the top of the loop. If
the loop counter is equal to one, the program loop is terminated by incrementing the PC, purging the stack
(pulling the top location and discarding the contents), and continuing with the instruction immediately
after the last instruction in the loop.

NOTE:
For the case of DO looping with aregister value, when the register contains

the value zero, then the loop code is repeated 2K times, wherek = 13 isthe
number of bits in the LC register. If there is a possibility that a register
value may be less than or equal to zero, then the technique outlined in
Section 8.6.2, “Variable Count Loops,” on page 8-21 should be used. A
DO loop with an immediate value of zero is not allowed.

5.3.3 Nested Hardware DO and REP L ooping

It is possible to nest up to two hardware DO loops and to nest a hardware REP loop within the two DO
loops. It is recommended when nesting loops, however, that hardware DO loops not be nested within code.
Instead, a software loop should be used for an outer loop instead of a second DO loop (see Section 8.6.4,
“Nested Loops,” on page 8-22).
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The reason that nesting of hardware DO loops is supported isto provide for faster interrupt servicing.
When hardware DO |oops are not nested, a second hardware stack location is left available for immediate
use by an interrupt service routine.

5.3.4 Terminatinga DO Loop

A DO loop normally terminates when it has completed the last instruction of aloop for the last iteration of
the loop (LC equals one). Two techniques for early termination of the DO loops are presented in
Section 8.6.6, “Early Termination of a DO Loop,” on page 8-25.
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Chapter 6
| nstruction Set Introduction

Asindicated by the programming model in Figure 6-3 on page 6-5, the DSC architecture can be viewed as
several functional units operating in parallel:

e DaaALU

« AGU

e Program controller

e Bit-manipulation unit

The goal of theinstruction set isto keep each of these units busy each instruction cycle. This achieves
maximum speed, minimum power consumption, and minimum use of program memory.

The compl ete range of instruction capabilities combined with the flexible addressing modes provide avery
powerful assembly language for digital-signal-processing algorithms and general -purpose computing.
(The addressing modes are presented in detail in Section 4.2, “ Addressing Modes,” on page 4-6.) The
instruction set has aso been designed to allow for the efficient coding of DSC algorithms, control code,
and high-level language compilers. Execution time is enhanced by the hardware looping capabilities.

This section introduces the MOVE instructions avail able on the DSC core, the concept of parallel moves,

the DSC instruction formats, the DSC core programming model, instruction set groups, a summary of the
instruction set in tabular form, and an introduction to the instruction pipeline. The instruction summary is
particularly useful because it shows not only every instruction but also the operands and addressing modes
allowed for each instruction.

6.1 Introduction to Moves and Parallel Moves

To simplify programming, a powerful set of MOVE instructionsis found on the DSP56800 core. This not
only eases the task of programming the DSC, but also decreases the program code size and improves the
efficiency, which in turn decreases the power consumption and MIPs required to perform a given task.
Some examples of MOVE instructions are listed in Example 6-1.

Example6-1. MOVE Instruction Types

MOVE <any DSCcore registers>,<any DSCcore registers>

MOVE <any DSCcore registers,<X Data Memory>
MOVE <any DSCcore registers>,<On chip peripheral registers
MOVE <X Data Memorys,<any DSCcore registers
MOVE <On chip peripheral registers,<any DSCcore registers

MOVE <immediate value>, <any DSCcore registers>
MOVE <immediate value>, <X Data Memory>
MOVE <immediate value>,<On chip peripheral registers
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For any MOVE instruction accessing X data memory or an on-chip memory-mapped periphera register,
seven different addressing modes are supported. Additional addressing modes are available on the subset
of DSC core registers that are most frequently accessed, including the registersin the data ALU, and al
pointers in the address generation unit.

For al moves on the DSP56800, the syntax orders the source and destination as follows: src, DsST. The
source of the data to be moved and the destination are separated by a comma, with no spaces either before
or after the comma.

The assembler syntax also specifies which memory is being accessed (program or data memory) on any
memory move. Table 6-1 shows the syntax for specifying the correct memory space for any memory
access; an example of aprogram memory access is shown where the addressis contained in the register R2
and the address register is post-incremented after the access. The two examples for X data memory
accesses show an address-register-indirect addressing mode in the first example and an absolute addressin
the second.

Table6-1. Memory Space Symbols

Symbol Examples Description
P: P:(R2)+ Program memory access
X: X:(RO) X data memory access
X:$C000

The DSP56800 instruction set supports two additional types of moves — the single parallel move and the
dual parallel read. Both of these are considered “ parallel moves’” and are extremely powerful for DSC
agorithms and numeric computation.

The single parallel move allows an arithmetic operation and one memory move to be completed with one
instruction in one instruction cycle. For example, it is possible to add two numbers while reading or
writing a value from memory in the same instruction.

Figure 6-1 illustrates asingle parallel move, which uses one program word and executes in one instruction
cycle.

ADD XO0,A Y0,X: (R1)+N ; One DSP56800 Instruction
I_I_I I |
I
Opcode And Operands Single Parallel Move
(Uses XAB1 and CGDB)

Figure6-1. Single Parallel Move

In the single parallel move, the following occurs:
1. Register X0 isadded to the register A and the result is stored in the A accumulator.
2. Thecontentsof the Y O register are moved into the X datamemory at the location contained
in the R1 register.
3. After completing the memory move, the R1 register is post-updated with the contents of the
N register.

The dual parallel read allows an arithmetic operation to occur and two values to be read from X data
memory with oneinstruction in oneinstruction cycle. For example, it is possible to execute in the same
instruction a multiplication of two numbers, with or without rounding of the result, while reading two
values from X data memory to two of the data ALU registers.
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Figure 6-2 illustrates a double parallel move, which uses one program word and executesin oneinstruction
cycle.

MACR XO0,Y0,A X: (RO)+N, YO X:(R3)-,X0
I | | |
I |
Opcode and Operands Primary Read Secondary Read
(Uses XAB1 and CGDB) (Uses XAB2 and XDB2)

Figure6-2. Dual Parallel Move

In the dual parallel move, the following occurs.

1. The contents of the X0 and YO registers are multiplied, this result is added to the A
accumulator, and the final result is stored in the A accumulator.

2. The contents of the X datamemory location pointed to with the RO register are moved into
the YO register.

3. The contents of the X datamemory location pointed to with the R3 register are moved into
the X0 register.

4. After completing the memory moves, the RO register is post-updated with the contents of
the N register, and the R3 register is decremented by one.

Both types of parallel moves use a subset of available DSP56800 addressing modes, and the registers
available for the move portion of the instruction are also a subset of the total set of DSC core registers.
These subsets include the registers and addressing modes most frequently found in high-performance
numeric computation and DSC a gorithms. Also, the parallel moves allow a move to occur only with an
arithmetic operation in the data ALU. A parallel move is not permitted, for example, with aJMP, LEA, or
BFSET instruction.

6.2 Instruction Formats

Instructions are one, two, or three words in length. The instruction is specified by the first word of the
instruction. The additional words may contain information about the instruction itself or may contain an
operand for the instruction. Samples of assembly language source code for several instructions are shown
in Table 6-2.

From the instruction formats listed in Table 6-2, it can be seen that the DSC offers parallel processing
using the data ALU, AGU, program controller, and bit-manipulation unit. In the parallel move example,
the DSC can perform a designated ALU operation (data ALU) and up to two data transfers specified with
address register updates (AGU), and will aso decode the next instruction and fetch an instruction from
program memory (program controller), all in one instruction cycle. When an instruction is more than one
word in length, an additional instruction-execution cycle is required. Most instructions involving the data
ALU are register based (that is, operands are in data AL U registers) and allow the programmer to keep
each parallel processing unit busy. Instructions that are memory oriented (for example, a bit-manipulation
instruction), al logical instructions, or instructions that cause a control flow change (such as ajump)
prevent the use of all parallel processing resources during their execution.
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Table6-2. Instruction Formats
CGDB XDB2 PDB
Opcode’ Operands? Transfer3 Transfer? Transfer® Comments
ADD #$1234,Y1 No parallel move
ANDC H#S7C X $E27 No parallel move
ENDDO No parallel move
TSTW X:(SP-9) No parallel move
MAC A1YO0B No parallel move
LEA (R2)- No parallel move
MOVE RO,YO No parallel move
CMP X0,B YO0,X:(R2)+ Single parallel move
NEG A X:(R1)+N,X0 Single parallel move
SUB Y1,A X:(RO)+,YO X:(R3)+,X0 Dual parallel read
MPY X1,Y0B X:(RD+N,Y1 | X:(R3)+X0 Dual parallel read
MACR X0,Y0,A X:(R1)+N,YO X:(R3)-,X0 Dual parallél read
MOVE XO0,P:(RL)+ Program memory move
JMP $3C10 16-bit jump address
1. Indicatesdata ALU, AGU, program controller, or bit-manipulation operation to be performed.
2. Specifies the operands used by the opcode.
3. Specifies optional datatransfers over the CGDB bus.
4. Specifies optional data transfers over the XDB2 bus.
5. Specifies optional datatransfers over the PDB bus.
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6.3 Programming M odel

The registers in the DSP56800 core programming model are shown in Figure 6-3.

Data Arithmetic Logic Unit
Data ALU Input Registers
31 16 15 0

X0 Y Y1 YO

15 0 15 0 15 0

Accumulator Registers

35 3231 16 15 0
A A2 Al AO

3 0 15 0 15 0

35 3231 16 15 0
B B2 B1 BO

3 0 15 0 15 0

Address Generation Unit

15 0
RO
R1
R2
R3 15 0 15 0
SP N M01
Pointer Offset Modifier
Registers Register Register
Program Controller Unit
15 0 15 8 7 0 15 0
PC MR CCR OMR
Program Status Operating Mode
Counter Register (SR) Register
15 0 12 0 15 0
LC LA
Hardware Stack (HWS) L oop Counter Loop Address

AAQ007

Figure 6-3. DSP56800 Core Programming M odel
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6.4 Instruction Groups

Theinstruction set is divided into the following groups:

e Arithmetic
 Logicd

e Bit manipulation
* Looping

* Move

»  Program control

Each instruction group is described in the following subsections. In addition, Section 6.6.4, “Instruction
Summary Tables,” includes a useful summary for every instruction and the addressing modes and operand
registers allowed for each instruction. Detailed information on each instruction is given in Appendix A,
“Instruction Set Details.”

6.4.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the data ALU. They may affect
asubset or all of the condition code register bits. Arithmetic instructions are typically register based
(register-direct addressing modes are used for operands) so that the data ALU operation indicated by the
instruction does not use the CGDB or the XDBZ2, although some instructions can also operate on
immediate data or operands in memory.

Optional datatransfers (parallel moves) may be specified with many arithmetic instructions. This allows
for parallel data movement over the CGDB and over the XDB2 during adata ALU operation. This allows
new datato be pre-fetched for use in following instructions and results calculated by previous instructions
to be stored. Arithmetic instructions typically execute in one instruction cycle, although some of the
operations may take additional cycleswith different operand addressing modes. The arithmetic
instructions are the only class of instructions that allow parallel moves.

In addition to the arithmetic shifts presented here, other types of shifts are also availablein the logical
instruction group. See Section 6.4.2, “Logical Instructions.” Table 6-3 lists the arithmetic instructions.

Table6-3. Arithmetic InstructionsList

Instruction Description

ABS Absolute value

ADC Add long with carry®

ADD Add

ASL Arithmetic shift left (36-bit)

ASLL Arithmetic multi-bit shift left!

ASR Arithmetic shift right (36-bit)

ASRAC Arithmetic multi-bit shift right with accumul ate®

ASRR Arithmetic multi-bit shift right*
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Table6-3. Arithmetic InstructionsList (Continued)
Instruction Description
CLR Clear
CMP Compare
DEC (or DECW) Decrement upper word of accumulator
DIV Divideiteration®
IMPY (or IMPY16) Integer multiply’
INC (or INCW) Increment upper word of accumulator
MAC Signed multiply-accumulate
MACR Signed multiply-accumulate and round
MACSU Signed/unsigned multiply-accumul ate®
MPY Signed multiply
MPYR Signed multiply and round
MPYSU Signed/unsigned multiply*
NEG Negate
NORM Normalize!
RND Round
SBC Subtract long with carry®
SuB Subtract
Tce Transfer conditionally!
TFR Transfer data ALU register to an accumulator
TST Test a36-bit accumulator
TSTW Test a 16-bit register or memory location®

1. Theseinstructions do not alow parallel data moves.

6.4.2 Logical Instructions

Thelogical instructions perform all of the logical operations within the data ALU. They also affect the
condition code register bits. Logical instructions are register based. So are the arithmetic instructionsin
Table 6-3, and, again, some can also operate on operands in memory. Optional datatransfers are not

permitted with logical instructions. These instructions execute in one instruction cycle.

Table 6-4 lists the logical instructions.
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Table6-4. Logical InstructionsList

Instruction Description

AND Logical AND

EOR Logical exclusive OR
LSL Logical shift left

LSLL Multi-bit logical shift left

LSRAC Logical right shift with accumulate
LSR Logical shift right

LSRR Multi-bit logical shift right

NOT Logical complement
OR Logical inclusive OR
ROL Rotate | eft
ROR Rotate right

6.4.3 Bit-Manipulation Instructions

The bit-manipulation instructions perform one of three tasks:
» Testing afield of bitswithin aword
» Testing and modifying afield of bitsin aword
» Conditionally branching based on atest of bits within the upper or lower byte of aword

Bit-field instructions can operate on any X memory location, peripheral, or DSC core register. BFTSTH
and BFTSTL can test any field of the bitswithin a 16-bit word. BFSET, BFCLR, and BFCHG can test any
field of the bits within a 16-bit word and then set, clear, or invert bitsin thisword, respectively. BRSET
and BRCLR can only test an 8-bit field in the upper or lower byte of the word, and then conditionally
branch based on the result of the test. The carry bit of the condition code register contains the result of the
bit test for each instruction. These instructions are operations of the read-modify-writetype. The BFTSTH,
BFTSTL, BFSET, BFCLR, and BFCHG instructions execute in two or three instruction cycles. The
BRCLR and BRSET instructions execute in four to six instruction cycles.

Table 6-5 lists the bit-manipulation instructions.
Table 6-5. Bit-Field Instruction List

Instruction Description
ANDC Logical AND with immediate data
BFCLR Bit-field test and clear
BFSET Bit-field test and set
BFCHG Bit-field test and change
BFTSTL Bit-field test low
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Table6-5. Bit-Field Instruction List (Continued)

Instruction Description

BFTSTH Bit-field test high

BRSET Branch if selected bits are set

BRCLR Branch if selected bits are clear
EORC Logical exclusive OR with immediate data
NOTC Logical complement on memory location and registers
ORC Logical inclusive OR with immediate data

NOTE:

Due to instruction pipelining, if an AGU register (Rj, N, SP, or M0O1) is
directly changed with a bit-field instruction, the new contents may not be
availablefor use until the second following instruction (see the restrictions
discussed in Section 4.4, “Pipeline Dependencies,” on page 4-33).

See Section 8.1.1, “Jumps and Branches,” on page 8-2 for other instructions that can be synthesized.

6.4.4 Looping Instructions

The looping instructions establish looping parameters and initiate zero-overhead program looping. They
allow looping on asingle instruction (REP) or ablock of instructions (DO). For DO looping, the address of
thefirst instruction in the program loop is saved on the hardware stack to allow no-overhead looping. The
last address of the DO loop is specified as a 16-bit absolute address. No locations in the hardware stack are
required for the REP instruction. The ENDDO instruction is used only when breaking out of the loop;
otherwise, it is better to useMoVE #1, Lc. Thisisdiscussed in more detail in Section 8.6.6, “Early
Termination of aDO Loop,” on page 8-25.

Table 6-6 lists the loop instructions.
Table6-6. Loop Instruction List

Instruction Description
DO Start hardware loop
ENDDO Disable current loop and unstack parameters
REP Repeat next instruction

6.4.5 Move lnstructions

The move instructions move data over the various data buses: CGDB, IP-BUS (or PGDB), XDB2, and
PDB. Move instructions do not affect the condition code register, except for the limit bit if limiting is
performed when reading adata ALU accumulator register. These instructions do not allow optional data
transfers. In addition to the following move instructions, there are parallel moves that can be used
simultaneoudly with many of the arithmetic instructions. The parallel moves are shown in Table 6-35 on
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page 6-29 and Table 6-36 on page 6-30 and are discussed in detail in Section 6.1, “Introduction to Moves
and Parallel Moves,” and Appendix A, “Instruction Set Details.” The LEA instruction isalso included in

this instruction group.

NOTE:

There is a PUSH instruction macro, described in Section 8.5, “Multiple
Value Pushes,” on page 8-19, that can be used with the POP instruction
alias presented in Section 6.5.5, “POP Alias,” on page 6-13.

Table 6-7 lists the move instructions.

Table6-7. Movelnstruction List

Instruction Description
LEA Load effective address
POP Pop aregister from the software stack
MOVE Move data

MOVE (or MOVEC)

Move control register

MOVE (or MOVEI)

Move immediate data

MOVE (or MOVEM)

Move data to/from program memory

MOVE (or MOVEP)

Move data using peripheral short addressing

MOVE (or MOVES)

Move data using absol ute short addressing

NOTE:

Due to instruction pipelining, if an AGU register (Rj, SP, or M01) is
directly changed with a move instruction, the new contents may not be
availablefor use until the second following instruction. See therestrictions
discussed in Section 4.4, “Pipeline Dependencies,” on page 4-33.

6.4.6 Program Control Instructions

The program control instructions include branches, jumps, conditional branches, conditional jumps, and
other instructions that affect the program counter and software stack. Program control instructions may
affect the status register bits as specified in the instruction. Also included in thisinstruction group are the
STOP and WAIT instructions that can place the DSC chip in alow-power state. See Section 8.1.1, “ Jumps
and Branches,” on page 8-2 and Section 8.11, “Jumps and JSRs Using a Register Value,” on page 8-33 for
additional jump and branch instructions that can be synthesized from existing DSP56800 instructions.

Table 6-8 lists the program control instructions.

Table6-8. Program Control Instruction List

Instruction

Description

Bcc

Branch conditionally
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Instruction Aliases

Instruction Description
BRA Branch
DEBUG Enter debug mode
Jec Jump conditionally where cc represents condition mnemonic
JMP Jump
JSR Jump to subroutine
NOP No operation
RTI Return from interrupt
RTS Return from subroutine
STOP Stop processing (lowest power standby)
SWI Software interrupt
WAIT Wait for interrupt (low power standby)

6.5 Instruction Aliases

The DSP56800 assembler provides a number of additional useful instruction mnemonics that are actually
aliases to other instructions. Each of these instructions is mapped to one of the core instructions and

disassembles as such.

6.5.1 ANDC, EORC, ORC, and NOTC Aliases

The DSP56800 instruction set does not support logical operations using 16-bit immediate data. It is
possible to achieve the same result, however, using the bit-manipulation instructions. To simplify
implementing these operations, the DSP56800 assembl er provides the following operations:

» ANDC — logicaly AND a 16-bit immediate value with a destination

» EORC — logicaly exclusive OR a 16-bit immediate value with a destination
* ORC — logically OR a 16-bit immediate value with a destination
* NOTC — logical one's-complement of a 16-bit destination

These operations are not new instructions, but aliases to existing bit-manipulation instructions. They are

mapped as shown in Table 6-9.

Table6-9. Aliasesfor Logical Instructionswith Immediate Data

Desired Remapped
Instruction Operands Instruction Operands
ANDC #xxxx,DST BFCLR #xxxx,DST
ORC #xxxx,DST BFSET #xxxx,DST

Freescale Semiconductor
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Table6-9. Aliasesfor Logical Instructionswith Immediate Data

Desired Remapped
Instruction Operands Instruction Operands
EORC #xxxx,DST BFCHG #xxxx,DST
NOTC DST BFCHG #SFFFF,DST

Note that for the ANDC instruction, aone' s-complement of the mask value is used when remapping to the
BFCLR instruction. For the NOTC instruction, all bitsin the 16-bit mask are set to one.

In Example 6-2, an immediate value is logically ORed with alocation in memory.

Example6-2. Logical OR with a Data Memory L ocation

ORC #SO00FF,X:$0400 ; Set all bits of lower byte in X:$0400

The assembler trandates thisinstruction into BFSET #$00FF, X: $400, which performs the same
operation. If the assembled codeis later disassembled, it will appear as a BFSET instruction.

6.5.2 LSLL Alias

Because the LSLL instruction operatesidentically to an arithmetic left shift, thisinstruction is actually
assembled as an ASLL instruction. When the assembler encounters the LSLL mnemonic, an ASLL
instruction is assembled. See Table 6-10.

Table6-10. LSLL Instruction Alias

Operation Operands Comments
LSLL Y1,X0,DD Multi-bit logical left shift.
Y0,X0,DD
Y1,Y0,DD First register is the value to be shifted, second register is the
YO0,YO0,DD shift amount (uses 4 LSBS).
A1,Y0,DD
B1,Y1,DD Use ASLL when left shifting is desired on one of the two
accumulators.
6.5.3 ASL Alias

Because the ASL instruction operates similarly to alogical left shift when executed onthe Y1, YO, and X0
registers, thisinstruction is actually assembled as an LSL instruction. Note that while the result in the
destination register will be the same asif an arithmetic shift had been performed, condition codes are
calculated based on alogic shift and might differ from the expected result. See Table 6-11.

The ASL instruction is not aliased to LSL when the register specified is one of the accumulator registers.
Table6-11. ASL Instruction Remapping

Operation

Operands

Comments

ASL

DD Arithmetic left shift (assembledasLSL DD)
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6.5.4 CLR Alias

Because CLR operatesidentically to aMOVE instruction with an immediate value of zero, aMOVE
instruction is used to implement CLR when the specified register is a 16-bit register. When the assembler
encounters the CLR mnemonic in a program, it assemblesaMOVE #0, <registers instructionin its
place. See Table 6-12.

NOTE:

This operation does not apply to the CLR instruction when it is performed
on the A or B accumulators.

Table6-12. Clear Instruction Alias

Operation Destination Comments
CLR X0,Y1, YO, Identical to MOVE #0, <registers>; doesnot set condition
Al, B1, codes
RO-R3, N
6.5.5 POP Alias

The POP instruction operates identically to a move from the stack with post-decrement. When the
assembler encounters the POP instruction in a program, it assemblesaMOVE X: (SP) -, <registers
instruction in its place. If POP does not specify a destination register, it isassembled asLEa (sP) -.

Table6-13. MoveWord Instruction Alias— Data Memory

Operation Source Destination Comments

POP DDDDD Pop asingle stack location
(None specified) Simply decrementsthe SP;, LEA (SP)-

6.6 DSP56800 Instruction Set Summary

This section presents the entire DSP56800 instruction set in tabular form. The tables provide a quick
reference to the entire instruction set because they show not only the instructions themselves, but also the
registers, addressing modes, cycle counts, and program words required for each instruction. From these
tables, it isvery easy to determineif a particular operation can be performed with a desired register or
addressing mode.

The summary, found in Section 6.6.4, “Instruction Summary Tables,” is based on logical groupings of
instructions, listing the instructions a phabetically within each grouping. This summary also contains the
number of program words required by the instruction as well as the number of cycles required for
execution.

This section contains the following information:
» Usage of the instruction summary tables
» Addressing mode notation
* Register field notation
e Theinstruction summary tables
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6.6.1 Register Field Notation

There are many different register fields used within the instruction summary tables. These will be grouped
into sets that are more easily understood.

Table 6-14 shows the register set available for the most important move instructions. Sometimes the
register field is broken into two different fields — one where the register is used as a source (src), and the
other whereit is used as adestination (dst). Thisisimportant because a different notation is used when an
accumulator is being stored without saturation. Also see the register fields in Table 6-15, which are also
used in move instructions as sources and destinations within the AGU.

In some cases, the notation used when specifying an accumulator determines whether or not saturation is
enabled when the accumulator is being used as a source in amove or parallel move instruction. Refer to
Section 3.4.1, “Data Limiter,” on page 3-26 and Section 3.2, “ Accessing the Accumulator Registers,” on
page 3-7 for information.

Table6-14. Register Fieldsfor General-Purpose Writes and Reads

Register Field Registersin ThisField Comments

HHH

A,B,Al Bl
X0,Y0,Y1

Seven data AL U registers— two accumulators, two 16-bit MSP
portions of the accumulators, and three 16-bit data registers

HHHH

A,B, Al Bl

Seven data ALU and five AGU registers

X0,Y0, Y1
RO-R3, N

DDDDD A, A2, Al A0

B, B2, B1, BO

All CPU registers

Y1, YO0, X0

RO, R1, R2, R3
N, SP
MO01

OMR, SR
LA, LC
HWS

Table 6-15 shows the register set available for use as pointers in address-register-indirect addressing
modes. This table also shows the notation used for AGU registersin AGU arithmetic operations.

Table6-15. Address Generation Unit (AGU) Registers

Register Field Registersin ThisField Comments
Rn RO-R3 Five AGU registers available as pointers for addressing and as sources
SP and destinations for move instructions
Rj RO, R1, R2, R3 Four pointer registers available as pointers for addressing
N N One index register available only for indexed addressing modes
M01 M01 One modifier register
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Table 6-16 shows the register set available for use in data ALU arithmetic operations. The most common
field used in thistable is FDD.

Table6-16. Data ALU Registers

Register Field Registersin ThisField Comments
FDD A,B Five data ALU registers — two 36-bit accumulators and three 16-bit data
X0,Y0,Y1 registers accessible during data ALU operations

Contains the contents of the F and DD register fields

F1DD Al,B1 Five data ALU registers — two 16-bit MSP portions of the
X0,Y0,Y1 accumulators and three 16-bit data registers accessible during data ALU
operations
DD X0,Y0, Y1 Three 16-bit data registers
F A,B Two 36-bit accumulators accessible during parallel move instructions and

some data ALU operations

~FF ~F,F refersto any of two valid accumulator combinations: A,B or B,A
F1 Al,B1 The 16-bit M SP portion of two accumulators accessible as source operands

in parallel move instructions

6.6.2 Immediate Value Notation

Immediate values, including absolute and offset addresses, are utilized in the instruction set summary
using the notation defined in Table 6-17. The <MASKx> notation isused in Bit Manipulation Instructions
in Table 6-30 and Table 6-31. The <OFFSET 7> and <ABS16> notations are used in change of flow and
loop intructions in Table 6-32 and Table 6-33.

Table6-17. Immediate Value Notation

Immediate Value Field Description
<MASK8> 8-bit mask value
<MASK16> 16-bit mask value
<OFFSET7> 7-bit signed PC-relative offset
<ABS16> 16-bit absolute address

6.6.3 Using the Instruction Summary Tables

This section contains helpful information on using the summary tables. It contains some notation used
within the tables.

Theregister field notation isfound in Section 6.6.1, “Register Field Notation.”
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Some additional notation to be considered is found in the instruction summary tables when allowed
registers for multiplications are specified (Table 6-23 on page 6-20). In these tables, the following entry is
found:

(+)Y0,X0,FDD

Thenotation (+) in thisentry indicates that an optional + or - sign can be specified before the input register
combination. If a- is specified, the multiplication result is negated. This allows each of the following
examples to be valid DSP56800 instructions:

MAC  XO0,Y0,A ; A+ XO*Y0 -> A
MAC  +X0,YO0,A ; A+ X0*Y0 -»> A
MAC -X0,Y0,A ; A - (X0*Y0) -> A

As an example, Table 6-36 on page 6-30 shows al registers and addressing modes that are allowed when
performing adual read instruction, one of the DSP56800' s parallel move instructions. The instructions
shown in Example 6-3 are allowed.

Example 6-3. Valid Instructions

MOVE X: (RO)+,Y0 X: (R3)+,X0
MACR XO0,Y1,A X:(R1)+N,Y1 X:(R3)-,X0
ADD Y0,B X:(R1)+N,Y0 X:(R3)+,X0

Theinstruction in Example 6-4 is not allowed:

Example 6-4. Invalid Instruction

ADD X0,Y1,A X:(R2)-,X0 X: (R3) +N, YO

Consulting the information in Table 6-36 on page 6-30 shows that this instruction is not valid for each of
the following reasons:

» Theonly operands accepted for ADD or SUB are XO,F, Y1,F, YO,F, A,B, or B,A, where Fis either
the A or B accumulator register. Thus, X0, Y1, A isaninvalid entry.

* Thepointer R2 isnot alowed for the first memory read.
»  The post-decrement addressing mode is not available for the first memory read.

» The X0 register may not be a destination for the first memory read because it is not listed in the
Destination 1 column.

* The post-update by N addressing mode is not allowed for the second memory read. The second
memory read is aways identified as the memory move that uses R3 in instructions with two
memory moves. For the second memory read, only the post-increment and post-decrement
addressing modes are allowed.

» The YO register may not be adestination for the second memory read becauseit is not listed in the
Destination 2 column.
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6.6.4 Instruction Summary Tables

A summary of the entire DSP56800 instruction set is presented in this section in tabular form. In these
tables, Table 6-18 on page 6-18 through Table 6-36 on page 6-30, the instructions are broken into several
different categories and then listed alphabetically.

The tables specify the operation, operands, and any relevant comments. There are separate fields for
sources and destinations of move instructions. There are also two additional fields:

« C — Timerequired to execute the instruction
* W — Number of program words occupied by the instruction

Instruction execution times are measured in oscillator clock cycles. This should not be confused with
instruction cycles, which comprise the timing granularity of the DSP56800 execution units. Each
instruction cycle is equivalent to two oscillator clock cycles. The numbers given for instruction times
assume that internal memory — or external memory that requires no wait states — is used.

All parallel move instructions are located in the last two tablesin this section:
» Table 6-35 on page 6-29
» Table 6-36 on page 6-30
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Table6-18. Move Word Instructions

Operation Source Destination cC|w Comments
MOVE DDDDD X:(Rn) 2 | 1 | Movesigned 16-hit integer word from
or X:(Rn)+ memory with optional post-update
MOVEC X:(Rn)-
DDDDD X:(Rn+N) 4 | 1 | Address=Rn+ N. Rndoes not change.
DDDDD X:(Rn)+N 2 | 1 | Post-update of Rn register
HHHH X:(R2+xx) 4 | 1 | xx: offset ranging from O to 63
DDDDD X:(RN+xxxX) 6 | 2 | Signed 16-hit offset
HHHH X:(SP-xx) 4 | 1 | Unsigned 6-bit offset
DDDDD XIXXXX 4 | 2 | Unsigned 16-hit address
X:(Rn) DDDDD 2 | 1 | Movesigned 16-bit integer word to memory
X:(Rn)+ with optional post-update
X:(Rn)-
X:(Rn+N) DDDDD 4 | 1 | Address=Rn+ N. Rndoesnot change.
X:(Rn)+N DDDDD 2 | 1 | Post-update of Rn register
X:(R2+xx) HHHH 4 | 1 | xx: offset ranging from 0 to 63
X:(Rn+xxxX) DDDDD 6 | 2 | Signed 16-bit offset
X:(SP-xx) HHHH 4 | 1 | Unsigned 6-hit offset
XEIXXXX DDDDD 4 | 2 | Unsigned 16-bit address
POP DDDDD 2 | 1 | ALIAS; refer to Section 6.5.5, “POP Alias.”
Implemented as:. MOVE X:(SP)-,<register>
(None specified) ALIAS, refer to Section 6.5.5, “POP Alias.”
Implemented as. LEA (SP)-
MOVE X:pp HHHH 2 | 1 | X:<<pp representsa6-bit absolute I/O address.
or or Refer to I/O Short Address (Direct Address-
MOVEP X:<<pp ing): <pp> on page 4-23
HHHH X:pp
or
X:<<pp
MOVE X:aa HHHH 2 | 1 | X:aarepresentsa6-hit absolute address. Refer
or or to Absolute Short Address (Direct Address-
MOVES X:<aa ing): <aa> on page 4-22
HHHH X:aa
or
X:<aa
MOVE (parallel) 2 | 1 | Referto Table 6-36 on page 6-30.
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Table 6-19. Immediate Move Instructions

Operation Source Destination C| W Comments
MOVE #<-64,63> HHHH 2 | 1 | Signed 7-hit integer data (datais put in the lowest 7 bits
or of the word portion of any accumulator, upper 8 bits and
MOVEI extension reg are sign extended, L SP portion is set to
" 0”)
HXXXX DDDDD 4 | 2 | Signed 16-bit immediate data. When LC isthe destina
tion, use 13-bit values only.
X:(R2+xx) 6 | 2 | Signed 16-bit immediate data move.
X:(SP-xx) 6 | 2
XIXXXX 6| 3
MOVE HXXXX X:pp 4 | 2 | Move 16-bit immediate datato the last 64 locations of X
or or data memory-peripheral registers.
MOVEP X:<<pp X:<<pp represents a 6-bit absolute I/O address.
MOVE H#XXXX X:aa 4 | 2 | Move 16-bitimmediate date to alocation within the first
or or 64 words of X data memory.
MOVES X:<aa X:aarepresents a 6-bit absolute address.

Table6-20. Register-to-Register Move I nstructions

Operation Source Destination C W Comments
MOVE DDDDD DDDDD 2 1 | Movesigned word to register
or
MOVEC

Table6-21. Move Word Instructions— Program Memory

Operation® Source Destination C | W Comments
MOVE P:(Rj)+ HHHH 8 | 1 | Read signed word from program memory
or P:(Rj)+N
MOVEM
HHHH P:(Rj)+ Write word to program memory
P:(Rj)+N

1. Theseinstructions are not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).
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Table6-22. Conditional Register Transfer Instructions

Data ALU Transfer AGU Transfer
Operation cC | W Comments
Source Destination Source Destination
Tcc DD F (No transfer) 2 1 | Conditionaly transfer one register
A B (No transfer)
B A (No transfer)
DD F RO R1 Conditionally transfer one data
ALU register and one AGU register
A B RO R1
B A RO R1
Note:  The Tccinstruction does not alow the following condition codes: HI, LS, NN, and NR.
Table 6-23. Data ALU Multiply Instructions
Operation Operands cC | W Comments
IMPY Y1,X0,FDD 2 1 | Integer 16x16 multiply with 16-bit result
or Y0,X0,FDD
IMPY 16 Y1,YO,FDD When the destination is an accumulator F, the FO
YO0,YO,FDD portion is unchanged by the instruction.
A1YO,FDD
B1Y1,FDD Note: Assembler also accepts first two operands
when they are specified in opposite order.
MAC ()Y1,X0,FDD 2 1 | Fractional multiply accumulate; multiplication
(x)YO0,X0,FDD result optionally negated before accumulation.
(#)Y1,YO,FDD
(¥)YO,YO,FDD
(¥)A1,YO,FDD Note: Assembler also acceptsfirst two operands
(x)BLY1FDD when they are specified in opposite order.
(paralel) Refer to Table 6-35 & Table 6-36.
MACR (¥)Y1,X0,FDD 2 1 Fractional MAC with round, multiplication result
()YO0,X0,FDD optionally negated before addition.
(#)Y1,YO,FDD
(#)YO0,YO,FDD
(x)A1,YO,FDD Note: Assembler also acceptsfirst two operands
(x)BLY1FDD when they are specified in opposite order.
(paralel) Refer to Table 6-35 & Table 6-36.
MPY (¥)Y1,X0,FDD 2 1 | Fractional multiply where one operand is optionally
(¥)YO,X0,FDD negated before multiplication.
(x)YL1YO,FDD
(x)YO,YO,FDD
(x)ALYO,FDD Note: Assembler also accepts first two operands
(x)BLY1FDD when they are specified in opposite order.
(paralel) Refer to Table 6-35 & Table 6-36.
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Table6-23. Data ALU Multiply Instructions (Continued)

Operation Operands cC | W Comments
MPYR (¥)Y1,X0,FDD 2 1 | Fractional multiply where one operand is optionally
(x)YO,X0,FDD negated before multiplication. Result is rounded.
(x)YLYO,FDD
(®)YO,YO,FDD Note: Assembler also accepts first two operands
(x)A1,YO,FDD when they are specified in opposite order.
(+)B1,Y1,FDD
(paralel) Refer to Table 6-35 & Table 6-36.
Table6-24. Data ALU Extended Precision Multiplication I nstructions
Operation Operands C W Comments
MACSU X0,Y1,FDD 2 1 |Signed or unsigned 16x16 fractional MAC with
X0,YO,FDD 32-bit result.
Y0,Y1,FDD
YO0,YO,FDD Thefirst operand is treated as signed and the second
YO0,A1,FDD as unsigned.
Y1,B1,FDD
MPY SU X0,Y1,FDD 2 1 | Signed or unsigned 16x16 fractional multiply with
X0,YO,FDD 32-hit result.
YO,Y1,FDD
YO0,YO,FDD Thefirst operand is treated as signed and the second
YO0,A1,FDD as unsigned.
Y1,B1,FDD
Table 6-25. Data ALU Arithmetic I nstructions
Operation Operands C W Comments
ABS F 2 1 |Absolutevaue.
(parallel) Refer to Table 6-35 on page 6-29.
ADC Y,F 1 | Addwith carry (sets C bit also).
ADD DD,FDD 36-hit addition of two registers.
F1,DD
~FF ~F,F refers to any of two valid combinations: A,B or B,A
Y,F
X:(SP-xx),FDD 6 1 | Add memory word to register.
X:aa,FDD 4 1 .
X:aarepresents a 6-bit absolute address. Refer to Absolute
Xoxooxx,FDD 6 2 | short Address (Direct Addressing): <aa> on page 4-22
FDD,X:(SP-xx) 8 2 | Add register to memory word, storing the result back to
FDD,X:XXXX g | 2 |memory.
FDD,X:aa 6 2
#<0-31>,FDD 4 1 | Addanimmediateinteger 0-31.
HXXXX 6 2 | Add asigned 16-bit immediate integer.
(parallel) 2 1 |Referto Table6-35 & Table 6-36.
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Table6-25. Data ALU Arithmetic Instructions (Continued)

Operation Operands C w Comments
CLR F 2 1 | Clear 36-bit accumulator and set condition codes.
F1DD ALIAS, refer to Section 6.5.4, “CLR Alias.”
Rj Implemented as. MOVE #0,<register>
N (does not set condition codes)
(parallel) Refer to Table 6-35 on page 6-29.
CMP DD,FDD 2 1 | 36-bit compare of two accumulators or dataregisters.
F1,DD
~FF ~F,F refers to any of two valid combinations: A,B or B,A
X:(SP-xx),FDD 6 Compare memory word with 36-bit accumulator.
X:aa,FDD 4 .
X:aarepresents a 6-bit absolute address. Refer to Absolute
Xxxxx,FDD 6 2 | short Address (Direct Addressing): <aa> on page 4-22
Note: Condition codes set based on 36-hit result
#<0-31>,FDD 4 1 | Compare accumulator with an immediate integer 0-31.
#xxxx,FDD 6 2 | Compare accumulator with signed 16-bit immediate integer.
(parallel) 2 1 | Refer to Table 6-35 on page 6-29,
DEC FDD 2 1 | Decrement word.
DEOCr:W X:(SP-xx) 8 | 1 |Decrementwordin memory using appropriate addressing
X-aa 6 1 mode.
XIXXXX 8 2
(parallel) 2 1 | Refer to Table 6-35 on page 6-29.
DIV DD,F 2 1 |Divideiteration.
INC FDD 2 1 |Increment word.
| Ncgw X:(SP-xx) 8 1 |Increment word in memory using appropriate addressing
X-aa 6 1 mode.
XIXXXX 8 2
(parallel) 2 1 | Refer to Table 6-35 on page 6-29.
NEG F 2 1 | Two's-complement negation.
(parallel) Refer to Table 6-35 on page 6-29.
RND F 2 1 |Round.
(parallel) Refer to Table 6-35 on page 6-29.
SBC Y,F Subtract with carry (set C bit also).
SUB DD,FDD 36-hit subtract of two registers. 16-bit source registers are
F1DD fi_rst sign extended_i nternally and concatenated with 16 zero
bits to form a 36-bit operand.
~F.F
Y,F ~F,F refersto any of two valid combinations: A,B or B,A
X:(SP-xx),FDD 6 1 | Subtract memory word from register.
X:aa,FDD 4 1 X:aarepresents a 6-bit absolute address. Refer to Absolute
Short Address (Direct Addressing): <aa> on page 4-22
X:xxxx,FDD 6 2
#<0-31>,FDD 4 1 | Subtract an immediate value 0-31.
#xxxx,FDD 6 2 | Subtract a signed 16-bit immediate integer.
(paralel) 2 1 |Referto Table6-35& Table 6-36.
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Table6-25. Data ALU Arithmetic Instructions (Continued)

Operation Operands C w Comments
TFR DD,F 2 1 | Transfer register to register.
~F,F Transfer one accumulator to another (36-bits).
~F,F refers to any of two valid combinations: A,B or B,A
(parallel) Refer to Table 6-35 on page 6-29.
TST F 2 1 | Test 36-bit accumulator.
(parallel) Refer to Table 6-35 on page 6-29.
TSTW DDDDD 2 1 | Test 16-bit word in register. All registers allowed except
(except HWS) HWS. Limiting can occur if an accumulator specified and
the extension register isin use.
X:(Rn) 2 1 | Test aword in memory using appropriate addressing mode.
X:(Rn)+ 2 1 .
X:aarepresents a 6-bit absolute address. Refer to Absolute
X:(Rn)- 2 1 | short Address (Direct Addressing): <aa> on page 4-22.
X:(Rn+N) 4 1
X:(Rn)+N 2 1
X:(Rn+xxxX) 6 2
X:(R2+xx) 4 1
X:(SP-xx) 4 1
X:aa 2 1
- Refer to Table 6-29 for another form of TSTW that tests and
X:<<pp 2 1
decrements an AGU register; (executed in the AGU unit).
XIXXXX 4 2
Table6-26. Data ALU Miscellaneous I nstructions
Operation Operands C w Comments
NORM RO,F 2 1 Normalization iteration instruction for normalizing the F
accumul ator
Table6-27. Data ALU Logical Instructions
Operation Operands C W Comments
AND DD,FDD 2 1 | 16-bitlogica AND
F1,DD
EOR DD,FDD 2 1 | 16-bit exclusive OR (XOR)
F1,DD
NOT FDD 2 1 | On€s-complement (bit-wise negation)
OR DD,FDD 2 1 | 16-bitlogical OR
F1,DD

ALIAS: the ANDC, EORC, ORC, and NOTC can also be used to perform logica operations on registers
and data memory locations. ANDC, EORC, and ORC allow logical operations with 16-bit immediate data.
See Section 6.5.1, “ANDC, EORC, ORC, and NOTC Aliases,” for additional information.
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Table6-28. Data AL U Shifting I nstructions

Operation Operands w Comments
ASL F 1 | Arithmetic shift |eft entire register by 1 bit
DD ALIAS, refer to Section 6.5.3, “ASL Alias.”
Implemented as: LSL DD
(paralel) Refer to Table 6-35.
ASLL Y1,X0,FDD 1 | Arithmetic shift left of the first operand by value
Y0,X0,FDD specified in four LSBs of the second operand;
Y1,YO,FDD placesresultin FDD
YO,YO,FDD
A1YO,FDD
B1,Y1,FDD
ASR FDD 1 | Arithmetic shift right entire register by 1 bit
(paralel) Refer to Table 6-35.
ASRR Y1,X0,FDD 1 | Arithmetic shift right of the first operand by value
Y0,X0,FDD specified in four LSBs of the second operand;
Y1YO,FDD placesresultin FDD
Y0,YO,FDD
A1YO,FDD
B1,Y1,FDD
ASRAC Y 1,X0,F 1 | Arithmetic word shifting with accumulation
YO,XO,F
YLYOF
YO,YO,F
ALYOF
BLY1F
LSL FDD 1-bit logical shift left of word
LSLL Y 1,X0,FDD 1 |ALIAS, refer to Section 6.5.2, “LSLL Alias.”
Y0,X0,FDD Implemented as: ASLL <operands>
Y1,YO,FDD
YO,YO,FDD
A1YO,FDD
B1,Y1,FDD
LSR FDD 1-bit logical shift right of word
LSRR Y1,X0,FDD 1 |Logical shift right of the first operand by value
Y0,X0,FDD specified in four LSBs of the second operand;
Y1,YO,FDD placesresult in FDD (when result isto an accumu-
YO0,YO,FDD lator F, zero extends into F2)
A1YO,FDD
B1,Y1,FDD
LSRAC Y 1,X0,F 1 |Logical word shifting with accumulation
YO,X0,F
YLYOF
YO,YO,F
ALYOF
BLY1F
ROL FDD 1 |Rotate 16-bit register left by 1 bit through the carry
bit
ROR FDD 1 | Rotate 16-hit register right by 1 bit through the
carry bit

6-24

DSP56800 Family Manual

Freescale Semiconductor



DSP56800 I nstruction Set Summary

Table6-29. AGU Arithmetic Instructions

Operation Operands C Comments
LEA (Rn)+ 2 Increment the Rn pointer register
(Rn)- 2 Decrement the Rn pointer register
(Rn)+N 2 Add N index register to the Rn register and store the result in
the Rn register
(R2+xx) 2 Add a 6-hit unsigned immediate value to R2 and store in the
R2 pointer
(SP-xx) 2 Subtract a 6-bit unsigned immediate value from SP and store
in the SP register
(Rn+xxxx) 4 Add a 16-bit signed immediate val ue to the specified source
register
TSTW (Rn)- 2 Test and decrement AGU register. Refer to Table 6-25 for
other forms of TSTW that are executed in the Data ALU.
Table 6-30. Bit-Manipulation Instructions
Operation Operands C w Comments
BFTSTH #<MASK16>,DDDDD 4 2 | BFTSTH testsal bits selected by the 16-bit
immediate mask. If all selected bits are set, then
#<MASK16>,X:(R2+xx) 6 2 | theCbitisset. Otherwiseit is cleared.
#<MASK16>,X:(SP-xx) 6 2 | All registersin DDDDD are permitted except
HWS.
#<MASK16>X:aa 4 2 | X:aarepresents a 6-bit absolute address. Refer to
] Absolute Short Address (Direct Addressing):
#<MASK16>,X:<<pp 4 2 | <aa>on page 4-22
H<MASK 16> X XXX 6 3 X:<<pp represents a 6-bit absolute 1/0 address.
BFTSTL #<MASK16>,DDDDD 4 2 BFTSTL testsall bits selected by the 16-bit imme-
diate mask. If all selected bits are clear, thenthe C
#<MASK 16>, X:(R2+xx) 6 2 | bitisset. Otherwiseit is cleared.
#<MASK16>,X:(SP-xx) 6 2 | All registersin DDDDD are permitted except
HWS.
#<MASK16>X:aa 4 2 | X:aarepresents a6-bit absolute address. Refer to
] Absolute Short Address (Direct Addressing):
#<MASK16>,X:<<pp 4 2 | <aa>on page 4-22
H<MASK 16> X XXX 6 3 X:<<pp represents a 6-bit absolute I/0 address.

Freescale Semiconductor

Instruction Set Introduction

6-25



nstruction Set I ntroduction

Table6-30. Bit-Manipulation Instructions (Continued)

Operation Operands C w Comments
BFCHG #<MASK16>,DDDDD 4 2 BFCHG tests al bits selected by the 16-bit imme-
diate mask. If al selected bits are set, thenthe C
#<MASK16>,X:(R2+xx) 6 2 | bitisset. Otherwiseitiscleared. Thenitinvertsall
selected hits.
#<MASK16>,X:(SP-xx) 6 2
All registersin DDDDD are permitted except
#<MASK16>,X:aa 4 2 HWS.
] X:aarepresents a 6-bit absolute address. Refer to
#<MASK16>X:<<pp 4 2 | Absolute Short Address (Direct Addressing):
] <aa> on page 4-22
AMASK16>,X:xx0X 6 3 X:<<pp represents a 6-bit absolute I/O address.
BFCLR #<MASK16>,DDDDD 4 2 BFCLR tests al bits selected by the 16-bit imme-
diate mask. If al selected bits are set, thenthe C
#<MASK16>,X:(R2+xx) 6 2 | bitisset. Otherwiseit iscleared. Thenit clearsall
selected hits.
#<MASK16>,X:(SP-xx) 6 2
All registersin DDDDD are permitted except
#<MASK16>,X:aa 4 2 HWS.
] X:aarepresents a 6-bit absolute address. Refer to
#<MASK16>X:<<pp 4 2 | Absolute Short Address (Direct Addressing):
] <aa> on page 4-22
AMASK16>, X300 6 s X:<<pp represents a 6-bit absolute 1/0 address.
BFSET #<MASK16>,DDDDD 4 2 BFSET tests all bits selected by the 16-bit imme-
diate mask. If al selected bits are clear, then the C
#<MASK 16> X:(R2+xx) 6 2 | bitisset. Otherwiseit iscleared. Then it sets all
selected hits.
#<MASK 16>,X:(SP-xx) 6 2
All registersin DDDDD are permitted except
#<MASK16>X:aa 4 2 HWS.
] X:aarepresents a 6-bit absolute address. Refer to
#<MASK16>X:<<pp 4 2 Absolute Short Address (Direct Addressing):
] <aa> on page 4-22
#MASK16>, X300 6 3 X:<<pp represents a 6-bit absolute 1/0 address.
Table 6-31. Branch on Bit-Manipulation Instructions
Operation Operands ct W Comments
BRCLR #<MASK8>,DDDDD,<OFFSET7> 10/8 2 |BRCLR testsall bits selected by the immediate mask.
#<MASK8> X:(R2+xx),<OFFSET7> | 12/10 | 2 If all Selegted bits are clear, then the.car_ry' bit isset and
aPC relative branch occurs. Otherwiseit is cleared and
#<MASK8> X:(SP-xx),<OFFSET7> | 12/10 | 2 | branch occurs.
#<MASK8>,X:aa,<OFFSET7> 108 | 2
H#<MASKB> X:<<pp,<OFFSET 7> 108 | 2 All registersin DDDDD are permitted except HWS.
H<MASK8> X :xxxX,<OFFSET 7> 12/10 | 3 | <MASKS8> specifies a 16-hit immediate value where
either the upper or lower 8 bits contains all zeros.
<OFFSET7> specifies a 7-bit PC relative offset.
X:aarepresents a 6-bit absolute address.
X:<<pp represents a 6-bit absolute 1/0 address.
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Table6-31. Branch on Bit-Manipulation Instructions (Continued)

Operation Operands cl W Comments
BRSET #<MASK8>DDDDD,<OFFSET7> 10/8 2 |BRSET testsal bits selected by the immediate mask.
H#<MASK8> X:(R2+xx) <OFFSET7> | 12/10 | 2 | T dll selectedbitsare set, then the cary bit isset and a
PC relative branch occurs. Otherwise it is cleared and
#<MASK8> X:(SP-xx),<OFFSET7> | 12/10 | 2 |0 branch occurs.
#<MASK8>,X:aa,<OFFSET7> 108 | 2
#<MASKB> X:<<pp,<OFFSET 7> 108 5 All registersin DDDDD are permitted except HWS.
H<MASK 8> X :xxxX,<OFFSET7> 12/10 | 3

<MASK8> specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

<OFFSET7> specifies a 7-bit PC relative offset.
X:aarepresents a 6-bit absolute address.
X:<<pp represents a 6-bit absolute 1/0 address.

1. First cycle count isif branch is taken (condition istrue); second isif branch is not taken.

Table6-32. Change of Flow Instructions

Operation Operands cl | w Comments

Bcc <OFFSET7> 6/4 1 | 7-bit signed PC relative offset
BRA <OFFSET7> 6 1 | 7-bit signed PC relative offset

Jec <ABS16> 6/4 | 2 | 16-bit absolute address

IMP <ABS16> 6 2 | 16-bit absolute address

JSR <ABS16> 8 2 | Push 16-hit return address and jump to 16-bit target address

RTI 10 1 | Returnfrom interrupt, restoring 16-bit PC and SR from the stack
RTS 10 1 | Returnfrom subroutine, restoring 16-bit PC from the stack

1. First cycle count isif branch is taken (condition istrue); second isif branch is not taken.

Table6-33. Looping Instructions

Operation

Operands C

w

Comments

DO

#<1-63>,<ABS16> 6

DDDDD,<ABS16>

Load L C register with unsigned value and start hardware DO loop
with 6-bit immediate loop count. The last address is 16-bit abso-
lute. Loop count = 0 not allowed by assembler.

Load LC register with unsigned value. If LC is not equal to zero,
start hardware DO loop with 16-bit loop count in register. Other-
wise, skip body of loop (adds three additional cycles). The last
address is 16-bit absolute.

Any register allowed except: SP, M01, SR, OMR, and HWS.

ENDDO

Remove one value from the hardware stack and update the NL
and LF bits appropriately.
Note: Does not branch to the end of the loop.
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Table6-33. Looping Instructions (Continued)

Operation Operands C w Comments
REP #<0-63> 6 1 | Hardwarerepesat of aone-word instruction with immediate loop
count.
DDDDD Hardware repeat of a one-word instruction with loop count speci-
fied in register.
Any register allowed except: SP, M01, SR, OMR, and HWS.
Table6-34. Controal Instructions
Operation Operands C W Comments
DEBUG 4 1 | Generate adebug event.
ILLEGAL 4 1 | Executetheillegal instruction exception. Thisinstruction is made avail-
able so that code may be written to test and verify interrupt
handlersfor illegal instructions.
NOP 2 1 | No operation.
STOP n/‘a 1 | Enter STOP low-power mode.
SWI 8 1 | Executethetrap exception at the highest interrupt priority level, level 1
(non-maskable).
WAIT n/a 1 | Enter WAIT low-power mode.
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Table6-35. Data ALU Instructions— Single Parallel Move

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination®
MAC Y1XOF X:(Rj)+ X0
MPY YO,XO,F X:(Rj)+N Y1
MACR Y1YO,F YO
MPYR YO,YO,F
A
ALYO,F B
B1,Y1F Al
Bl
X0 X:(Rj)+
ADD XO,F Y1 X:(Rj)}+N
suB Y1F Y0
CMP YO,F
A
TFR AB B
BA Al
Bl
ABS F
ASL
ASR
CLR
RND
TST
INC or INCW
DEC or DECW )
NEG (F=A or B) (Rj = RO-R3)

1. These instructions occupy only 1 program word and executes in 1 instruction cycle for every addressing
mode.

2. The destination of the data ALU operation is not allowed to be the same register as the destination of the
parallel read operation. Memory writes are allowed in this case.

Each instruction in Table 6-35 requires one program word and executes in one instruction cycle. The data
type accessed by the single memory move in all single paralel move instructionsis signed word.

The solid double line running down the center of the table indicates that the data ALU operationis
independent from the parallel memory move. As aresult, any valid operation can be combined with any
valid memory move. Example 6-5 lists examples of valid single parallel move instructions.

Example 6-5. Examplesof Single Parallel M oves

MAC  Y1,X0,A X: (RO) +, X0
MAC  Y1,X0,A X0,X: (RO) +
ASL B X: (RO) +,Y1
ASL, B Y1,X: (RO)+

It isnot permitted to performMaAC A,B X: (RO) +, X0 because the MAC instruction requires three
operands, as shown in Table 6-35. The operands are not independent of the operation performed. Thisis
why asingle lineis used to separate the operation from the operands instead of a double line.
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For the MAC, MPY, MACR, and MPY R ingtructions, the assembler accepts the two source operands in
any order.

Table6-36. Data ALU Instructions— Dual Parallel Read

DataALU opera1i0n1 First Memory Read Second Memory Read
Operation? Operands Source 1 Destination 1 Source 2 Destination 2
MAC Y1,X0,F X:(RO)+ YO X:(R3)+ X0
MPY YL1YO,F X:(RO)+N Y1 X:(R3)-
MACR YO0,X0,F
MPYR X:(RL)+
(F=A o B) X:(R1)+N
ADD XO0,F
SUB Y1,F
YO,F
(F=A o B)
MOVE

1. These parald instructions are not allowed when the XP bit in the OMR is set (that is, when the instructions are ex-
ecuting from data memory).

2. Theseinstructions occupy only 1 program word and executes in 1 instruction cycle for every addressing mode.

NOTE:

The datatypes accessed by the two memory movesin all dual parallel read
instructions are signed words.

6.7 Thelnstruction Pipeline

Instruction execution is pipelined to allow most instructions to execute at a rate of one instruction every
two clock cycles. However, certain instructions require additional time to execute, including instructions
with the following properties:

»  Exceed length of one word
* Usean addressing mode that requires more than one cycle
»  Access the program memory
e Causeacontrol flow change
In the case of a control flow change, acycleis needed to clear the pipeline.

6.7.1 Instruction Processing

Pipelining allows the fetch-decode-execute operations of an instruction to occur during the
fetch-decode-execute operations of other instructions. While an instruction is executed, the next instruction
to be executed is decoded, and the instruction to follow the instruction being decoded is fetched from
program memory. If an instruction is two words in length, the additional word will be fetched before the
next instruction is fetched.
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Figure 6-4 demonstrates pipelining; F1, D1, and E1 refer to the fetch, decode, and execute operations,
respectively, of the first instruction. Note that the third instruction contains an instruction extension word
and takes two cycles to execute.

Fetch F1 F2 F3 | F3e | F4 F5 F6
Decode D1 | D2 | D3 | D3e | D4 | D5
Execute El E2 E3 | ESe | E4
Instruction Cycle 1 2 3 4 5 6 7

Figure6-4. Pipelining

Each instruction requires a minimum of three instruction cycles (six machine cycles) to be fetched,
decoded, and executed. A new instruction may be started after two machine cycles, making the throughput
rate to be one instruction executed every instruction cycle for single-cycle instructions. Two-word
instructions require a minimum of eight machine cyclesto execute, and a new instruction may start after
four machine cycles.

6.7.2 Memory Access Processing

One or more of the DSC memory sources (X data memory and program memory) may be accessed during
the execution of an instruction. Three address buses (XAB1, XAB2, and PAB) and three data buses
(CGDB, XDB2, and PDB) are available for internal memory accesses during one instruction cycle, but
only one address bus and one data bus are avail able for external memory accesses (when the external busis
available). If all memory sources are internal to the DSC, one or more of the two memory sources may be
accessed in one instruction cycle (that is, program memory access, or program memory access plus an X
memory reference, or program memory access with two X memory references).

NOTE:

For instructionsthat contain two X memory references, the second transfer
using XAB2 and XDB2 may not access external memory. All accesses
across these buses must access internal memory only.

See Section 7.2.2, “Instruction Pipeline with Off-Chip Memory Accesses,” on page 7-3 for a discussion of
off-chip memory accesses.
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Chapter 7
Interrupts and the Processing States

The DSP56800 Family processors have six processing states and are always in one of these states (see
Table 7-1). Each processing state is described in detail in the following sections except the debug
processing state, which is discussed in Section 9.3, “OnCE Port,” on page 9-4. In addition, special cases of
interrupt pipelines are discussed at the end of the section. Section 8.10, “Interrupts,” on page 8-30
discusses software techniques for interrupt processing.

Table7-1. Processing States

State Description

Reset The state where the DSC coreis forced into a known reset state. Typically, the first
program instruction is fetched upon exiting this state.

Normal The state of the DSC core where instructions are normally executed.

Exception The state of interrupt processing, where the DSC core transfers program control from its current
location to an interrupt service routine using the interrupt vector table.

Wait A low-power state where the DSC core is shut down but the peripherals and interrupt machine
remain active.
Stop A low-power state where the DSC core, the interrupt machine, and most (if not all) of the periph-

erals are shut down.

Debug The state where the DSC core is halted and all registers in the On-Chip Emulation (OnCE) port
of the processor are accessible for program debug.

7.1 Reset Processing State

The processor enters the reset processing state when the external RESET pin is asserted and a hardware
reset occurs. On devices with a computer operating properly (COP) timer, it is also possible to enter the
reset processing state when this timer reaches zero. The DSC istypically held in reset during the power-up
process through assertion of the RESET pin, making this the first processing state entered by the DSC. The
reset state performs the following:

Resets internal peripheral devices
Sets the M01 modifier register to $FFFF
Clearsthe interrupt priority register (IPR)

Setsthe wait state fields in the bus control register (BCR) to their maximum value, thereby
inserting the maximum number of wait states for all external memory accesses

> w NP
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5. Clearsthe status register’s (SR) loop flag and condition code bits and sets the interrupt
mask bits

6. Clearsthe following bitsin the operating mode register: nested looping, condition codes,
stop delay, rounding, and external X memory

The DSC remainsin the reset state until the RESET pin is deasserted. When hardware deasserts the
RESET pin, the following occur:

1. Thechip operating mode bitsin the OMR areloaded from an external source, typically mode
select pins; see the appropriate device manual for details.

2. A delay of 16 instruction cycles (NOPs) occursto sync the local clock generator and state
machine.

3. Thechip begins program execution at the program memory address defined by the state of
the MA and MB bitsin the OMR and the type of reset (hardware or COP time-out). The
first instruction must be fetched and then decoded before execution. Therefore, the first
instruction execution is two instruction cycles after the first instruction fetch.

After thislast step, the DSC enters the normal processing state upon exiting reset. It isaso possible for the
DSC to enter the debug processing state upon exiting reset when system debug is underway.

7.2 Normal Processing State

The normal processing state is the typical state of the processor where it executes instructionsin a
three-stage pipeline. Thisincludes the execution of simple instructions such as moves or ALU operations
aswell as jumps, hardware looping, bit-field instructions, instructions with parallel moves, and so on.
Details about the execution of theindividual instructions can be found in Appendix A, “Instruction Set
Details.” The chip must be reset before it can enter the normal processing state.

7.2.1 Instruction Pipeline Description

The instruction-execution pipeline is a three-stage pipeline, which allows most instructions to execute at a
rate of one instruction per instruction cycle. For the case where there are no off-chip memory accesses, or
for the case of asingle off-chip access with no wait states, one instruction cycle is equivaent to two
machine cycles. A machine cycleis defined as one cycle of the clock provided to the DSC core. Certain
instructions, however, require more than one instruction cycle to execute. These instructions include the
following:

* Instructions longer than one word
» Instructions using an addressing mode that requires more than one cycle
* Instructions that cause a control-flow change

Pipelining alows instruction executions to overlap so that the fetch-decode-execute operations of agiven
instruction occur concurrently with the fetch-decode-execute operations of other instructions. Specifically,
while the processor is executing oneinstruction, it is decoding the next instruction and fetching a third
instruction from program memory. The processor fetches only one instruction word per instruction cycle;
if an instruction is two wordsin length, it fetches the additional word with an additional cycle before it
fetches the next instruction.
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Table 7-2. Instruction Pipelining

Instruction Cycle
Operation
1 2 3 4 5 6 7 . . .
Fetch F1 F2 F3 F3e F4 F5 F6 . . .
Decode D1 D2 D3 D3e D4 D5 . . .
Execute El E2 E3 E3e E4 . . .

Table 7-2 demonstrates pipelining. “F1,” “D1,” and “E1” refer to the fetch, decode, and execute operations
of thefirst instruction, respectively. The third instruction, which contains an instruction extension word,
takes two instruction cyclesto execute. Although it takes three instruction cycles (six machine cycles) for
the pipeline to fill and the first instruction to execute, an instruction usually executes on each instruction
cycle thereafter (two machine cycles).

7.2.2 Instruction Pipeline with Off-Chip Memory Accesses

The three sets of internal on-chip address and data buses (XAB1/CGDB, XAB2/XDB2, PAB/PDB) allow
for fast memory access when memories are being accessed on-chip. The DSC can perform memory
accesses on al three bus pairsin asingle instruction cycle, permitting the fetch of an instruction
concurrently with up to two accesses to the X data memory. Thus, for applications where all program and
dataislocated in on-chip memory, thereis no speed penalty when performing up to three memory accesses
in asingleinstruction.

Similarly, the external address and data bus also alows for fast program execution. For the case where
only program memory is externa to the chip or only X data memory is external (XABL/CDGB bus pair),
the DSC chip will still execute programs at full speed if there are no wait states programmed on the
external bus by the user. For the case where an instruction requires an external program fetch and an
external X data memory access simultaneously, the instruction will still operate correctly. The instruction
isautomatically stretched an additional instruction cycle so that the two external accesses may be
performed correctly, and wait states are inserted accordingly. All this occurs transparently to the user to
allow for easier program devel opment.

Thisinformation is summarized in Table 7-3, which shows how the chip automatically inserts instruction
cycles and wait states for an instruction that is simultaneously accessing program and data memory. For
dual parallel read instructions, the second X memory access that uses XAB2/XDB2 must always be done
to on-chip memory. This second access may never access external off-chip memory.
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Table7-3. Additional Cyclesfor Off-Chip Memory Accesses

Memory Space
Number of
o Comments
Program X Memory X Memory Additional Cycles
Fetch First Access Second Access

On-chip On-chip On-chip 0 All accessesinternal

External On-chip On-chip 0+ mvm One external access

On-chip External On-chip 0+ mv One external access

External External On-chip 1+ mv+mvm Two external accesses
Note:  The‘mv’ and ‘mvm’ cycle time values reflect the additional time required for all MOV E instructions and for
MOVEM instructions, respectively.

7.2.3 Instruction Pipeline Dependencies and Interlocks

The pipeline is normally transparent to the user. However, there are certain instruction-sequence
combinations where the pipeline will affect the program execution. Such situations are best described by
case studies. Most of these restricted sequences occur because either all addresses are formed during
instruction decode or they are the result of contention for an internal resource such as the SR.

If the execution of an instruction depends on the relative location of the instruction in a sequence of
instructions, there is a pipeline effect.

Itis possibleto seeif there is a pipeline dependency. To test for a suspected pipeline effect, compare the
execution of the suspect instruction when it directly follows the previous instruction and when four NOPs
areinserted between the two. If thereis a difference, it is caused by a pipeline effect. The assembler flags
instruction sequences with potential pipeline effects so that the user can determine if the operation will
execute as expected.

Example 7-1. Pipeline Dependenciesin Similar Code Sequences

No Pipeline Effect

ORC #$0001, SR ; Changes carry bit at the end of execution time slot
JCS LABEL ; Reads condition codes in SR in its
; execution time slot

The JCS instruction will test the carry bit modified by the ORC without any pipeline effect in this code segment.

Pipeline Effect
ORC #3$0008,0MR ; Sets EX bit at execution time slot
MOVE X:$17,A ; Reads internal memory instead of external

; memory
A pipeline effect occurs because the address of the MOVE isformed at its decode time before the ORC changes the EX bit
(which changes the memory map) in the ORC’ s execution time slot. The following code produces the expected results of reading
the external FLASH:

ORC #50008,0MR ; Sets EX bit at execution time slot
NOP ; Delays the MOVE so it will read the updated memory map
MOVE X:$17,A ; Reads external memory
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Example 7-2. Common Pipeline Dependency Code Sequence

MOVE XO0,R2 ; Move a value into register R2

MOVE X: (R2),A ; Uses the OLD contents of R2 to address memory.
In this case, before the first MOVE instruction has written R2 during its execution cycle, the second MOV E has accessed the old
R2, using the old contents of R2. Thisis because the address for indirect moves is formed during the decode cycle. This overlap-
ping instruction execution in the pipeline causes the pipeline effect.
After an address register has been written by a MOVE instruction, one instruction cycle should be allowed before the new con-
tents are available for use as an address register by another MOV E instruction. The proper instruction sequence follows:

MOVE XO0,R2
NOP

; Moves a number into register R2

; Executes any instruction or instruction sequence not
; using the R2 register written in the previous

; instruction

’

MOVE X: (R2) ,A Uses the new contents of R2

Section 4.4, “ Pipeline Dependencies,” on page 4-33 contains more details on interlocks caused during
address generation.

7.3 EXxception Processing State

The exception processing state is the state where the DSC core recognizes and processes interrupts that can
be generated by conditions inside the DSC or from external sources. Upon the occurrence of an event,
interrupt processing transfers control from the currently executing program to an interrupt service routine,
with the ability to later return to the current program upon completion of the interrupt service routine. In
digital signal processing, some of the main uses of interrupts are to transfer data between DSC memory
and a peripheral device or to begin execution of a DSC algorithm upon reception of a new sample. An
interrupt can also be used to exit the DSC’ s low-power wait processing state.

Aninterrupt will cause the processor to enter the exception processing state. Upon entering this state, the
current instruction in decode executes normally. The next fetch address is supplied by the interrupt
controller and pointsinto the interrupt vector table (Table 7-4 on page 7-7). During this fetch the PC is not
updated. The instruction located at these two addresses in the interrupt vector table must always be a
two-word, unconditional jump-to-subroutine instruction (JSR). Note that the interrupt controller only
fetches the second word of the JSR instruction. This results in the program changing flow to an interrupt
routine, and a context switch is performed.

There are many sources for interrupts on the DSP56800 Family of chips, and some of these sources can
generate more than one interrupt. Interrupt requests can be generated from conditions within the DSC core,
from the DSC peripherals, or from external pins. The DSC core features a prioritized interrupt vector
scheme with up to 64 vectors to provide faster interrupt servicing. The interrupt priority structureis
discussed in Section 7.3.3, “Interrupt Priority Structure.”

7.3.1 Sequence of Eventsin the Exception Processing State

The following steps occur in exception processing:

1. A request for aninterrupt is generated either on a pin, from the DSC core, from a peripheral
on the DSC chip, or from an instruction executed by the DSC core. Any hardware interrupt
reguest from a pin isfirst synchronized with the DSC clock.
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The exception processing state is completed when the processor executes the JSR instruction located in the
interrupt vector table and the chip enters the normal processing state. Asit enters the normal processing
state, it begins executing the first instruction in the interrupt service routine. Each interrupt service routine

2.

Therequest for an interrupt by aparticular sourceislatched in an interrupt-pending flag if
it isan edge or non-maskableinterrupt (all other interrupts are not latched and must remain
asserted in order to be serviced). For peripherals that can generate more than one interrupt
request and have more than oneinterrupt vector, the interrupt arbiter only sees one request
from the peripheral active at atime.

All pending interrupt requests are arbitrated to select which interrupt will be processed. The
arbiter automatically ignores any interruptswith aninterrupt priority level (1PL) lower than
the interrupt mask level specified in the SR. If there are any remaining requests, the arbiter
selects the remaining interrupt with the highest I1PL, and the chip enters the exception
processing state (see Figure 7-1).

The interrupt controller then freezes the program counter (PC) and fetches the JSR
instruction located at the two interrupt vector addresses associated with the selected
interrupt. It isrequired that the instruction located at the interrupt vector address must be a
two-word JSR instruction. Note that only the second word of the JSR instruction isfetched;
the first word of the JSR is provided by the interrupt controller.

The interrupt controller places this JSR instruction into the instruction stream and then
releases the PC, which is used for the next instruction fetch. Arbitration among the
remaining interrupt requests is allowed to resume. The next interrupt arbitration then
begins.

The execution of the JSR instruction stacks the PC and the SR asit transfers control to the
first instruction in the interrupt service routine. These two stacked registers contain the
16-bit return address that will later be used to return to the interrupted code, as well asthe
condition code state. In addition, the IPL israised to level 1 to disallow any level O
interrupts. Note that the OnCE trap, stack error, illegal instruction, and SWI can still
generate interrupts because these are level 1 interrupts and are non-maskable.

should return to the main program by executing an RTI instruction.

Interrupt routines for level O interrupts are interruptible by higher priority interrupts. Figure 7-1 shows an

example of processing an interrupt.

Interrupt Service Routine

7-6

Main
Program SSI Receive Data
with Exception Status
$0100 — Interrupt
Recognized ¢
$0101 MACR JSR Instruction
$0102 | MOVE | $001E JSR ilntVectc;r;erabl_eto
$0103 | MAC SOOLF | $0300 | poogin S1ee
$0104 | REP Y
$0105 MAC $0300 ADD
$0106 — $0301 ASL
Explicit Return
from Interrupt $0302 MOVE
Recognized $0303 | RTI

AA0056

Figure 7-1. Interrupt Processing
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Steps 1 through 3 listed on page page 7-5 require two additional instruction cycles, effectively making the
interrupt pipeline five levels deep.

7.3.2 Reset and Interrupt Vector Table

The interrupt vector table specifies the addresses that the processor accesses once it recognizes an interrupt
and begins exception processing. Since peripherals can also generate interrupts, the interrupt vector map
for agiven chip is specified by all sources on the DSC core as well as all peripheralsthat can generate an
interrupt. Table 7-4 lists the reset and interrupt vectors available on DSP56800-based DSC chips. The
interrupt vectors used by on-chip peripherals, or by additional device-specific interrupts will be listed in
the user’s manual for that chip.

Table 7-4. DSP56800 Core Reset and Interrupt Vector Table

Inter r_upt Interrupt

Starting Priority Level Interrupt Source

Address
$0000 - Hardware Reset
$0002 - COP Watchdog Reset
$0004 - (Reserved)
$0006 1 Illegal Instruction Trap
$0008 1 SWiI
$000A 1 Hardware Stack Overflow
$000C 1 OnCE Trap
$000E 1 (Reserved)
$0010 0 TROA
$0012 0 TROB
$0014 0 (Vector Available for On-Chip Peripherals)
$0016 0 (Vector Available for On-Chip Peripherals)
$0018 0 (Vector Available for On-Chip Peripherals)
$001A 0 (Vector Available for On-Chip Peripherals)
$001C 0 (Vector Available for On-Chip Peripherals)
$001E 0 (Vector Available for On-Chip Peripherals)
$0020 0 (Vector Available for On-Chip Peripherals)
$007C 0 (Vector Available for On-Chip Peripherals)
$007E 0 (Vector Available for On-Chip Peripherals)
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Itisrequired that atwo-word JSR instruction is present in any interrupt vector location that may be fetched
during exception processing. If an interrupt vector location is unused, then the JSR instruction is not
required.

The hardware reset and COP reset are special cases because they are reset vectors, not interrupt vectors.
Thereisno IPL specified for these two because these conditions reset the chip and reset takes precedence
over any interrupt. Typicaly atwo-word IMP instruction is used in the reset vectors. The hardware reset
vector will either be at address $0000 or $E000 and the COP reset vector will either be at $0002 or $E002
depending on the operating mode of the chip. The different operating modes are discussed in

Section 5.1.9.1, “Operating Mode Bits (MB and MA) — Bits 1-0,” on page 5-10.

7.3.3 Interrupt Priority Structure

Interrupts are organized in asimple priority structure. Each interrupt source has an associated IPL: Level O
or Level 1. Level O, the lowest level, is maskable, and Level 1 is non-maskable. Table 7-5 summarizes the
priority levels and their associated interrupt sources.

Table7-5. Interrupt Priority Level Summary

IPL Description Interrupt Sources
0 Maskable On-chip peripheras,
IRQA and IRQB
1 Non-maskable Illegal instruction, OnCE trap,
HWS overflow, SWI

Theinterrupt mask bits (11, 10) in the SR reflect the current priority level and indicate the |PL needed for
an interrupt source to interrupt the processor (see Table 7-6). Interrupts are inhibited for al priority levels
below the current processor priority level. Level 1 interrupts, however, are not maskable and, therefore,
can always interrupt the processor.

Table 7-6. Interrupt Mask Bit Definition in the Status Register

11 10 Exceptions Permitted Exceptions Masked
0 0 (Reserved) (Reserved)

0 1 IPLO, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL1 IPLO

7.3.4 Configuring Interrupt Sources

The interrupt unit in the DSP56800 core supports seven interrupt channels for use by on-chip peripherals,
in addition to the IRQ interrupts and interrupts generated by the DSC core. Each maskableinterrupt source
can individually be enabled or disabled as required by the application. The exact method for doing sois
dependent on the particular DSP56800-based device, as some of the interrupt handling logicis
implemented as an on-chip peripheral.

One example of how interrupts can be enabled and disabled, and their priority level established, iswith an
interrupt priority register (IPR).
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cho |chi |ch2 |cns [cha fcns |che |+ |+ |+ |'BE] R « ”}L ALY &

TRQA Mode
TRQB Mode
(Reserved)
Channel 6 IPL
Channel 5 1PL
Channel 4 1PL
Channel 3 IPL
Channel 2 1PL
Channel 1 1PL
Channel 0 I1PL

* | ndicates reserved hits, read as zero and should be written with zero for future compatibility
AA0057

Figure7-2. ExamplelInterrupt Priority Register

In the example interrupt priority register (IPR), shown in Figure 7-2, the interrupt for each on-chip
peripheral device (channels 0—6) and for each external interrupt source (IRQA, IRQB), can be enabled or
disabled under software control. The IPR also specifies the trigger mode of the external interrupt sources.
Figure 7-3 shows how it might be programmed for different interrupts.

Chx Enabled? IPL
0 No —
1 Yes 0
IBL1 .
:E\tg Enabled? IPL AL Trigger Mode
0 Level sensitive
0 No o 1 Edge sensitive
1 Yes 0
AA0058

Figure7-3. Example On-Chip Peripheral and IRQ Interrupt Programming

7.3.5 Interrupt Sources

Aninterrupt request is arequest to break out of currently executing code to enter an interrupt service
routine. Interrupt requests in the DSC are generated from one of three sources: externa hardware, internal
hardware, and internal software. The internal hardware interrupt sources include all of the on-chip
peripheral devices.

Each interrupt source has at |east one associated interrupt vector, and some sources may have several
interrupt vectors. The interrupt vector addresses for each interrupt source are listed in the interrupt vector
table (Table 7-4). These addresses are usually located in either the first 64 or 128 locations of program
memory. For further information on a device' s on-chip peripheral interrupt sources, see the device's
individual user’s manual.
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When an interrupt request is recognized and accepted by the DSC core, atwo-word JSR instruction is
fetched from the interrupt vector table. Because the program flow is directed to a different starting address
within the table for each different interrupt, the interrupt structure can be described as “ vectored.” A
vectored interrupt structure has low execution overhead. If it is known beforehand that certain interrupts
will not be used or enabled, those locations within the table can instead be used for program or data
storage.

7.3.5.1 External Hardware Interrupt Sources

The external hardware interrupt sources are listed below:

« RESET pin

« IRQA pin— priority level 0

« IRQB pin — priority level 0
An assertion of the RESET is not truly an interrupt, but rather it forces the chip into the reset processing
state. Likewise, for any DSC chip that contains a COP timer, atime-out on this timer can also place the

chip into the reset processing state. The reset processing state is at the highest priority and takes
precedence over any interrupt, including an interrupt in progress.

Assertions on the IRQA and IRQB pins generate IRQA and IRQB interrupts, which are priority level 0
interrupts and are individually maskable. The IRQA and IRQB interrupt pins are internally synchronized
with the processor’ sinternal clock and can be programmed as level-sensitive or edge-sensitive.

Edge-sensitive interrupts are latched as pending when afalling edge is detected on an IRQ pin. The IRQ
pin’sinterrupt-pending bit remains set until its associated interrupt is recognized and serviced by the DSC
core. Edge-sensitive interrupts are automatically cleared when the interrupt is recognized and serviced by
the DSC core. In an edge-sensitive interrupt the interrupt-pending bit is automatically cleared when the
second vector location is fetched.

Level-sensitive interrupts, on the other hand, are never latched but go directly into the interrupt controller.
A level-sensitive interrupt is examined and processed when the IRQ pin is low and the interrupt arbiter
allows this interrupt to be recognized. Since there is no interrupt-pending bit associated with
level-sensitive interrupts, the interrupt cannot not be cleared automatically when serviced; instead, it must
be explicitly cleared by other means to prevent multiple interrupts.

NOTE:

On dl level-sensitive interrupts, the interrupt must be externally released
before interrupts are internally re-enabled. Otherwise, the processor will
be interrupted repeatedly until the release of the level-sensitive interrupt.

When either the IRQA or IRQB pinisdisabled in the IPR, any interrupt request on its associated pinis
ignored, regardless of whether the input was defined as |evel-sensitive or edge-sensitive. If the interrupt
input is defined as edge-sensitive, its interrupt-pending bit will remain in the reset state for as long as the
interrupt pinisdisabled. If theinterrupt is defined aslevel-sensitive, its edge-detection latch will stay inthe
reset state. If the level-sensitive interrupt is disabled whileit is pending, it will be cancelled. However, if
the interrupt has been fetched, it normally will not be cancelled.

The level-sensitive interrupt capability is useful for the case where there is more than one external interrupt
source, yet only one IRQ pin isavailable. In this case the interrupts are wire ORed onto asingle IRQ pin
with aresistor pull-up, and any one of these can assert an interrupt. It isimportant that the interrupt service
routine poll each device, and, after finding the source of the interrupt, it must clear the conditions causing
the interrupt request.
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7.3.5.2 DSC CoreHardware Interrupt Sources

Other interrupt sources include the following:
e Stack error interrupt — priority level 1
*  OnCE trap — priority level 1
» All on-chip peripherals (such astimers and serial ports) — priority level O

An overflow of the hardware stack (HWS) causes a stack overflow interrupt that is vectored to P:$3000A
(see Section 5.1.7, “Hardware Stack,” on page 5-6). Encountering the stack overflow condition means that
too many DO loop addresses have been stacked and that the oldest top-of-loop address has been lost. The
stack error is non-recoverable. The stack error condition refers to hardware stack overflow and does not
affect the software stack pointed to by the stack pointer (SP) register in any manner.

The OnCE trap interrupt is an interrupt that can be set up in the OnCE debug port accessible through the
JTAG pins. This gives the debug port the capability to generate an interrupt on atrigger condition such as
the matching of an addressin the OnCE port (see Section 9.3, “OnCE Port,” on page 9-4 for more
information).

In addition to these sources there are seven general -purpose interrupt channels, Ch0 through Ch6, available
for use by on-chip peripherals such astimers and serial ports. Each channel can independently generate an
interrupt request, each can be individually masked, and each channel can have one or more dedicated
locationsin theinterrupt vector table. Typically, one channel is assigned to each on-chip peripheral, but, in
cases where there are more than seven peripherals that can generate interrupts, it is possible to put more
than one peripheral on asingleinterrupt channel.

7.3.5.3 DSC Core Software I nterrupt Sources

The two software interrupt sources are listed below:
» Software interrupt (SWI) — priority level 1
* lllega instruction interrupt (I1I) — priority level 1

An SWI isanon-maskable interrupt that is serviced immediately following the SWI instruction execution
(that is, no other instructions are executed between the SWI instruction and the JSR instruction found in
the interrupt vector table). The difference between an SWI and a JSR instruction is that the SWI setsthe
interrupt mask to prevent level O—maskabl e interrupts from being serviced. The SWI’s ability to mask out
lower-level interrupts makes it very useful for setting breakpoints in monitor programs or for making a
system call in asimple operating system. The JSR instruction does not affect the interrupt mask.

Theillegal instruction interrupt is also a non-maskable interrupt (priority level 1). It is serviced
immediately following the execution or attempted execution of an illegal instruction (an undefined
operation code). Illegal exceptions are fatal errors. The JSR located in the illegal instruction interrupt
vector will stack the address of the instruction immediately after theillegal instruction.
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Main Interrupt
Program Service Routine
Fetches Fetches
Il (NOP) l

n6
No Fetch il
No Fetch ii2
i3
ii4
ii5
o~

(a) Instruction Fetches from Memory

lllegal Instruction Interrupt
Recognized as Pending

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch nl n2 n3 n4 Il né — — il ii2 ii3 ii4 ii5
Decode nl n2 n3 n4 Il — — — i1 ii2 i3 ii4
Execute nl n2 n3 n4d |NOP| — — — i1 i2 i3
Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i = Interrupt

ii = Interrupt Instruction Word
Il = lllegal Instruction
n = Normal Instruction Word

(b) Program Controller Pipeline AAQ059
Figure 7-4. lllegal Instruction Interrupt Servicing

Thisinterrupt can be used as a diagnostic tool to allow the programmer to examine the stack and locate the
illegal instruction, or the application program can be restarted with the hope that the failure was a soft
error. The ILLEGAL instruction, found in Appendix A, “Instruction Set Details,” is useful for testing the
illegal interrupt service routine to verify that it can recover correctly from an illegal instruction. Note that
theillegal instruction trap does not fire for all invalid opcodes.

7.3.6 Interrupt Arbitration

Interrupt arbitration and control, which occurs concurrently with the fetch-decode-execute cycle, takestwo
instruction cycles. External interrupts are internally synchronized with the processor clock before their

interrupt-pending flags are set. Each external and internal interrupt has its own flag. After each instruction
is executed, the DSC arbitrates all interrupts. During arbitration, each pending interrupt’s IPL is compared
with the interrupt mask in the SR, and the interrupt is either allowed or disallowed. The remaining pending
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interrupts are prioritized according to the IPLs shown in Table 7-7, and the interrupt source with the
highest priority is selected. The interrupt vector corresponding to that sourceisthen placed on the program
address bus so that the program controller can fetch the interrupt instruction.

Table7-7. Fixed Priority Structure Within an IPL

Priority Exception Enabled By

Level 1 (Non-maskable)

Highest Hardware RESET —

Watchdog timer reset —

Illegal instruction —

HWS overflow —

OnCE trap —

Lower S —

Level 0 (Maskable)

Higher IRQA (external interrupt) IPR bit 1
TRQB (external interrupt) IPR bit 4
Channel 6 peripheral interrupt IPR bit 9
Channel 5 peripheral interrupt IPR bit 10
Channel 4 peripheral interrupt IPR bit 11
Channel 3 peripheral interrupt IPR bit 12
Channel 2 peripheral interrupt IPR bit 13
Channdl 1 peripheral interrupt IPR bit 14
Lowest Channel 0 peripheral interrupt IPR bit 15

Interrupts from a given source are not buffered. The processor will not arbitrate a new interrupt from the
same source until after it fetches the second word of the interrupt vector of the current interrupt.

Aninternal interrupt-acknowledge signal clears the appropriate interrupt-pending flag for DSC core
interrupts. Some peripheral interrupts may also be cleared by the internal interrupt-acknowledge signal, as
defined in their specifications. Peripheral interrupt requests that need a read/write action to some register
do not receive the internal interrupt-acknowledge signal, and their interrupt requests will remain pending
until their registers are read/written. Further, if the interrupt comes from an IRQ pin and is programmed as
level triggered, theinterrupt request will not be cleared. The acknowledge signal will be generated after the
interrupt vectors have been generated, not before.

If more than one interrupt is pending when an instruction is executed, the processor will first service the
interrupt with the highest priority level. When multiple interrupt requests with the same IPL are pending, a
second fixed-priority structure within that IPL determines which interrupt the processor will service. For
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two interrupts programmed at the same priority level (non-maskable or level 0), Table 7-7 shows the
exception priorities within the same priority level. The information in this table only applies when two
interrupts arrive simultaneously or where two interrupts are simultaneously pending.

Whenever alevel 0 interrupt has been recognized and exception processing begins, the DSP56800
interrupt controller changes the interrupt mask bits in the program controller’s SR to alow only level 1
interrupts to be recognized. This prevents another level O interrupt from interrupting the interrupt service
routine in progress. If an application requires that alevel 0 interrupt can interrupt the current interrupt
servicerouting, it is necessary to use one of the techniques discussed in Section 8.10.1, “ Setting Interrupt
Prioritiesin Software,” on page 8-30.

7.3.7 Thelnterrupt Pipeline

Theinterrupt controller generates an interrupt instruction fetch address, which points to the second
instruction word of atwo-word JSR instruction located in the interrupt vector table. This addressis used
instead of the PC for the next instruction fetch. While the interrupt instructions are being fetched, the PCis
loaded with the address of the interrupt service routine contained within the JSR instruction. After the
interrupt vector has been fetched, the PC is used for any subsequent instruction fetches and the interrupt is
guaranteed to be executed.

Upon executing the JSR instruction fetched from the interrupt vector table, the processor enters the
appropriate interrupt service routine and exits the exception processing state. The instructions of the
interrupt service routine are executed in the normal processing state and the routine is terminated with an
RTI instruction. The RTI instruction restores the PC to the program originally interrupted and the SR to its
contents before the interrupt occurred. Then program execution resumes. Figure 7-5 shows the interrupt
service routine. The interrupt service routine must be told to return to the main program by executing an
RTI instruction.

The execution of an interrupt service routine always conforms to the following rules:

1. A JSRto the starting address of the interrupt service routine is located at the first of two
interrupt vector addresses.

The interrupt mask bits of the SR are updated to mask level O interrupts.

Thefirst instruction word of the next interrupt service (of higher 1PL) will reach the decoder
only after the decoding of at least four instructions following the decoding of the first
instruction of the previous interrupt.

4. Theinterrupt service routine can be interrupted (that is, nested interrupts are supported).

5. Theinterrupt routine, which can be any length, should be terminated by an RTI, which
restores the PC and SR from the stack.
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Interrupt Interrupt
) Vector Table Subroutine
Main
Program
Interrupt — PC Resumes
Synchronized JSR ii2 Operation
and o Jump Address i3 Interrupt
. > = nterrupts
Recognized nl ii4
as Pending n2 Re-enabled
Interrupt
Routine
Explicit in
Return From RTI
Interrupt
(Should Be RTI)
(a) Instruction Fetches from Memory
Interrupt Synchronized and
Recognized as Pending
— Interrupts Re-enabled
\
Interrupt Control Cycle 1 | i
Interrupt Control Cycle 2 i
Fetch nl|{n2| — |Adr| — | ii2 i3 | ii4 |5 |in|RTI| — | — | — | —|N2|— | —
Decode nl |JSR|JSR|JSR|JSR| ii2 |ii3 | ii4 | ii5 | iin |RTI|RTI|RTI|RTI|RTI| n2 | —
Execute nl [JSR|JSR [JISR |JISR |ii2 | ii3 | ii4 | ii5 | iin |RTI|RTI|RTI|RTI|RTI| n2
Instruction Cycle Count 112 3 4 5 6 7 89 |10|11|12| 13|14 | 15|16 | 17| 18

i = Interrupt
ii = Interrupt Instruction Word
n = Normal Instruction Word

(b) Program Controller Pipeline AAD0BY

Figure 7-5. Interrupt Service Routine

Figure 7-5 demonstrates the interrupt pipeline. The point at which interrupts are re-enabled and subsequent
interrupts are allowed is shown to illustrate the non-interruptible nature of the early instructionsin the long

interrupt service routine.

Reset is a special exception, which will normally contain only a IMP instruction at the exception start
address.

There is only one case in which the stacked address will not point to theillegal instruction. If theillegal
instruction follows an REP instruction (see Figure 7-6), the processor will effectively execute theillegal
instruction as arepeated NOP, and the interrupt vector will then be inserted in the pipeline. In this
illustration, the first instruction (n7 in Figure 7-6) following an illegal instruction (n6) islost asa
conseguence of theillegal opcode. The second instruction following an illegal instruction will be the next
instruction that will be fetched, decoded, and executed normally (n8).
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lllegal Instruction Interrupt
Recognized as Pending

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch nl {n2|n3|n4d |REP| né n7 — — | — | il | ii2 | n8

Decode nt |{n2|n3| nd |REP| Il — — | — | — i1l |ii2 | n8
Execute nl | n2| n3 n4d |REP|REP|REP| Il | — | — [l | ii2 | n8
Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 | 11 |12 | 13 | 14 | 15 | 16
i = Interrupt

ii = Interrupt Instruction Word
Il = lllegal Instruction
n = Normal Instruction Word AA0070

Figure7-6. Repeated Illegal Instruction

In DO loops, if theillegal instruction isin the loop address (LA) location and the instruction preceding it
(that is, at LA-1) isbeing interrupted, the loop counter (LC) will be decremented asif the loop had reached
the LA instruction. When the interrupt service ends and the instruction flow returns to the loop, the
instruction after the illegal instruction will be fetched (sinceit is the next sequential instruction in the
flow).

7.3.8 Interrupt Latency

Interrupt latency represents the time between when an interrupt request first appears and when the first
instruction in an interrupt service routine is actually executed. The interrupt can only take place on
instruction boundaries, and so the length of execution of an instruction affects interrupt latency.

There are some special casesto consider. The SWI, STOP, and WAIT instructions are not interruptible.
Likewise, the REP instruction and the instruction it repeats are not interruptible.

A REP instruction and the instruction that followsiit are treated as a single two-word instruction, regardless
of how many times it repeats the second instruction of the pair. Instruction fetches are suspended and will
be reactivated only after the L C is decremented to one (see Figure 7-7). During the execution of n2in
Figure 7-7, no interrupts will be serviced. When LC finally decrements to one, the fetches are re-initiated,
and pending interrupts can be serviced.
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i = Interrupt

i = Interrupt Instruction Word
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(b) Program Controller Pipeline AA0071

Figure7-7. Interrupting a REP Instruction

7.4 Wait Processing State

The WAIT instruction brings the processor into the wait processing state, which is one of two low
power-consumption states. Asserting any valid interrupt request higher than the current processing level
(asdefined by the 11 and 10 bitsin the status register) releases the DSC from the wait state. In the wait state
theinternal clock is disabled from all internal circuitry except the internal peripheras. All interna
processing is halted until an unmasked interrupt occurs or until the DSC is reset.
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Figure 7-8 shows await instruction being fetched, decoded, and executed. It is fetched as n3 in this
example and, during decode, is recognized as await instruction. The following instruction (n4) is aborted,
and the internal clock is disabled from all internal circuitry except the internal peripherals. The processor
staysin this state until an interrupt or reset is recognized. The response timeis variable due to the timing of
the interrupt with respect to the internal clock.

Interrupt Synchronized and

‘ Recognized as Pending

Interrupt Control Cycle 1 \I i
Interrupt Control Cycle 2 \I i
Fetch n3 n4 — \ il ii2 i3 ii4 ii5 ii6 | n4
Decode n2 |WAIT| — \l i1 ii2 i3 ii4 ii5 ii6 | n4
Execute nl n2 | WAIT \I il ii2 ii3 ii4 ii5 ii6 n4
Instruction Cycle Count 1 2 3 }}' 5 6 7 8 9 10 11 12 13 14 15
i = Interrupt A
ii = Interrupt Instruction Word
n = Normal Instruction Word Only Internal Peripherals

— Receive Clock

AA0074
Figure7-8. Wait Instruction Timing

Figure 7-8 shows the result of an interrupt bringing the processor out of the wait state. The two appropriate
interrupt vectors are fetched and put in the instruction pipe. The next instruction fetched is n4, which had
been aborted earlier. Instruction execution proceeds normally from this point.

Figure 7-9 shows an example of the wait instruction being executed at the same time that an interrupt is
pending. Instruction n4 is aborted, asin the preceding example. The wait instruction causes a
five-instruction-cycle delay from the time it is decoded, after which the interrupt is processed normally.
Theinternal clocks are not turned off, and the net effect is that of executing eight NOP instructions
between the execution of n2 and iil.

Interrupt Synchronized and

‘ Recognized as Pending

Interrupt Control Cycle 1 i

Interrupt Control Cycle 2 i

Fetch n3 n4 — — — — — — i1 ii2 ii3
Decode n2 WAIT — — — — — — — il ii2
Execute nl n2 WAIT — — — — — — — i1
Instruction Cycle Count 1 2 3 4 5 6 7 8 9 10 11

i= Interrupt N— -

ii= Interrupt Instruction Word o~

n= Normal Instruction Word Equivalent to Eight NOPs AA0D75

Figure 7-9. Simultaneous Wait Instruction and I nterrupt
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7.5 Stop Processing State

The STOP instruction brings the processor into the stop processing state, which is the lowest
power-consumption state. In the stop state the clock oscillator is gated off, whereas in the wait state the
clock oscillator remains active. The chip clears all peripheral interrupts and external interrupts (IRQA,
IRQB, and NMI) when it enters the stop state. Stack errors that were pending remain pending. The priority
levels of the peripherals remain as they were before the STOP instruction was executed. The on-chip
peripherals are held in their respective, individual reset states while the processor isin the stop state.

The stop processing state halts all activity in the processor until one of the following actions occurs:
« Alow level isapplied to the IRQA pin
» Alow level isapplied to the RESET pin
* Anon-chip timer reaches zero

Any of these actions will activate the oscillator, and after a clock stabilization delay, clocks to the
processor and peripherals will be re-enabled. The clock-stabilization delay period is equal to either 16 (T)
cyclesor 131,072 T cycles as determined by the stop delay (SD) bit inthe OMR. One T cycleis equal to
one half of aclock cycle. For example, according to Table 6-34 on page 6-28, one NOP instruction
executesin 2 clock cycles; therefore, one NOP instruction executesin 4T cycles, i.e., 1 instruction cycle
eguals 2 clock cyclesand is equal to 4T cycles.

The stop sequence is composed of eight instruction cycles called stop cycles. They are differentiated from
normal instruction cycles because the fourth cycleis stretched for an indeterminate period of time while
the four-phase clock isturned off.

Asshownin Figure 7-10, the STOP instruction is fetched in stop cycle 1, decoded in stop cycle 2 (which is
whereit isfirst recognized as a stop command), and executed in stop cycle 3. The next instruction (n4) is
fetched during stop cycle 2 but is not decoded in stop cycle 3 because, by that time, the STOP instruction
prevents the decode. The processor stops the clock and enters the stop mode. The processor will stay in the
stop mode until it is restarted.

IROA L]

Fetch n3 n4 — — — — \1 n4
Decode n2 | STOP — — — — \l

Execute nl n2 STOP | STOP | STOP STOPL\f
Stop Cycle Count | 1 2 3 4 5 6 N 7 8 9 | 10 | 1L | 12 | 13
IRQA = Interrupt Request A Signal '\]

n = Normal Instruction Word Resume Stop Cycle Count 6,

STOP = Interrupt Instruction Word Interrupts Enabled

131,072Tor16 T

Clock Stopped Cycle Count Started

AA0076

Figure7-10. STOP Instruction Sequence

Figure 7-11 shows the system being restarted through asserting the IRQA signal. If the exit from the stop
state was caused by alow level on the IRQA pin, then the processor will service the highest priority
pending interrupt. If no interrupt is pending, then the processor resumes at the instruction following the
STOP instruction that brought the processor into the stop state.
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IRQA |

Fetch n3 n4 — — — — il
Decode n2 [STOP| — — — —

Execute nl n2 |STOP|STOP |STOP |STOP

Stop Cycle Count 1 2 3 4 5 7 8 9 10 11 12 (13)

131,072Tor 16 T
Cycle Count Started

6

IRQA = Interrupt Request A Signal

n = Normal Instruction Word Resume Stop Cycle Count 6,

STOP = Interrupt Instruction Word Interrupts Enabled

Clock Stopped
AA0077
Figure7-11. STOP Instruction Sequence

An IRQA deasserted before the end of the stop cycle count will not be recognized as pending. If IRQA is
asserted when the stop cycle count completes, then an IRQA interrupt will be recognized as pending and
will be arbitrated with any other interrupts.

Specificaly, when IRQA is asserted, the internal clock generator is started and begins a delay determined
by the SD bit of the OMR. When the chip uses the internal clock oscillator, the SD bit should be set to zero
to allow alonger delay time of 128K T cycles (131,072 T cycles), so that the clock oscillator may stabilize.
When the chip uses a stable external clock, the SD bit may be set to one to alow a shorter (16 T cycle)
delay time and a faster startup of the chip.

For example, assume that the SD equals 0 so that the 128K T counter isused. During the 128K T count the
processor ignores interrupts until the last few counts and, at that time, begins to synchronize them. At the
end of the 128K T cycle delay period, the chip restarts instruction processing, completes stop cycle 4
(interrupt arbitration occurs at thistime), and executes stop cycles 7, 8, 9, and 10. (It takes 17 T from the
end of the 128K T delay to the first instruction fetch.) If the IRQA signal is released (pulled high) after a
minimum of 4T but after fewer than 128K T cycles, no IRQA interrupt will occur, and the instruction
fetched after stop cycle 8 will be the next sequential instruction (n4 in Figure 7-10). An IRQA interrupt
will be serviced as shown in Figure 7-11 if the following conditions are true:

1. ThelRQA signal had previously been initialized as level sensitive.

2. IRQA isheld low from the end of the 128K T cycle delay counter to the end of stop cycle
count 8.

3. Nointerrupt with a higher interrupt level is pending.

If IRQA is not asserted during the last part of the STOP instruction sequence (6, 7, and 8) and if no
interrupts are pending, the processor will refetch the next sequentia instruction (n4). Since the IRQA
signal is asserted, the processor will recognize the interrupt and fetch and execute the JSR instruction
located at P:$0010 and P:$0011 (the IRQA interrupt vector locations).

To ensure servicing IRQA immediately after leaving the stop state, the following steps must be taken
before the execution of the STOP instruction:

Define IRQA as level sensitive; an edge-triggered interrupt will not be serviced.

2. Ensurethat no stack error is pending.
3. Execute the STOP instruction and enter the stop state.
4. Recover from the stop state by asserting the IRQA pin and holding it asserted for the entire

clock recovery time. If it islow, the IRQA vector will be fetched.
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5. Theexact elapsed timefor clock recovery isunpredictable. The external devicethat asserts
IRQA must wait for some positive feedback, such as a specific memory access or achange
in some predetermined 1/O pin, before deasserting IRQA.

The STOP sequencetotals 131,104 T cycles (if the SD equals 0) or 48 T cycles (if the SD equals 1) in
addition to the period with no clocks from the stop fetch to the IRQA vector fetch (or next instruction).
However, thereis an additional delay if the internal oscillator is used. An indeterminate period of timeis
needed for the oscillator to begin oscillating and then stabilize its amplitude. The processor will still count
131,072 T cycles (or 16 T cycles), but the period of the first oscillator cycleswill be irregular; thus, an
additional period of 19,000 T cycles should be allowed for oscillator irregularity (the specification
recommends a total minimum period of 150,000 T cycles for oscillator stabilization). If an external
oscillator is used that is already stabilized, no additional time is needed.

The PLL may or may not be disabled when the chip enters the stop state. If it is disabled and will not be
re-enabled when the chip leaves the stop state, the number of T cycleswill be much greater because the
PLL must regain lock.

If the STOP instruction is executed when the IRQA signal is asserted, the clock generator will not be
stopped, but the four-phase clock will be disabled for the duration of the 128K T cycle (or 16 T cycle)
delay count. In this case the STOP instruction looks likea 131,072 T + 35 T cycle (or 51 T cycle) NOP,
since the STOP instruction itself is eight instruction cycleslong (32 T) and synchronization of IRQA is 3
T, totaling 35 T.

A stack error interrupt that is pending before the processor enters the stop state is not cleared and will
remain pending. During the clock-stabilization delay in stop mode, any edge-triggered IRQ interrupts are
cleared and ignored.

If RESET isused to restart the processor (see Figure 7-12), the 128K T cycle delay counter would not be
used, all pending interrupts would be discarded, and the processor would immediately enter the Reset
processing state as described in Section 7.1, “ Reset Processing State.” For exampl e, the stabilization time
recommended in DSP56824 Technical Data for the clock (RESET should be asserted for thistime) isonly
50T for astabilized external clock, but isthe same 150,000 T for the internal oscillator. These stabilization
times are recommended and are not imposed by internal timers or time delays. The DSC fetches
instructionsimmediately after exiting reset. If the user wishesto usethe 128K T (or 16 T) delay counter, it
can be started by asserting IRQA for a short time (about two clock cycles).

RESET
Processor Enters
Reset State —] — Processor Leaves Reset State
\/ Y
Interrupt Control Cycle 1 \f
Interrupt Control Cycle 2 L\/
Fetch n3 n4 — — N nop nA nB nC nD nE
Decode n2 STOP — — \f nop nop nA nB nC nD
Execute nl n2 STOP — L\/ nop nop nop nA nB nC
Stop Cycle Count 1 2 3 4 N
RESET= Interrupt T_ ’\]
n = Normal Instructiop qud ‘ Clock Stopped
nA, nB, nC = Instructions in Reset Routine
STOP = Interrupt Instruction Word AA0078

Figure7-12. STOP Instruction Sequence Recovering with RESET
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7.6 Debug Processing State

The debug processing state is a state where the DSC core is halted and under the control of the OnCE
debug port. Seria datais shifted in and out of this port, and it is possible to execute single instructions
from this processing state. The debug processing state and the operation of the OnCE port is covered in
more detail in Chapter 9, “JTAG and On-Chip Emulation (OnCE™).”
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Chapter 8
Software Technigues

Different software technigues can be used to fully exploit the DSP56800 architecture’ s resources and
enhance its features. For example, small sequences of DSP56800 instructions can emulate more powerful
instructions. This chapter discusses how better performance can be obtained from the DSP56800
architecture using software techniques. The following topics are covered:

»  Synthesizing useful new instructions

» Techniquesfor shifting 16- and 32-bit values
* Incrementing and decrementing

» Division techniques

e Pushing variables onto the software stack

» Different looping and nested-looping techniques
» Different techniques for array indexing

»  Parameter passing and local variables

» Freeing up registers for time-critical loops

* Interrupt programming

e Jumpsand JSRsusing aregister value

* Freeing one hardware stack (HWS) location
e Multi-tasking and the HWS

8.1 Useful Instruction Operations

The flexible instruction set of the DSP56800 architecture allows new instructions to be synthesized from
existing DSP56800 instructions. This section presents some of these useful operations that are not directly
supported by the DSP56800 instruction set, but can be efficiently synthesized. Table 8-1 lists operations
that can be synthesized using DSP56800 instructions.

Table8-1. Operations Synthesized Using DSP56800 I nstructions

Operation Description
JRSET, JRCLR Jumpsif al selected bitsin bit field is set or clear
BR1SET, BRICLR Branchesif at least one selected bit in bit field is set or clear
JR1SET, JRICLR Jumpsif at least one selected bit in bit field is set or clear
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Table8-1. Operations Synthesized Using DSP56800 I nstructions (Continued)

Operation Description
VS, IVC, BVS, BVC Jumps or branchesiif the overflow bit is set or clear
JPL, MI, JES, JEC, ILMS, JLMC, Jumps or branches on other condition codes
BPL, BMI, BES, BEC, BLMS, BLMC
NEGW Negates upper two registers of an accumulator
NEG Negates another data AL U register, an AGU register, or amemory location
XCHG Exchanges any two registers
MAX Returns the maximum of two registers
MIN Returns the minimum of two registers
Accumulator sign extend Sign extends the accumulator into the A2 or B2 portion
Accumulator unsigned load Zeros the accumulator L SP and extension register

8.1.1 Jumpsand Branches

Several operations for jumping and branching can be emulated, depending on selected bitsin a bit field,
overflows, or other condition codes.

8.1.1.1 JRSET and JRCLR Operations

The JRSET and JRCLR operations are very similar to the BRSET and BRCLR instructions. They still test
abit field and go to another addressif all masked bits are either set or cleared. The BRSET and BRCLR
instructions only alow branches of 64 locations away from the current instruction and can only test an
8-hit field; however, JRSET and JRCLR operations allow jumps to anywhere in the 64K-word program
address space, and can specify a 16-bit mask. The following code shows that these two operations allow
the same addressing modes as the BFTSTH and BFTSTL instructions.

Example8-1. JRSET and JRCLR

; JRSET Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words
BFTSTH Hxxxx,X:<ea> ; 16-bit mask allowed
JCS label ; 16-bit jump address allowed

; JRCLR Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words
BFTSTL Hxxxx,X: <ea> ; 16-bit mask allowed
Jcs label ; 16-bit jump address allowed
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8.1.1.2 BRI1SET and BR1CLR Operations

The BR1SET and BR1CLR operations are very similar to the BRSET and BRCLR instructions. They still
test a bit field and branch to another address based on the result of some test. The difference isthat for
BRSET and BRCLR the condition istrueif all selected bitsin the bit field are 1s or Os, respectively,
whereas for BR1ISET and BR1CLR the condition istrueif at least one of the selected bitsin the bit field is
alor 0, respectively. BRISET and BR1CLR operations can also specify a 16-bit mask, compared to an
8-bit mask for BRSET and BRCLR. The following code shows that these two operations alow the same
addressing modes as the BFTSTH and BFTSTL instructions.

Example8-2. BR1SET and BR1CLR

; BR1SET Operation
; Emulated in 5 Icyc (4 Icyc if false), 3 Instruction Words
BFTSTL Hxxxx,X:<ea> ; 16-bit mask allowed
BCC label ; 7-bit signed PC relative offset allowed

; BR1CLR Operation
; Emulated in 5 Icyc (4 Icyc if false), 3 Instruction Words
BFTSTH #xxxx,X:<ea> ; 16-bit mask allowed
BCC label ; 7-bit signed PC relative offset allowed

8.1.1.3 JRI1SET and JR1CLR Operations

The JR1SET and JR1CLR operations are very similar to the JRSET and JRCLR instructions. They still test
abit field and jump to another address based on the result of some test. The differenceisthat for JRSET
and JRCLR the condition istrue if all selected bitsin the bit field are 1s or Os, respectively, whereas for
JR1ISET and JR1CLR the condition istrueif at |east one of the selected bitsin the bit fieldisal or O,
respectively. JRISET and JR1CLR operations allow jumps to anywhere in the 64K -word program address
space, and can specify a 16-bit mask. The following code shows that these two operations allow the same
addressing modes as the BFTSTH and BFTSTL instructions.

Example8-3. JR1SET and JRICLR

; JRLSET Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words
BFTSTL Hxxxx,X:<ea> ; 16-bit mask allowed
Jcc label ; 16-bit jump address allowed

; JR1CLR Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words
BFTSTH Hxxxx,X:<ea> ; 16-bit mask allowed
Jcc label ; 1l6-bit jump address allowed
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8.1.1.4 JVS,JVC, BVS, and BVC Operations

Although thereis no instruction for jumping or branching on overflow, such an operation can be emul ated
as shown in the following code. Note that the carry bit will be destroyed by this operation since it receives
the result of the BFTSTH instruction. The following code shows VS and BVC.

Example 8-4. JVS,JVC,BVSand BVC

; JVS Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words
BFTSTH #30002, SR ; Test V bit in SR
JCs label ; 16-bit jump address allowed

; BVC Operation
; Emulated in 5 Icyc (4 Icyc if false), 3 Instruction Words
BFTSTH #50002, SR ; Test V bit in SR
BCC label ; 7-bit signed PC relative offset allowed

8.1.1.5 Other Jumpsand Brancheson Condition Codes

Jumping and branching using some of the other condition codes (PL, MI, EC, ES, LMC, LMS) can be
accomplished in the same manner as for overflow; see Section 8.1.1.4, “JVS, VC, BVS, and BVC
Operations.” Remember that this technique destroys the value in the carry bit. The following code shows
JPL and BES.

Example 8-5. JPL and BES

; JPL Operation
; Emulated in 5 Icyc (4 Icyc if false), 4 Instruction Words
BFTSTH #30008, SR ; Test the N bit in SR
Jcc label ; l6-bit jump address allowed

; BES Operation
; Emulated in 5 Icyc (4 Icyc if false), 3 Instruction Words
BFTSTH #50020, SR ; Test E bit in SR
BCS label ; 7-bit signed PC relative offset allowed

Similar code can be written for JMI, JEC, JES, JLMC, JLMS, BPL, BMI, BEC, BLMC, and BLMS. The
JLMS and JLMC are used for “jump if limit set” and “jump if limit clear,” respectively; thisis doneto
avoid any confusion with the JLS (“jump if lower or same”) instruction.

8.1.2 Negation Operations

The NEGW operation can be used to negate the upper two registers of the accumulator. The NEG
operation can be used to negate the X0, YO, or Y1 data ALU registers, negate an AGU register, or negate a
memory location.

8.1.2.1 NEGW Operation

The NEGW operation can be emulated as shown in the following code:

; 20-bit NEGW Operation
; Operates on EXT:MSP, Clears LSP, 3 Icyc
MOVE #0,A0 ; Clear LSP
NEG A ; Now negates upper 20 bits of accumulator
; since AO = 0

This correctly negates the upper 20 bits of the accumulator, but also destroys the AO register.
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The NEG instruction can be used directly, executing in one instruction cycle, in cases where it is already
known that the least significant portion (L SP) of an accumulator is $0000. Thisistrue immediately after a
value is moved to the A or B accumulator from memory or aregister, as shown in the following code:

; Example of 1 Icyc NEGW Operation
; Works because A0 is already equal to $0000

MOVE X: (RO) ,A ; Move a 16-bit value to an accumulator,
; clearing A0 register
NEG A ; Now negates upper 20 bits of accumulator

; since A0 = O

The technigue shown in the following code can be used for cases when 16-bit datais being processed and
when it can be guaranteed that the L SP or extension register of the accumulator contains no required
information:

; 1l6-bit NEGW Operation
; Operates on MSP, Forces EXT to sign extension, LSP to $0, 2 Icyc

MOVE Al,A ; Force A2 to sign extension,
; force A0 cleared
NEG A ; Now negates upper 20 bits of accumulator

since A0 = O

The following technique may be used for the case where the CC bit in the SR is set to a 1, the L SP may not
be $0000, and the user is not interested in the values in the accumulator extension registers:

; 16-bit NEGW Operation
; CC bit must be set, operates on MSP, doesn’t affect A0, 2 Icyc
NOT A ; One’s-complement of Al, A2 unchanged
INCW A ; Increment to get two’s-complement,
; A2 may be incorrect

8.1.2.2 Negatingthe X0, YO, or Y1 Data ALU registers

Although the NEG instruction is supported on accumulators only, NEG can be emulated to perform a
negation of the data ALU’s X0, YO, or Y 1 registers, as shown in the following code:

; NEG Operation

; Emulated at 2 Icyc
NOT YO
INCW YO

8.1.2.3 Negatingan AGU register

It is possible to negate one of the AGU registers (Rn) without destroying any other register, as shown in the
following code:

; NEG Operation

; Emulated at 3 Icyc
NOTC RO
LEA (RO) +

8.1.2.4 Negatinga Memory L ocation

It is possible to negate a memory location, as shown in the following code:

; NEG Operation

; Emulated at 5 Icyc
NOTC X:819
INCW X:$19

When an accumulator is available, it may be faster to do this operation simply by moving the value to an
accumulator, performing the operation there, and moving the result back to memory.
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8.1.3 Register Exchanges

The XCHG operation can be emulated as shown in the following code:

; XCHG Operation
; Emulated at 4 Icyc

PUSH X0
MOVE A, X0
POP A

The macro instruction PUSH is described in Section 8.5, “Multiple Value Pushes.”
If aregister isavailable, the exchange of any two registers can be emulated as shown in the following code:

; XCHG Operation
; Emulated at 3 Icyc

MOVE X0,N
MOVE A, X0
MOVE N,A

A faster exchange of any two registers can be emulated using one address register when N equals 0, as
shown in the following code:

; XCHG Operation

; N register is 0, Emulated at 2 Icyc

MOVE A,X: (RO)
TFR X0,A X:(RO)+N,X0

8.1.4 Minimum and Maximum Values

The MAX operation returns the maximum of two va ues; the MIN operation returns the minimum.

8.1.4.1 MAX Operation

The MAX operation can be emulated as shown in the following code:

; MAX Operation
MAX X0,A

P - becomes ------
; MAX operation
; Emulated at 4 Icyc

CMP X0,A
TLT X0,A ; (can also use TLE if desired)
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8.1.4.2 MIN Operation

The MIN operation can be emulated as shown in the following code:

; MIN Operation
MIN Y0,A

P it becomes ------

; MIN Operation
; Emulated at 4 Icyc
CMP YO0,A
TGT Y0,A ; (can also use TGE if desired)

8.1.5 Accumulator Sign Extend

There are two versions of this operation. In the first, the accumulator only contains 16 bits of useful
informationin Al or B1, and it is necessary to sign extend into A2 or B2. In the second version, both Al
and AO or B1 and BO contain useful information. The following code shows both versions:

; Sign-Extension Operation of 16-bit Accumulator Data
; Emulated in 1 Icyc, 1 Instruction Word
MOVE Al,A ; Sign extend into A2, clear A0 register

; Sign-Extension Operation of 32-bit Accumulator Data
; Emulated in 4 Icyc, 4 Instruction Words

PUSH A0 ; Save A0 register
MOVE Al,A ; Sign extend into A2, clear A0 register
POP A0 ; Restore A0 register to correct contents

8.1.6 Unsigned L oad of an Accumulator

The unsigned load of an accumulator, which zeros the L SP and extension register, can be exactly emulated
as shown in the following code:

; DSP56100 Family Unsigned Load
; Emulated at 2 Icyc

MOVE x: (RO) ,A
ZERO A
P it becomes ------

; DSP56800 Family Unsigned Load
; Emulated at 2 Icyc

CLR A

MOVE x: (RO) ,Al

This operation isimportant for processing unsigned numbers when the CC bit in the operating mode
register (OMR) register isa0, so that the condition codes are set using information at bit 35. This operation
isuseful for performing unsigned additions and subtractions on 36-bit values.
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8.2 16- and 32-Bit Shift Operations

This technique presents many different methods for performing shift operations on the DSP56800
architecture. Different techniques offer different advantages. Some techniques require severa registers,
while others can be performed only on the register to be shifted. It is even possible to shift the valuein one
register but place the result in a different register. Techniques are also presented for shifting 36-bit values
by large immediate values.

8.2.1 Small Immediate 16- or 32-Bit Shifts

If itisonly necessary to shift aregister or accumulator by asmall amount, one of the two techniques shown
in the following code may be adequate. These techniques may also be appropriate if there are no registers
available for use in the shifting operation, since more than one register are required with the multi-bit
shifting instructions. For cases where the amount of bit positionsto shift is larger than three for 16-bit
registers or five for a 32-bit value, then it may be appropriate to use another technique.

; First Technique - Shift an Accumulator by 3 Bits - Use Inline Code

ASL A
ASL A
ASL A
; Second Technique - Shift an Accumulator by 6 Bits - Use REP Loop
REP #6
ASL A

For placesin a program that are executed infrequently, the second technique of using a REP (or DO) loop
resultsin the smallest code size.

8.2.2 General 16-Bit Shifts

For fast 16-bit shifting, the ASLL, ASRR, LSLL, and LSRR alow for single-cycle shifting of a 16-bit
value where the shift count is specified by aregister. If it is desired to shift by an immediate value, the
immediate value must first be loaded into aregister as shown in the following code:

; Shifting a 16-Bit Value by an Immediate Value
; Executes in 2 Icyc, 2 Instruction Words
MOVE #7,X0 ; Load shift count into the X0 register
ASLL Y0, X0,YO ; Arithmetically shift the contents of YO
; 7 bits to the left

Note that these instructions clear the L SP of an accumulator. It is possible to perform aright shift where
the bits shifted into the L SP of the accumulator are not lost. Instead of using the ASRR or LSRR
instructions, a CLR instruction is first used to clear the accumulator, and then an ASRAC or LSRAC
instruction is performed. This technique allows a 16-bit value to be right shifted into a 32-bit field, as
shown in the following code:

; Shifting a 16-bit Value into a 32-bit field
; Executes in 2 Icyc, 2 Instruction Words
CLR A ; Clear accumulator
ASRAC Y0,X0,A ; Arithmetically shift into a 32-bit field
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8.2.3 General 32-Bit Arithmetic Right Shifts

It is possibleto perform right shifting of up to 15 bits on 32-bit val ues using the techniques presented in
this section.

The following example shows how to arithmetically shift the 32-bit contents of the Y 1. YO registers,
storing the resultsinto the A accumulator. Note that this technique uses many of the data ALU registers:
Y 1 and YO to hold the value to be shifted, X0 to hold the amount to be shifted, and the A accumulator to
store the result. The following code allows shifts of 0 to 15 bits and executesin five instruction cycles.

; Arithmetically Shift Y1:Y0 Register Combination by 8 bits
; Emulated in 5 Icyc, 5 Instruction Words

MOVE #8,X0

LSRR Y0,X0,A ; Logically shift lower word

MOVE Al,A0 ; 16-bit arithmetic right shift

MOVE A2,Al

ASRAC Y1l,X0,A ; Arithmetically shift upper word and

; combine with lower word

If it is necessary to shift by more than 15 bits, then the following code should be preceded by a shift of 16
bits, as documented later in this section.

Similar code that follows shows how to arithmetically shift the 32-bit value in the A accumulator. Again,
this technique takes several registers: Y 1 to hold the most significant word (MSW) to be shifted and YO to
hold the amount to be shifted. This, perhaps, is only useful when the amount to be shifted isavariable
amount or when the amount to be shifted is eight or more and the Y 1 and Y O registers are available. Note
that the extension register (A2) isnot shifted in this case.

; Arithmetically Shift Al1:A0 Accumulator by 11 bits
; Emulated in 7 Icyc, 7 Instruction Words

MOVE #11,Y0

MOVE Al,Y1 ; Save copy of Al register (upper word
; to be shifted)

MOVE AQ0,Al

LSRR Al,Y0,A ; Logically shift lower word

MOVE Al,A0 ; 1l6-bit arithmetic right shift

MOVE A2,Al

ASRAC Y1l,Y0,A ; Arithmetically shift upper word and

; combine with lower word

8.2.4 General 32-Bit Logical Right Shifts

Right shifting logically isidentical to right shifting arithmetically except for the final shift instruction. For
arithmetic shifts of 32-bit values the final instruction is an ASRAC instruction, and for logical shifts of
32-bit values the final instruction is an LSRAC instruction. Thisis shown in the following code:

; Logically Shift Y1:Y0 Register Combination by 8 bits
; Emulated in 5 Icyc, 5 Instruction Words

MOVE #8,X0

LSRR Y0,X0,A ; Logically shift lower word
MOVE Al,A0 ; l6-bit arithmetic right shift
MOVE A2,Al

LSRAC Y1,X0,A ; Logically shift upper word and

; combine with lower word
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8.2.5 Arithmetic Shifts by a Fixed Amount
Arithmetic shifts (left or right) by afixed amount can be emulated with the ASRxx operations.

8.2.5.1 Right Shifts (ASR12-ASR20)

For arithmetic right shiftsthere is afaster way to shift an accumulator for large shift counts. The following
code shows how to perform arithmetic right shifts of 12 through 20 bits on an accumulator. This emulation
works without destroying any registers on the chip. If desired, it is possible to use this technique for bit
shifts greater than 20, but it is not possible to use this technique for shifts of 11 or fewer bits without losing
information.
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; ASR12 Operation

; Emulated in 8 Icyc, 8 Instruction Words

ASL
ASL
ASL
ASL
PUSH
MOVE
POP

; ASR13 Operation

; Emulated in 7 Icyc,

ASL
ASL
ASL
PUSH
MOVE
POP

; ASR14 Operation

; Emulated in 6 Icyc,

ASL
ASL
PUSH
MOVE
POP

; ASR15 Operation

A

A

A

A

Al ;
A2,A

A0

(PUSH 1is

7 Instruction Words
A

A

A

Al ;
A2,A

A0

(PUSH 1is

6 Instruction Words
A

A

Al ;
A2,A

A0

(PUSH 1is

; Emulated in 5 Icyc, 5 Instruction Words

ASL
PUSH
MOVE
POP

; ASR16 Operation

A

Al ;
A2,A

A0

(PUSH 1is

; Emulated in 2 Icyc, 2 Instruction Words

MOVE
MOVE

; ASR17 Operation

Al,A0 ;
A2,Al

(Assumes

; Emulated in 3 Icyc, 3 Instruction Words

ASR
MOVE
MOVE

; ASR18 Operation

A
Al,A0 ;
A2,Al

(Assumes

; Emulated in 4 Icyc, 4 Instruction Words

ASR
ASR
MOVE
MOVE

; ASR19 Operation

; Emulated in 5 Icyc,

ASR
ASR
ASR
MOVE
MOVE

; ASR20 Operation

A

A

Al,A0 ;
A2,A1

5 Instruction Words
A

A

A

Al,A0 ;
A2,Al

; Emulated in 6 Icyc, 6 Instruction Words

ASR
ASR
ASR
ASR
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MOVE
MOVE

Al,A0 ; (Assumes EXT contains sign extension)

A2,Al

8.2.5.2 Left Shifts (ASL 16-ASL 19)

For arithmetic left shiftsthere is afaster way to shift an accumulator for large shift counts. The following
code shows how to perform arithmetic left shifts of 16 through 19 bits on an accumulator. This emulation
works without destroying any registers on the chip. If desired, it is possible to use this technique for bit
shifts greater than 19, but it is not possible for shifts of 15 or fewer bits without losing information.

; ASL16 Operation

7

Emulated in 4 Icyc, 4 Instruction Words

PUSH
MOVE

POP

ASL17 Operation

Al ; (PUSH is a 2-word,
AOQ,A
A2

Emulated in 5 Icyc, 5 Instruction Words

ASL

PUSH

MOVE
POP

ASL18 Operation

A

Al ; (PUSH is a 2-word,
AO,A

A2

Emulated in 6 Icyc, 6 Instruction Words

ASL
ASL
PUSH
MOVE
POP

ASL19 Operation

A

A

Al ; (PUSH is a 2-word,
AO,A

A2

Emulated in 7 Icyc, 7 Instruction Words

ASL
ASL
ASL
PUSH
MOVE
POP

8-12

A

A

A

Al ; (PUSH is a 2-word,
AO,A

A2
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8.3 Incrementing and Decrementing Operations

Almost any piece of data can be incremented or decremented. This section summarizes the different
increments and decrements available to both registers and memory locations. It isimportant to note the
LEA instruction, which is used to increment or decrement AGU pointer registers. The TSTW instructionis
also used for decrementing AGU pointer registers. Thisinstruction issimilar to LEA but also setsthe
condition codes, making it useful for program looping and other tasks. The LEA and TSTW instructions do
not cause a pipeline dependency in the AGU (see Section 4.4, “ Pipeline Dependencies,” on page 4-33).
The TSTW instruction is not available for incrementing an AGU pointer or for decrementing the SP
register.

; Different ways to increment on the DSC56800 core

INCW A ; on a Data ALU Accumulator

INCW X0 ; on a Data ALU Input Register

LEA (Rn) + ; on an AGU pointer register (RO-R3 or SP)

INCW X:80 ; on anywhere within the first 64 locations
; of X data memory

INCW X:5C200 ; on anywhere within the entire 64K locations
; of X data memory

INCW X: (SP-37) ; on a value located on the stack

; Different ways to decrement on the DSC56800 core

DECW A ; on a Data ALU Accumulator
DECW X0 ; on a Data ALU Input Register
LEA (Rn) - ; on an AGU pointer register (RO-R3 or SP)
TSTW (Rn) - ; on an AGU pointer register (R0-R3 or SP)
DECW X:$0 ; on anywhere within the first 64 locations

; of X data memory
DECW X:$C200 ; on anywhere within the entire 64K locations

of X data memory
DECW X: (SP-37) ; on a value located on the stack

The many different techniques available help to prevent registers from being destroyed. Otherwise, as
found on other architectures, it is necessary to first move data to an accumulator to perform an increment.

8.4 Division
Itispossibleto perform fractional or integer division on the DSP56800 core. There are several questionsto
consider when implementing division on the DSC core:

» Areboth operands always guaranteed to be positive?

» Areoperands fractional or integer?

* Isonly the quotient needed, or is the remainder needed as well?

*  Will the calculated quotient fit in 16 bitsin integer division?

* Arethe operands signed or unsigned?

* How many bits of precision are in the dividend?

*  What about overflow in fractional and integer division?

*  Will there be “integer division” effects?

NOTE:

In adivision equation, the “dividend” isthe numerator, the“divisor” isthe
denominator, and the “ quotient” is the result.
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Once all these questions have been answered, it is possible to select the appropriate division algorithm. The
fractional algorithms support a 32-bit signed dividend, and the integer algorithms support a 31-bit signed
dividend. All algorithms support a 16-bit divisor.

Note that the most general division algorithms are the fractional and integer algorithms for four-quadrant
division that generate both a quotient and a remainder. These take the largest number of instruction cycles
to complete and use the most registers.

For extended precision division, where the number of quotient bits required is more than 16, the DIV
instruction and routines presented in this section are no longer applicable. For further information on
division agorithms, consult the following references (or others as required):

Theory and Application of Digital Sgnal Processing, Lawrence R. Rabiner and Bernard Gold
(Prentice-Hall: 1975), pages 524-530.

Computer Architecture and Organization, John Hayes (McGraw-Hill: 1978), pages 190-199.

8.4.1 Positive Dividend and Divisor with Remainder

The agorithmsin the following code are the fastest and take the least amount of program memory. In order
to use these algorithms, it must be guaranteed that both the dividend and divisor are both positive, signed,
two’ s-complement numbers. One algorithm is presented for the division of fractional numbers and a
second is presented for the division of integer numbers. Both agorithms generate the correct positive
guotient and positive remainder.

; Division of Fractional, Positive Data (B1:B0 / XO0)
; Results: Bl = Remainder, BO = Quotient, X0 (not changed)

TSTW B ; TSTW always clears carry bit and more efficient
; than using BFCLR #$0001,SR
REP #16 ; Carry bit must be clear for first DIV
DIV X0,B ; Form positive quotient in BO
TST B ; Verify if remainder needs correction
BGE Skip Corr ; skip correction if not required
ADD X0,B ; Correct the remainder stored in Bl
Skip Corr: ; At this point, positive quotient in BO

and positive remainder in Bl. End of Algorithm.

; Division of Integer, Positive Data (B1:BO / X0). Registers used: Y1
; Results: Bl = Remainder, BO = Quotient, X0 (not changed)

ASL B ; Shift of dividend required for integer division

TSTW B ; TSTW always clears carry bit and more efficient
; than using BFCLR #$0001,SR

REP #16 ; Carry bit must be clear for first DIV

DIV X0,B ; Form positive quotient in BO

MOVE BO, Y1 ; Save quotient in Y1, (at this point, remainder
; is not yet correct).

ADD X0,B ; Correct remainder in Bl

ASR B ; Required for correct integer remainder

MOVE Y1,BO ; At this point, positive quotient in BO

and positive remainder in Bl. End of Algorithm.

NOTE:

The REP instruction is not interruptible; therefore, if user requires a
interruptible sequence on the division, it is advisable to use the DO
instruction or perform loop unrolling on the REP sequences.
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8.4.2 Signed Dividend and Divisor with No Remainder

The agorithmsin the following code provide fast ways to divide two signed, two’ s-complement numbers.
These algorithms are faster because they generate the quotient only; they do not generate a correct
remainder. The algorithms are referred to as four-quadrant division because they allow any combination of
positive or negative operands for the dividend and divisor. One algorithm is presented for the division of
fractional numbers, and a second is presented for the division of integer numbers.

; 4-Quadrant Signed Fractional Division with no Remainder: (B1:B0 / XO)
; Generates signed quotient only, no remainder. Registers used: Y1
; Results: Bl = unknown, BO = Quotient, X0 (not modified), B (modified)

; Setup
MOVE B,Y1 ; Copy dividend to Y1
ABS B ; Force the dividend positive
TSTW B ; TSTW always clears carry bit and more efficient
; than using BFCLR #$0001,SR
; Division Operation
REP #16 ; Carry bit must be clear for first DIV
DIV X0,B ; Form positive quotient in BO

; Compute Correct Quotient

EOR X0,Y1 If dividend and divisor both neg or both pos
BGE QDONE quotient already has correct sign,
NEG B Else quotient is negative of computed result

QDONE : At this point, the correctly signed quotient
is at BO but the remainder is not correct.

End of Algorithm.

Ne Ne o Ne oNe Ne o~

; 4-Quadrant Signed Integer Division with no Remainder: (B1:B0 / XO0)
; Generates signed quotient only, no remainder. Registers used: Y1
; Results: Bl = unknown, BO = Quotient, X0 (not modified), B (modified)

; Setup
ASL B ; Shift of dividend required for integer division
MOVE B,Y1 ; Save Sign Bit of dividend (Bl) in MSB of Y1
ABS B ; Force the dividend positive
TSTW B ; TSTW always clears carry bit and more efficient

than using BFCLR #$0001,SR
; Division Operation

REP #16 ; Carry bit must be clear for first DIV
DIV X0,B ; Form positive quotient in BO
; Compute Correct Quotient
EOR X0,Y1 ; If dividend and divisor both neg or both pos
BGE QODONE ; quotient already has correct sign,
NEG B ; Else quotient is negative of computed result

QDONE :
; At this point, the correctly signed quotient
; is at BO but the remainder is not correct.
; End of Algorithm.
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8.4.3 Signed Dividend and Divisor with Remainder

The agorithmsin the following code are another way to divide two signed numbers, where both the
dividend or the divisor are signed two’ s-complement numbers (positive or negative). These algorithms are
the most general because they generate both a correct quotient and a correct remainder. The algorithms are
referred to as 4 quadrant division because these algorithms allow any combination of positive or negative
operands for the dividend and divisor. One algorithm is presented for division of fractional numbers and a
second is presented for the division of integer numbers.

; Four-Quadrant Signed Fractional Division with Remainder:

(B1:BO / X0)

; Generates signed quotient and remainder Registers used: Y1, Y0, A, N
; Results: Y1

Remainder, YO

#$8000, N, RDON!

; Setup
MOVE B1,Y1
MOVE B1,N
ABS B
TSTW B
; Division Operation
REP #16
DIV X0,B
; Compute Correct Quotient
TEFR B,A
EOR X0,Y1
BGE QDONE
NEG B
QDONE :
MOVE BO, YO
TEFR A,B
MOVE X0,A
ABS A
ADD B,A
BRCLR
MOVE #0,A0
NEG A
RDONE :
MOVE Al,Y1

; Verify Results:

; Setup
MOVE
MOVE
MAC
8-16

Ne Ne Ne Ne N

7
7
12
7

12
7
7
I

2

7

Quotient, XO

E

(not modified), B (modified)

Save dividend sign to identify quadrant

Save dividend sign - remainder must have same

Force dividend positive

TSTW always clears carry bit and more efficient
than using BFCLR #$0001,SR

Carry bit must be clear for first DIV
Form positive quotient in BO

Save to compute true remainder
If dividend and divisor both neg or both pos
quotient already has correct sign

; Else quotient is negative of computed result

Store true quotient

Restore original remainder for final check
Copy the original divisor

Only absolute value of divisor needed
Compute correct amplitude of remainder

; Remainder must be same sign as the dividend
Prevent any unwanted carry

; Assign the same sign as the dividend

At this point, signed quotient in YO0 and
correct remainder in Y1. End of Algorithm.

dividend = quotient * divisor + remainder
; Remainder is fractional and corresponds to the lower 16 bits

A2,A
Y1,A0
Y0,X0,A

~e N oNe o~

DSP56800 Family Manual

Set up accumulator with sign of remainder

Move fractional remainder to LSP

Multiply quotient with divisor and add remainder
Accumulator contains original dividend value
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; Four-Quadrant Signed Integer Division with Remainder: (B1:B0 / XO0)
; Generates signed quotient and remainder. Registers used: Y1, Y0, A, N
; Results: Y1 = Remainder, YO = Quotient, X0 (not modified), B (modified)

; Setup
ASL B ; Shift of dividend required for integer division
MOVE Bl,Y1 ; Save dividend sign to identify quadrant
MOVE B1l,N ; Save dividend sign - remainder must have same
ABS B ; Force dividend positive
TSTW B ; TSTW always clears carry bit and more efficient

; than using BFCLR #$0001,SR
; Division Operation

REP #16 ; Carry bit must be clear for first DIV
DIV X0,B ; Form positive quotient in BO
; Compute Correct Quotient
TFR B,A ; Save to compute true remainder
EOR X0,Y1 ; If dividend and divisor both neg or both pos
BGE QDONE ; quotient already has correct sign
NEG B ; Else quotient is negative of computed result
QDONE :
MOVE B0, YO ; Store true quotient
TFR A,B ; Restore original remainder for final check
MOVE X0,A ; Copy original divisor
ABS A ; Only absolute value of divisor needed
ADD B,A ; Compute correct amplitude of remainder
BRCLR #58000,N,RDONE ; Remainder must be same sign as the dividend
MOVE #0,A0 ; Prevent any unwanted carry
NEG A ; Assign the same sign as the dividend
RDONE :
ASR A ; Shift required for correct integer remainder
MOVE Al,Y1 ; At this point, signed quotient in Y0 and

; correct remainder in Y1. End of Algorithm.

; Verify Results: dividend = quotient * divisor + remainder
; Remainder is integer and corresponds to the lower 16 bits
; When using MAC instruction, shift at the end to correct value for integer

; Setup
MOVE A2,A ; Set up accumulator with sign of remainder
MOVE Y1,A0 ; Move integer remainder to LSP
ASL A ; Correct remainder for fractional operation
MAC Y0,X0,A ; Multiply quotient with divisor and add remainder
ASR A ; Correct result to obtain integer value

Accumulator contains original dividend value
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8.4.4 Algorithm Examples

This subsection provides examples of values calculated with the division algorithmsin this section.

Example 8-6. Simple Fractional Division

A simple example of fractional division isthe following case:
0.125/0.5=0.25 (remainder = 0)

For this case a positive fractional algorithm can be selected. The hex representation of the dataused is:
(B1_B0/X0) $1000_0000 / $4000

Using algorithm: Positive Fractional Division with Remainder, the following results are generated:

BO: quotient = $2000 = 0.25
B1: remainder = $0000 = 0.0

Example 8-7. Signed Fractional Division

Another example of fractional division isthe following case:

-0.262871216 / 0.39035 = -6.7340 E-01 (all numbers are truncated to 9 and 5 decimal places from hex representation)
For this case a four-quadrant fractional algorithm can be selected. The hex representation of the data used is:

(B1_BO/X0) $DESA_3C69/ $31F7
Using algorithm: 4-Quadrant Signed Fractional Division with no Remainder, the following results are generated:

BO: quotient = $A9CE =-0.67340 (truncated to 5 decimal places)

Example 8-8. Simple Integer Division

A simple example of integer division is the following case:
64/9=7 (remainder = 1)

For this case a positive integer algorithm can be selected. The hex representation of the dataused is:
(B1_B0/X0) $0000_0040/ $0009

Using algorithm: Positive Integer Division with Remainder, the following results are generated:

BO: quotient = $0007 =7
B1: remainder = $0001= 1

Example 8-9. Signed Integer Division

Another example of integer division is the following case:
-492,789,125 / -15,896 = 31,000 with remainder -13,125 (sign of remainder is same as dividend)
For this case a four-quadrant integer algorithm can be selected. The hex representation of the dataused is:
(B1._BO/X0) $E2A0 _A27B/ $CI1ES8
Using algorithm: 4-Quadrant Signed Integer Division, the following results are generated:

Y 0: quotient = $7918 = 31,000
Y 1: remainder = $CCBB =-13,125

When remainders are computed, the results can be easily checked by multiplying the quotient to the divisor

and adding the remainder to the product as shown at the end of the 4-Quadrant algorithms with remainder.
The final answer should be the same as the original dividend.
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8.4.5 Overflow Cases

Both integer and fractional division are subject to division overflow. Overflow is the case where the
correct value of the quotient will not fit into the destination available to storeit.

For division of fractional numbers, the result must be a 16-bit, signed fractional value greater than or equal
to-1.0 and less than 1.0 - 2N |n other words, it must satisfy the following:

-1.0< quotient < +1.0 - 2IN-1l

For the case where the magnitude of the dividend is larger than the magnitude of the divisor, thisinequality
will not be true because any result generated will be larger in magnitude than 1.0. Thus, division overflow
occurs with fractional numbers for the case where the absolute value of the divisor isless than or equal to
the absolute value of the dividend:

|divisor | < |dividend |

If this condition can be true when dividing fractional numbers, it must be prevented from occurring by first
scaling the dividend.

For the division of integer numbers, the result must be a 16-bit, signed integer value greater than or equal
to -2IN-1 and less than or equal to [2IN-1 -1], where N is equal to 16. In other words:

-2IN-1 < quotient < [2IN-1 1], where N = 16

When integer numbers are being divided, it must be guaranteed that the final result can fit into a signed,
16-hit integer value. Otherwise, to prevent this from occurring, it isfirst necessary to scale the numerator.

8.5 Multiple Value Pushes

The DSP56800 core currently supports a one-word, one-instruction-cycle POP instruction for removing
information from the stack. The PUSH operation, however, is atwo-word, two-instruction-cycle macro,
which expands to the following code. (This instruction macro works quite well when pushing asingle
variable.)

; Expansion of the PUSH Instruction Macro
; Emulated in 2 Icyc, 2 Instruction Words

PUSH MACRO REG1 ; Push REG1l in stack
LEA (SP) + ; Increment the SP (1 Icyc, 1 Word)
MOVE REG1,X: (SP) ; Place value onto the stack
ENDM ; (1 Icyc, 1 Word)

However, there is a better technique when it is necessary to push more than one value onto the software
stack. Instead of using consecutive PUSH instruction macros, it is more efficient and saves more
instruction words by expanding out the PUSH operation:

; Faster technique for pushing multiple values onto the stack
; Finishes in 5 Icyc, 5 Instruction Words

PUSHN MACRO ; Pushing X0,Y0,R0O,R1
LEA (SP) + ; Increment SP
MOVE X0,X: (SP) +
MOVE YO0,X: (SP) +
MOVE RO,X: (SP) +
MOVE R1,X: (SP) ; No post-increment SP on last MOVE

ENDM

In this case five instruction cycles and five words are used to push four values onto the software stack. If
the PUSH instruction macro had been used instead, it would have performed the same function in eight
instruction cycles with eight words.
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Another use of the PUSH instruction isfor temporary storage. Sometimes atemporary variable isrequired,
such asin swapping two registers. There are two techniques for doing this, the first using an unused
register and the second using alocation on the stack. The second technique uses the PUSH instruction
macro and works whenever there are no other registers available. The two techniques are shown in the
following code:

; Swapping two registers (X0, RO) using an Available Register (N)
; 3 Icyc, 3 Instruction Words

MOVE XO,N ; X0 -> TEMP
MOVE RO,XO ; RO -> X0
MOVE N,RO ; TEMP -> RO

; Swapping two registers (X0, R0O) using a Stack Location
; 4 Icyc, 4 Instruction Words

PUSH XO ; X0 -> TEMP
MOVE RO,XO ; RO -> X0
POP RO ; TEMP -> RO

The operation is faster using an unused register if oneis available. Often, the N register is agood choice
for temporary storage, asin the preceding example.

8.6 Loops

The DSP56800 core contains a powerful and flexible hardware DO loop mechanism. It alows for loop
counts of up to 8,192 iterations, large number of instructions (maximum of 64K) to reside within the body
of the loop, and hardware DO loops can be interrupted. In addition, loops execute correctly from both
on-chip and off-chip program memory, and it is possible to single step through the instructions in the loop
using the OnCE port for emulation.

The DSP56800 core also contains a useful hardware REP loop mechanism, which is very useful for very
simple, fast looping on asingleinstruction. It is very useful for simple nesting when the inner loop only
contains asingle instruction. For a REP loop, the instruction to be repeated is only fetched once from
program memory, reducing activity on the buses. Thisis very useful when executing code from off-chip
program memory. However, REP |oops are not interruptible.

8.6.1 Large Loops (Count Greater Than 63)

Currently, the DO instruction allows an immediate value up to the value 63 to be specified for the loop
count. When necessary, specifying an immediate value larger than 63 is done using one of the registers on
the DSP56800 core to specify the loop count. Since registers are a precious resource, it is desirable not to
use any important registers that may contain valid data. The following code shows a technique for
specifying loop counts greater than 63 without destroying any register values.

MOVE #2048,LC ; Specify a loop count greater than 63
; using the LC register
DO LC, LABEL ; (LC register used to avoid destroying

; another register)
; (instructions)
LABEL:
Since the LC register is aready a dedicated register used for looping and is aways loaded by the DO
instruction, no information is lost when this register is used to specify alarger loop count. Note that this
technique will also work with the LC register for nested loops, as long as the loading of the LC register
with immediate data occurs after the LC register is pushed for nested loops.
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NOTE:

This technique should not be used for the REP instruction because it will
destroy the value of the LC register if done by a REP instruction nested
within a hardware DO loop.

8.6.2 Variable Count Loops

There are cases where it is useful to loop for a variable number of timesinstead of a constant number of
times. For these cases the loop count is specified using aregister. This alows a variable number of loop
iterations from 1 to 2X times (where k isthe number of bitsin the LC register, or 13). It isimportant to
consider what takes place if thisvariableis zero or negative. Whenever aDO loop is executed and the loop
count is zero, the loop will execute 212 times. For the case where the number of iterations is negative, the
number will simply beinterpreted as an unsigned positive number and the loop will be entered. If thereisa
possibility that aregister value may be less than or equal to zero, then it is necessary to insert extra code
outside of the loop to detect this and branch over the loop. Thisis demonstrated in the following code.

; Hardware looping when the loop count can be negative or zero

TSTW X0 ; Skip over loop if loop count <= 0
BLE LABEL

DO X0, LABEL

ASL A

LABEL:

For the case of REP looping on aregister value when the register contains the value 0, the instruction to be
repeated is simply skipped as desired; no extracodeisrequired. Thisis also true when animmediate value
of 0 is specified. For the case where the number of iterations can be negative, the response is the same as
for the DO loop and can be solved using the preceding technique presented for DO looping.

8.6.3 Software L oops

The DSP56800 provides the capability for implementing loops in either hardware or software. For
non-nested loopsin critical code sections, the hardware looping mechanism is alwaysthe fastest. However,
thereis alimitation when the hardware looping mechanism is used. The DSP56800 allows a maximum of
two nested hardware DO loops. Any looping beyond this generates a HWS overflow interrupt.

Software |ooping techniques are al so efficiently implemented on the DSC core. Software looping simply
uses aregister or memory location and decrements this value until it reaches zero. A branch instruction
conditionally branches to the top of the loop.

There are three different techniques for implementing aloop in software: one using adata ALU register,
one using an AGU register, and one using a memory location to hold the loop count. Each of theseis
shown in the following code.

; Software Looping: Case 1
; Data ALU Register Used for Loop Count

MOVE #3,X0 ; Load loop count to execute the loop three times
LABEL: ; Enters loop at least once
; (instructions)

DECW X0

BGT LABEL ; Back to top-of-loop if positive and not 0
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; Software Looping: Case 2
; AGU Register Used for Loop Count

MOVE #3-1,RO ; Load loop count to execute the loop three times
LABEL: ; Enters loop at least once
; (instructions)

TSTW  (RO) -

BGT LABEL ; Back to top-of-loop if positive and not 0

; Software Looping: Case 3
; Memory Location (one of first 64 XRAM locations) Used for Loop Count

MOVE  #3,X:87 ; Load loop count to execute the loop three times
LABEL: ; Enters loop at least once
; (instructions)

DECW X:87

BGT LABEL ; Back to top-of-loop if positive and not 0

8.6.4 Nested L oops

This section gives recommendations for and a detailed discussion of nested loops.

8.6.4.1 Recommendations

For nested looping it is recommended that the innermost loop be a hardware DO |oop when appropriate
and that all outer loops be implemented as software loops. Even though it is possible to nest hardware DO
loops, it is better to implement all outer loops using software looping techniques for two reasons:

1. The DSP56800 allows only two nested hardware DO loops.

2. The execution time of an outer hardware loop is comparable to the execution time of a
software loop.

Likewise, thereislittle difference in code size between a software loop and an outer loop implemented
using the hardware DO mechanism.

The hardware nesting capability of DO loops should instead be used for efficient interrupt servicing. Itis
recommended that the main program and all subroutines use no nested hardware DO loops. It isaso
recommended that software |looping be used whenever there is a JSR instruction within aloop and the
called subroutine requires the hardware DO loop mechanism. If these two rules are followed, then it can be
guaranteed that no more than one hardware DO loop is active at atime. If thisis the case, then the second
HWS location is always available to | SRs for faster interrupt processing. This significantly reduces the
amount of code required to free up and restore the hardware looping resources such as the HWS when
entering and exiting an ISR, sinceit is aready known upon entering the ISR that aHWS location is
available.

If thistechnique is used, the |SRs should not themselves be interruptible, or, if they can be interrupted,
then any ISR that can interrupt an ISR already in progress must save off one HWS location. See
Section 8.12, “Freeing One Hardware Stack Location.”

The following code shows the recommended nesting technique:
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; Nesting Loops Recommended Technique

MOVE #3,X:$50003 ; Set up loop count for outer loop
; (software loop)
OUTER:
; (instructions)
DO X0, INNER ; DO loop is inner loop (hardware loop)
ASL A
MOVE A,X:(RO)+
INNER:
; (instructions)
DECW X:$0003 ; Decrement outer loop count
BGT OUTER ; Branch to top of outer loop if not done

It would also be possible to use adata ALU or AGU register if more speed is needed.

An exception to the preceding recommendation for nesting loops is for the unique case where the
innermost |oop executes a single-word instruction. In this case it is possible to use a REP loop for the
innermost loop and a hardware DO loop for the outermost loop. This is demonstrated in the following
code:

; Nesting Loops Recommended Technique for Special Case of REP Loop Nested
; Within a Hardware DO Loop

INCW A
DO X0, LABEL ; DO loop is outer loop (interruptible)
MOVE B,Y1
; (instructions)
REP #4 ; REP loop is inner loop (non-interruptible)
ASL A ; (Must be a one-word instruction)
; (instructions)
MOVE A,X: (RO)+

LABEL:

The REP loop may not be interrupted, however, so this technique may not be useful for large loop counts
on the innermost loop if there are tight requirements for interrupt latency in an application. If thisisthe
case, then the first example with a software outer loop and an inner DO loop may be appropriate.

8.6.4.2 Nested Hardware DO and REP L oops

Nesting of hardware DO loopsis permitted on the DSP56800 architecture. However, it is not
recommended that this technique be used for nesting loops within a program. Rather, it is recommended
that the hardware nesting of DO loops be used to provide more efficient interrupt processing, as described
in Section 8.6.4.1, “Recommendations.”

Since the HWS istwo locations deep, it is possible to nest one DO loop within another DO loop.
Furthermore, since the REP instruction does not use the HWS, it is possible to place a REP instruction
within these two nested DO loops. The following code shows the maximum nesting of hardware loops
allowed on the DSP56800 processor:
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; Hardware Nested Looping Example of the Maximum Depth Allowed

I

DO #3,OuterLoop ; Beginning of outer loop
PUSH LC
PUSH LA
DO X0, InnerLoop ; Beginning of inner loop
; (instructions)
REP YO ; Skips ASL if y0 = 0
ASL A
; (instructions)
InnerLoop: ; End of inner loop
POP LA
POP LC
NOP ; three instructions required after POP
NOP ; three instructions required after POP
NOP ; three instructions required after POP
OuterLoop: ; End of outer loop

The HWS's current depth can be determined by the NL and LF bits, as shown in Table 5-5, “Looping
Status,” on page 5-13. From these hits it is possible to determine whether there are no loops currently in
progress, asingle loop, or two nested loops.

For nested DO loops, it isrequired that there be at least three instructions after the POP of the LA and LC
registers and before the label of any outer loop. This requirement shows up in the preceding example as
three NOPs but can be fulfilled by any other instructions.

Further hardware nesting is possible by saving the contents of the HWS and later restoring the stack on
completion, as described in Section 8.13, “Multitasking and the Hardware Stack.”

8.6.4.3 Comparison of Outer Looping Techniques

A comparison of the execution overhead and extra code size of software and hardware outer |oops shows
that for loop nesting, it isjust as efficient to nest in software (see Table 8-1). If adata ALU register or
AGU register is available for use as the loop count, each loop executes one cycle faster than nesting loops
in hardware. If there are no on-chip registers available for the loop counter, then the third technique can be
used that uses one of thefirst 64 locations of X data memory. Thistechnique executes one cycle slower per
loop than nesting loops in hardware. Each of the software techniques al so uses fewer instruction words.

Table 8-1 Outer Loop Performance Comparison

Additional
Lo Tetmiue Nipbedionto | Mo dfloe | T8 ke o
Each L oop
Hardware nested DO loops 3 5 7
Software using data AL U register 1 4 3
Software using AGU register 1 4 3
Software using memory location 2 6 4

It is recommended that the nesting of hardware DO loops not be used for implementing nested loops.
Instead, it is recommended that al outer loopsin anested looping scheme be implemented using software
looping techniques. Likewise, it is recommended that software looping techniques be used when aloop
contains a JSR and the called routine contains many instructions or contains a hardware DO |oop.
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8.6.5 Hardware DO Looping in Interrupt Service Routines

Upon entering an ISR, it is possible that one or two hardware DO loops are currently in progress. This
means that the hardware looping resources (the LA and L C registers and the HWS) are currently in use and
may need to be freed up if hardware looping is required within the ISR.

If the recommendations presented in Section 8.6.4, “Nested Loops,” are followed, then it may be possible
to guarantee that a maximum of one DO loop is active. In this case the HWS is guaranteed to have at |east
one open location, and the LF and NLL bits will correctly indicate the looping status. In this case an ISR
simply pushesthe LA and L C registers upon entering the routine and pops them upon exit. Thisisvery
efficient, as demonstrated in the following code:

; Example of an ISR That Uses the Hardware DO Looping Mechanism

; Assumes that at least one HWS location is free
; Overhead is 5 instruction cycles, 5 instruction words

ISR:
LEA (SP) + ; Save Hardware Looping Resources
MOVE LC,X: (SP)+
MOVE LA,X: (SP)

; (instructions)
DO #7, LABEL ; Example of a DO loop within an ISR
INC A

LABEL:

; (instructions)
POP LA ; Restore Hardware Looping Resources
POP LC
RTI

Note that thisfive-cycle, five-word overhead is not required if the hardware DO loop is not required by the
interrupt service routine. Also note that this overhead is not required if only the hardware REP loop is used
by the ISR.

If thistechnique is used, it isimportant that any ISR that uses hardware DO looping cannot be interrupted
by a maskable interrupt and that any non-maskable | SRs save one location of the HWS if they require
hardware looping.

For ISRswhereit is possible that there are two DO loops currently in progress upon entering the routine, it
is necessary to free up one HWS location as well. Thisis accomplished using the technique described in
Section 8.12, “Freeing One Hardware Stack Location.”

8.6.6 Early Termination of a DO L oop

There are two techniques that can be used to terminate aDO loop early. In the first technique the loop is
terminated such that it continues executing the remainder of the instructions in the loop but will not return
to the top of the loop. In this caseit is best to use the following instruction instead of ENDDO:

MOVE #1,LC

Thisway, the HWS will purgeits value at the correct time, asif there is a nesting of hardware DO loops;
the LC and LA registers will be popped correctly in software.

There is also the case where it is desirable to conditionally break out of the loop immediately without
executing any more instructions in the loop. In this case it is recommended to use the technique shown in
the following code:
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P Technique 1 ------
PUSH LC ; Save outer loop registers if nested loop
PUSH LA
DO #LoopCnt , LABEL
(instructions in loop)
Bcc EXITLP ; 2 Icyc for each iteration
; 3 Icyc if loop terminates when true
; (instructions)
LABEL:
BRA OVER ; 3 additional Icyc for BRA when exiting loop

if normal exit
1 additional Icyc for ENDDO when exiting
loop if exit wvia Bcc

EXITLP : ENDDO

Ne Ne Ne N

OVER:
POP LA ; Restore outer loop registers if nested loop
POP LC
P Technique 2 ------
PUSH LC ; Save outer loop registers if nested loop
PUSH LA
DO #LoopCnt , LABEL
; (instructions)
Bcc OVER ; 3 Icyc for each iteration
ENDDO ; 6 Icyc if loop terminates when false
BRA LABEL
OVER:
(instructions)
LABEL:
POP LA ; Restore outer loop registers if nested loop
POP LC

8.7 Array Indexes

The flexible set of addressing modes on the DSP56800 architecture alow for several different waysto
index into arrays. Array indexing usually involves a base address and an offset from this base. The base
addressisthe address of thefirst location in the array, and the offset indicates the location of the datain the
array. For example, the first value in the array typically has an offset of 0, whereas the fourth element has
an offset of 3. The n" element is aways accessed with an offset of (n - 1).

There aretwo types of arraystypically implemented: global arrays (whose base addressis fixed and known
at assembly time) and local arrays (whose base address may vary as the program is running). Global arrays
that are small in size can benefit from the single-word instruction that directly accesses the first 128
locations of the X data memory, as well as the indexed with short displacement addressing mode.

8.7.1 Global or Fixed Array with a Constant

Thistype of array indexing is performed with the X:#xxxx or X:<aa> addressing mode, where the
assembler adds the base address to the constant offset into the array. Arraysthat are small in size can be
indexed using the X:<aa> addressing mode, saving one program word and one instruction cycle. Itisaso
possible to use the X:(Rn+xxxx) or X:(R2+xx) addressing modes if the base address of the array is stored
inaRn register.
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8.7.2 Global or Fixed Array with a Variable

Thistype of array indexing is performed with the X:(Rn+xxxx), X:(R2+xx), or X:(Rn+N) addressing
mode.

In the first two addressing modes — X:(Rn+xxxx) and X:(R2+xx) — the constant value specifies the base
address of the array, and Rn or R2 specifies the offset into the array. These first two are similar to the
method used by microcontrollers and are useful when only one or two accesses are performed with a
particular base address, because it is not necessary to load aregister with the base address. The X:(R2+xx)
addressing mode executes in one fewer instruction cycle and uses one fewer instruction word than the
X:(Rn+xxxx) addressing mode. It is useful for arrays whose base address is located in the first few
locationsin X data memory.

In the last addressing mode — X:(Rn+N) — Rn isthe base address of the array, and N specifies the offset.
This addressing mode is best for the case where many accesses are to be performed into an array. In this
case the base address is only loaded once into the Rn register and then many accesses can be performed
using the X:(Rn+N) addressing mode. This addressing mode uses a single program word and executes in
two instruction cycles.

8.7.3 Local Array with a Constant

Thistype of array indexing is done with the X:(Rn+xxxx) or X:(R2+xx) addressing mode, where Rn holds
the base address of the array and the constant val ue specifies the constant offset into the array. (It can also
be done with the X:(SP+#xxxx) or X:(SP-#xx) addressing mode, but thisis not as straightforward.) In this
case SP holds the address of the end of the stack frame, and the base address of the array islocated using a
constant offset value from the stack pointer. The constant used to index into thislocal array is added to the
offset of the base address from the stack pointer to access the desired location of an array stored within the
stack frame. Stack frames are discussed in Section 8.8, “Parameters and Local Variables.”

8.7.4 Local Array with aVariable

Thistype of array indexing is done with the X:(Rj+N) or X:(SP+N) addressing mode. It is similar to the
technique described in Section 8.7.3, “Local Array with aConstant,” but, instead of using a constant index,
theregister N holds the variable offset into the array. For the case of X:(SP+N), the N register containsthe
sum of theindex into the array and the offset of the array’ s base address from the stack pointer.

8.7.5 Array with an Incrementing Pointer

Oftenit is desired to sequentially access the elementsin an array. Thistype of array indexing is most often
done with the X:(Rn)+ addressing mode, where Rn isinitialized to the first element of the array of interest
and sequentially advances to each next element in the array by the automatic post-incrementing address
mode. In special casesit is also possible to use X:(Rn+N), where N holds the base address and Rn isthe
incrementing array index that is advanced using an LEA (Rn)+ instruction. The latter is useful whereit is
also necessary to have access to the variable that holds the index into the array, which isheld in the Rn
register.
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8.8 Parametersand Local Variables

The DSP56800 software stack supports structured programming techniques, such as parameter passing to
subroutines and local variables. These techniques can be used for both assembly language programming
and high-level language compilers.

Parameters can be passed to a subroutine by placing these variables on the software stack immediately
before performing a JSR to the subroutine. Placing these variables on the stack isreferred to as building a
“stack frame.” These passed parameters are then accessed in the called subroutines using the stack
addressing modes available on the DSP56800. This is demonstrated in the following example (which
destroys the x0 register):

; Example of Subroutine Call With Passed Parameters
MOVE X:$835,X0 ; Pointer variable to be passed to subroutine
LEA (SP) + ; Push variables onto stack
MOVE X0,X: (SP) +
MOVE X:$21,X0 ; First data variable to be passed to subroutine
MOVE XO0,X: (SP)+ ; Push onto stack
MOVE X:$47,X0 ; Second data variable to be passed to
; subroutine
MOVE XO0,X: (SP) ; Push onto stack
JSR ROUTINE1
POP ; Remove the three passed parameters from
; stack when done

POP
POP
ROUTINEL:
MOVE #5,N ; Allocate room for local variables
LEA (SP) +N
; (instructions)
MOVE X:(SP-9),r0 ; Get pointer variable
MOVE X: (SP-7),B ; Get second data variable
MOVE X:(RO),XO ; Get data pointed to by pointer variable
ADD X0,B
MOVE B,X: (SP-8) ; Store sum in first data variable
; (instructions)
MOVE #-5,N
LEA (SP) +N
RTS

In asimilar manner it is also possible to allocate space and to access variables that are locally used by a
subroutine, referred to as local variables. Thisis done by reserving stack locations above the location that
stores the return address stacked by the JSR instruction. These |ocations are then accessed using the
DSP56800' s stack addressing modes. For the case of local variables, the value of the stack pointer is
updated to accommaodate the local variables. For example, if five local variables are to be allocated, then
the stack pointer isincreased by the value of five to alocate space on the stack for these local variables.
When large numbers of variables are allocated on the stack, it is often more efficient to use the (SP)+N
addressing mode.

Itis possibleto support passed parameters and local variablesfor a subroutine at the same time. In this case
the program first pushes all passed parameters onto the stack (see Figure 8-1) using the technique outlined
in Section 8.5, “Multiple Value Pushes.” Then the JSR instruction is executed, which pushes the return
address and the SR onto the stack. Upon being entered, the subroutine first allocates space for local
variables by updating the SP. Then, both passed parameters and local variables can be accessed with the
stack addressing modes.
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Fourth Local Variable

Third Local Variable
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Status Register
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Third Passed Parameter

Second Passed Parameter
First Passed Parameter
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Figure8-1. Example of a DSP56800 Stack Frame

8.9 Time-Critical DO L oops

Often, aprogram spends most of itstimein time-critical loops. For the efficient execution of these loops, it
isimportant to have an adequate number of registers. However, sometimes the registers already contain
datathat is not necessary for the critical 1oop but must not be lost. In this case the DSP56800 architecture
provides a convenient mechanism for freeing up these registers using the software stack. The programmer
pushes any registers containing values not required in the tight loop, freeing up these registers for use.
After completion of the loop, these registers are popped. An example is shown in the following code.
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MOVE  #S$1234,R3 ; Contents of this register not
required in tight loop
Contents of this register not
required in tight loop

MOVE  #$05AA,A

R

PUSH R3 ; Prepare for tight loop: X0, YO0 are
; unused and available, and RO already
; points to that required for loop

PUSH A0
PUSH Al
PUSH A2

; Enter Section with Tight Loop - R3 and A can now be used by tight loop
MOVE $CO000,R3

CLR A

MOVE X:(RO)+,YO X:(R3)+,X0

REP #32

MAC X0,Y0,A X: (RO) +,YO X: (R3)+,X0

MOVE A,X:(R2)+ ; Store result

POP A2 ; tight loop completed, restore
; borrowed registers

POP Al

POP A0

POP R3

In the preceding example there are four PUSH instruction macrosin arow. For more efficient and compact
code, use the technique outlined in Section 8.5, “Multiple Vaue Pushes.” In certain casesit may also be
possibleto store critical information within the first 64 locations of X datamemory, on the top of the stack,
or in an unused register such as N when an extralocation is required within atight loop itself.

8.10 Interrupts

The interrupt mechanism on the DSP56800 is simple, yet flexible. There are two levels of interrupts:
maskable and non-maskable. All maskable interrupts on the chip can be masked at one spot in the SR.
Likewise, individual peripherals can beindividually masked within one register, within the interrupt
priority register (IPR), or at the peripheral itself. It is beneficial to have asingle register in which all
maskable interrupts can be individually masked. This gives the user the capability to set up interrupt
priorities within software.

When programming interrupts, it is necessary to correctly set up the following tasks:
1. [Initialize and program the peripheral, enabling interrupts within the peripheral.
2. Program the IPR to enable interrupts on that particular interrupt channel.
3. Enableinterruptsin the SR.

8.10.1 Setting Interrupt Prioritiesin Software

This section demonstrates several different styles of coding possible for |SRs on the DSP56800 core. In
counting the number of overhead instruction cycles, it isimportant to remember that the JSR instruction
executes in four instruction cycles when entering an interrupt, and that the RTI instruction now takesfive
instruction cycles to complete.
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8.10.1.1 High Priority or a Small Number of Instructions

During | SRsthat are short, it is recommended that level O interrupts remain disabled. Since the routines are
short, it is not nearly so important to interrupt them, because they are guaranteed to compl ete execution
quickly. Thisis also recommended for | SRs with a very high priority, which should not be interrupted by
some other source.

; DSP56800 core (Interrupts Remain Masked, 9 Overhead Cycles)
JSR ISR1 ; located in interrupt vector table

; Interrupt Service Routine for Short ISR

ISR1:
; (interrupt code)
RTI

8.10.1.2 Many Instructionsof Equal Priority

For ISRs that require a significant number of instruction cyclesto complete, it is possible to reduce the
interrupt servicing overhead if al interrupts can be considered to have the same priority. Thisis shownin
the following generic ISR.

; DSP56800 core (Interrupts Remain Masked, 11 Overhead Cycles)
JSR ISR2 ; located in interrupt vector table

; Interrupt Service Routine for Long ISR
ISR2:
BFCLR #$0200,SR ; re-enable interrupts with new mask

; (interrupt code)
RTI
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8.10.1.3 Many Instructionsand Programmable Priorities

For ISRs that require a significant number of instruction cyclesto complete, it is possible for the user to
till program interrupt prioritiesin software. Thisis shown in the following generic ISR.

; DSP56800 core
JSR ISR3 ; Instr located in Interrupt Vector Table

; Generic ISR - DSP56800 core (20 Overhead Cycles including JSR)

ISR3: ; ISR
LEA (SP) +
MOVE N,X: (SP)+ ; Save “N” register for usage by ISR
MOVE X:IPR,N ; Save interrupted task’s IPR

MOVE N,X: (SP)
MOVE #NEW MASK,X:IPR ; Load NEW MASK - define which can preempt this ISR
BFCLR #$0200,SR ; Re-enable interrupts with new mask

; (interrupt code)

POP N ; Restore interrupted task’s IPR
MOVE N,X:IPR

POP N ; Restore saved register used by ISR
RTI

8.10.2 Hardware Loopingin Interrupt Routines

Since an interrupt can occur at any location in aprogram, it is possible that the HWS used by hardware DO
loops may already be full. If an ISR needs to use the DO looping mechanism, it may be necessary to free
up one location in the HWS. This can be done using the technique outlined in Section 8.12, “Freeing One
Hardware Stack Location.” Alternatively, if it can be guaranteed that the main program will never use
more than one DO loop at atime (that is, no nested loops), it may then be possible for an ISR to simply use
hardware DO loops without using this technique to free up a stack location.

8.10.3 ldentifying System Calls by a Number

In operating systems, system calls are often made by using an SWI instruction when a user’ s task needs
assistance from the operating system. Usually, it is useful to have several different types of system calls,
each identified with anumber. The following code shows how system calls can have an associated number
when an SWI instruction is executed.

MOVE  #TASK NUMBER,N ; Task number associated with system call in N reg
PUSH N ; Push this value on the stack so accessible by 0/S
SWI ; Generate interrupt to return to 0/S
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8.11 Jumpsand JSRsUsing a Register Value

Sometimesit is necessary to perform ajump or a jump to subroutine using the value stored in an on-chip
register instead of using an absolute address. The RTS instruction is used to perform this task because it
takes the value on the software stack and loads it into the program counter, effectively performing ajump.
The register used for the jJump can be any register on the DSC core.

; JMP <register> Operation

; 8 Icyc
LEA (SP) + ; Update SP to point to unused location
; Note: Can use any core register in <register>, e.g. MOVE #LABEL, X0
MOVE <register>,X: (SP)+ ; Push address of target code location
MOVE SR, X: (SP) ; Push SR onto stack last
RTS ; Will return to address specified in <registers and

; correct the SP register to its original value

Jcc <register> Operation
Examples: JEQ, JLE, JNN will use BNE, BGT and BNR respectively as 1lst instr
(Use Bcc instruction whenever possible since it is a single word instruction)
10 Icyc (3 Icyc if condition false)
To execute a BEQ <register>

Ne Ne Ne oNe N

BNE OVER ; Use condition exactly opposite the desired cc

LEA (SP) + ; Update SP to point to unused location

MOVE <register>,X: (SP)+ ; Push address of target code location

MOVE SR, X: (SP) ; Push SR onto stack last

RTS ; Will do a return to the desired target code location

; and correct the SP register to its original value

OVER: ; Start of code segment if BEQ fails (BNE succeeds!)
; (instructions)

; JSR <register> Operation - destroys one register, N

; 11 Icyc
MOVE #NEXT SEGMENT,N ; P address of NEXT SEGMENT
LEA (SP) + ; Update SP to point to unused location

MOVE N,X: (SP)+ ; Push return address onto stack

MOVE SR, X: (SP)+ ; Push SR onto stack

MOVE <registers>,X: (SP)+ ; Push address of subroutine onto stack
MOVE SR, X: (SP) ; Push SR onto stack last

RTS Go to address in top two values on stack and
correct the SP register to its original value
NEXT SEGMENT: ; Segment of code executed after returning from
; P:<registers>
; (instructions)
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8.12 Freeing One Hardware Stack L ocation

There are certain cases where a section of code should use DO looping, but it is not clear whether the HWS
isfull or not. An exampleisan ISR, which may be called when two nested DO loops are in progress. In
these cases it may be desirable to free a single location on the HWS for use by a section of code such asan
ISR. The following code shows how to free one location for an ISR:

; Interrupt Service Routine - Frees Up One HWS Location
; 14 extra Icyc, 12 extra words

ISR

LEA (SP) + ; Push four registers onto the stack
MOVE LA,X: (SP)+ ; Save LA register in case already in loop
MOVE SR, X: (SP)+ ; Save LF bit in SR register...
MOVE LC,X: (SP)+ ; Save LC register...
MOVE HWS,X: (SP) ; Save HWS register...
; (instructions)
DO #3,LABEL
INCW A
LABEL:
; (instructions)
POP LA ; Conditionally restore HWS
BRCLR #3$8000,X: (SP-1) , _OVER
MOVE LA, HWS
_OVER:
POP LC ; Restore LC register from stack
POP ; Toss SR register from stack
POP LA ; Restore LA register from stack
RTI

For ISRs that are maskable, it is better to follow the recommendations outlined in Section 8.6.4, “Nested
Loops,” to reduce the overhead needed for freeing up one HWS location. This greatly simplifies the setup
code required when entering and exiting the I SR.

8.13 Multitasking and the Hardwar e Stack

For multitasking, it is important to be able to save and later restore the hardware DO loop stack (HWS).
This section shows code that will perform the save and restore operations. When reading the HWS, two
locations of the stack are read as well as the current state of the HWS, contained in the NL and LF bits of
the OMR and SR, respectively. Each read of the HWS register pops the HWS one value, and each write of
the HWS register pushes the HWS one value.
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8.13.1 Savingthe Hardware Stack

An example of reading the entire contents of the HWS to X memory is shown in the following code:

; Save HWS
; 4 Icyc, 4 words
MOVE SR,X:(R2)+ Read HWS pointer’s MSB (LF) and

save to memory

Read first stack location and
save in X memory

Read HWS pointer’s MSB (NL) and
save to memory

Read second stack location and
save in X memory

MOVE HWS,X: (R2)+
MOVE SR, X: (R2)+

MOVE HWS,X: (R2)+

Ne Ne Ne o Ne o Ne oS oNe S

8.13.2 Restoring the Hardwar e Stack

When restoring the HWS, it is first necessary that the HWS be empty. If thisis unclear, performing two
reads from the HWS will ensure that the stack is empty. Once thisistrue, then the HWS can be restored.
An example of restoring the contents of the HWS from X data memory follows:

; Restore HWS, 10 words, 14 Icyc worst case
; Assumes R2 points to “stored” HWS
; Destroys R2 register

MOVE HWS,LA ; First read of HWS ensures NL bit is cleared
MOVE HWS,LA ; Second read of HWS ensures LF bit is cleared
BRCLR #$8000,X: (R2),0VER ; If LF bit set, then push a value onto HWS

LEA (R2) +
MOVE X:(R2)+,HWS ; Puts one value onto stack and sets LF bit
BRCLR #$8000,X: (R2),0VER
; If NL bit set, then push a value onto HWS
LEA R2) +
MOVE X: (R2) +,HWS
OVER:
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Chapter 9
JTAG and On-Chip Emulation (OnCE™)

The DSP56800 family includes extensive integrated test and debug support. Two modules, the On-Chip
Emulation (OnCE) module and the test access port (TAP, commonly called the JTAG port) provide board-
and chip-level testing and software debugging capability. Both are accessed through a common
JTAG/ONCE interface. Using these modules allows the user to insert the DSC chip into atarget system
while retaining debug control. This capability is especially important for devices without an external bus,
since it eliminates the need for a costly cable to bring out the footprint of the chip, as required by a
traditional emulator system.

The OnCE port is a Freescal e-designed modul e used to debug application software used with the chip. The
port is a separate on-chip block that allows non-intrusive interaction with the DSC and is accessible
through the pins of the JTAG interface. The OnCE port makes it possible to examine contents of registers,
memory, or on-chip peripheralsin a special debug environment. No user-accessible resources need be
sacrificed to perform debugging operations.

The JTAG port conforms to the |EEE Standard Test Access Port and Boundary-Scan Architecture
specification (IEEE 1149.1a-1993) as defined by the Joint Test Action Group (JTAG). The JTAG module
uses a boundary scan technique to test the interconnections between integrated circuits after they are
assembled onto a printed circuit board. Using a boundary scan allows atester to observe and control signal
levels at each component pin through a special register coupled to each pin, called a boundary scan cell.
Thisisimportant for testing continuity and determining if pins are stuck at a one or zero level.

This chapter presents an overview of the capabilities of the JTAG and OnCE modules. Since their
operation is highly dependent upon the architecture of a specific DSP56800 device, the exact
implementation is necessarily device dependent. For more complete information on interfacing, the debug
and test commands available, and other implementation details, consult the appropriate device' s user’s
manual.

9.1 Combined JTAG and OnCE Interface

The JTAG and OnCE modules are tightly coupled. The JTAG port provides the interface for both modules
and handles communications with host development and test systems. Figure 9-1 on page 9-2 shows a
block diagram of the JTAG/OnCE modules and external host interface.
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As aready noted, the JTAG module is the master. It enables interaction with the debug services provided
by the OnCE, and its external seria interface is used by the OnCE port for sending and receiving
debugging commands and data.

9.2 JTAG Port

Problems associated with testing high-density circuit boards have led to the devel opment of a proposed
standard under the sponsorship of the Test Technology Committee of IEEE and the Joint Test Action
Group (JTAG). Theresulting standard, called the IEEE Sandard Test Access Port and Boundary-Scan
Architecture, specifies industry-standard, in-circuit device testing and diagnosis. The DSP56800 family
provides a dedicated test access port (TAP) that is fully compatible with this standard, commonly referred

to asthe “JTAG port.”

This section provides an overview of the capabilities of the JTAG port as implemented on the DSP56800.
Information provided here isintended to supplement the supporting |EEE 1149.1a-1993 document, which
outlines the internal details, applications, and overall methodology of the standard. Specific details on the
implementation of the JTAG port for a given DSP56800-based device are provided in that device' suser’s

manual.

9-2

DSP56800 Family Manual

Freescal e Semiconductor



JTAG Port

9.2.1 JTAG Capabilities
The DSP56800 JTAG port has the following capabilities:

Performing boundary scan operations to test circuit-board electrical continuity

Sampling the DSP56800-based device system pins during operation and transparently shifting out
the result in the boundary scan register; prel oading values to output pins prior to performing a
boundary scan operation

Querying identification information (manufacturer, part number, and version) from a
DSP56800-based device

Adding aweak pull-up device on all input signals to cause all open inputsto report alogic 1 and to
force a predictable internal state while performing external boundary scan operations

Disabling the output drive to pins during circuit-board testing

Forcing test data onto the outputs of a DSP56800-based device

Providing a means of accessing the OnCE controller and circuits to control atarget system
Providing a means of entering the debug mode of operation

Bypassing the DSP56800 core for a given circuit-board test by effectively reducing the boundary
scan register to asingle cell

Section 9.2.2, “JTAG Port Architecture,” provides an overview of the port’s architecture and commands.
For additional information on the JTAG port’s implementation and command set, see the appropriate
DSP56800-based device's user’s manual.

9.2.2 JTAG Port Architecture

The JTAG module consists of the logic necessary to support boundary scan testing as defined in the IEEE
specification. Although tightly coupled to the DSP56800’ s core logic, it is an independent module, and,
when disabled, it is guaranteed to have no impact on the function of the core.

The JTAG port consists of the following components:

Serial communications interface
Command decoder and interpreter
Boundary scan register

ID register

These units, and the overall OnCE port architecture, are shown in Figure 9-2 on page 9-4.

Freescal e Semiconductor JTAG and On-Chip Emulation (OnCE™) 9-3



JTAG and On-Chip Emulation (OnCE™)

ﬂ P>  To OnCE Port
TDI ——

Instruction Register

Decode

Yyvyy h

——] Boundary Scan Register —

ID Register — >

—> Bypass Register —

ol : ~

TAP
Controller

From ONCE Port

vy

TCK

JTAG Reset

AA0119

Figure9-2. JTAG Block Diagram

The seria interface supports communications with the host development or test system. It isimplemented
asaseria interface to occupy as few external pins on the device as possible. Consult the device' s user’s
manual for afull description of the interface signals. All JTAG and OnCE commands and data are sent
over thisinterface from the host system. The JTAG interface is also used by the OnCE port when it is
active. In this mode, the JTAG acts as the OnCE port’ sinterface controller, and transparently passes all
communications through to the OnCE port.

Commands sent to the JTAG modul e are decoded and processed by the command decoder. Commands for
the JTAG port are completely independent from the DSP56800 instruction set, and are executed in parallel
by the JTAG logic.

Registersin the JTAG module hold chip identification information and the information gathered by
boundary scan operations. The ID register contains the industry-standard Freescale identification
information, which is unique for each Freescale DSC. The boundary scan register holds a snapshot of the
device' s pins when sampled by the JTAG port.

9.3 OnCE Port

The OnCE port provides emulation and debug capability directly on the chip, eliminating the need for
expensive and complicated stand-alone in-circuit emulators (1CES). The OnCE port permits full-speed,
non-intrusive emulation on auser’ starget system. This section describes the OnCE emulation environment
for use in debugging real-time embedded applications.

The OnCE port has an associated interrupt vector in the DSP56800 interrupt vector table. The OnCE
exception trap is available to the user so that when a debug event (breakpoint or trace occurrence) is
detected, alevel 1 non-maskable interrupt can be generated and the program can initiate the appropriate
handler routine.
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As emulation capabilities are necessarily tied to the particular implementation of a DSP56800-based
device, the appropriate device' s user’s manual should be consulted for compl ete details on implementation
and supported functions.

9.3.1 OnCE Port Capabilities

The capabilities of the OnCE port include the following:
* Interrupting and breaking into debug mode on a program memory address
» Interrupting and breaking into debug mode on a data memory address (read, write, or access)
* Interrupting and breaking into debug mode on an on-chip peripheral register access
» Entering debug mode using a microprocessor instruction
e Examining or modifying the contents of any core or memory-mapped peripheral register
» Examining or modifying any desired sections of program or data memory
»  Full-speed stepping on one or more instructions (up to 256)
» Tracing one or more instructions
e Saving or restoring the current state of the chip’s pipeline
» Displaying the contents of the real-time instruction trace buffer
* Returning to user mode from debug mode

Depending on the implementation for a particular DSP56800-based device, additional debugging and
emulation capabilities may be provided. Consult the user’s manual for the device in question for more
information.

9.3.2 OnCE Port Architecture

The OnCE port module is composed of four different sub-modules, each of which performs a different
task:

» Command, status, and control
» Breakpoint and trace
* Pipeline save and restore
* FIFO history buffer
These units, and the overall once port architecture, are shown in Figure 9-3 on page 9-6.
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Figure 9-3. OnCE Block Diagram

Together, these sub-modules provide a full-featured emulation and debug environment. Communication
with the OnCE port module is handled viathe JTAG port and thus may be considered the primary
communications sub-module for the OnCE port, although it operates independently. The operations of the
OnCE port occur independently of the main DSP56800 core logic, and require no core resources.
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OnCE Port

9.3.2.1 Command, Status, and Control

The command, status and control portion of the OnCE port module handles the processing of emulation
and debugging commands from a host development system. Communications with a host system are
provided by the JTAG port module, and are passed transparently through to thislogic, which isresponsible
for coordinating all emulation and debugging activity.

As previously noted, all emulation and debug processing takes place independently of the main DSP56800
processor core. Thisallows for instructions to be executed in debug mode at full speed, without any
overhead introduced by the debugging logic.

9.3.2.2 Breakpoint and Trace

The OnCE port module includes address-comparison hardware for setting breakpoints on program or data
memory accesses. This allows breakpoints to be set on program FLASH as well as program RAM
locations. Breakpoints can be programmed for reads, writes, program fetches, or memory accesses.
Breakpoints are also possible during on-chip peripheral register accesses, since these are implemented as
memory-mapped registersin the X data space.

Full-speed instruction stepping capability is also provided. Up to 256 instructions can be executed at full
speed before the processor core is halted and the debug processing state is re-entered. This allows the user
to single step through a program or execute whole functions at atime.

9.3.2.3 Pipeline Save and Restore

To resume normal chip activity when the chip is returning from the debug mode, the previous chip pipeline
state must be reconstructed. The OnCE port module provides logic to correctly save and restore the
pipeline state when entering and exiting debug mode. Pipeline saves and restores operate transparently to
the user, although the pipeline state may be examined while in debug mode if desired.

9.3.24 FIFO History Buffer

To ease debugging activity and to help keep track of program flow, aread-only FIFO buffer is provided
that tracks the execution history of an application. It stores the address of the instruction currently being
executed by the processor core, as well as the addresses of the last five execution flow instructions.

The FIFO history buffer isintended to provide a snapshot of the recent execution history of the processor
core. To give alarger picture of instruction flow, not all instructions are recorded in the buffer. Only the
addresses of the following execution flow instructions are stored:

BRA JMP
JSR Bcc (with condition true)

Jec (with condition true)

Sequential program flow can be assumed between recorded instructions, so it is possible for the user to
reconstruct the program flow extending back through quite alarge number of instructions. To complete the
execution history, the first location of the FIFO always holds the address of the last executed instruction,
regardless of whether or not it caused a change of program flow.
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Appendix A
| nstruction Set Detalls

This appendix contains detailed information about each instruction of the DSP56800 instruction set. It
contains sections on notation, addressing modes, and condition codes. Also included is a section on
instruction timing, which shows the number of program words and execution time of each instruction.
Finally, the instruction set summary, which shows the syntax of all allowed DSP56800 instructions, is
presented.

A.1 Notation

Each instruction description contains notation used to abbreviate certain operands and operations. The
symbols and their respective descriptions are listed in Table A-1 through Table A-7 on page A-4.

Table A-1 shows the register set available for the most important move instructions. Sometimes the
register field is broken into two different fields — one where the register is used as a source and the other
where it is used as a destination. Thisisimportant because a different notation is used when an
accumulator is being stored without saturation. In addition, see the register fieldsin Table A-2 on

page A-2, which are al'so used in move instructions as sources and destinations within the AGU.

Table A-1. Register Fieldsfor General-Purpose Writes and Reads

Register Field Registersin ThisField Comments

HHH A,B,Al, Bl Seven data AL U registers— two accumul ators, two 16-bit M SP portions of
X0,Y0,Y1 the accumulators and three 16-bit data registers

HHHH A, B,Al B1 Seven data ALU and five AGU registers
X0,Y0,Y1
RO-R3, N

DDDDD A, A2, A1, A0 All CPU registers
B, B2, B1, BO

Y1,YO0, X0

RO, R1, R2, R3
N, SP
MO1

OMR, SR
LA,LC
HWS
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Table A-2 shows the register set available for use as pointers in address-register-indirect addressing
modes. The most common fields used in this table are Rn and Rj. This table also shows the notation used
for AGU registersin AGU arithmetic operations.

Table A-2. Address Generation Unit (AGU) Registers

Register Field Registersin ThisField Comments
Rn RO-R3 Five AGU registers available as pointers for addressing and as sources and
Sk destinations for move instructions
Rj RO, R1, R2, R3 Four pointer registers available as pointers for addressing
N N One index register available only for indexed addressing modes
M01 M01 One modifier register

Table A-3 shows the register set available for use in data ALU arithmetic operations. The most common
field used in thistableis FDD.

Table A-3. Data ALU Registers

Register Field Registersin ThisField Comments
FDD A B Five data ALU registers — two 36-bit accumulators and three 16-bit data
X0,Y0,Y1 registers accessible during data ALU operations
Contains the contents of the F and DD register fields
F1DD Al,B1 Five data ALU registers — two 16-bit MSP portions of the
X0,Y0,Y1 accumulators and three 16-bit data registers accessible during data ALU
operations
DD X0,Y0, Y1 Three 16-bit data registers
F A,B Two 36-bit accumulators accessible during parallel move instructions and
some data ALU operations
~F,F ~F,F refersto any of two valid accumulator combinations: A,B or B,A
F1 Al,B1 The 16-bit M SP portion of two accumulators accessible as source operands
in parallel move instructions

Address operands used in the instruction field sections of the instruction descriptions are given in
Table A-4. Addressing mode operators that are accepted by the assembler for specifying a specific

addressing mode are shown in Table A-5.

A-2
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Table A-4. Address Operands

Symbol Description
ea Effective address
XXXX Absolute address (16 hits) - X:xxxx
pp 1/0 short address (6 bits, one-extended)
aa Absolute address (6 hits, zero-extended)
<. Specifies the contents of the specified address
X: X memory reference
P Program memory reference

Table A-5. Addressing Mode Operators

Symbol

Description

<<

1/0 short or absolute short addressing mode force operator

>

L ong addressing mode force operator

#

Immediate addressing mode operator

#>

Immediate long addressing mode force operator

H#<

Immediate short addressing mode force operator

Miscellaneous operand notation, including generic source and destination operands and immediate data
specifiers, are summarized in Table A-6.

Table A-6. Miscellaneous Operands

Symbol Description

S, Sn Source operand register

D, Dn Destination operand register

#XX Immediate short data (7 bits for MOVEI, 6 bits for DO/REP)

HXXXX Immediate data (16 bits)

<MASK8> 8-bit mask value
#ii00 implies 8-bit immediate data mask in the upper byte
#00ii implies 8-bit immediate data mask in the lower byte

<MASK16> 16-bit mask value

<OFFSET7> 7-hit signed PC-relative offset

<ABS16> 16-bit absolute address

Freescale Semiconductor
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Table A-7. Other Symbols

Symbol Description
O Optional letter, operand, or operation1
(...) Any arithmetic or logical instruction that allows parallel moves
EXT Extension register portion of an accumulator (A2 or B2)
LSB Least significant bit
LSP Least significant portion of an accumulator (A0 or BO)
LSW L east significant word
MSB Most significant bit
MSP Most significant portion of an accumulator (A1 or B1)
MSW Most significant word
r Rounding constant
LIM Limiting when reading adata ALU accumulator
<op> Generic instruction (specifically defined within each section)

1. Forinstruction names that contain parentheses, such as DEC(W) or IMPY (16), the portion
within the parenthesesis optional.
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A.2 Programming Model

The registersin the DSP56800 core programming model are shown in Figure A-1.

Data Arithmetic Logic Unit
Data ALU Input Registers
31 16 15 0
X0 Y Y1 YO
15 0 15 0 15 0
Accumulator Registers
35 3231 16 15 0
A A2 Al A0
3 0 15 015 0
35 3231 16 15 0
B B2 B1 BO
3 0 15 0 15 0
Address Generation Unit
15 0
RO
R1
R2
R3 15 0 15
SP N MO1
Pointer Offset Modifier
Registers Register Register
Program Controller Unit
15 0 15 8 7 0 15
PC MR CCR OMR
Program Status Operating Mode
Counter Register (SR) Register
15 0 15 0 15
LA
Hardware Stack (HWS) Loop Address
Software Stack 12
(Located in X Memory)
LC
Loop Counter
AA0007
Figure A-1. DSP56800 Core Programming Model
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A.3 Addressing Modes

The addressing modes are grouped into three categories:
* Register direct — directly references the registers on the chip
» Addressregister indirect — uses an address register as a pointer to reference alocation in memory
*  Specia — includes direct addressing, extended addressing, and immediate data

These addressing modes are described in the following discussion and summarized in Table 4-5 on
page 4-9.

All address calculations are performed in the address ALU to minimize execution time and loop overhead.
Addressing modes specify whether the operands are in registers, in memory, or in the instruction itself
(such asimmediate data) and provide the specific address of the operands.

The register-direct addressing mode can be subclassified according to the specific register addressed. The
dataregistersinclude X0, Y1, YO, Y, A2, Al, AQ, B2, B1, B0, A, and B. The control registersinclude
HWS, LA, LC, OMR, SR, CCR, and MR. The address registers include RO, R1, R2, R3, SP, N, and M01.

Address-register-indirect modes use an address register Rj (RO-R3) or the stack pointer (SP) to point to
locationsin X and P memory. The contents of the Rn is the effective address (ea) of the specified operand,
except in the indexed-by-offset or indexed-by-displacement mode, where the effective address (ed) is
(Rn+N) or (Rn+xxxx), respectively. Address-register-indirect modes use an address modifier register MO1
to specify the type of arithmetic to be used to update the address register RO and optionally R1. R2 and R3
always use linear arithmetic. If an addressing mode specifies the address offset register (N), it is used to
update the corresponding Rn. This unique implementation is extremely powerful and alows the user to
easily address awide variety of DSC-oriented data structures. All address-register-indirect modes use at
least one Rn and sometimes N and the modifier register (M01), and the double X memory read uses two
address registers, one for the first X memory read and one for the second X memory read. Only R3 can be
used for this second X memory read, and R3 is always updated using linear arithmetic.

The special addressing modes include immediate and absol ute addressing modes as well asimplied
references to the program counter (PC), the software stack, the hardware stack (HWS), and the program
(P) memory.

The addressing mode selected in the instruction word is further specified by the contents of the address
modifier register MO1. The modifier selects whether linear or modulo arithmetic is performed. The
programming of this register is summarized in Table 4-9 on page 4-27.

A.4 Condition Code Computation

The bitsin the Condition Code Register (CCR) are set to reflect the status of the processor after certain
instructions are executed. The CCR bits are affected by data ALU operations, bit-field manipulation
instructions, the TSTW instruction, parallel move operations, and by instructionsthat directly referencethe
CCR register.

In addition, the computation of some condition code bits is affected by the OMR'’ s Saturation (SA) and
condition code (CC) bits. The SA bit enables the MAC Output Limiter, which can ater the results of
computations and thus the condition code bits affected. The CC bit specifies whether condition codes are
generated using the information in the extension register. See Section A.4.2, “Effects of the Operating
Mode Register’'s SA Bit,” and Section A.4.3, “Effects of the OMR’s CC Bit,” for more information.
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A.4.1 The Condition Code Bits

The DSP56800 family defines eight condition code bits, which are contained in the lower-order 8 bits of
the Status Register (SR) as follows:

- MR - CCR '
SR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Status Register
Reset = $0300 LF * * * * * 11 10 Sz L E U N z \Y C
Read/Write

LF — Loop Flag

11,10 — Interrupt Mask
SZ — Size

L — Limit

E — Extension

U — Unnormalized

N — Negative
Z — Zero

V — Overflow
C — Carry

* Indicates reserved bits, read as zero and should be written with zero for future compatibility

Figure A-2. Status Register (SR)

TheC,V, Z, N, U, and E bits are true condition code bits that reflect the condition of the result of adata
ALU operation. These condition code bits are not affected by address ALU calculations or by data
transfers over the CGDB. TheN, Z, and V condition code bits are updated by the TSTW instruction, which
can operate on both memory and registers. The L bit isalatching overflow bit that indicates that an
overflow has occurred in the data AL U or that limiting has occurred when moving an accumulator register
to memory. The SZ bit is alatching bit that indicates the size of an accumulator when it is moved to data
memory.

A4.1.1 Size (SZ)— Bit7

The SZ bit is set only when moving one of the two accumulators (A or B) to datamemory. It is set if,
during thismove, bits 30 and 29 of the specified accumulator are not the same — that is, not 00 or 11 — as
follows:

SZ = SZ | (Bit 30 @ Bit 29)

SZ isnot affected otherwise. Note that the SZ bit islatched onceitisset — it isonly cleared by a processor
reset or an instruction that explicitly clearsit.

SZ isnot affected by the OMR’s CC or SA hits.
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A.4.1.2 Limit (L) — Bit 6

TheL bit isset to indicate that one of two conditions has occurred: an overflow has occurredinadata ALU
operation (see Section A.4.1.7, “Overflow (V) — Bit 1,” on page A-10), or limiting has occurred when
moving one of the two accumulators (A or B) with amove or paralel moveinstruction. L is not affected
otherwise.

TheL bitislatched onceit is set; it is cleared only by a processor reset or an instruction that explicitly
clearsit. The complete formulafor calculating L is the following:

L =L |V | (limiting due to amove)

L isnot affected by the OMR’s CC or SA bits. Note, however, that the V bit is affected by both the CC and
SA bits. Asaresult, the L bit can beindirectly affected by these two control bits.

NOTE:

The TFR instruction performs a register-to-register transfer and is not
considered a“move” instruction in terms of the preceding discussion. The
L bit will therefore not be set due to the register-to-register move, even if
SA is set and saturation occurs. The TFR instruction can set the L bit if it
has a parallel move and if limiting occursin that parallel move.

A.4.1.3 Extensionin Use (E) —Bit5

The E bit is updated based on the result of adata ALU operation to indicate whether the MSP and L SP of
the result contain all of the significant bits, or if the extension bits are needed to express the result. If the E
bit is clear, the MSP and L SP contain all the significant bits — the high-order bits represent only sign
extension.

Based on the size of the result or destination, the E bit is calculated as follows:
For 20- and 36-bit resultsor destinations:

E iscleared if the upper 5 bits of the result are 00000 or 11111. E is set otherwise.
For 16-bit resultsor destinations:

If one of the operandsislocated in X0, YO, or Y1, or comes from memory, the valueisfirst sign
extended. Sign extension is also performed when the source operand is located in an accumulator.
If one of the operandsis 5-bit immediate data, that value isfirst zero extended. A 20-bit arithmetic
operation is then performed, where the result is located in the lowest 16 bits. E is cleared if all of
the upper 5 bits of the 20-bit result are 00000 or 11111, and is set otherwise.

For 32-bit resultsor destinations:

If one of the operands comes from memory or the Y register, or is 16-bit immediate data, it isfirst
sign extended. Sign extension is also performed when the source operand islocated in an
accumulator. If one of the operandsis 5-bit immediate data, it isfirst zero extended. A 36-bit
arithmetic operation is then performed, where the long result islocated in the lowest 32 bits. E is
cleared if al of the upper 5 bits of the result are 00000 or 11111 and is set otherwise.

E is not affected by the OMR’s CC bit.
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NOTE:

When the SA bit in the OMR register is set to one, the E bit is set based on
the result before passing through the MAC Output Limiter. If SA is set to
one and saturation does occur in the MAC Output Limiter, this can result
in the E bit being set, even though the result is saturated to a value where
the extension portion is not in use.

A.4.1.4 Unnormalized (U) — Bit 4

The U bit is updated under the following conditions. If the SA bit in the OMR is set to one, thisbit is
cleared if saturation occursin the MAC Output Limiter. If the SA bit is zero or no saturation occurs, U is
set if the two M SBs of the MSP of the result are the same following a data ALU operation; it is cleared
otherwise. The computation of U varies depending on the size of the operation’ s destination or result.

For 20-, 32-, and 36-bit destinations or results, U is computed according to the following formula (32-bit
destinations are first extended as described for the E bit):

U = ~(Bit 31 ® Bit 30)

Sixteen-bit destinations are first extended as described for the E bit. Then U is computed as follows:
U = ~(Bit 15 @ Bit 14)

The U hit is not affected by the OMR’s CC hit.

A.4.1.5 Negative (N) —Bit 3

The N bit is updated based on the result of adata ALU operation. In general, it reflects the sign bit (MSB)
of the result, according to the following rules:

For 20- or 36-bit results:

N = bit 35 for A or B (bit 31 if the OMR’s CC hit is set to one)
N =bit 15for Y1, YO, or X0

For 32-bit results:

N =hit 31 for A, B, or Y (the OMR’s CC hit has no effect)
N =hbit 15for Y1, YO, or X0

For 16-bit results:

N =hit 31 for A, B, or Y (the OMR’s CC hit has no effect)
N = bit 15 for 16-bit destination

When the SA bit in the OMR register is set to one, the N bit is set based on the result before passing
through the MAC Output Limiter.

For the ASRAC and LSRAC instructions, the N hit is calculated differently based on the SA bit in the
OMR register. When the SA bit is zero and the destination is one of the accumulators, the N bit is obtained
from bit 35. When SA is one and the destination is one of the accumulators, the N bit is set based on bit 31
of the result before passing through the MAC output limiter.

For the IMPY instruction, a 31-bit integer product is calculated internally to the data ALU, and the lowest
16 bits of this product are stored in the destination register. When SA isone or CCisone, the N hitisset to
the valuein bit 30 of thisinternally computed result. When SA is zero and CC is zero, the N bit is set to the
valuein bit 15 of thisinternally computed result. These two values are identical except in the case where
overflow occurs (that is, the result islarger than and will not fit in 16 bits).
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For the ASLL instruction, if the CC hit is set, the N bit is always cleared. If CCis0, the N bit is set
according to the standard definition outlined in the preceding discussion.

A.4.1.6 Zero (Z)—Bit 2

The Z bit isupdated based on the result of adata ALU operation. Z is set if the result of an operation is zero
—that is, all significant bits are set to zero. It is cleared otherwise.

The number of bits used to compute the value for Z is determined by the size of the result and whether or
not the OMR’s CC bit is set:

For 36-bit results:
Z isset if bits 35to 0 of the result are dl zero, or bits 31 to 0 if the OMR’s CC hit is set.
For 32-bit results:

Zissetif bits31to 0 of theresult are all zero. It is set using bits 15 to 0 of theresult if Y1, YO, or
X0 isthe destination.

For 20-bit results:
Zissetif bits35to 16 of the result are dl zero, or bits 31 to 16 if the OMR’'s CC bit is set.
For 16-bit results:

Z issetif bits 31 to 16 of theresult are dl zero for A, B, Y; it isset if bits 15 to 0 of the result are
all zero for 16-bit destinations.

Z isnot affected by the OMR'’s SA hit.

A.4.1.7 Overflow (V) —Bit 1

TheV bit is updated under the following conditions. If the SA bit in the OMR is set to one, V is set when
saturation occursin the MAC Output Limiter. If the SA bit is zero or no saturation occurs, it is set when an
arithmetic overflow occurs as the result of adata ALU operation. Overflow occurs when the carry into the
result’s MSB is not equal to the carry out of the M SB, thus changing the sign of the value. The result of the
ALU operation is therefore not representable in the destination — the result has overflowed. V is cleared
when overflow does not occur.

In general, overflow is calculated based on the size of the result or destination of the operation. When the
CC hit inthe OMR is set, however, overflow is determined based on the 32-bit result for what would
otherwise be 36-hit results. The sameistrue for 20-bit results; when the CC hit is set, overflow is
determined based on the 16-bit result.

For the IMPY instruction, V is set if the computed result does not fit in 16 bits and is cleared otherwise.
The SA bit has no effect in this case.

A.4.1.8 Carry (C)—Bit0

The C bit is updated based on the result of adata ALU operation. C is set either if acarry is generated out
of the most significant bit (M SB) of the result for an addition, or if aborrow is generated in a subtraction.
Ciscleared otherwise.

For 20- or 36-hit results, the carry or borrow is generated out of bit 35. For 32-bit results, the carry or
borrow is generated out of bit 31. The carry or borrow is generated out of bit 15 for 16-bit results.

C isnot affected by the OMR’s CC or SA hits.
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A.4.2 Effects of the Operating Mode Register’s SA Bit

The SA bit in the Operating Mode Register (OMR) can affect the computation of certain condition code
bits. This bit enables the MAC Output Limiter within the data ALU. When enabled, the results of many
operations are limited to fit with 32 bits, the extension portion containing only sign information. This
limiting operation has both direct and indirect effects on the way condition codes are computed.

The SA bit directly affects the following condition code bits:
U —cleared if saturation occursin the MAC Output Limiter
eV — set when saturation occursin the MAC Output Limiter

The remaining bits in the Condition Code Register are not affected by the SA bit, with the following
exceptions:

L — may beindirectly affected through effects on the V hit
N — affected only by the ASRAC, LSRAC, and IMPY instructions
o C— affected only by the ASL instruction

The value of the SA bit is designed not to affect condition code computation for the TSTW instruction.
Only the U condition code bit is affected by the SA bit for the CMP instruction. These instructions operate
independently of the CC bit and correctly generate both signed and unsigned condition codes.

The SA bit only affects operations in the data ALU, not operations performed in other blocks. These
include move instructions, bit-manipulation instructions, and address cal culations performed by the AGU.

NOTE:

When SA is set to one for an application, condition codes are not aways
set in an intuitive manner. It is best to examine the instruction details to
determine the effect on condition codes when SA is one. See Section A.7,
“Instruction Descriptions.”

A.4.3 Effects of the OMR’s CC Bit

The CC bit inthe OMR may affect the computation of the condition code bits. The CC hit establishes how
many of the bits of an arithmetic or logic operation result are used when cal culating condition codes.
Specificaly:

*  When CC =0, theresult isinterpreted as 36 bits with avalid extension portion.
*  When CC =1, theresult isinterpreted as 32 bits with the extension portion ignored.

Signed values can be computed in both cases, but computation of unsigned values must be performed with
the CC bit set to one. Without setting CC to one prior to executing the TST and CMP instructions, the HI,
HS, LO, and LS branch/jump conditions cannot be used.

When the CC bit is set, the following condition code bits are affected:
* V — set based on the MSB of the result’s MSP portion
e Z—setusing only the MSP and L SP portions of the result

The remaining bits in the Condition Code Register are not affected by the CC hit, with the following
exceptions:

* L — may beindirectly affected through effects on the V hit
N — affected only by the ASRAC, LSRAC, IMPY, and ASLL instructions
o C— affected only by the ASL instruction
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The value of the CC bit does not affect condition code computation for the TSTW instruction. These
instruction operatesindependently of the CC bit and correctly generate both signed and unsigned condition
codes.

The CC bit only affects operationsin the data ALU, not operations performed in other blocks. These
include move instructions, bit-manipulation instructions, and address calculations performed by the AGU.

A.4.4 Condition Code Summary by Instruction

Table A-9 provides a detailed view of the condition codes affected by each instruction, and the
circumstances under which each condition code is set or cleared. Table A-8 describes the notation used.
Itemsin the “Notes’ column of Table A-9 are explained immediately following the table on page A-15.

Table A-8. Notation Used for the Condition Code Summary Table

Notation Description
* Set by the result of the operation according to the standard definition.
— Not affected by the operation.
*16 Set according to the standard definition for 16-bit results.
*32 Set according to the standard definition for 32-bit results.
*36 Set according to the standard definition for 36-bit results.
*A Set by the result of the operation according to the size of destination.
*B Set by the result of the operation according to the size of destination.

=0 Cleared.

=1 Set.

? Set according to the special computation defined for the operation.

(number) Set according to the special computation defined by the note with the corresponding number. The notes
may be found immediately after Table A-9.

C L bit can be set if overflow has occurred in result.

T L bit can be set if limiting occurs when reading an accumulator during a parallel move or by theinstruction
itself. An example of the latter caseisBFCHG #$8000, A, which must first read the A accumul ator
before performing the bit-manipulation operation.

CT L bit can be set if overflow has occurred in the result or if limiting occurs when an accumulator is being
read.

The condition code computation shown in Table A-9 may differ from that defined in the opcode
descriptions; see Section A.7, “Instruction Descriptions.” Thisindicates that the standard definition may be
used to generate the specific condition code result. For example, the Z flag computation for the CLR
instruction is shown as the standard definition, while the opcode description indicates that the Z flag is
always set. Table A-9 gives the chip implementation viewpoint, while the opcode descriptions give the
user viewpoint.
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The“ Comments’ column in the tableis also used to report if any of the upper bitsin the status register are
modified. These are not status bits because they do not lie in the status portion of the status register, but
rather in the control portion. Sometimes these bits are also affected by instructions. Examples include the
interrupt mask bits, 11 and 10, and the looping bits, LF and NL (NL liesin the OMR register).

Thefollowing instruction mnemonics are not found in Table A-9: ANDC, EORC, NOTC and ORC. Thisis

because each of theseis an alias for another instruction and not an instruction in its own right. To
determine the condition code calculation for each of these, determine the instructions to which these

mnemonics are mapped (see Section 6.5.1, “ANDC, EORC, ORC, and NOTC Aliases,” on page 6-11) and
look at the condition code information for the corresponding real instructions.

Table A-9. Condition Code Summary

Instruction Z L E U N 4 \Y, C Comments
ABS * CT *36 *36 *36 *36 *36 —
ADC — C *36 | *36 | *36 | *36 | *36 | *36
ADD * CT *A *A *A *A *A *A
AND — — — — *16 *16 =0 —
ASL * CT | *A | *A | *A | *A | 2
ASLL — — | = — @ | *32 | — —
ASR * T *A *A *A *A =0 ©)]

ASRAC — — — — (12) | *36 — —
ASRR — — — — *32 *32 — —
Bcc — — — — — — — —
BFCHG — T — | - | =] — | ®
BFCLR — T — | - | — | — — | @
BFSET — T — | - | =] — | ®
BFTSTH — T | — | — ]| =] =] —|®
BFTSTL — T — | = | = — — (5)
BRA — — | - - | = | — — —
BRCLR — T — | = | = — — (5)
BRSET — T — | = = =] =] @®
CLR * CT *36 *36 *36 *36 *36 — Never overflows
CMP * CT *A *A *A *A *A *A
DEBUG — - = | = — — — —
DEC(W) * CT | *B | *B | *B | *B | *B | *B
DIV — c — | = | = — (1) (6)
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Table A-9.

Condition Code Summary (Continued)

Instruction Sz L E U N z \Y, C Comments
DO — T — — — — — — AffectsLF, NL bits
ENDDO — — — — — — — — Condition code not affected
EOR — — — — *16 *16 =0 —
ILLEGAL — — — — — — — — Sets|1, 10 bitsin SR
IMPY 16 — C — — | @) | *16 | 11) | —
INCW * CT *B *B *B *B *B *B
Jcc — — — — — — — —
MP — R e e B e I
JSR — — — — — — — —
LEA — — | = — — — — —
LSL — — | = — | *16 | *16 | =0 7
LSLL — — — — *32 *32 — —
LSR — — | = — | *16 | *16 | =0 (8)
LSRAC — — — — (12) | *36 — —
LSRR — — — — *32 *32 — —
MAC * CT *A *A *A *A *A —
MACR * CT *A *A *A *A *A —
MACSU — C *A *A *A *A *A —
MOVE * T — — — — — —
(10) (10) | (10) | (10) | (10) | (20) | (10) | (10) | NA unlessSRisthe destina-
tionin theinstruction
MPY * CT *A *A *A *A *A — V cleared
MPYR * CT *A *A *A *A *A — V cleared
MPY SU — C *A *A *A *A *A — V cleared
NEG * CT *A *A *A *A *A *A
NOP — — | = — — — — —
NORM — C *36 | *36 | *36 | *36 (1) —
NOT — — — — *16 *16 =0 —
OR — — — — *16 | *16 =0 —
POP — — | = — — — — —
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Table A-9. Condition Code Summary (Continued)

Instruction Z L E U N 4 \Y, C Comments

REP — T — | = | = — — —

RND * CT | *36 | *36 | *36 | *36 | *36 —

ROL — — | — | — | *16 | *16 | =0 | (7)

ROR — — — — *16 | *16 =0 (8)

RTI Restored — (9)

RTS — — — — — — — —

SBC — C *36 *36 *36 *36 *36 *36
STOP — — — — — — — —

SuB * CT | *A | *A | *A | *A | *A | *A

SWI — — — — — — — — Affects11, 10 bitsin SR

Tcc — — — — — — — —

TFR * T — — — — — —

TST * CT *36 *36 *36 *36 0 0 Never overflows
TSTW — — — — *36 | *36 0 0 Never overflows
WAIT — — | = | = | = — — —

NOTES:

V isset if the MSB of the destination operand (bit 35 for an accumulator or bit 31 for the Y
register) is changed as aresult of the left shift; V is cleared otherwise.

Cissetif the MSB of the source operand (bit 35 for an accumulator or bit 31 for the Y
register) is set and is cleared otherwise.

Cissetif bit O of the source operand is set and is cleared otherwise.

Cisseatif all bits specified by the mask are set and is cleared otherwise. Bitsthat are not set
in the mask should be ignored. If abit-field instruction is performed on the status register,
all bitsin thisregister selected by the bit field's mask can be affected.

Cissetif al bitsspecified by the mask are cleared and is cleared otherwise. Ignore bitsthat
arenot setinthe mask. Notethat if abit-field instruction is performed on the status register,
al bitsin this register selected by the bit field’s mask can be affected.

Cissetif the MSB of theresult is cleared (bit 35 for an accumulator or bit 31 for the Y
register). The C bit is cleared if the MSB of the result is set.

For the accumulators, Cisset if bit 31 of the source operand is set and is cleared otherwise.
FortheY1, YO, and XOregisters, Cissetif bit 15 of the source operand isset and is cleared
otherwise.

For the accumulators, Cisset if bit 16 of the source operand is set and is cleared otherwise.
Forthe Y1, YO, and X0 registers, Cissetif bit O of the source operand is set and is cleared
otherwise.
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9. The"? bitisset according to value pulled from stack.

10. If the SR is specified as a destination operand (for example, MOVE X: (R0) , SR), each bit
is set according to the corresponding bit of the source operand. If SR is not specified asa
destination operand, none of the status bits are affected.

11. TheV bit for the IMPY instruction isset if the calculated integer product does not fitin 16
bits.

12. The setting of the N bit for the ASRAC and L SRAC instructions depends on the OMR’s
SA bit. If SA isone, thenthe N bit is equal to bit 31 of the result. If SA iszero, then N is
egual to bit 35 of the result.

13. When SA iszero and CCiszero for the IMPY instruction, the N bit isset using * 16. When
SAisoneor CCisset to one, thishit is set as described in Section A.4.1.5, “Negative (N)
— Bit 3”

14. When CCisonefor the ASLL instruction, the N bit is cleared. When CC is zero, thishitis
set as described under Section A.4.1.5, “Negative (N) — Bit 3.”

See Section 3.6, “ Condition Code Generation,” on page 3-33 for additional information on condition
codes.

A.5 Instruction Timing

This section describes how to cal culate the DSP56800 instruction timing manually using the provided
tables. Three complete examples are presented to illustrate the use of the tables. Alternatively, the user can
obtain the number of instruction program words and the number of oscillator clock cycles required for a
given instruction by using the simulator; thisis a simple and fast method of determining instruction timing
information.

The number of words for an instruction depends on the instruction operation and its addressing mode. The
symbols used in one table may reference subsequent tables to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors, including the number
of words per instruction, the addressing mode, whether the instruction fetch pipeisfull or not, the number
of external bus accesses, and the number of wait states inserted in each external access. The symbols used
in one table may reference subsequent tables to complete the execution clock-cycle count.

Thetablesin this section present the following information:

» Table A-11 on page A-18 gives the number of instruction program words and the number of
machine clock cycles for each instruction mnemonic.

» Table A-12 on page A-19 gives the number of additional instruction words (if any) and additional
clock cycles (if any) for each type of parallel move operation.

» Table A-13 on page A-20 gives the number of additional (if any) clock cyclesfor each type of
MOVEC operation.

» Table A-14 on page A-20 gives the number of additional (if any) clock cyclesfor each type of
MOVEM operation.

» Table A-15 on page A-20 gives the number of additional (if any) clock cyclesfor each type of
bit-field manipulation (BFCHG, BFCLR, BFSET, BFTSTH, BFTSTL, BRCLR, and BRSET)
operation.

» Table A-16 on page A-20 gives the number of additional clock cycles (if any) for each type of
branch or jump (Bcc, Jec, and JSR) operation.
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Table A-17 on page A-21 gives the number of additional clock cycles (if any) for the RTS or RTI
instruction.

Table A-18 on page A-21 gives the number of additional clock cycles (if any) for the TSTW
instruction.

Table A-19 on page A-21 gives the number of additional instruction words (if any) and additional
clock cycles (if any) for each effective addressing mode.

Table A-20 on page A-22 gives the number of additional clock cycles (if any) for external data,
external program, and external 1/O memory accesses.

The symbols used in the tables are summarized in Table A-10.

Table A-10. Instruction Timing Symbols

Symbol Description
aio Time required to access an 1/0O operand
ap Time required to access a P memory operand
ax Time required to access an X memory operand
axx Time required to access X memory operands for double read
ea Time or number of words required for an effective address
jX Time required to execute part of ajump-type instruction
mv Time or number of words required for a move-type operation
mvb Time required to execute part of a bit-manipulation instruction
mvc Time required to execute part of aMOVEC instruction
mvm Time required to execute part of aMOVEM instruction
mvp Time required to execute part of aMOVEP instruction
mvs Time required to execute part of aMOVES instruction
rx Time required to execute part of an RTS instruction
wp Number of wait states used in accessing external P memory
WX Number of wait states used in accessing external X memory

The assumptions for cal culating execution time are the following:

All instruction cycles are counted in oscillator clock cycles. Two oscillator clock cycles are
equivalent to one instruction cycle.

The instruction fetch pipelineisfull.

There is no contention for instruction fetches. Thus, external program instruction fetches are
assumed not to have to contend with external data memory accesses.

There are no wait states for instruction fetches done sequentially (as for non-change-of-flow
instructions), but they are taken into account for change-of-flow instructionsthat flush the pipeline,
such as IMP, Jec, RTS, and so on.
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In order to better understand and use the following tables, examine the three examples for computing an
instruction’ s execution time that are presented at the end of this section: Example A-1 on page A-22,
Example A-2 on page A-23, and Example A-3 on page A-25.

Table A-11. Instruction Timing Summary

Mnemonic : na/r;%;on Clock Cycles Mnemonic ! na/r;%;on Clock Cycles
ABS 1 2+mv LSRAC 1 2
ADC 1 2 LSRR 1 2
ADD 1+mv 2+(eaor mv) MAC 1 2+mv
AND 1 2 MACR 1 2+mv
ANDC 2+ea 4+mvb MACSU 1 2
ASL 1 2+mv MOVE?! 1 2+mv
ASLL 1 2 MOVEC 1+ea 2+mvc
ASR 1 2+mv MOVEI 1+ea 2+ea
ASRAC 1 2 MOVEM 1 8+mvm
ASRR 1 2 MOVEP 1+ea 2+ea
Bcc 1 4+jX MOVES 1+ea 2+ea
BFCHG 2+ea 4+mvb MPY 1 2+mv
BFCLR 2+ea 4+mvb MPYR 1 2+mv
BFSET 2+ea 4+mvb MPY SU 1 2
BFTSTH 2+ea 4+mvb NEG 1 2+mv
BFTSTL 2+ea 4+mvb NOP 1 2
BRA 1 6+jXx NORM 1 2
BRCLR 2+ea 8+mvb+jx NOT 1 2
BRSET 2+ea 8+mvb+jx NOTC 2+ea 4+mvb
CLR 1 2+mv OR 1 2
CMP 1+mv 2+(eaor mv) ORC 2+ea 4+mvb
DEBUG 1 4 POP 1 2+ea
DECW 1+ea 2+(eaor mv) REP 1 6
DIV 1 2 RND 1 2+mv
DO 2 6 ROL 1 2
ENDDO 1 2 ROR 1 2
EOR 1 2 RTI 1 10+rx
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Table A-11. Instruction Timing Summary (Continued)

Mnemonic ! nsvr;c(';ison Clock Cycles Mnemonic ! nsvrgrc(';ison Clock Cycles
EORC 2+ea 4+mvb RTS 1 10+rx
ILLEGAL 1 4 SBC 1 2
IMPY 16 1 2 STOP? 1 n/a
INCW 1+ea 2+(eaor mv) SUB 1l+ea 2+(eaor mv)
Jec 2 A+jx SWI 1 8
IJMP 2 6+jXx Tcc 1 2
JSR 2 8+jx TFR 1 2+mv
LEA l+ea 2+ea TST 1 2+mv
LSL 1 2 TSTW 1 2+mv
LSLL 1 2 WAIT® 1 n/a
LSR 1 2

1. This MOVE applies only to the case where two reads are performed in parallel from the X memory.

2. The STOP instruction disables the internal clock oscillator. After the clock is turned on, an internal
counter counts 65,536 cycles before enabling the clock to the internal DSC circuits.

3. The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pending at
the time the WAIT instruction is executed.

Table A-12. Parallel Move Timing

Parallel Move Operation +mv Words +mv Cycles
No parallel data move 0 0
X: (X memory move) 0 ax
X: X: (XX memory move) 0 axx
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Table A-13. MOVEC Timing Summary

MOVEC Operation + mvc Cycles
16-bit immediate — register 2
Register — register 0
X memory <> register ea+ ax

Table A-14. MOVEM Timing Summary

MOVEM + mvm Cycles

Register <> P memory ap

Note: The “ap” term represents the wait states spent when accessing the program memory
during DATA read or write operations and does not refer to instruction fetches.

Table A-15. Bit-Field Manipulation Timing Summary

Bit-Field Manipulation Operation + mvb Cycles
BFCHG, BFCLR, or BFSET on X memory ea+ (2* ax)
BFTSTH or BFTSTL on X memory ea+ ax
BFTSTH, BFTSTL, BFCHG, BFCLR, or BFSET on register 0
BRSET or BRCLR with condition true 2+ea+(2* aX)
BRSET or BRCLR with condition false ea+ (2* ax)

Table A-16. Branch/Jump Instruction Timing Summary

Branch/Jump Instruction Operation +jx Cycles
Jec, Bec — condition true 2+(2* ap)
Jee, Bec — condition false (2* ap)
JMP, JSR (2* ap)
NOTE:

All two-word jumps execute three program memory fetches to refill the
pipeling, one of them being the instruction word located at the jump
instruction’s second-word address + 1. If the jump instruction was fetched
from a program memory segment with wait states, another “ap” should be
added to account for that third fetch.
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Table A-17. RTSTiming Summary

Operation +rx Cycles

RTI, RTS 2*ap+2* ax

NOTE:

The term “2 * ap” represents the two instruction fetches done by the
RTI/RTS instruction to refill the pipeline. The ax term represents fetching
the return address from the software stack when the stack pointer pointsto
external X memory, and the 2 * ax term includes both this fetch and the
fetch of the SR as performed by the RTI and RTS instructions.

Table A-18. TSTW Timing Summary

TSTW Operation +mv Cycles
Register 0
X memory ea+ ax

Table A-19. Addressing M ode Timing Summary

Effective Addressing M ode +eaWords + ea Cycles

Address Register Indirect

No update 0 0
Post-increment by 1 0 0
Post-decrement by 1 0 0
Post addition by offset N 0 0
Indexed by offset N 0 2
Special

Immediate data 1 2
Immediate short data 0 0
Absolute address 1 2
Absolute short address 0 0
1/O short address 0 0
Implicit 0 0
Indexed by short displacement 0 2
Indexed by long displacement 1 4
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Table A-20. Memory Access Timing Summary

Access X Memory P Memory 1/O Access + ax +ap +aio + axx
Type Access Access Access Cycle Cycle Cycle
X: Int — — 0 — — —
X: Ext — — wxl — — —
P: — Int — — 0 — _
P — Ext — — wp? — —
10: — — Int — — 0 —
X:X: Int:Int — — — — — 0
X:X: Ext:Int — — — — — WX
X:X: 1/O:Int — — — — — 0

1.  wx— external X memory access wait states

2. wp— externa P memory access wait states

Three examples using the preceding tables follow.

Example A-1. Arithmetic Instruction with Two Parallel Reads

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

MACR  X0,Y0,A  X:(RO)+,Y0  X:(R3)+,X0
Where the following conditions are true:
»  Operating mode register (OMR) = $02 (normal expanded memory map).

« External X memory accesses require zero wait state, (assume external mem requires no wait state
and BCR contains the value $00).

* RO address register = $C000 (external X memory).
* R3address register = $0052 (internal X memory).
Solution

To determine the number of instruction program words and the number of oscillator clock cycles required
for the given instruction, the user should perform the following steps:

1. Look upthe number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction inTable A-11 on page A-18.

According to Table A-11 on page A-18, the MACR instruction will require oneinstruction
program word and will execute in (2 + mv) oscillator clock cycles. The term “mv”
represents the additional instruction program words (if any) and the additional oscillator
clock cycles(if any) that may be required over and above those needed for the basic MACR
instruction due to the parallel move portion of the instruction.
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Example A-1. Arithmetic Instruction with Two Parallel Reads (Continued)

2. Evauate the “mv” term using Table A-12 on page A-19.

The paralel move portion of the MACR instruction consists of an XX memory read.
According to Table A-12 on page A-19, the parallel move portion of the instruction will
requiremv = axx additional oscillator clock cycles. Theterm“axx” representsthe number
of additional oscillator clock cycles(if any) that are required to accesstwo operandsin the
X memory.

3. Evauate the “axx” term using Table A-20 on page A-22.

The parallel move portion of the MACR instruction consists of an XX Memory Read.
According to Table A-20 on page A-22, the term “axx” depends upon where the
referenced X memory locations are located in the DSP56800 memory space. External X
memory accesses may require additional oscillator clock cycles depending onthe memory
device's speed. Here we assume external X memory accesses require wx = 0 wait state or
additional oscillator clock cycle. For this example, the second X memory referenceis
assumed to be an internal reference, while thefirst X memory referenceis assumed to be
an external reference. Thus, according to Table A-20 on page A-22, the XX memory
referencein the parallel move portion of the MACR instruction will requireaxx =wx =0
additional oscillator clock cycle.

4, Compute thefina results.
Thus, based upon the assumptions given for Table A-11 on page A-18, the instruction
MACR  X0,Y0,A X:(RO)+,Y0 X:(R3)+,X

will require 1 instruction program word and will execute in
(2+mv) =(2+axx) = (2+wx) =(2+ 0) =2 oscillator clock cycles.

NOTE:

If asimilar calculation were made for aMOVEC, MOVEM, or one of the
bit-field manipulation instructions (BFCHG, BFCLR, BFSET, BFTSTH
or BFTSTL), using Table A-12 on page A-19 would no longer be
appropriate. The user would refer to Table A-13 on page A-20,
Table A-14 on page A-20, or Table A-15 on page A-20, respectively.

Example A-2. Jump Instruction

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

JEQ $2000

Where the following conditions are true:
*  OMR =$02 (normal expanded memory map).

» External P memory accesses require four wait states (assume external memory access requires 4
wait states in this example).
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Example A-2. Jump Instruction (Continued)

Solution

To determine the number of instruction program words and the number of oscillator clock cyclesrequired
for the given instruction, the user should perform the following steps:

1. Look upthe number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction in Table A-11 on page A-18.

According to Table A-11 on page A-18, the Jcc instruction will require two instruction
programwords and will executein (4 + jx) oscillator clock cycles. Theterm “jx” represents
the number of additional oscillator clock cycles (if any) required for a jump-type
instruction.

2. Evaluatethe“jx” term using Table A-16 on page A-20.

According to Table A-16 on page A-20, the Jcc instruction will require2 + 2 * ap
additional oscillator clock cyclesif the “ea” condition istrue; otherwise, 2 * ap if the
condition isfalse. The term “ap” represents the number of additional oscillator clock
cycles(if any) that are required to access a P memory operand. Notethat the“ + (2 * ap)”
term represents the two program memory instruction fetches executed at the end of a
one-word jump instruction to refill the instruction pipeline.

3. Evaluatethe “ap” term using Table A-20 on page A-22.

According to Table A-20 on page A-22, theterm “ap” depends upon where the referenced
P memory locationislocated in the 16-bit DSC memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states required.
Here we assume that external P memory accesses require wp = 4 wait states or additional
oscillator clock cycles. For this example the P memory reference is assumed to be an
external reference. Thus, according to Table A-20 on page A-22, the Jcc instruction will
use the value ap = wp = 4 oscillator clock cycles.

4. Compute thefina results.
Thus, based upon the assumptions given for Table A-11 on page A-18, the instruction
JEQ  $2000
will require 2 program words.
If the condition istrue, theinstruction will executein (4+jx)=(4+2+(2* ap)) = (4 +
2+(2* wp)) =(4+2+(2* 4)) = 14 oscillator clock cycles. However, when the condition

isfalsethisinstruction will executein two fewer oscillator clock cycles, (4 +jx) = (4 + (2
“ap))=(4+(2*wp)=(4+(2*4)=12
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Example A-3. RTS Instruction

Problem

Calculate the number of DSP56800 instruction program words and the number of oscillator clock cycles
required for the following instruction:

RTS

Where the following conditions are true:

*  OMR =$02 (normal expanded memory map).

» External P memory accesses require four wait states.

* Return Address (on the stack) = $0100 (internal P memory).
Solution

To determine the number of instruction program words and the number of oscillator clock cyclesrequired
for the given instruction, the user should perform the following steps:

1. Look upthe number of instruction program words and the number of oscillator clock cycles
required for the opcode-operand portion of the instruction in Table A-11 on page A-18.

According to Table A-11 on page A-18, the RTS instruction will require one instruction
programword and will executein (10 + rx) oscillator clock cycles. Theterm“rx” represents
the number of additional oscillator clock cycles (if any) required for an RTS instruction.

2. Evauatethe “rx” term using Table A-17 on page A-21.

According to Table A-17 on page A-21, the RTS instruction will requirerx=2* ap+2*
ax additional oscillator clock cycles. Inthiscase*ax = 0" because theinstruction accesses
the stack oninternal memory. Theterm*ap” representsthe number of additional oscillator
clock cycles (if any) that are required to access a P memory operand. Theterm“(2* ap)”
represents the two program memory instruction fetches executed at the end of an RTS
instruction to refill the instruction pipeline.

3. Evauatethe“ap” term using Table A-20 on page A-22.

According to Table A-20 on page A-22, theterm “ap” depends upon where thereferenced
P memory locationislocated in the 16-bit DSC memory space. External memory accesses
may require additional oscillator clock cycles, according to the memory device's speed.
Here we assume that external P memory accesses require wp = 4 wait states or additional
oscillator clock cycles. For this example the P memory reference is assumed to be an
internal reference. This means that the return address ($0100) pulled from the system
stack by the RTS instruction isin internal P memory. Thus, according to Table A-20 on
page A-22, the RTSinstruction will use thevalue ap = 0 additional oscillator clock cycles.

4. Compute the final results.
Thus, based upon the assumptions given for Table A-11 on page A-18, the instruction
RTS

will require oneinstruction program word and will executein (10 + rx) = (10+ (2* ap) +
(2* ax)) =(10+(2* 0) + (2* 0)) = 10 oscillator clock cycles.
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A.6

Instruction Set Restrictions

These items are restrictions on the DSP56800 instruction set:

A-26

A NORM instruction cannot be immediately followed by an instruction that accesses X memory
using the RO pointer. In addition, NORM can only use the RO address register.

No bit-field operation (ANDC, ORC, NOTC, EORC, BFCHG, BFCLR, BFSET, BFTSTH,
BFTSTL, BRCLR, or BRSET) can be performed on the HWS register.

Only positive immediate values less than 8,192 can be moved to the L C register (13 bits).

The following registers cannot be specified astheloop count for the DO or REP instruction: HWS,
SR, OMR, or M01. Similarly, the immediate value of $0 is not allowed for the loop count of aDO
instruction.

Any jump, branch, or branch on bit field may not specify the instructionsat LA or LA-1 of a
hardware DO loop as their target addresses. Similarly, these instructions may not be located in the
last two locations of a hardware DO loop (that is, at LA or at LA-1).

A REP instruction cannot repeat on an instruction that accessesthe P memory or on any multi-word
instruction.

TheHlI, HS, LO, and LS condition code expressions can only be used when the CC bit isset in the
OMR register.

The access performed using R3 and XAB2/XDB2 cannot reference external memory. This access
must always be made to internal memory.

If aMOVE instruction changes the value in one of the address registers (RO-R3), then the contents
of the register are not available for use until the second following instruction (that is, the
immediately following instruction should not use the modified register to access X memory or
update an address). This also appliesto the SP register and the MO1 register. In addition, it applies
if a16-bit immediate value is moved to the N register.

If abit-field instruction changesthe valuein one of the addressregisters (R0-R3), then the contents
of the register are not available for use until the second following instruction (that is, the
immediately following instruction should not use the modified register to access X memory or
update an address). This also appliesto the SP, the N, and the MOL registers.

For the case of nested hardware DO loops, it isrequired that there be at least two instructions after
the pop of the LA and LC registers before the instruction at the last address of the outer loop.

DSP56800 Family Manual Freescale Semiconductor



A.7 Instruction Descriptions

The following section describes each instruction in the DSP56800 Family instruction set in complete
detail. Aspects of each instruction description are explained in Section A.1, “Notation,” at the beginning of
this appendix.

The“Operation” and “ Assembler Syntax” fields appear at the beginning of each description. For
instructions that allow parallel operations, these fields include the parenthetical comment “(single parallel
move)” or “(dual paralel read)”. The example given with each instruction discusses the contents of all the
registers and memory locations referenced by the opcode-operand portion of that instruction, though not
those referenced by the parallel move portion of that instruction.

The“Parallel Move Descriptions’ section that follows the MOV E instruction description gives a complete
discussion of parallel moves, including examples that discuss the contents of all the registers and memory
locations referenced by the parallel move portion of an instruction.

Whenever an instruction uses an accumulator as both a destination operand for adata ALU operation and
asasourcefor aparallel move operation, the parallel move operation will use the value in the accumulator
prior to the execution of any data ALU operation.

1/0 short addressing modeis used in every example that accesses the periphera registers. It is assumed that
peripheral registers are mapped to the last 64 locationsin X memory. When IP-BUS (or PGDB) interface
maps these registers outside the X:$FFCO-X:$FFFF range, short addressing mode can not be used, instead
peripheral registers can be accessed with any other suitable addressing mode.

Whenever abit in the condition code register is defined according to the standard definition as given in
Section A .4, “ Condition Code Computation,” abrief definition will be given in normal text in the
“Condition Code” section of that instruction description. Whenever a bit in the condition code register is
defined according to a special definition for some particular instruction, the complete special definition of
that bit is given in the “Condition Code” section of that instruction in bold text to alert the user to any
specia conditions concerning its use.
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ABS Absolute Value ABS

Operation: Assembler Syntax:
ID|-D ABS D
|ID|—D (single parallel move) ABS D (single parallel move)

Description: Take the absolute value of the destination operand (D) and store the result in the destination accumu-
lator or 16-bit register. Duplicate destination is not allowed when thisinstruction is used in conjunction
with a parallel read.

Example:
ABS A X:(RO)+,Y0 ; take ABS wvalue, move data into YO,
; update RO
A Before Execution A After Execution
F FFFF FFF2 0 0000 000E
A2 Al AO A2 Al AO

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $F:FFFF:FFF2. Sincethisisanegative
number, the execution of the ABS instruction takes the two' s-complement of that value and returns
$0:0000:000E.

Note: When the D operand equal s $8:0000:0000 (-16.0 when interpreted as a decimal fraction), the ABSin-
struction will cause an overflow to occur since the result cannot be correctly expressed using the stan-
dard 36-hit, fixed-point, two’s-complement data representation. Data limiting does not occur (that is,
A isnot set to the limiting value of $7:FFFF:FFFF) but remains unchanged.

Condition Codes Affected:

< MR » CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1
LF | * * * * *liw|jw|SZIL|EJU|N|Z|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of accumulator result isin use

Set according to the standard definition of the U bit

— Setif MSB of result is set

— Setif result equals zero

— Setif overflow has occurred in result

<NzcmE @
|
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ABS Absolute Value ABS

Instruction Fields:

Operation Operands C w Comments

ABS F 2 1 Absolute value.

Parallel Moves:

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination?
ABS F X:(Rn)+ X0
X:(Rn)+N Y1
YO
A
B
Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO0
A
B
(F=A or B) Al
B1

1. Thisinstruction occupies only 1 program word and executes in 1 instruction cycle for every ad-
dressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register as the destination
of the parallel read operation. Memory writes are allowed in this case.

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word
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ADC

Operation:

S+C+D—-D

Add Long with Carry ADC

Assembler Syntax:
ADC SD

Description: Add the source operand (S) and the carry bit (C) to the second operand, and store the result in the des-

Usage:

Example:

tination (D). The source operand (register Y) is first sign extended internally to form a 36-bit value
before being added to the destination accumulator. When the saturation bit (SA) is set, the MAC Out-
put Limiter is enabled and this instruction will saturate the result if an overflow occurred, (refer to
Section 3.4, “ Saturation and Data Limiting,” on page 3-26).

Thisinstructionistypically used in multi-precision addition operations (see Section 3.3.8, “Multi-Pre-
cision Operations,” on page 3-23) when it is necessary to add together two numbersthat arelarger than
32 bits (such as 64-bit or 96-bit addition).

ADC Y, A
Before Execution After Execution
0 2000 8000 0 4001 0001
A2 Al A0 A2 Al A0
Y 2000 8000 Y 2000 8000
Y1 YO Y1 YO
SR 0301 SR 0300

Explanation of Example:

Note:

A-30

Prior to execution, the 32-bit Y register, comprised of the Y1 and YO registers, contains the value
$2000:8000, and the 36-bit accumulator contains the value $0:2000:8000. In addition, C is set to one.
The ADC instruction automatically sign extends the 32-bit Y register to 36 bits and adds this value to
the 36-bit accumulator. In addition, C is added into the LSB of this 36-bit addition. The 36-bit result
isstored back in the A accumulator, and the condition codes are set correctly. The Y 1:Y O register pair
is not affected by thisinstruction.

C is set correctly for multi-precision arithmetic, using long word operands only when the extension
register of the destination accumulator (A2 or B2) contains sign extension of bit 31 of the destination
accumulator (A or B).
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ADC

Add Long with Carry

Condition Codes Affected:

MR

ADC

)l

15

14

13 12 11

10

9

8

Q

7

0O
@
Py
v

LF

* * *

*

11

10

Sz

LIEJU[N|Z|V]|C

o<NzcCcmr

— Setif overflow has occurred in result

— Setif the signed integer portion of accumulator result isin use
— Set according to the standard definition of the U bit

— Setif MSB of result is set
— Setif accumulator result is zero; cleared otherwise

— Setif overflow has occurred in accumulator result

— Setif acarry (or borrow) occurs from accumulator result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC hit is set.

Instruction Fields:

Operation Operands C w Comments
ADC YA 2 1 Add with carry (sets C bit also)
Y.,B
Timing: 2 oscillator clock cycles
Memory: 1 program word
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ADD

Operation:

D
D
D

S+D—
S+D—
S+D—

Add ADD

Assembler Syntax:

ADD SD
(single parallel move) ADD SD (single parallel move)
(dual pardllel read) ADD SD (dual parallel read)

Description: Add the source register to the destination register and store the result in the destination (D). If the des-

tination is a 36-bit accumulator, 16-bit source registers are first sign extended internally and concate-
nated with 16 zero bitsto form a 36-bit operand. When the destinationis X0, YO, or Y 1, 16-bit addition
is performed. In this case, if the source operand is one of the accumulators, the FF1 portion (properly
sign extended) is used in the 16-bit addition; the FF2 and FFO portions are ignored.

Usage: Thisinstruction can be used for both integer and fractional two’s-complement data.
Example:
ADD X0,A X:(RO)+,Y0 X:(R3)+,X0 ; 16-bit add, update
; YO0O,X0,R0O,R3
Before Execution After Execution
0 0100 0000 0 O0OFF 0000
A2 Al A0 A2 Al AO
X0 FFFF X0 FFFF

Explanation of Example:

Note:

Prior to execution, the 16-bit X0 register contains the value $FFFF, and the 36-bit A accumulator con-
tains the value $0:0100:0000. The ADD instruction automatically appends the 16-bit value in the X0
register with 16 LS zeros, sign extends the resulting 32-bit long word to 36 bits, and adds the result to
the 36-bit A accumulator. Thus, 16-bit operands are always added to the MSP of A or B (Al or B1),
with the result correctly extending into the extension register (A2 or B2). Operands of 16 bits can be
added to the LSP of A or B (A0 or B0) by loading the 16-hit operand into Y 0; this forms a 32-bit word
by loading Y 1 with the sign extension of Y0 and executing an ADD Y, A or ADD Y, B instruction.
Similarly, the second accumulator can also be used as the source operand.

C isset correctly using word or long word source operands if the extension register of the destination
accumulator (A2 or B2) contains sign extension from bit 31 of the destination accumulator (A or B).
C isalways set correctly by using accumulator source operands.

Condition Codes Affected:

A-32

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | * 11|10 |SZ|L|E|JU|IN|Z]|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Set if the extended portion of the accumulator result isin use

Set according to the standard definition of the U bit

— Setif MSB of result is set

— Setif result equals zero

— Setif overflow has occurred in the result

— Setif acarry (or borrow) occurs from accumulator result

o<NzcmE @
|
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ADD

Instruction Fields:

Add ADD

Operation Operands C w Comments
ADD DD,FDD 2 1 36-bit addition of two registers
F1,DD
A,B
B,A
Y.A
Y.,B
X:(SP-xx),FDD 6 1 Add memory word to register.
X:aa,FDD 4 1 X:aa represents a 6-bit absolute address. Refer to Abso-
lute Short Address (Direct Addressing): <aa> on page
X:xxxx,FDD 6 2 4-22.
FDD,X:(SP-xx) 8 2 Add register to memory word, storing the result back to
memory
FDD,X:XXXX 8 2
FDD,X:aa 6 2
#<0-31>,FDD 4 1 Add an immediate integer 0-31
#xXxxx,FDD 6 2 Add asigned 16-bit immediate integer

Freescale Semiconductor
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ADD

Add ADD
Parallel Moves:

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination®
ADD XO,F X:(Rn)+ X0

Y1F X:(Rn)+N Y1
YO,F YO
AB A
B.A B
Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=Aor B) Al
Bl

1. Thisinstruction occupies only 1 program word and executes in 1 instruction cycle
for every addressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register as
the destination of the parallel read operation. Memory writes are allowed in this case.

Parallel Dual Reads:

Data ALU Operation® First Memory Read Second Memory Read
Operation2 Operands Source 1 Destination 1 Source 2 Destination 2
ADD XO0,F X:(RO)+ YO X:(R3)+ X0
Y1F X:(RO)+N Y1 X:(R3)-
YO,F
X:(RD)+
(F=A o B) X:(R1)+N

1. Thisparalel instructionisnot allowed when the XP bit in the OMR is set (that is, when the instructions
are executing from data memory).

2. Thisinstruction occupies only 1 program word and executes in 1 instruction cycle for every addressing

mode.

Timing: 2 + mv oscillator clock cyclesfor ADD instructions with asingle or dual parallel move.
Refer to previous table for ADD instructions without a parallel move.

Memory: 1 program word for ADD instructions with asingle or dual parallel move.
Refer to previous table for ADD instructions without a parallel move.

A-34
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AND Logical AND AND

Operation: Assembler Syntax:
SD—D AND SD
S*D[31:16] — D[31:16] AND SD

where « denotes the logical AND operator

Description: Performalogical AND operation on the source operand (S) and the destination operand (D), and store
theresult in the destination. Thisinstruction isa 16-bit operation. If the destination is a 36-bit accumu-
lator, the operation is performed on the source and bits 31-16 of the accumulator. The remaining bits
of the destination accumulator are not affected. The result is not affected by the saturation bit (SA).

Usage: Thisinstruction is used for the logical AND of two registers; the ANDC instruction is appropriate to
AND a 16-bit immediate value with aregister or memory location.
Example:
AND X0,A ; AND X0 with Al
Before Execution After Execution
6 1234 5678 6 1200 5678
A2 Al A0 A2 Al A0
X0 7F00 X0 7F00

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $7F00, and the 36-bit A accumulator con-
tains the value $6:1234:5678. The AND X0, A instruction logically ANDs the 16-bit value in the X0
register with bits 31-16 of the A accumulator (A1) and stores the 36-hit result in the A accumulator.
Bits 35-32 in the A2 register and bits 15-0 in the AO register are not affected by thisinstruction.

Condition Codes Affected:

MR g CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*|*|11|lOo|sz|]L|E|U|N|Z]|V]|C

N — Setif bit 31 of accumulator result or MSB of register result is set
Z — Setif bits 31-16 of accumulator result or al bits or register result are zero
V — Alwayscleared

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C w Comments
AND DD,FDD 2 1 16-bit logical AND
F1,DD
Timing: 2 oscillator clock cycles
Memory: 1 program word
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ANDC Logical AND, Immediate ANDC

Operation: Assembler Syntax:
#xXxxxeX:<ea> — X:<ea> ANDC #iiii X <ea>
#xxxxeD — D ANDC #iiii,D

where « denotes the logical AND operator

Implementation Note:
Thisinstruction isan alias to the BFCLR instruction, and assembles as BFCL R with the 16-bit imme-
diate value inverted (one's-complement) and used as the bit mask. It will disassembleasaBFCLR in-
struction.

Description: Logicaly AND a16-bit immediate data value with the destination operand, and store the results back
into the destination. C is aso modified as described in the following discussion. This instruction per-
forms a read-modify-write operation on the destination and requires two destination accesses.

Example:
ANDC #$5555,X:$SA000 ; AND with immediate data
Before Execution After Execution
X:$A000 C3FF X:$A000 4155
SR 0301 SR 0300

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$A000 contains the value $C3FF. Execution of the
instruction tests the state of hits: 0, 2, 4, 6, 8, 10, 12, and 14 in X:$A000. It clears C (because not all
the bits tested were set in destination X:$A000). Result from logical AND iswritten back to the tested
location.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| *|{* 11|10 |sz|L|E|JU|IN|Z]|V]|C

For destination operand SR:

? — Cleared asdefined in the field and if specified in thefield
For other destination operands:;
L — Setif datalimiting occurred during 36-bit source move

C — Setif al bits specified by the mask are set
Cleared if not al bits specified by the mask are set
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ANDC Logical AND, Immediate ANDC

Instruction Fields:

Operation Operands C W Comments
ANDC #<MASK16>,DDDDD 4 2 AND operation, implemented using BFCLR.

All registersin DDDDD are permitted except HWS.

#<MASK16>,X:(R2+xx) 6 2
X:aarepresents a 6-hit absolute address. Refer to Abso-

#<MASK16>,X:(SP-xx) 6 2 | |ute Short Address (Direct Addressing): <aa> on page
4-22.

#<MASK16> X:aa 4 2

X:<<pp represents a 6-bhit absolute 1/O address. Refer to
1/0 Short Address (Direct Addressing): <pp> on page
4-23.

#<MASK 16> X:<<pp 4 2

H<MASK 16>, X :XXXX 6 3

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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ASL

Operation:

(seefigure)

Arithmetic Shift Left

Assembler Syntax:

ASL

ASL D
ASL D (single parallel move)
Cet— |4+ <« <« <0 (single parallel move)
D2 D1 DO

Description: Arithmetically shift the destination operand (D) 1 bit to the left, and store the result in the destination.
The M SB of the destination prior to the execution of theinstructionis shifted into C, and azero is shift-
ed into the LSB of the destination. A duplicate destination is not allowed when ASL is used in con-
junction with aparallel read.

Implementation Note:
When a 16-bit register is specified asthe operand for ASL, thisinstruction is actually assembled as an

Example:

LSL with the same register argument.

ASL

Before Execution

X: (R3)+N, YO0

A 0123 0123
A2 Al AO
SR 0300

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $A:0123:0123. Execution of the
ASL A instruction shifts the 36-bit value in the A accumulator 1 bit to the left and stores the result
back inthe A accumulator. Cis set by the operation because bit 35 of A was set prior to the execution
of theinstruction. The V bit of CCR (bit 1) is also set because bit 35 of A has changed during the ex-
ecution of theinstruction. The U bit of CCR (bit 4) is set because the result is not normalized, the E bit
of CCR (bit 5) is set because the signed integer portion of theresult isin use, and the L bit of CCR (bit
6) is set because an overflow has occurred.

Condition Codes Affected:

A-38

MR

; multiply A by 2,

H update R3,Y0
After Execution
4 0246 0246
A2 Al A0
SR 0373

Q

15

14 13

12 11

10

9

8 7

0

LF

* *

*

11

10 |SZ

L

E|U|N]|Z

\Y

C

o<NzcmEQ
|

Set according to the standard definition of the SZ bit (parallel move)
Set if limiting (parallel move) or overflow has occurred in result
Set if the extension portion of accumulator result isin use

Set according to the standard definition of the U bit

Set if MSB of result is set
Set if result equals zero
Set if bit 35 of accumulator result is changed due to left shift

Set if bit 35 of accumulator was set prior to the execution of the instruction

See Section 3.6.5, “16-Bit Destinations,” Section 3.6.2, “36-Bit Destinations — CC Bit Set,” and
Section 3.6.4, “20-Bit Destinations — CC Bit Set.”
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ASL Arithmetic Shift Left ASL

Instruction Fields:

Operation Operands C w Comments
ASL F 2 1 Arithmetic shift eft entire register by 1 bit
DD ALIAS, refer to Section 6.5.3, “ASL Alias.”
Implemented as: LSL DD

Parallel Moves:

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination?
ASL F X:(Rn)+ X0
X:(Rn)+N Y1
YO
A
B
Al
Bl
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cycle
for every addressing mode.

2. Thedestination of the data ALU operation is not alowed to be the same register
asthe destination of the parallel read operation. Memory writesare allowed in this case.

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word
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ASLL Multi-Bit Arithmetic Left Shift ASLL

Operation: Assembler Syntax:
S1<<S2— D ASLL S1,82,D

Description: Arithmetically shiftsthe source operand S1 to theleft by the value contained in the lowest 4 bits of S2,
and storesthe result in the destination (D) with zeros shifted into the L SB. For 36-bit destinations, only
the MSPisshifted and the LSPis cleared, with sign extension from bit 31 (the FF2 portion isignored).
The result is not affected by the state of the saturation bit (SA).

Example:
ASLL Y1l,X0,A
Before Execution After Execution
0 3456 3456 F AAAO 0000
A2 Al A0 A2 Al A0
Y1 AAAA Y1 AAAA
X0 0004 X0 0004

Explanation of Example:
Prior to execution, the Y 1 register contains the value to be shifted (SAAAA) and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the calculated value. The ASLL instruction arithmet-
icaly shifts the value $AAAA four bits to the left and places the result in the destination register A.
Since the destination is an accumulator, the extension word (A2) isfilled with sign extension, and the
LSP (AOQ) is set to zero.

Condition Codes Affected:

MR > CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | *|11|1l0|sz|]L|E|U|N|Z]|V]|C

N — Setif MSB of result is set
Z — Setif result equals zero

Note: If the CC bitisset, N isundefined and Z is set if the LSBs 31-0 are zero.

Instruction Fields:

Operation Operands C w Comments

ASLL Y1,X0,FDD 2 1 Arithmetic shift Ieft of the first operand by value speci-
YO0,X0,FDD fied in four LSBs of the second operand; placesresult in
Y1,YO,FDD FDD

YO,YO,FDD
Al1YO,FDD
B1,Y1,FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word
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ASR

Operation:

(seefigure)

Arithmetic Shift Right

Assembler Syntax:

v

ASR
ASR

—> —> —>
D2 D1 DO

—»C

ASR

(single parallel move)

(single parallel move)

Description: Arithmetically shift the destination operand (D) 1 bit to the right and store the result in the destination
accumulator. The LSB of the destination prior to the execution of the instruction is shifted into C, and
the MSB of the destination is held constant. A duplicate destination is not allowed when ASR is used
in conjunction with a parallel read.

Example:

ASR B X: (R2)+,Y0
Before Execution
A A864 A865
B2 Bl BO
SR 0300

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $A:A864:A865. Execution of the
ASR B instruction shifts the 36-bit value in the B accumulator 1 bit to the right and stores the result
back in the B accumulator. C is set by the operation because bit 0 of B was set prior to the execution
of theinstruction. The N bit of CCR (bit 3) isalso set because bit 35 of theresult in B is set. The E bit
of CCR (bit 5) is set because the signed integer portion of B is used by the resuilt.

Condition Codes Affected:

MR

; divide B by 2,

update R2, load YO
After Execution
D 5432 5432
B2 Bl BO
SR 0329

Q

15

14 13

12 11 10

9

8 7

0

LF

* * *

11

10 |SZ

L

E

z

\Y

C
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Set according to the standard definition of the SZ bit (parallel move)

Set if datalimiting has occurred during parallel move

Set if the extension portion of accumulator result isin use
Set according to the standard definition of the U bit

Set if MSB of result is set
Set if result equals zero

Always cleared
Set if bit 0 of source operand was set prior to the execution of the instruction

See Section 3.6.5, “16-Bit Destinations,” Section 3.6.2, “36-Bit Destinations — CC Bit Set,” and
Section 3.6.4, “20-Bit Destinations — CC Bit Set.”
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ASR

Instruction Fields:

Arithmetic Shift Right

ASR

Operation

Operands

Comments

ASR

FDD

1 Arithmetic shift right entire register by 1 bit

Parallel Moves:

Data ALU Operation

Parallel Memory Move

Operation® Operands Source Destination?
ASR F X:(Rn)+ X0
X:(Rn)+N Y1
YO
A
B
Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cycle
for every addressing mode.

2. The destination of the data ALU operation is not allowed to be the same register
asthe destination of the parallel read operation. Memory writes are allowed in this case.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word
A-42
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ASRAC Arithmetic Right shift with Accumulate  ASRAC

Operation: Assembler Syntax:
S1>>S2+D—D ASRAC S1,82,D

Description: Arithmetically shift thefirst 16-bit source operand (S1) to theright by the value contained in the lowest
4 bits of the second source operand (S2), and accumulate the result with the value in the destination
(D). Operand Sl isinternally sign extended and concatenated with 16 zero bits to form a 36-bit value
before the shift operation. The result is not affected by the state of the saturation bit (SA).

Usage: Thisinstruction istypically used for multi-precision arithmetic right shifts.
Example:
ASRAC Y1l,X0,A ; right shift Y1 by X0 and
; accumulate in A
Before Execution After Execution
0 0000 0099 F FCO00 3099
A2 Al A0 A2 Al A0
Y1 Co003 Y1 C003
X0 0004 X0 0004

Explanation of Example:
Prior to execution, the Y 1 register contains the value to be shifted ($C003), the X0 register contains
the amount by which to shift ($0004). The ASRAC instruction arithmetically shifts the value $C003
four bits to the right and accumulates this result with the value already in the destination register A.
Since the destination is an accumulator, the extension word (A2) isfilled with sign extension.

Condition Codes Affected:

MR > CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | *|11|1l0|sz|]L|E|U|N|Z]|V]|C

N — Setif bit 35 of accumulator result is set
Z — Setif result equals zero

See Section 3.6.2, “ 36-Bit Destinations— CC Bit Set,” and Section 3.6.4, “ 20-Bit Destinations— CC
Bit Set,” for the case when the CC bit is set.

Instruction Fields:

Operation Operands C w Comments

ASRAC Y1,X0,F 2 1 Arithmetic word shifting with accumulation
YO0,X0,F
Y1,YOF
YO,YO,F
ALYOF
B1,Y1F

Timing: 2 oscillator clock cycles

Memory: 1 program word
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ASRR Multi-Bit Arithmetic Right Shift ASRR

Operation: Assembler Syntax:
S1>>S2— D ASRR S1,82,D

Description: Arithmetically shift the source operand S1 to the right by the value contained in the lowest 4 bits of
S2, and store the result in the destination (D). For 36-bit destinations, only the MSP is shifted and the

LSPis cleared, with sign extension from bit 31 (the FF2 portion isignored). The result is not affected
by the state of the saturation bit (SA).

Example:
ASRR Y1l,X0,A ; right shift of 16-bit Y1 by XO
Before Execution After Execution
0 1234 5678 F FAAA 0000
A2 Al A0 A2 Al A0
Y1l AAAA Y1 AAAA
X0 0004 X0 0004

Explanation of Example:

Prior to execution, the Y 1 register contains the value to be shifted (JAAAA) and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the cal culated value. The ASRR instruction arithmet-
icaly shifts the value $AAAA four bits to the right and places the result in the destination register A.

Since the destination is an accumulator, the extension word (A2) isfilled with sign extension, and the
LSP (A0) is set to zero.

Condition Codes Affected:

< MR 14 CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * * * * * 11|10 |SZ| L E Uu|N|Z |V ]|cC

N — Setif MSB of result is set
Z — Setif result equals zero

Instruction Fields:

Operation Operands C w Comments

ASRR Y1,X0,FDD 2 1 Arithmetic shift right of the first operand by value speci-

Y0,X0,FDD fied in four LSBs of the second operand; places result in
Y1,Y0,FDD FDD

YO0,YO,FDD
A1YO,FDD
B1,Y1,FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word
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Bcc Branch Conditionally Bcc

Operation: Assembler Syntax:
If cc, then PC + [abel — PC Bcc <OFFSET7>
esePC+1 — PC

Description: If the specified condition is true, program execution continues at location PC + displacement. The PC
contains the address of the next instruction. If the specified condition is false, the PC is incremented,
and program execution continues sequentially. The offset isa 7-bit-sized value that is sign extended to
16 bits. Thisinstruction is more compact than the Jcc instruction, but can only be used to branch within
asmall address range

Theterm “cc” specifies the following:

“cc” Mnemonic Condition
CC (HS*) — carry clear (higher or same) C=0
CS(LO*) — carry set (lower) Cc=1
EQ — equa z=1
GE — greater than or equal N @& V=0
GT — greater than Z+(N @ V)=0
HI* — higher CezZ=1
LE — lessthanor equa Z+(N® V)=1
LS* — lower or same C+Z=1
LT — lessthan N @ V=1
NE — not equal Z=0
NN — not normalized Z+(U°E)=0
NR — normalized Z+(U*E)=1
* Only available when CC bit set in the OMR
X denotesthe logical complement of X
+ denotesthe logical OR operator
e denotesthelogical AND operator
@ denotesthelogical exclusive OR operator
Example:
CMP X0,A
BNE LABEL ; branch to label if Z condition clear
INCW A
INCW A
LABEL:
ADD B,A

Explanation of Example:
In this example, if the Z hit is zero when executing the BNE instruction, program execution skips the
two INCW instructions and continues with the ADD instruction. If the specified condition is not true,
no branch is taken, the program counter isincremented by one, and program execution continues with
the first INCW instruction. The Bcc instruction uses a PC-relative offset of two for this example.

Restrictions:

A Bcec instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A Bcc instruction cannot be repeated using the REP instruction.
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Bcc

Branch Conditionally Bcc

Condition Codes Affected:
The condition codes are tested but not modified by this instruction.

Instruction Fields:

Operation

Operands

Cl

w

Comments

Bcc

<OFFSET7>

6or4

1

7-bit signed PC relative offset

1. Theclock-cycle count depends on whether the branch istaken. The first value appliesif the branch istaken, and the

second appliesif itisnot.

Timing: 4 + jx oscillator clock cycles
Memory: 1 program word
A-46
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B FCHG Test Bit Field and Change B FCHG

Operation: Assembler Syntax:

(<bit field> of destination) — (<bit field> of destination)BFCHG #iiii, X:<ea>
(<bit field> of destination) — (<bit field> of destination)BFCHG #iiii,.D

Description: Test all selected bits of the destination operand. If al selected bits are set, C is set; otherwise, C is
cleared. Then complement the selected bits and store the result in the destination location. The bitsto
be tested are selected by a 16-bit immediate value in which every bit set is to be tested and changed.
Thisinstruction performs aread-modify-write operation on the destination memory location or register
and requires two destination accesses.

Usage: Thisinstruction is very useful in performing I/O and flag bit manipulation.

Example:

BFCHG #50310,X:<<S$SFFE2 ;test and change bits 4, 8, and 9
;in a peripheral register

Before Execution After Execution
X:$FFE2 0010 X:$FFE2 0300
SR 0001 SR 0000

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $0010. Execution of the
instruction tests the state of the bits 4, 8, and 9 in X:$FFE2; does not set C (because not all of the bits
specified in the immediate mask were set); and then complements the bits.

Condition Codes Affected:

MR > CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | * 11|10 |sz|L|E|JU|IN|Z]|V]|C

For destination operand SR:

? — Changed if specified in thefield

For other destination operands:;
L — Setif datalimiting occurred during 36-bit source move
C — Setif al bits specified by the mask are set

Cleared if not al bits specified by the mask are set

Note: If al bits in the mask are set to zero, the destination is unchanged, and the C bit is set. Refer to
Table A-9 on page A-13 when the destination is the SR register.
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BFCHG

Instruction Fields:

Test Bit Field and Change B FCHG

Operation

Operands

Comments

BFCHG

#<MASK16>,DDDDD

#<MASK16>,X:(R2+xx)

#<MASK 16> X:(SP-xx)

#<MASK16> X:aa

#<MASK16>,X:<<pp

H<MASK 16>, X :XXXX

BFCHG tests al bits selected by the 16-bit immediate
mask. If all selected bits are set, then the C bit is set. Oth-
erwiseitiscleared. Then it inverts al selected bits.

All registersin DDDDD are permitted except HWS.

X:aarepresents a 6-bit absolute address. Refer to Abso-
lute Short Address (Direct Addressing): <aa> on page
4-22.

X:<<pp represents a 6-bit absolute 1/0 address. Refer to
1/0 Short Address (Direct Addressing): <pp> on page
4-23.

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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B FCLR Test Bit Field and Clear B FCLR

Operation: Assembler Syntax:
0 —(<bit field> of destination) BFCLR #iiii X :<ea>
0 —(<bit field> of destination) BFCLR #iiii,D

Description: Test all selected bits of the destination operand. If al selected bits are set, C is set; otherwise, C is

Usage:

Example:

cleared. Then clear the selected bits and store the result in the destination memory location. The bits
to be tested are selected by a 16-bit immediate value in which every bit set is to be tested and cleared.
This instruction performs a read-modify-write operation on the destination and requires two destina-
tion accesses.

Thisinstruction is very useful in performing I/O and flag bit manipulation.

BFCLR #$0310,X:<<SFFE2 ; test and clear bits 4, 8, and 9 in
an on-chip peripheral register

1

Before Execution After Execution
X:$FFE2 7F95 X:$FFE2 7C85
SR 0001 SR 0000

Explanation of Example:

Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $7F95. Execution of the
instruction tests the state of the bits 4, 8, and 9 in X:$FFE2; clears C (because not all of the bits spec-
ified in the immediate mask were set); and then clears the bits.

Condition Codes Affected:

Note:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| *|{* 11|10 |sz|L|E|JU|IN|Z]|V]|C

For destination operand SR:

? — Cleared asdefined in the field and if specified in the field
For other destination operands:
L — Setif datalimiting occurred during 36-bit source move

C — Setif dl bits specified by the mask are set
Cleared if not all bits specified by the mask are set

If al bits in the mask are set to zero, the destination is unchanged, and the C bit is set. Refer to
Table A-9 on page A-13 when the destination is the SR register.
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B FCLR Test Bit Field and Clear B FCLR

Instruction Fields:

Operation Operands C W Comments
BFCLR #<MASK16>,DDDDD 4 2 BFCLR tests all bits selected by the 16-bit immediate
mask. If all selected bits are set, then the C bit is set. Oth-
#<MASK16>,X:(R2+xx) 6 2 erwiseit iscleared. Then it clears all selected hits.

#<MASK16>,X:(SP-xx) 6 2 | All registersin DDDDD are permitted except HWS.

#<MASK16>,X:2a 4 2 | X:aarepresents a 6-bit absolute address. Refer to Abso-

lute Short Address (Direct Addressing): <aa> on page
#<MASK 16>,X:<<pp 4 2 | g490

AMASK16> X000¢ 6 3 X:<<pp represents a 6-bit absolute I/O address. Refer to
1/0 Short Address (Direct Addressing): <pp> on page
4-23.
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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B FSET Test Bit Field and Set B FSET

Operation: Assembler Syntax:
1 — (<bit field> of destination) BFSET #iiii, X:<ea>
1 — (<bit field> of destination) BFSET #iiii,D

Description: Test all selected bits of the destination operand. If al selected bits are set, C is set; otherwise, C is
cleared. Then set the selected bits, and store the result in the destination memory location. The bitsto
be tested are selected by a 16-bit immediate value in which every bit set isto be tested and set. This
instruction performs aread-modify-write operation on the destination and requires two destination ac-

CEsSES.
Usage: Thisinstruction is very useful in performing I/O and flag bit manipulation.
Example:
BFSET #$F400,X: <<$FFE2
Before Execution After Execution
X:$FFE2 8921 X:$FFE2 FD21

SR 0000 SR 0000

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $8921. Execution of the
instruction tests the state of bits 10, 12, 13, 14, and 15 in X:$FFE2; does not set C (because not all of
the bits specified in the immediate mask were set); and then sets the bits.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| *|{* 11|10 |sz|L|E|JU|IN|Z]|V]|C

For destination operand SR:

? — Setasdefinedinthefield andif specified in thefield
For other destination operands:
L — Setif datalimiting occurred during 36-bit source move

C — Setif al bits specified by the mask are set
Cleared if not all bits specified by the mask are set

Note: If al bits in the mask are set to zero, the destination is unchanged, and the C bit is set. Refer to
Table A-9 on page A-13 when the destination is the SR register.
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B FSET Test Bit Field and Set B FSET

Instruction Fields:

Operation Operands C W Comments
BFSET #<MASK16>,DDDDD 4 2 BFSET tests all bits selected by the 16-bit immediate
mask. If all selected bits are set, then the C bit is set. Oth-
H#<MASK16>,X:(R2+xx) 6 2 erwiseit iscleared. Then it sets all selected bits.
#<MASK16>,X:(SP-xX) 6 2 | All registersin DDDDD are permitted except HWS.
#<MASK16>,X:2a 4 2 | X:aarepresents a 6-bit absolute address. Refer to Abso-

lute Short Address (Direct Addressing): <aa> on page
#<MASK 16>,X:<<pp 4 2 | 40

AMASK16>,X:000¢ 6 3 X:<<pp represents a 6-bit absolute 1/0 address. Refer to
1/0 Short Address (Direct Addressing): <pp> on page
4-23.
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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BFTSTH Test Bit Field High BFTSTH

Operation: Assembler Syntax:
Test <bit field> of destination for ones BFTSTH #iii X:<ea>
Test <bit field> of destination for ones BFTSTH #iii,D

Description: Test all selected bits of the destination operand. If al selected bits are set, C is set; otherwise, C is
cleared. The bits to be tested are selected by a 16-bit immediate value in which every bit set isto be

tested. Thisinstruction performs two destination accesses.

Usage: Thisinstruction is very useful for testing I/0 and flag bits.
Example:
BFTSTH #50310,X:<<SFFE2 ; test high bits 4, 8, and 9 in
; an on-chip peripheral register
Before Execution After Execution
X:$FFE2 OFFO X:$FFE2 OFFO
SR 0000 SR 0001

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $0FF0. Execution of the

instruction tests the state of bits 4, 8, and 9 in X:$FFE2 and sets C (because al of the bits specified in
the immediate mask were set).

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF | * * * * *lmjwow|sz|L|E|J]U|N]|]Z|V]|C

L — Setif datalimiting occurred during 36-bit source move
C — Setif al bits specified by the mask are set
Cleared if not all bits specified by the mask are set

Note: If al bits in the mask are set to zero, the destination is unchanged, and the C bit is set. Refer to
Table A-9 on page A-13 when the destination is the SR register.
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BFTSTH Test Bit Field High BFTSTH

Instruction Fields:

Operation Operands C W Comments
BFTSTH #<MASK16>,DDDDD 4 2 BFTSTH tests all bits selected by the 16-bit immediate
mask. If al selected bits are set, then the C bit is set. Oth-
#<MASK16>,X:(R2+xX) 6 2 | erwiseitiscleared.
#<MASK16>,X:(SP-xx) 6 2 | All registersin DDDDD are permitted except HWS.
#<MASK16>,X:2a 4 2 | X:aarepresentsa 6-bit absolute address. Refer to Abso-
lute Short Address (Direct Addressing): <aa> on page
#<MASK 16>,X:<<pp 4 2 | 40
AMASK16>, X300 6 3 X:<<pp represents a 6-bit absolute I/O address. Refer to
1/0 Short Address (Direct Addressing): <pp> on page
4-23.

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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B FTSTL Test Bit Field Low B FTSTL

Operation: Assembler Syntax:
Test <bit field> of destination for zeros BFTSTL #iii X:<ea>
Test <bit field> of destination for zeros BFTSTL #iiii,D

Description: Test all selected bits of the destination operand. If all selected bits are cleared, C is set; otherwise, Cis
cleared. The bits to be tested are selected by a 16-bit immediate value in which every bit set isto be
tested. Thisinstruction performs two destination accesses.

Usage: Thisinstruction is very useful for testing 1/0 and flag bits.
Example:
BFTSTL #50310,X:<<$FFE2 ; test low bits 4, 8, and 9
Before Execution After Execution
X:$FFE2 18EC X:$FFE2 18EC
SR 0000 SR 0001

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 containsthe value $18EC. Execution of the
instruction tests the state of bits 4, 8, and 9 in X:$FFE2 and sets C (because al of the bits specified in
the immediate mask were clear).

Condition Codes Affected:

MR > CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| *{* 11|10 |sz|L|E|JU|IN|Z]|V]|C

L — Setif datalimiting occurred during 36-bit source move
C — Setif al bits specified by the mask are cleared
Cleared if not all bits specified by the mask are cleared
Note: If al bits in the mask are set to zero, the destination is unchanged, and the C bit is set. Refer to

Table A-9 on page A-13 when the destination is the SR register.

Instruction Fields:

Operation Operands C W Comments
BFTSTL #<MASK16>,DDDDD 4 2 BFTSTL testsal bits selected by the 16-bit immediate
mask. If al selected bits are clear, then the C bit is set.
#<MASK16>,X:(R2+xx) 6 2 Otherwiseit is cleared.

All registersin DDDDD are permitted except HWS.
#<MASK16>,X:(SP-xx) 6 2

X:aarepresents a 6-bit absolute address. Refer to Abso-
#<MASK16>,X:2a 4 2 | ute Short Address (Direct Addressing): <aa> on page
4-22.

X:<<pp represents a 6-bit absolute I/O address. Refer to
1/0 Short Address (Direct Addressing): <pp> on page
4-23.

#<MASK 16> X:<<pp 4 2

H#<MASK 16>, X :XXXX 6 3

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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B RA Branch B RA

Operation: Assembler Syntax:
PC+label — PC BRA <OFFSET7>

Description: Branch to the location in program memory at PC + displacement. The PC contains the address of the
next instruction. The displacement is a 7-bit signed value that is sign extended to form the PC-relative

offset.
Example:
BRA LABEL
INCW A
INCW A
LABEL
ADD B,A

Explanation of Example:
In this example, program execution skips the two INCW instructions and continues with the ADD in-
struction. The BRA instruction uses a PC-relative offset of two for this example.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Restrictions:
A BRA instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A BRA instruction cannot be repeated using the REP instruction.

Instruction Fields:

Operation Operands C w Comments
BRA <OFFSET7> 6 1 7-bit signed PC relative offset
Timing: 6+jx oscillator clock cycles
Memory: 1 program word
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B RCLR Branch if Bits Cleared B RCLR

Operation: Assembler Syntax:
Branch if <bit field> of destination isall zeros BRCLR #iiii, X:<ea>,aa
Branch if <bit field> of destinationisall zeros BRCLR #iii,D,aa

Description: Test al selected bits of the destination operand. If al the selected bits are clear, C is set, and program
execution continues at the location in program memory at PC + displacement. Otherwise, Cis cleared
and execution continues with the next sequential instruction. The bits to be tested are selected by an
8-bit immediate value in which every bit set isto be tested.

Usage: Thisinstruction is useful in performing I/O flag polling.
Example:
BRCLR #50013,X:<<$SFFE2, LABEL
INCW A
INCW A
LABEL:
ADD B,A
Before Execution After Execution
X:$FFE2 18EC X:$FFE2 18EC
SR 0000 SR 0001

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 containsthe value $18EC. Execution of the
instruction tests the state of bits 4, 1, and 0 in X:$FFE2 and sets C (because al of the bits specified in
the immediate mask were clear). Since C is set, program execution is transferred to the address offset
from the current program counter by the displacement specified in the instruction (the two INCW in-
structions are not executed).

Condition Codes Affected:

MR > CCR
15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | * 11|10 |sz|L|E|JU|IN|Z]|V]|C

L — Setif datalimiting occurred during 36-bit source move
C — Setif al bits specified by the mask are cleared
Cleared if not al bits specified by the mask are cleared
Note: If al bitsin the mask are set to zero, C is set, and the branch istaken. Refer to Table A-9 on page A-13

when the destination is the SR register.
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BRCLR

Instruction Fields:

Branch if Bits Clear

BRCLR

Operation Operands c? Comments
BRCLR #<MASK8>DDDDD,<OFFSET7> 10/8 BRCLR tests all bits selected by the immediate mask.
If al selected bits are clear, then the carry bit is set and
H#<MASK8> X:(R2+xx),<OFFSET7> | 12/10 aPC relative branch occurs. Otherwise it is cleared
and no branch occurs.
#<MASK8>X:(SP-xx),<OFFSET7> | 12/10
All registersin DDDDD are permitted except HWS.
#<MASK8>,X:aa,<OFFSET7> 10/8
) MASK8 specifies a 16-bit immediate value where
H#<MASKE> X:<<pp,<OFFSET7> 1058 either the upper or lower 8 bits contains all zeros.
H<MASK 8> X :xxxx,<OFFSET7> 12/10

AA specifies a 7-bit PC relative offset.

X:aarepresents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing): <aa>
on page 4-22.

X:<<pp represents a 6-bit absolute 1/0 address. Refer
to /O Short Address (Direct Addressing): <pp>on
page 4-23.

1. Thefirst cycle count refers to the case when the condition is true and the branch is taken. The second cycle count
refers to the case when the condition is false and the branch is not taken.

Timing:

Memory:
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B RSET Branch if Bits Set B RSET

Operation: Assembler Syntax:
Branch if <bit field> of destination is all ones BRSET #Hiiii, X:<ea>,aa
Branch if <bit field> of destinationisall ones BRSET #iii,D,aa

Description: Test all selected bits of the destination operand. If al the selected bits are set, C is set, and program
execution continues at the location in program memory at PC + displacement. Otherwise, Ciscleared,
and execution continues with the next sequential instruction. The bits to be tested are selected by an
8-bit immediate value in which every bit set isto be tested.

Usage: Thisinstruction is useful in performing I/O flag polling.
Example:
BRSET #S300F0,X:<<$SFFE2,LABEL
INCW A
INCW A
LABEL:
ADD B,A
Before Execution After Execution
X:$FFE2 OFFO X:$FFE2 OFFO
SR 0000 SR 0001

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFE2 contains the value $0FF0. Execution of the
instruction tests the state of bits 4, 5, 6, and 7 in X:$FFE2 and sets C (because all of the bits specified
in the immediate mask were set). Since C is set, program execution is transferred to the address offset
from the current program counter by the displacement specified in the instruction (the two INCW in-
structions are not executed)

Condition Codes Affected:

MR > CCR
15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | * 11|10 |sz|L|E|JU|IN|Z]|V]|C

L — Setif datalimiting occurred during 36-bit source move
C — Setif al bits specified by the mask are set
Cleared if not al bits specified by the mask are set

Note: If al bitsin the mask are set to zero, C is set and the branch istaken. Refer to Table A-9 on page A-13
when the destination is the SR register.
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BRSET

Instruction Fields:

Branch if Bits Set

BRSET

Operation Operands cl Comments
BRSET #<MASK8>,DDDDD,<OFFSET7> 10/8 BRSET testsall bits selected by the immediate mask. If
all selected bits are set, then the carry bit isset and aPC
H#<MASK8> X:(R2+xx),<OFFSET7> | 12/10 relative branch occurs. Otherwise it is cleared and no
branch occurs.
#<MASK8>X:(SP-xx),<OFFSET7> | 12/10
All registersin DDDDD are permitted except HWS.
#<MASK8>,X:aa,<OFFSET7> 10/8
) MASK8 specifies a 16-bit immediate value where
#<MASKE> X:<<pp,<OFFSET 7> 1058 either the upper or lower 8 bits contains all zeros.
H<MASK 8>, X :xxxX,<OFFSET7> 12/10

AA specifies a 7-bit PC relative offset.

X:aarepresents a 6-bit absolute address. Refer to Abso-
lute Short Address (Direct Addressing): <aa> on
page 4-22.

X:<<pp represents a 6-bit absolute I/0 address. Refer
to 1/O Short Address (Direct Addressing): <pp>on
page 4-23.

1. Thefirst cycle count refers to the case when the condition is true and the branch is taken. The second cycle count
refers to the case when the condition is false and the branch is not taken.

Timing:

Memory:
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CLR Clear Accumulator CLR

Operation: Assembler Syntax:
0-D CLR D
0-—-D (single parallel move) CLR D (single parallel move)

Description: SettheA or B accumulator to zero. Datalimiting may occur during aparallel write. The 16-bit registers
are cleared using the MOVE instruction.

Implementation Note:
When a 16-bit register is used as the operand for CLR, this instruction is actually assembled as a
MOVE #0, <registers instruction. It will disassemble as MOVE instruction.

Example:
CLR A A,X: (RO)+ ; save A into X data memory before
; clearing it
A Before Execution A After Execution
2 3456 789A 0 0000 0000
A2 Al A0 A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $2:3456:789A. Execution of the
CLR A instruction clears the 36-bit A accumulator to zero.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LFE| x| | *| | *|11|10|SZ|L|E|JU|N|Z]|V]|C

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Setif datalimiting has occurred during parallel move

E — Alwaysclearedif destination is a 36-bit accumulator

U — Alwayssetif destination is a36-bit accumulator

N — Alwayscleared if destination is a 36-bit accumulator

Z — Alwayssetif destination is a 36-bit accumulator

V — Alwayscleared if destination is a 36-bit accumulator

Note: The condition codes are only affected if the destination of the CLR instruction is one of the two 36-bit

accumulators (A or B).

Freescale Semiconductor Instruction Set Details A-61



CLR

Instruction Fields:

Clear Accumulator CLR

Operation Operands W Comments
CLR F 1 Clear 36-hit accumulator and set condition codes.
F1DD ALIAS, refer to Section 6.5.4, “CLR Alias.”
Implemented as: MOV E #0,<register>
Rj (does not set condition codes)
N

Parallel Moves:

Timing:

Memory:

A-62

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination?
CLR F X:(Rn)+ X0
X:(Rn)+N Y1
YO
A
B
Al
Bl
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cy-

clefor every addressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register
as the destination of the parallel read operation. Memory writes are allowed in this

case.

2 + mv oscillator clock cycles

1 program word
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CMP Compare CMP

Operation: Assembler Syntax:
D-S CMP SD
D-S (single parallel move) CMP SD (single parallel move)

Description: Subtract the first operand from the second operand and update the CCR without storing the result. If
the second operand is a 36-bit accumulator, 16-bit source registers are first sign extended internally
and concatenated with 16 zero bits to form a 36-bit operand. When the second operand is X0, YO, or
Y 1, 16-bit subtraction is performed. In this caseg, if the first operand is one of the four accumulators,
the FF1 portion (properly sign extended) is used in the 16-bit subtraction (the FF2 and FFO portions

areignored).
Usage: Thisinstruction can be used for both integer and fractional two’s-complement data.
Note: When aword is specified as the source, it is sign extended and zero filled to form avalid 36-hit oper-

and. In order for C to be set correctly as aresult of the subtraction, the destination must be properly
sign extended. The destination can be improperly sign extended by writing A1 or B1 explicitly prior
to executing the compare, so that A2 or B2, respectively, may not represent the correct sign extension.
This note particularly applies to the case in which the source is extended to compare 16-bit operands,

such as X0 with A1.
Example:
CMP YO0,A X0,X: (R1)+N ; compare Y0 and A, save XO,
; update R1
Before Execution After Execution
0 0020 0000 0 0020 0000
A2 Al A0 A2 Al A0
YO 0024 YO 0024
SR 0300 SR 0319

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0020:0000, and the 16-bit YO reg-
ister contains the value $0024. Execution of the CMP Y0, A instruction automatically appends the
16-bit valuein the Y O register with 16 LS zeros, sigh extends the resulting 32-bit long word to 36 bits,
subtracts the result from the 36-bit A accumulator, and updates the CCR (leaving the A accumulator
unchanged).
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CMP Compare CMP

Condition Codes Affected:

< MR 14 CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| = | x| *|*]| | n1|lwo|SZ|L|E|J|U|N|Z|V|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of theresult isin use

Set if result is not normalized

— Setif bit 35 of theresult is set

—  Setif result equals zero

— Setif overflow has occurred in result

— Setif acarry (or borrow) occurs from bit 35 of the result

o<NzcmrQ
|

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C w Comments
CMP DD,FDD 2 1 36-hit compare of two accumulators or datareg
F1,DD
AB
B,A
X:(SP-xx),FDD 6 1 Compare memory word with 36 bit accumul ator.
X:aa,FDD 4 1 X:aa represents a 6-bit absolute address. Refer to Abso-
lute Short Address (Direct Addressing): <aa> on page
X:xxxx,FDD 6 2 4-22.
Note: Condition codes set based on 36-bit result
#<0-31>,FDD 4 1 Compare register with an immediate integer 0-31
#xxxx,FDD 6 2 Compare register with a signed 16-bit immediate integer
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CMP

Parallel Moves:

Compare

CMP

Data ALU Operation

Parallel Memory Move

Operation® Operands Source Destination?
CMP XOF X:(Rn)+ X0
Y1F X:(Rn)+N Y1
YO,F YO
AB A
B,A B
Al
Bl
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=Aor B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cyclefor ev-

ery addressing mode.

2. The destination of the data ALU operation is not allowed to be the same register as the

destination of the parallel read operation. Memory writes are allowed in this case.

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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DEB UG Enter Debug Mode DEB UG

Operation: Assembler Syntax:
Enter the debug processing state DEBUG

Description: Enter the debug processing state if the PWD bit is clear in the EOnCE port’s OCR register, and wait
for EONCE commands. If this bit is not clear, then the processor simply executes two NOPs and con-
tinues program execution.

Condition Codes Affected:

No condition codes are affected.
Instruction Fields:

Operation Operands C w Comments
DEBUG 4 1 Generate a debug event
Timing: 4 oscillator clock cycles
Memory: 1 program word
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DEC(W) Decrement Word DEC(W)

Operation: Assembler Syntax:
D-1-D DECW D
D-1—-D (singleparallel move) DECW D (single parallel move)

Description: Decrement a 16-bit destination by one. If the destination is an accumulator, only the EXT and MSP
portions of the accumulator are used and the L SP remains unchanged. The condition codes are cal cu-
lated based on the 16-bit result. Duplicate destination is not allowed when this instruction is used in
conjunction with a parallel read.

Usage: Thisinstruction is typically used when processing integer data.

Example:

DECW A X:(R2)+,X0 ; Decrement the 20 MSBs of A and then
; update R2,X0

A Before Execution A After Execution
0 0001 0033 0 0000 0033
A2 Al AO A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0001:0033. Execution of the
DECW A instruction decrements by one the upper 20 bits of the A accumulator.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | * 11|10 |SZ|L|E|JU|IN|Z]|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of theresult isin use

Set if result is not normalized

— Setif bit 35 of theresult is set

— Setif the 20 MSBs of the result are all zeros

— Setif overflow has occurred in result

— Setif acarry (or borrow) occurs from bit 35 of the result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations— CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

o<NzcmE @
|

Operation Operands C w Comments
DEC FDD 2 1 Decrement word
or

DECW X:(SP-xx) 8 1 Decrement word in memory using appropriate addressing

mode.
X:aa 6 1
X:aarepresents a 6-bit absolute address. Refer to Abso-
XIXXXX 8 2 | Iute Short Address (Direct Addressing): <aa> on page

4-22.
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DEC(W)

Parallel Moves:

Timing:

Memory:

A-68

Decrement Word

DEC(W)

Data ALU Operation

Parallel Memory Move

Operation® Operands Source Destination?
DEC F X:(Rn)+ X0
or X:(Rn)+N Y1l
DECW YO
A
B
Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=Aor B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cycle
for every addressing mode.

2. Thedestination of the data ALU operation is not alowed to be the same register
asthe destination of the parallel read operation. Memory writesare allowed in this case.

Refer to the preceding Instruction Fields table

Refer to the preceding Instruction Fields table
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DlV Divide Iteration D|V
Operation: Assembler Syntax:
(seefigure) DIV SD
If D[35] @ S[15]=1
Then
<« «— <«—C; D1+S—» D1
D2 D1 DO
Else
“«— «— «— «—C; D1-S —» D1
D2 D1 DO

Description:

Thisinstruction is adivide iteration that is used to calculate 1 bit of the result of a division. After the
correct number of iterations, thisinstruction will divide the destination operand (D)—dividend or nu-
merator—by the source operand (S)—divisor or denominator—and store the result in the destination
accumul ator. The 32-hit dividend must be a positive value that is correctly sign extended to 36 bitsand
that is stored in the full 36-bit destination accumulator. The 16-bit divisor is a signed value and is
stored in the source operand. (The division of signed numbers is handled using the techniques docu-
mented in Section 8.4, “Division,” on page 8-13.) This instruction can be used for both integer and
fractional division. Each DIV iteration calculates 1 quotient bit using a non-restoring division algo-
rithm (see the description that follows). After the execution of the first DIV instruction, the destination
operand holds both the partial remainder and the formed quotient. The partial remainder occupies the
high-order portion of the destination accumulator and is a signed fraction. The formed quotient occu-
piesthe low-order portion of the destination accumulator (AO or BO) and is a positive fraction. One bit
of the formed quotient is shifted into the L SB of the destination accumulator at the start of each DIV
iteration. The formed quotient is the true quotient if the true quotient is positive. If the true quotient is
negative, the formed quotient must be negated. For fractional division, valid results are obtained only
when |D| < |S]. This condition ensures that the magnitude of the quotient is less than one (that is, it is
fractional) and precludes division by zero.

The DIV instruction calculates 1 quotient bit based on the divisor and the previous partial remainder.
To produce an N-bit quotient, the DIV instruction is executed N times, where N is the number of bits
of precision that is desired in the quotient (1 < N < 16). Thus, for a full-precision (16-bit) quotient,
16 DIV iterations are required. In general, executing the DIV instruction N times produces an N-bit
quotient and a 32-bit remainder, which has (32 — N) bits of precision and whose N MSBs are zeros.
The partial remainder is not atrue remainder and must be corrected (due to the non-restoring nature of
the division algorithm) before it may be used. Therefore, once the divide is complete, it is necessary
to reverse the last DIV operation and restore the remainder to obtain the true remainder.

The DIV instruction uses a non-restoring division algorithm that consists of the following operations:

1. Compare the source and destination operand sign bits. An exclusive OR operation is performed on
bit 35 of the destination operand and bit 15 of the source operand.

2. Shift the partial remainder and the quotient. The 36-bit destination accumulator is shifted 1 bit to the
left. C ismoved into the LSB (bit 0) of the accumulator.
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DlV Divide Iteration D|V

3. Cdculate the next quotient bit and the new partial remainder. The 16-bit source operand (signed
divisor) is either added to or subtracted from the M SP of the destination accumulator (FF1 portion),
and theresult isstored back into the M SP of the destination accumulator. If the result of the exclusive
OR operation in the first step was one (that is, the sign bits were different), the source operand Sis
added to the accumulator. If the result of the exclusive OR operation was zero (that is, the sign bits
were the same), the source operand Sis subtracted from the accumulator. Due to the automatic sign
extension of the 16-bit signed divisor, the addition or subtraction operation correctly sets the C hit
with the next quotient bit.

Usage:
The DIV iteration instruction can be used in one of severa different division algorithms, depending on
the needs of an application. Section 8.4, “Division,” on page 8-13 shows the correct usage of thisin-
struction for fractional and integer division routines, discusses in detail issues related to division, and
provides several examples. The division routine is greatly ssimplified if both operands are positive, or
if it isnot necessary also to calculate aremainder.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | * 11|10 |sz|L|E|JU|IN|Z]|V]|C

L — Setif overflow bitV isset
V — Setif the MSB of the destination operand is changed as aresult of the
instruction’ sl eft shift operation
C — Setif bit 350f theresultis cleared
Example:
DIV Y0,A ; divide A by YO
Before Execution After Execution
0 0702 0000 0 OEOO0 0001
A2 Al A0 A2 Al AO
2000 0004 2000 0004
Y1 YO Y1 YO
SR 0301 SR 0301

Explanation of Example:
This example shows only asingle iteration of the division instruction. Please refer to Section 8.4 for a
complete description of adivision algorithm.

Instruction Fields:

Operation Operands C w Comments
DIV DD,F 2 1 Divide iteration
Timing: 2 oscillator clock cycles
Memory: 1 program word
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DO Start Hardware Do Loop

Operation upon Executing DO Instruction: Assembler Syntax:
HWS0] - HWS[1]; #xx — LC DO #Xx,expr
PC - HWS0]; LF— NL; expr — LA

1> LF

HWS[0] — HWS[1]; S—LC DO  Sexpr
PC - HWS0]; LF— NL; expr — LA

1> LF

Operation When Loop Completes (End-of-Loop Processing):

NL — LF
HWS[1] - HWS[0]; 0— NL

DO

Description: Begin a hardware DO loop that is to be repeated the number of times specified in the instruction’s

source operand, and whose range of execution isterminated by the destination operand (shown previ-
oudly as“expr”). No overhead other than the execution of this DO instruction is required to set up this
loop. DO loops can receive their loop count as an immediate value or asavariable stored in an on-chip
register. When executing a DO loop, the instructions are actually fetched each time through the loop.
Therefore, aDO loop can be interrupted.

During thefirst instruction cycle, the DO instruction’ s source operand isloaded into the 13-bit L C reg-
ister, and the second location in the HWS receives the contents of the first location. The LC register
stores the remaining number of times the DO loop will be executed and can be accessed from inside
the DO loop as aloop count variable subject to certain restrictions. The DO instruction alows all reg-
isters on the DSC core to specify the number of loop iterations, except for the following: M01, HWS,
OMR, and SR. If immediate short dataisinstead used to specify the loop count, the 6 L SBs of the LC
register are loaded from the instruction, and the upper 7 MSBs are cleared.

During the second instruction cycle, the current contents of the PC are pushed onto the HWS. The DO
instruction’ s destination address (shown as “expr”) isthen loaded into the LA register. This 16-bit op-
erand is located in the instruction’s 16-bit absolute address extension word (as shown in the opcode
section). The valuein the PC pushed onto the HWS is the address of the first instruction following the
DO instruction (that is, the first actual instruction in the DO loop). At the bottom of the loop, when it
is necessary to return to the top for another loop pass, thisvalueis read (that is, copied but not pulled)
from the top of the HWS and loaded into the PC.

During the third instruction cycle, the LF is set. The PC isrepeatedly compared with LA to determine
if the last instruction in the loop has been fetched. If LA equals PC, the last instruction in the loop has
been fetched and the LC istested. If LC isnot equal to one, it is decremented by one, and top of HWS
isloaded into the PC to fetch the first instruction in the loop again. If LC equals one, the end-of-loop
processing begins.

During the end-of-loop processing, the NL bit is written into the LF, and the NL hit is cleared. The
contents of the second HWS location are written into the first HWS location. Instruction fetches now
continue at the address of the instruction that follows the last instruction in the DO loop.

DO loops can a so be nested as shown in Section 8.6, “Loops,” on page 8-20. When DO loops are hest-
ed, the end-of-loop addresses must also be nested and are not allowed to be equal. The assembler gen-
erates an error message when DO |oops are improperly nested.
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DO

Note:

Note:

Note:

Note:

Note:

Start Hardware Do Loop DO

The assembler calculates the end-of-loop address to be loaded into LA by evaluating the end-of-loop
“expr’ and subtracting one. This is done to accommodate the case in which the last word in the DO
loop is atwo-word instruction. Thus, the end-of-loop expression “expr” in the source code must rep-
resent the address of the instruction after the last instruction in the loop.

The LF iscleared by a hardware reset.

Dueto pipelining, if an addressregister (RO-R3, SP, or M01) ischanged using amove-typeinstruction
(LEA, Tcc, MOVE, MOVEC, MOVEP, or parallel move), the new contents of the destination address
register will not be available for use during the following instruction (that is, there isa single instruc-
tion cycle pipeline delay). Thisrestriction also applies to the situation in which the last instruction in
aDO loop changes an address register and the first instruction at the top of the DO loop uses that same
address register. The top instruction becomes the following instruction due to the loop construct.

If the A or B accumulator is specified as asource operand, and the data from the accumul ator indicates
that extension is used, the value to be loaded into the L C register will be limited to a 16-bit maximum
positive or negative saturation constant. If positive saturation occurs, the limiter places $7FFF onto the
bus, and the lower 13 bits of thisvalue are al ones. The thirteen ones are loaded into the LC register
as the maximum unsigned positive loop count allows. If negative saturation occurs, the limiter places
$8000 onto the bus, and the lower 13 bits of thisvalue are all zeros. The thirteen zeros are loaded into
the LC register, specifying aloop count of zero. The A and B accumulators remain unchanged.

If LC iszero upon entering the DO loop, the loop is executed 213times. To avoid this, use the software
technique outlined in Section 8.6, “Loops,” on page 8-20.

Condition Codes Affected:

A-72

< MR < CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * * * * * IL|10|sz|L E U N z vV | C

LF — SetwhenaDOloopisin progress
L — Setif datalimiting occurred
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DO

Restrictions:

Start Hardware Do Loop DO

The end-of-loop comparison previously described occurs at instruction fetch time. That is, LA iscom-
pared with PC when the instruction at the LA-2 is being executed. Therefore, instructions that access
the program controller registers or change program flow cannot be used in locations LA-2, LA-1, or
LA.

Proper DO loop operation isnot guaranteed if aninstruction starting at the LA-2, LA-1, or LA specifies
one of the program controller registers SR, SP, LA, LC, or (implicitly) PC as a destination register.
Similarly, the HWS register may not be specified as a source or destination register in an instruction
starting at the LA-2, LA-1, or LA. Additionally, the HWS register cannot be specified as a source reg-
isterinthe DO instructionitself, and LA cannot be used as atarget for jumpsto subroutine (that is, JSR
to LA). A DO instruction cannot be repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a DO loop:

AttheLA-2,LA-1,and LA:
DO
MOVEC from HWS
MOVECto LA, LC, SR, SP, or HWS
Any bit-field instruction on the Status Register (SR)
Two-word instructions that read LC, SP, or HWS

At the LA-1:
ENDDO
Single-word instructions that read LC, SP, or HWS

AttheLA:
Any two-word instruction (this restriction applies to the situation in which the DSC
simulator’s single-line assembler is used to change the last instruction in aDO loop from
aone-word instruction to a two-word instruction)

Bcc, Jec BRSET, BRCLR
BRA, JMP REP

JSR RTI, RTS
WAIT, STOP

Similarly, since the DO instruction accesses the program controller registers, the DO instruction must
not be immediately preceded by any of the following instructions:

Immediately Before DO:
MOVEC to HWS
MOVEC from HWS

Other Restrictions:
DO HWS,xxxx
JSR to (LA) whenever the LF is set
A DO instruction cannot be repeated using the REP instruction
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DO Start Hardware Do Loop DO

Example:
DO #cntl, END ; begin DO loop
MOVE X:(RO),A
REP #cont2 nested REP loop

MOVE A,X: (RO)+ last instruction in DO loop

ASL A ; repeat this instruction
; (outside DO loop)

END:

Explanation of Example:
Thisexampleillustratesa DO loop with a REP loop nested within the DO loop. In thisexample, “cntl”
values are fetched from memory; each is left shifted by “cnt2” counts and is stored back in memory.
The DO loop executes “cntl” times while the ASL instruction inside the REP |oop executes (“cntl” *
“cnt2”) times. The END label islocated at the first instruction past the end of the DO loop, as men-
tioned previoudly.

Instruction Fields:

Operation Operands C w Comments

DO #<1-63>,<ABS16> 6 2 Load L C register with unsigned value and start hardware
DO loop with 6-bit immediate loop count. The last
addressis 16-bit absolute.

Loop_count of 0 is not allowed by assembler.

DDDDD,<ABS16> Load LC register with unsigned value. If LC is not equal
to zero, start hardware DO loop with 16-bit loop count in
register. Otherwise, skip body of loop (adds three addi-
tional cycles). Thelast addressis 16-bit absolute.

Any register allowed except: SP, M01, SR, OMR, and
HWS.

Timing: 6 oscillator clock cycles

Memory: 2 program words

A-74 DSP56800 Family Manual Freescale Semiconductor



ENDDO End Current DO Loop ENDDO

Operation:
NL — LF

Assembler Syntax:
ENDDO

HWS[1] - HWS[0]; 0— NL

Description:

Example:

Terminate the current hardware DO loop immediately. Normally, a hardware DO loop is terminated
when the last instruction of the loop is executed and the current LC equals one, but thisinstruction can
terminate aloop before normal completion. If the value of the current DO’s LC is needed, it must be
read before the execution of the ENDDO instruction. Initially, the LF isrestored from the NL bit, and
the top-of-loop addressis purged from the HWS. The contents of the second HWS location are written
into the first HWS location, and the NL bit is cleared.

DO Y0, ENDLP execute loop ending at ENDLP (YO)
times

MOVEC LC,A get current value of loop counter

CMP Y1l,A ; compare loop counter with Y1

JNE CONTINU ; jJump if LC not equal to Y1

ENDDO ; equal, restore all DO registers

JMP ENDLP ; jump to ENDLP, continue after loop
CONTINU: ; LC not equal to Y1, continue loop

MOVE #1,X:$4000 ; (last instruction in DO loop)
ENDLP: MOVE #$1234,X0 ; (first instruction AFTER DO loop)

Explanation of Example:

Note:

Restrictions:

Thisexampleillustratesthe use of the ENDDO instruction to terminate the current DO loop. Thevalue
of theLCiscompared with thevalueinthe Y 1 register to determineif execution of the DO loop should
continue. The ENDDO instruction updates certain program controller registers but does not automat-
ically jump past the end of the DO loop. Thus, if thisaction isdesired, a IMP/BRA instruction (that is,
JMP ENDLP asshown previously) must beincluded after the ENDDO instruction to transfer program
control to the first instruction past the end of the DO loop.

The ENDDO instruction updates the program controller registers appropriately but does not automat-
ically jump past the end of the loop. If desired, this must be done explicitly by the programmer.

Due to pipelining and the fact that the ENDDO instruction accesses the program controller registers,
the ENDDO instruction must not be immediately preceded by any of the following instructions:

MOVEC to SR or HWS
MOVEC from HWS
Any bit-field instruction on the SR

Also, the ENDDO instruction cannot be the next-to-last instruction in aDO loop (at the LA-1).

Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C w Comments

ENDDO

2 1 Remove one value from the hardware stack and update
the NL and LF bits appropriately
Note: Does not branch to the end of the loop

Timing:

Memory:

2 oscillator clock cycles

1 program word
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EOR Logical Exclusive OR EOR

Operation: Assembler Syntax:
S®D—D EOR SD
S® D[31:16] — D[31:16] EOR SD

where @ denotes the logical exclusive OR operator

Description: Logicaly exclusive OR the source operand (S) with the destination operand (D) and store the result in
the destination. This instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the
source is exclusive ORed with bits 31-16 of the accumulator. The remaining bits of the destination
accumulator are not affected. The result is not affected by the state of the saturation bit (SA).

Usage: Thisinstruction is used for the logical exclusive OR of two registers. If it is desired to exclusive OR a
16-bit immediate value with aregister or memory location, then the EORC instruction is appropriate.
Example:
EOR Y1,B ; Exclusive OR Y1 with Bl
Before Execution After Execution
5 5555 6789 5 AA55 6789
B2 B1 BO B2 B1 BO
Y1 FFOO0 Y1 FFOO0

Explanation of Example:
Prior to execution, the 16-bit Y 1 register contains the value $FF00, and the 36-bit B accumulator con-
tains the value $5:5555:6789. The EOR Y1, B instruction logically exclusive ORs the 16-bit valuein
the Y 1 register with bits 31-16 of the B accumulator (B1) and storesthe 36-bit result in the B accumu-
lator. The lower word of the accumulator (B0O) and the extension bits (B2) are not affected by the op-
eration.

Condition Codes Affected:

MR g CCR
15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *|*|*|11|lOo|sz|]L|E|U|N|Z]|V]|C

N — Setif bit 31 of accumulator result or MSB of register result is set
Z — Setif bits 31-16 of accumulator result or al bits of register result are zero
V — Alwayscleared

Instruction Fields:

Operation Operands C w Comments
EOR DD,FDD 2 1 16-bit exclusive OR (XOR)
F1,DD
Timing: 2 oscillator clock cycles
Memory: 1 program word
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EORC Logical Exclusive OR Immediate EORC

Operation: Assembler Syntax:
HXXXX © X:<ea> — X:<ea> EORC #iiii X <ea>
#xXxxx ®D - D EORC #iiii,D

where @ denotes the logical exclusive OR operator

Implementation Note:
Thisinstruction is an alias to the BFCHG instruction, and assembles as BFCHG with the 16-bit imme-
diate value as the bit mask. Thisinstruction will disassemble as a BFCHG instruction.

Description: Logicaly exclusive OR a 16-bit immediate data value with the destination operand (D) and store the
results back into the destination. C is also modified as described below. This instruction performs a
read-modify-write operation on the destination and requires two destination accesses.

Example:
EORC #SOFF0,X:<<SFFEO ; Exclusive OR with immediate data
Before Execution After Execution
X:$FFEO 5555 X:$FFEO 5AA5
SR 0301 SR 0300

Explanation of Example:
Prior to execution, the 16-bit X memory location X:$FFEO contains the value $5555. Execution of the
instruction performs alogical XOR of the 16-bit immediate data value ($0FF0) with the destination
contents ($5555). In this case, it tests the 8 bits [11:4] in and writes back the result ($5AA5) in desti-
nation X:$FFEO. The C bit is cleared because not all of the tested bits were set.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| *|{* 11|10 |sz|L|E|JU|IN|Z]|V]|C

For destination operand SR:

? — Changed if specified in thefield
For other destination operands:;
L — Setif datalimiting occurred during 36-bit source move

C — Setif dl bits specified by the mask are set.
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EORC Logical Exclusive OR Immediate EORC

Instruction Fields:

Operation Operands C W Comments
EORC #<MASK16>,DDDDD 4 2 Implemented using the BFCHG instruction.
#<MASK16>,X:(R2+xx) 6 2 | All registersin DDDDD are permitted except HWS.
#<MASK16>,X:(SP-xx) 6 2 | X:aarepresents a6-bit absolute address. Refer to Abso-
lute Short Address (Direct Addressing): <aa> on page
#<MASK 16> X:aa 4 2 | 42
#<MASK16>X:<<pp 4 2| X:<<pp represents a 6-bit absolute 1/O address. Refer to
H<MASK16> X X00XX 6 3 I4/238h0rt Address (Direct Addressing): <pp> on page
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table

A-78 DSP56800 Family Manual Freescale Semiconductor



”_LEGAL lllegal Instruction Interrupt ”_LEGAL

Operation: Assembler Syntax:
Begin illega instruction exception routine ILLEGAL
Description: Normal instruction execution is suspended and illegal instruction exception processing isinitiated. The

Usage:

Example:

interrupt priority level bits (11 and 10) are set to 11 in the status register. The purpose of theillegal in-
terrupt is to force the DSC into an illegal instruction exception for test purposes. Executing an ILLE-
GAL instruction isafata error; the exception routine should indicate this condition and cause the sys-
tem to be restarted.

If the ILLEGAL instruction isin a DO loop at the LA and the instruction at the LA-1 is being inter-
rupted, then L C will be decremented twice due to the same mechanism that causes L C to be decrement-
ed twiceif JSR, REP,... arelocated at the LA.

Since REPisnot interruptible, repeating an ILLEGAL instruction resultsin the interrupt not being tak-
en until after completion of the REP. After servicing the interrupt, program control will return to the
address of the second word following the ILLEGAL instruction. Of course, the ILLEGAL interrupt
service routine should abort further processing, and the processor should be re-initialized.

ThelLLEGAL instruction provides ameansfor testing the interrupt service routine executed upon dis-
covering an illegal instruction. This allows a user to verify that the interrupt service routine can cor-
rectly recover from an illegal instruction and restart the application. The ILLEGAL instruction is not
used in normal programming.

ILLEGAL

Explanation of Example: See the previous description.

Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C w Comments

ILLEGAL 4 1 Execute theillegal instruction exception. Thisinstruction

is made available so that code may be written to test and
verify interrupt handlers for illegal instructions.

Timing:

Memory:

4 oscillator clock cycles

1 program word
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|MPY(16) Integer Multiply |MPY(16)

Operation:
(S1*s2) —» D1

Assembler Syntax:
IMPY 16 S1,52,D

sign-extend D2; leave DO unchanged

Description:

Usage:

Note:

Example:

Perform an integer multiplication on the two 16-bit, signed, integer source operands (S1 and S2), and
store the lowest 16 bits of the integer product in the destination (D). If the destination is an accumul a-
tor, the product is stored in the M SP with sign extension while the L SP remains unchanged. The order
of the first two operandsis not important. The V bit isset if the calculated integer product does not fit
into 16 bits.

Thisinstruction is useful in general computing when it is necessary to multiply two integers and the
nature of the computation can guarantee that the result fitsin a 16-bit destination. In this case, it is bet-
ter to place theresult inthe MSP (A1 or B1) of an accumulator, because more instructions have access
to this portion than to the other portions of the accumulator.

No overflow control or rounding is performed during integer multiply instructions. Theresult isalways
a 16-bit signed integer result that is sign extended to 20 bits.

IMPY16 Y0,X0,A ; form 16-bit product

Before Execution After Execution

F

AAAA 789A 0 00oC 789A

A2

Al A0 A2 Al A0

X0 0003 X0 0003

YO 0004 YO 0004

Explanation of Example:

A-80

Prior to execution, the data AL U registers X0 and Y0 contain, respectively, two 16-bit signed integer
values ($0003 and $0004). The contents of the destination accumulator are not important prior to ex-
ecution. Execution of the IMPY X0, YO0, A instruction integer multiplies X0 and Y 0 and storesthere-
sult ($000C) in A1. A0 remains unchanged, and A2 is sign extended.
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|MPY(16) Integer Multiply |MPY(16)

Condition Codes Affected:

< MR 14 CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * | * | | x| |1 |o|sz|L|E|JU|N|Z]|V]|C

L — Setif overflow has occurred in result
N — Setif bit 35 of theresult is set
Z — Setif the 20 MSBs of the result equal zero
V — Setif overflow occursin the 16-bit result
Instruction Fields:
Operation Operands C w Comments
IMPY Y1,X0,FDD 2 1 Integer 16x16 multiply with 16-bit result.
or Y0,X0,FDD
IMPY 16 Y1,YO,FDD When the destination register is F, the FO portionis
YO,YO,FDD unchanged by the instruction.
Al1YO,FDD
B1,Y1,FDD Note: Assembler also accepts first two operands when
they are specified in opposite order.
Timing: 2 oscillator clock cycles
Memory: 1 program word
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|NC(W) Increment Word |NC(W)

Operation: Assembler Syntax:
D+1—-D INCW D
D+1—D (singleparallel move) INCW D (single parallel move)

Description: Increment a16-bit destination by one. If the destination isan accumulator, only the EXT and M SP por-
tions of the accumulator are used and the L SP remain unchanged. The condition codes are cal culated
based on the 16-hit result. Duplicate destination is not allowed when this instruction is used in con-
junction with a parallel read

Usage: Thisinstruction is typically used when processing integer data.

Example:

INCW A X:(RO)+,X0 ; Increment the 20 MSBs of A
; update X0 and RO

A Before Execution A After Execution
0 0001 0033 0 0002 0033
A2 Al AO A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $0:0001:0033. Execution of the
INCW A instructionincrements by one the upper 20 bits of the A accumulator.

Condition Codes Affected:

MR > CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | * 1 112]|]10|SZ|L|E|JU|IN|Z]|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the signed integer portion of theresult isin use

Set if result is not normalized

— Setif bit 35 of theresult is set

— Setif the 20 MSBs of theresult are al zeros

— Setif overflow has occurred in result

— Setif acarry (or borrow) occurs from bit 35 of the result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

o<Nzcmr @
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INC(W)

Instruction Fields:

Increment Word

INC(W)

Operation Operands w Comments
INC FDD 1 Increment word
or

INCW X:(SP-xx) 1 Increment word in memory using appropriate addressing

mode.
X:aa 1
X:aarepresents a 6-bit absolute address. Refer to Abso-
XIXXXX 2 | |ute Short Address (Direct Addressing): <aa> on page

4-22.

Parallel Moves:

Data ALU Operation

Parallel Memory Move

Operation! Operands Sour ce Destination?
INC F X:(Rn)+ X0
or X:(Rn)+N Y1l
INCW YO
A
B
Al
Bl
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
B1

1. Thisinstruction occupies only 1 program word and executesin 1 instruction cy-
clefor every addressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register
as the destination of the parallel read operation. Memory writes are allowed in this

case.

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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Jcc Jump Conditionally Jcc

Operation: Assembler Syntax:
If (cc), then S— PC Jec S{<ABS16>}
ese PC+1— PC

Description: If the specified condition is true, program execution continues at the effective address specified in the
instruction. If the specified condition is false, the PC isincremented and program execution continues
sequentialy. The effective address is a 16-bit absolute address. The Bcc instruction, which is more
compact, operates almost identically, and can be used for very short jumps.

Theterm “cc” specifies the following:

“cc” Mnemonic Condition
CC (HS*) — carry clear (higher or same) C=0
CS(LO*) — carry set (lower) Cc=1
EQ — equd Z=1
GE — greater than or equal N @& V=0
GT — greater than Z+(N @ V)=0
LE — lessthan or equal Z+(N @ V)=1
LT — lessthan N & V=1
NE — not equal Z=0
NN — not normalized Z+({U < E)=0
NR — normalized Z+(U*E)=1
* Only available when CC bit set in the OMR
X denotesthe logical complement of X
+ denotesthe logical OR operator
e denotesthelogical AND operator
@ denotesthelogical exclusive OR operator
Example:
CMP X0,A
Jcs LABEL ; jump to label if carry bit is set
INCW A
INCW A
LABEL:
ADD B,A

Explanation of Example:
In this example, if C is one when executing the JCS instruction, program execution skips the two
INCW instructions and continues with the ADD instruction. If the specified condition is not true, no
jump is taken, the program counter is incremented by one, and program execution continues with the
first INCW instruction. The Jcc instruction uses a 16-bit absolute address for this example.

Restrictions:

A Jec instruction used within a DO loop cannot begin at the LA or LA-1 within that DO loop.
A Jec instruction cannot be repeated using the REP instruction.
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Jcc Jump Conditionally

Condition Codes Affected:

The condition codes are tested but not modified by this instruction.
Instruction Fields:

Jcc

Operation Operands cl w Comments

Jec <ABSl16> 6or4 2 16-bit absolute address

1. Theclock-cycle count depends on whether the branch istaken. Thefirst value appliesif the branch istaken, and the

second appliesif itisnot.

Timing: 4 + jx oscillator clock cycles
Memory: 2 program words
Freescal e Semiconductor Instruction Set Details
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JMP Jump JMP

Operation: Assembler Syntax:
S—PC IMP S{<ABS16>}

Description: Jump to program memory at the location given by the instruction’ s effective address. The effective ad-
dressisa16-bit absolute address.

Example:
JMP LABEL

Explanation of Example:

In this example, program execution is transferred to the address represented by label. The DSC core
supports up to 16-bit program addresses.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
A IMP instruction used within a DO loop cannot begin at the LA within that DO loop.
A IMP instruction cannot be repeated using the REP instruction.

Instruction Fields:

Operation Operands C w Comments
JMP <ABS16> 6 2 16-bit absolute address
Timing: 6 + jx oscillator clock cycles
Memory: 2 program words
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JSR Jump to Subroutine JSR

Operation: Assembler Syntax:
SP+1 — SP JSR S{<ABS16>}
PC — X:(SP)

SP+1 — SP

SR — X:(SP)

S — PC

Description: Jump to subroutinein program memory at thelocation given by theinstruction’ s effective address. The
effective address is a 16-bit absolute address.

Example:

JSR LABEL ; jump to absolute address of a
; subroutine indicated by LABEL

Explanation of Example:
In this example, program execution is transferred to the subroutine at the address represented by LA-
BEL. The DSC core supports up to 16-bit program addresses.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Restrictions:
A JSR instruction used within a DO loop cannot begin at the LA within that DO loop.
A JSR instruction used within a DO loop cannot specify the LA asitstarget.
A JSR instruction cannot be repeated using the REP instruction.

Instruction Fields:

Operation Operands C w Comments
JSR <ABS16> 8 2 Push return address and status register and jump to 16-bit
target address
Timing: 8 + jx oscillator clock cycles
Memory: 2 program words
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LEA

Operation:

ea—>D

Description:

Example:

Load Effective Address L EA

Assembler Syntax:
LEA ea

The address calculation specified is executed and the resulting effective address (ed) is stored in the
destination register (D). The source address register and the update mode used to compute the updated
address are specified by the effective address. The source address register specified in the effective ad-
dressisnot updated. All update addressing modes may be used. The new register contents are available
for use by the immediately following instruction.

LEA (RO) +N ; update RO using (RO)+N
Before Execution After Execution
RO 8001 RO 8C02
N 0co1 N 0co1
MO1 1000 MO1 1000

Explanation of Example:

Prior to execution, the 16-bit address register RO contains the value $8001, the 16-bit address register
N contains the value $0C01, and the 16-bit modulo register MO1 contains the value $1000. Execution
of the LEA (RO) +N instruction adds the contents of the RO register to the contents of the N register
and stores the resulting updated address in the RO address register. The addition is performed using
modulo arithmetic sinceit is done with the RO register and MO1 is not equal to $FFFF. No wraparound
occurs during the addition because the result falls within the boundaries of the modul o buffer.

Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C w Comments
LEA (Rn)+ 2 1 Increment the Rn pointer register
(Rn)- 2 1 Decrement the Rn pointer register
(Rn)+N 2 1 Add register N to Rn and store theresult in Rn.
(R2+xx) 2 1 Add a 6-bit unsigned immediate value to R2 and storein
the R2 Pointer
(SP-xx) 2 1 Subtract a 6-bit unsigned immediate value from SP and
store in the SP register
(Rn+xxxx) 4 2 Add a 16-bit signed immediate value to the specified
source register.

Timing:

Memory:

A-88

2+ea oscillator clock cycles

1+ea program words
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LSL Logical Shift Left LSL

Operation: Assembler Syntax:
(seefigure) LSL D
v
C<+— |Unch. <+ Unchanged | —0
D2 D1 DO

Description: Logicaly shift 16 bits of the destination operand (D) by 1 bit to theleft, and store the result in the des-
tination. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator
(FF1 portion), and the remaining portions of the accumulator are not modified. The MSB of the desti-
nation (bit 31 if the destination is a 36-bit accumulator) prior to the execution of theinstruction is shift-
edinto C, and zero is shifted into the LSB of D1 (bit 16 if the destination is a 36-bit accumulator). The
result is not affected by the state of the saturation bit (SA).

Example:
LSL B ; shift 1 bit left
Before Execution After Execution
6 8000 00AA 6 0000 00AA
B2 B1 BO B2 B1 BO
SR 0300 SR 0305

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $6:8000:00AA. Execution of the

LSL B instruction shifts the 16-bit value in the B1 register 1 bit to the left and stores the result back
in the B1 register. C is set by the operation because bit 31 of B1 was set prior to the execution of the
instruction. The Z bit of CCR (bit 2) is also set because theresult in B1 is zero.

Condition Codes Affected:

< MR ] CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | * | 11|1l0|Ssz|L|E|J]U|IN|Z]|V]|C

N — Setif bit 31 of accumulator result or MSB or register result is set
Z — Setif the MSP of result or all bits of 16-bit register result are zero
V — Alwayscleared
C — Setif bit 31 of accumulator or MSB of register was set prior to the execution of
the instruction
Instruction Fields:
Operation Operands C w Comments
LSL FDD 2 1 1-bit logical shift left of word
Timing: 2 oscillator clock cycles
Memory: 1 program word
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LSLL Multi-Bit Logical Left Shift LSLL

Operation: Assembler Syntax:
S1<<S2— D LSLL S1,82,D

Description: Logicaly shift the first 16-bit source operand S1 to the left by the value contained in the lowest 4 bits
of the second source operand S2 and store the result in the destination register (D). The destination
must always be a 16-bit register. The LSLL instruction operates identically to an multi bit arithmetic

left shift.

Implementation Note:
Thisinstruction is actually implemented by the assembler using the ASLL instruction. It will disas-

sembleas ASLL.
Example:
LSLL Y1,X0,Y1 ; left shift of 16-bit Y1 by XO
Before Execution After Execution
Y1 AAAA Y1 AAAO
X0 0004 X0 0004

Explanation of Example:
Prior to execution, the Y 1 register contains the value to be shifted (JAAAA) and the X0 register con-

tains the amount to shift by ($0004). The contents of the destination register are not important prior to
execution because they have no effect on the calculated value. The LSLL instruction logically shifts
the value SAAAA four bits to the left and places the result in the destination register Y 1.

Condition Codes Affected:

< MR 14 CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * * * * * 11110 | S L E Uu|N|Z |V ]|cC

N — Setif bit 15 of result is set
Z — SetiftheresultinD iszero
Instruction Fields:
Operation Operands C w Comments
LSLL Y1,X0,DD 2 1 Logical shift |eft of the first operand by value specified in
Y0,X0,DD four LSBs of the second operand; placesresult in DD.
Y1,YO0,DD
YO0,YO,DD
A1YO0,DD Use ASLL when left shifting is desired on one of thetwo
B1,Y1,DD accumulators.
ALIAS, refer to Section 6.5.2, “LSLL Alias.”
Implemented as. ASLL <operands>
Timing: 2 oscillator clock cycles
Memory: 1 program word
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LSR LSR

Logical Shift Right

Operation: Assembler Syntax:
(seefigure) LSR D
0
v |
Unch. —> Unchanged —>»C
D2 D1 DO

Description: Logicaly shift 16 bits of the destination operand (D) by 1 bit to the right, and store the result in the
destination. If the destination isa36-bit accumulator, the result is stored in the M SP of the accumul ator
(FF1 portion), and the remaining portions of the accumulator are not modified. The LSB of the desti-
nation (bit 16 if the destination is a 36-bit accumulator) prior to the execution of theinstruction is shift-
edinto C, and zero is shifted into the MSB of D1 (bit 31 if the destination is a 36-bit accumulator). The
result is not affected by the state of the saturation bit (SA).

Example:

(Bl considered unsigned)

LSR B ; divide Bl by 2

Before Execution After Execution

F 0001 00AA F 0000 00AA
B2 Bl BO B2 Bl BO
SR 0300 SR 0305

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $F:0001:00AA. Execution of the
LSR B ingtruction shiftsthe 16-bit value in the B1 register 1 bit to the right and stores the result back
in the B1 register. C is set by the operation because bit 16 of B was set prior to the execution of the
instruction. The Z bit of CCR (bit 2) is also set because the result in B1 is zero.

Condition Codes Affected:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sz|L|E|JU|N|Z|V|C

LE[ x| x| *|*|*|n|wo

N — Alwayscleared

Z — Setifthe MSP of result or al bits of 16-bit register result are zero

V — Alwayscleared

C — Setif bit 16 of accumulator or bit O of 16-bit register was set prior to the execution

of the instruction
Instruction Fields:

Operation Operands C w Comments
LSR FDD 2 1 1-bit logical shift right of word
Timing: 2 oscillator clock cycles

Memory:
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LSRAC Logical Right Shift with Accumulate LSRAC

Operation: Assembler Syntax:
S1>>S2+D =D LSRAC S1,82,D

Description: Logicaly shift the first 16-bit source operand (S1) to the right by the value contained in the lowest
4 bits of the second source operand (S2), and accumulate the result with the value in the destination
(D). Operand Sl isinternally zero extended and concatenated with 16 zero bits to form a 36-bit value
before the shift operation. The result is not affected by the state of the saturation bit (SA).

Usage: Thisinstruction is used for multi-precision logical right shifts.
Example:
LSRAC Y1,X0,A ; 1l6-bit add
Before Execution After Execution
0 0000 0099 0 0C00 3099
A2 Al A0 A2 Al A0
Y1 Co003 Y1 Co003
X0 0004 X0 0004

Explanation of Example:
Prior to execution, the Y 1 register contains the value to be shifted ($C003), the X0 register contains

the amount by which to shift ($0004), and the destination accumulator contains $0:000:0099. The
LSRAC instruction logically shifts the value $C003 four bits to the right and accumulates this result
with the value already in the destination register A. Since the destination is an accumulator, the exten-
sion word (A2) isfilled with sign extension.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LFE| x| | *| | *|11|1l0|Ssz|]L|E|U|N|Z]|V]|C

N — Setif bit 35 of result is set
Z — Setif result equals zero

See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C w Comments

LSRAC Y 1,X0,F 2 1 Logical word shifting with accumulation
YO0,X0,F
Y1,YO,F
YO,YO,F
ALYO,F
B1LY1F

Timing: 2 oscillator clock cycles

Memory: 1 program word
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LSRR Multi-Bit Logical Right Shift LSRR

Operation: Assembler Syntax:
S1>>S2— D LSRR S1,82,D

Description: Logically shift the source operand Sl to the right by the value contained in the lowest 4 bits of S2, and
store the result in the destination (D). For 36-bit destinations, only the MSP is shifted and the LSP is
cleared, with zero extension from bit 31 (the FF2 portion isignored). The result is not affected by the

state of the saturation bit (SA).
Example:
LSRR Y1,X0,A ; right shift of 16-bit Y1 by XO
Before Execution After Execution
0 3456 3456 0 0AAA 0000
A2 Al A0 A2 Al A0
Y1l AAAA Y1 AAAA
X0 0004 X0 0004

Explanation of Example:
Prior to execution, the Y 1 register contains the value to be shifted ($AAAA), and the X0 register con-
tains the amount by which to shift ($0004). The contents of the destination register are not important
prior to execution because they have no effect on the calculated value. The LSRR instruction logically
shiftsthe value SAAAA four bitsto theright and places the result in the destination register (A). Since
the destination is an accumulator, the extension word (A2) is filled with sign extension, and the LSP
(A0) isset to zero.

Condition Codes Affected:

< MR 14 CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * * * * * 11|10 |SZ| L E Uu|N|Z |V ]|cC

N — Setif MSB of result is set
Z — Setif result equals zero

Instruction Fields:

Operation Operands C w Comments

LSRR Y1,X0,FDD 2 1 Logical shift right of the first operand by value specified
Y0,X0,FDD in four L SBs of the second operand; placesresultin FDD
Y1,YO,FDD (when result isto an accumulator F, zero extends into F2)
YO0,YO,FDD
A1YO,FDD
B1,Y1,FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word
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MAC Multiply-Accumulate MAC

Operation: Assembler Syntax:

+D+S1*S2—>D MAC (+)S1,82,D
D+ S1* S2 — D (single parallel move) MAC S1,82,D (single parallel move)
D +S1* S2 — D (dud paralél read) MAC S1,52,D (dual parallel read)

Description: Multiply the two signed 16-bit source operands, and add or subtract the 32-bit fractional product to or
from the destination (D). Both source operands must be located in the FF1 portion of an accumulator
orinXO0, YO, or Y1. Thefractional product isfirst sign extended before the 36-bit addition (or subtrac-
tion) isperformed. If the destination is one of the 16-bit registers, it isfirst sign extended internally and
concatenated with 16 zero bits to form a 36-bit operand before the operation to the fractional product;
the high-order 16 bits of the result are then stored.

Usage: This instruction is used for multiplication and accumulation of fractional data or integer data when a
full 32-bit product is required (see Section 3.3.5.2, “Integer Multiplication,” on page 3-20). When the
destination is a 16-bit register, thisinstruction is useful only for fractional data.

Example:
MAC X0,Y1,A X:(R1)+,Yl X:(R3)+,X0
Before Execution After Execution
0 0003 0003 0 0553 0003
A2 Al AO A2 Al AO
X0 4000 X0 2000
Y1 0AAO Y1 0450

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $4000, the 16-bit Y 1 register contains the
value $0AAO0, and the 36-bit A accumulator contains the value $0:0003:0003. Execution of the
MAC X0, Y1, 2 instruction multiplies the 16-bit signed value in the X0 register by the 16-bit signed
value in Y1, adds the resulting 32-bit product to the 36-bit A accumulator, and stores the result
($0:0553:0003) into the A accumulator. In parallel, X0 and Y 1 are updated with new values fetched
from data memory, and the two address registers (R1 and R3) are post-incremented by one.

Condition Codes Affected:

MR g CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| = | x| *|*|*~|n|lwo|SZ|L|E|JU|N|Z|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the extension portion of accumulator result isin use

Set according to the standard definition of the U bit

— Setif MSB of result is set

— Setif result equals zero

— Setif overflow has occurred in result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC hit is set.
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MAC Multiply-Accumulate MAC

Instruction Fields:

Operation Operands C

w Comments

MAC (£)Y1,X0,FDD 2
(+)Y0,X0,FDD
(+)Y1,YO,FDD
(+)YO,YO,FDD
(+)A1,YO,FDD
(+)B1,Y1,FDD

1 Fractional multiply accumulate; multiplication result
optionally negated before accumulation

Parallel Moves:

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination?
MAC Y1,X0,F X:(Rn)+ X0
YO,XO,F X:(Rn)+N Y1
Y1YOF YO
YO,YO,F
A
ALYO,F B
B1Y1F Al
Bl
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cy-

clefor every addressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register
as the destination of the parallel read operation. Memory writes are allowed in this

case.

Freescale Semiconductor Instruction Set Details A-95




MAC Multiply-Accumulate MAC

Parallel Dual Reads:

Data ALU Operation® First Memory Read Second Memory Read
Oper ation? Operands Source 1 Destination 1 Source 2 Destination 2
MAC Y1,X0,F X:(RO)+ YO X:(R3)+ X0
Y1,YOF X:(RO)+N Y1 X:(R3)-
YO0,X0,F
X:(R1)+
(F=A or B) X:(R1)+N

1. Thisparalé instructionisnot alowed when the XP bit in the OMR is set (that is, when the instructions
are executing from data memory).

2. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cycle for every addressing
mode.

Timing: 2 + mv oscillator clock cyclesfor MAC instructions with parallel move
2 oscillator clock cycles for MAC without parallel move

Memory: 1 program word
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MACR Multiply-Accumulate and Round MACR

Operation: Assembler Syntax:
+D+S1*S2+r—D MACR (+)S1,82,D
D+S1* S2+r — D (single parallel move) MACR S1,S2,D (single parallel move)
D+S1* S2+r — D (dua paralel read) MACR S1,82,D (dual parallel read)
Description: Multiply thetwo signed 16-bit source operands, add or subtract the 32-bit fractional product to or from

the third operand, and round and store the result in the destination (D). Both source operands must be
located in the FF1 portion of an accumulator or in X0, YO, or Y 1. The fractional product isfirst sign
extended before the 36-hit addition is performed, followed by the rounding operation. If the destination
is one of the 16-hit registers, it isfirst sign extended internally and concatenated with 16 zero bits to
form a 36-hit operand before being added to the fractional product. The addition is then followed by
the rounding operation, and the high-order 16 bits of the result are then stored. This instruction uses
the rounding technique that is selected by the R bit in the OMR. When the R hit is cleared (default
mode), convergent rounding is selected; when the R bit is set, two’ s-complement rounding is selected.
Refer to Section 3.5, “Rounding,” on page 3-30 for more information about the rounding modes. Note
that the rounding operation always zeros the L SP of the result if the destination (D) is an accumulator.

Usage: Thisinstruction is used for the multiplication, accumulation, and rounding of fractional data.
Example:
MACR -X0,Y1,A
Before Execution After Execution
0 0003 8000 0 2004 0000
A2 Al A0 A2 Al AO
X0 4000 X0 4000
Y1 C000 Y1 C000

Explanation of Example:

Prior to execution, the 16-bit X0 register contains the value $4000, the 16-bit Y 1 register contains the
vaue $C000, and the 36-bit A accumulator contains the value $0:0003:8000. Execution of the
MACR -XO0,Y1,A instruction multiplies the 16-bit signed value in the X0 register by the 16-bit
signed value in Y1 and subtracts the resulting 32-bit product from the 36-bit A accumulator, rounds
the result, and stores the result ($0:2004:0000) into the A accumulator. In this example, the default
rounding (convergent rounding) is performed.
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MACR

Multiply-Accumulate and Round

Condition Codes Affected:

MACR

< MR » CCR
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF | = * * * * 111w |SZ|IL|E|JU|N|Z]|V]|C

Instruction Fields:

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result
— Setif the extension portion of accumulator result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of accumulator result is set
—  Setif result equals zero
— Setif overflow has occurred in result

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC hit is set.

<NzcmrQ
|

Operation

Operands

Comments

MACR

(+)Y1,X0,FDD
(+)Y0,X0,FDD
(+)Y1,YO,FDD
(+)YO,YO,FDD
(+)A1,YO,FDD
(+)B1,Y1,FDD

Fractional MAC with round, multiplication result option-
aly negated before addition.
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MACR Multiply-Accumulate and Round

Parallel Moves:

Data ALU Operation Parallel Memory Move
Operation! Operands Sour ce Destination?
MACR Y1,X0,F X:(Rn)+ X0
YO,XOF X:(Rn)+N Y1
Y1YOF YO
YO,YO,F
A
ALYO,F B
B1Y1F Al
Bl
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
B1

1. Thisinstruction occupies only 1 program word and executesin 1 instruction cy-

cle for every addressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register
as the destination of the parallel read operation. Memory writes are allowed in this

case.

Parallel Dual Reads:

Data ALU Operation® First Memory Read Second Memory Read
Operation? Operands Source 1 Destination 1 Source 2 Destination 2
MACR Y1,X0,F X:(RO)+ YO X:(R3)+ X0
Y1,YO,F X:(RO)+N Y1 X:(R3)-
YO0,X0,F
X:(RL)+
(F = A or B) X:(R1)+N

1. Thisparalel instructionisnot allowed when the XP bit in the OMR is set (that is, when the instructions

are executing from data memory).

2. Thisinstruction occupies only 1 program word and executesin 1 instruction cycle for every addressing

mode.

Timing: 2 + mv oscillator clock cyclesfor MACR instructions with a parallel move
2 oscillator clock cycles for MACR instructions without parallel move

Memory: 1 program word
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MACSU Multiply-Accumulate Signed x Unsigned MACSU

Operation:
D+S1*S2—D (S1 signed, S2 unsigned) MACSU S1,82,D

Assembler Syntax:

Description: Multiply one signed 16-bit source operand by one unsigned 16-bit operand, and add the 32-hit frac-

Usage:

Example:

tional product to the destination (D). The order of the registers is important. The first source register
(S1) must contain the signed value, and the second source (S2) must contain the unsigned value to pro-
duce correct fractiona results. The fractional product is first sign extended before the 36-bit addition
isperformed. If the destination isone of the 16-bit registers, only the high-order 16 bits of the fractional
result are stored. The result is not affected by the state of the saturation bit (SA). Note that for 16-bit
destinations, the sign bit may be lost for large fractional magnitudes.

In addition to single-precision multiplication of a signed-times-unsigned value and accumulation, this
instruction is also used for multi-precision multiplications, as shown in Section 3.3.8.2, “Multi-Preci-
sion Multiplication,” on page 3-23.

MACSU X0,Y0,A
Before Execution After Execution
0 0000 0099 0 3456 0099
A2 Al A0 A2 Al A0
X0 3456 X0 3456
YO 8000 YO 8000

Explanation of Example:

The 16-bit X0 register contains the value $3456 and the 16-bit YO register contains the value $3000.
Execution of the MACSU X0, YO0, A instruction multiplies the 16-bit signed value in the X0 register
by the 16-bit unsigned valuein Y 0, and then adds the result to the A accumulator and stores the signed
result back into the A accumulator. If thiswere aMAC instruction, Y0 ($8000) would equal -1.0, and
the multiplication result would be $F:CBAA:0000. Since thisisa MACSU instruction, YO0 is consid-
ered unsigned and equals +1.0. This gives a multiplication result of $0:3456:0000.

Condition Codes Affected:

A-100

MR > CCR
15 14 183 12 11 10 9 8 7 6 5 4 3 2 1 0

LF| * | | *| | *|n11|wl0o|sz|]L|E|JU|N|Z]|V]|C

— Setif overflow has occurred in result

— Setif the extension portion of accumulator result isin use
— Set according to the standard definition of the U bit

Setif MSB of result is set

— Setif result equals zero

— Setif overflow has occurred in result

See Section 3.6.5, “ 16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

<Nzcmr
|
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MACSU Multiply-Accumulate Signed x Unsigned MACSU

Instruction Fields:

Operation Operands C w Comments
MACSU X0,Y1,FDD 2 1 Signed or unsigned 16x16 fractional MAC with 32-bit

X0,YO,FDD result.
YO0,Y1,FDD
YO0,YO,FDD Thefirst operand is treated as signed and the second as
YO0,A1,FDD unsigned.
Y1,B1,FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word
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MOVE Introduction to DSP56800 Moves MOVE

Description: The DSP56800 Family instruction set contains a powerful set of moves, resulting not only in better

A-102

DSC performance, but in simpler, more efficient general -purpose computing. The powerful set of con-
troller and DSC moves results not only in ease of programming, but in more efficient code that, in turn,
results in reduced power consumption for an application. This description gives an introduction to all
of the different types of moves available on the DSP56800 architecture. It covers al of the variations
of the MOVE instruction, aswell asall of the parallel moves. There are eight types of moves available
on the DSP56800:

o Any register <> any register

* Any register <> X data memory

* Any register <> on-chip peripheral register

* Immediate data — any register

* Immediate data— X data memory

« Immediate data — on-chip peripheral register

* Register <> program memory

« One X datamemory access in parallel with an arithmetic operand (single parallel move)

* Two X data memory readsin paralel with an arithmetic operand (dual parallel read)

» Two X datamemory reads in parallel with no arithmetic operand specified (MOVE only)

 Conditional register transfer (transfer only if condition istrue)

» Register transfer through the data ALU

The preceding move types are discussed in detail under the following DSP56800 instructions:
MOVE:
« One X datamemory access in parallel with an arithmetic operand (single parallel move)
* Two X datamemory readsin parallel with an arithmetic operand (dual parallel read)
» Two X datamemory reads in parallel with no arithmetic operand specified (MOVE only)
MOVE(C):
* Any register <> any register
* Any register <> X data memory
« Any register <> on-chip periphera register
MOVE(I):
* Immediate data — any register
* Immediate data— X data memory
MOVE(M):
* Two X datamemory readsin parallel with no arithmetic operand specified
MOVE(P):
* Register <> on-chip peripheral register
¢ Immediate data — on-chip peripheral register
MOVE(S):
» Register <> first 64 locations of X data memory
* Immediate data — first 64 locations of X data memory
Tcc:
« Conditional register transfer (transfer only if condition is true)

TFR:
* Register transfer through the data ALU
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MOVE Introduction to DSP56800 Moves MOVE

Description: Two typesof parallel moves are permitted — register-to-memory moves and dual memory-to-register
moves. Both types of parallel moves use a restricted subset of al available DSP56800 addressing
modes, and the registers available for the move portion of the instruction are also a subset of the total
set of DSC core registers. These subsets include the registers and addressing modes most frequently
found in high performance numeric computation and DSC agorithms. Also, the parallel moves alow
amove to occur only with an arithmetic operation in the data ALU. A parallel move is not permitted,
for example, with a JMP, LEA, or BFSET instruction.

Sincethe on-chip peripheral registers are accessed aslocationsin X datamemory, there are many move
instructions that can access these peripheral registers. Also, the case of “No Move Specified” for arith-
metic operations optionally alows a parallel move.

When a 36-bit accumulator (A or B) is specified as a source operand (S), there is a possibility that the
datamay belimited. If the data out of the accumulator indicates that the accumul ator extension bitsare
in use, and the dataisto be moved into a 16-bit destination, the value stored in the destination is limited
to amaximum positive or negative saturation constant to minimize truncation error. Limiting does not
occur if anindividual 16-bit accumulator register (A1, AQ, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). This limiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand (D), any 16-bit source data
to be moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of
the source operand (hit 15) and appending the source operand with 16 LS zeros. The automatic sign
extension and zeroing features may be circumvented by specifying the destination register to be one
of the individual 16-bit accumulator registers (Al or B1).

The MOVE, MOVE(C), MOVE(l), MOVE(M), MOVE(P), and MOVE(S) descriptions are found on

thefollowing pages. Detail ed descriptions of the two parallel move types are covered under the MOV E
instruction. The Tcc and TFR descriptions are covered in their respective sections.
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MOVE Parallel Move — Single Parallel Move MOVE

Operation: Assembler Syntax:
<op> X<ea> —» D <op> X:<es>,D
<op> S - Xi<ea> <op> S X:<ea>

<op> refers to any arithmetic instruction that alows parallel moves. A subset of these instructions, include: ADD,
DECW, MACR, NEG, SUB and TFR.

Description: Perform adata ALU operation and, in parallel, move the specified register from or to X data memory.
Two indirect addressing modes may be used (post-increment by one and post-increment by the offset
register).

Seventeen data ALU instructions allow the capability of specifying an optiona single parallel move.
Thesedata ALU instructions have been selected for optimal performance on the critical sections of fre-
quently used DSC agorithms. A summary of the different data AL U instructions, registersused for the
memory move, and addressing modes available for the single parallel move is shown in Table 6-35,
“Data ALU Instructions — Single Parallel Move,” on page 6-29.

If the arithmetic operation of the instruction specifies a given source register (S) or destination register
(D), that same register or portion of that register may be used as a source in the parallel data bus move
operation. This allows data to be moved in the same instruction in which it is being used as a source
operand by adata ALU operation. That is, duplicate sources are allowed within the same instruction.
Examples of duplicate sources include the following:

ADD A,B A,X: (R2)+ ; A register allowed as source of
; parallel move
ADD A,B X:(R2)+,A ; A register allowed as destination

of parallel move

Description: If the arithmetic operation portion of the instruction specifies a given destination accumulator, that
same accumulator or portion of that accumulator may not be specified as a destination in the parallel
data bus move operation. Thus, if the opcode-operand portion of the instruction specifies the 36-bit A
or B accumulator asits destination, the parallel data bus move portion of the instruction may not spec-
ify AO/BO, A1/B1, A2/B2, or A/B as its destination. That is, duplicate destinations are not allowed
within the same instruction. Examples of duplicate destinations include the following:

as a destination

ADD B,A X:(R2)+,A ; NOT ALLOWED--A register used twice
; as a destination
ASL A X:(R2)+,A ; NOT ALLOWED--A register used twice

Exceptions:
Instructions TST and CMP allow both the accumulator and its lower portion (A and A0, B and BO) to
be the parallel move destination even if thisaccumulator is used by the data ALU operation. Thesein-
structions do not have atrue destination.
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MOVE Parallel Move — Single Parallel Move MOVE

Example:
ASL A A,X:(R3)+N ; save old value of A in X: (R3),

; A*2 — A, update R3

Before Execution After Execution
0 5555 3333 0 AAAA 6666
A2 Al AO XM AO
X:$00FF 1234 X:$00FF 5555
R3 OOFF R3 0103
N 0004 N 0004

Explanation of Example:
Prior to execution, the 16-bit R3 address register contains the value $00FF, the A accumulator contains
the value $0:5555:3333, and the 16-bit X memory location X:$00FF contains the val ue $1234. Execu-
tion of the parallel move portion of the instruction, A, X: (R3) + N, uses the R3 address register to
move the contents of the A1 register before left shifting into the 16-bit X memory location (X:$00FF).
R3 is then updated by the value in the N register.

Condition Codes Affected:

< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

LF| * | | *| | *|11|10|SZ|]L|E|U|N|]Z]|V]|C

SZ — Set according to the standard definition of the SZ bit during parallel move
L — Setif datalimiting has occurred during parallel move
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MOVE

Parallel Moves:

Parallel Move — Single Parallel Move

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination?
MAC Y1,X0,F X:(Rj)+ X0
MPY YO,XO,F X:(Rj)+N Y1
MACR Y1LYOF YO
MPYR YO,YO,F
A
AL1YO,F B
B1,Y1F Al
B1
X0 X:(Rj)+
ADD XOF Y1 X:(Rj)+N
SUB Y1F Y0
CMP YO,F
A
TFR AB B
BA Al
B1
ABS F
ASL
ASR
CLR
RND
TST
INC or INCW
DEC or DECW
NEG (F=Ao B) (Ri = RO-R3)

MOVE

1. Theseinstructions occupy only 1 program word and executes in 1 instruction cycle for
every addressing mode.

2. The destination of the data ALU operation is not allowed to be the same register as the
destination of the parallel read operation. Memory writes are alowed in this case.

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word for all instructions of thistype
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MOVE Parallel Move — Dual Parallel Reads MOVE

Operation: Assembler Syntax:
<op> X:i<eal>—> D1l X:<ea2>— D2 <op> X:<eal>D1 X:<ea2>,D2
X:<eal>— D1 X:<ea2>— D2 MOVE X:<eal>D1 X:<ea2>D2

where <op> refersto alimited set of arithmetic instructions which allow double parallel reads

Description: Read two 16-hit word operands from X memory. Two independent effective addresses (ea) can be
specified where one of the effective addresses uses the RO or R1 address register, while the other ef-
fective address must use addressregister R3. Two parallel address updates are then performed for each
effective address. The address update on R3 isonly performed using linear arithmetic, and the address
update on RO or R1 is performed using linear or modulo arithmetic.

Six data ALU instructions (ADD, MAC, MACR, MPY, MPYR, and SUB) allow the capability of
specifying an optional dual memory read. In addition, MOVE can be specified. These data ALU in-
structions have been selected for optimal performance on the critical sections of frequently used DSC
algorithms. A summary of the different data ALU instructions, registers used for the memory move,
and addressing modes available for the dual parallel read is shown in Table 6-36, “Data ALU Instruc-
tions — Dual Parallel Read,” on page 6-30. When the MOVE instruction is selected, only the dual
memory accesses occur — no arithmetic operation is performed.

Example:
MPYR XO0,Y0,A X:(RO)+,Y0 X:(R3)+,X0
Before Execution After Execution

0 1234 5678 0 2AAA 0000

A2 Al A0 A2 Al A0

X:(R3) CCcCcC X:(R3) 0001
X:(RO) BBBB X:(RO) FFOO
X0 4000 X0 CCcCcC
YO 5555 YO BBBB

Explanation of Example:

Prior to execution, the 16-bit X0 register contains the value $4000, and the 16-bit Y O register contains
the vaue $5555. Execution of the paraled move portion of the instruction,
X: (RO)+,Y0 X: (R3)+,X0, movesthe 16-bit valuein the X memory location X:(RO) into the reg-
ister YO, movesthe 16-bit X memory location X:(R3) into the register X0, and post-increments by one
the 16-bit values in the RO and R3 address registers. The multiplication is performed with the old val-
ues of X0 and YO0, and the result rounded using convergent algorithm before storing it in the accumu-
lator.

Note: The second X datamemory parallel read using the R3 address register can never access off-chip mem-
ory or on-chip peripherals. It can only access on-chip X data memory.
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MOVE Parallel Move — Dual Parallel Reads MOVE

Condition Codes Affected:

< MR 14 CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * * * * * IL|10|sz|L E U N 4 vV | C

L — Setif datalimiting has occurred during parallel move
Parallel Dual Reads:
Data AL U Operation® First Memory Read Second Memory Read
OperaIion2 Operands Source 1 Destination 1 Source 2 Destination 2
MOVE X:(RO)+ YO X:(R3)+ X0
X:(RO)+N Y1 X:(R3)-
MAC Y1,X0,F
MPY Y1YOF X:(R1)+
MACR YO,XO0,F X:(R1)+N
MPYR
(F=A o B)
ADD XO,F
SUB Y1,F
YO,F
(F=A o B)

1. Theseparallel instructions are not allowed when the XP bit in the OMR is set (that is, when the instruc-
tions are executing from data memory).

2. Theseinstructions occupy only 1 program word and executesin 1 instruction cycle for every addressing
mode.

Timing: 2 + mv oscillator clock cyclesfor al instructions of this type

Memory: 1 program word for all instructions of thistype
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MOVE(C) Move Control Register MOVE(C)

Operation:
X:<ea>— D
S— X:.<ea>
S—»D

Description:

Note:

Note:

Assembler Syntax:

MOVEC X:<ea>D
MOVEC SX:<ea>
MOVEC SD

Move the contents of the specified source (control) register (S) to the specified destination, or move
the specified source to the specified destination (control) register (D). The control registers S and D
consist of the AGU registers, data ALU registers, and the program controller registers. These registers
may be moved to or from any other register or location in X data memory.

If the HWS is specified as a destination operand, the contents of the first HWS location are copied into
the second one, and the LF and NL bits are updated accordingly. If the HWS is specified as a source
operand, the contents of the second HWS | ocation are copied into the first one, and the LF and NL bits
are updated accordingly. This allows more efficient manipulation of the HWS.

When a 36-bit accumulator (A or B) is specified as a source operand, there is apossihility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register isin use,
and the datais to be moved into a 16-bit destination, the value stored in the destination islimited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if anindividual 16-bit accumulator register (A1, AO, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source datato be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
theindividual 16-bit accumulator registers (A1 or B1).

Dueto pipelining, if an addressregister (Rj, SP, or M01) is changed with aMOVE or bit-field instruc-
tion, the new contents will not be available for use as a pointer until the second following instruction.
If the SPischanged, no PUSH or POP instructions are permitted until the second following instruction.

If the N addressregister is changed with a MOV E instruction, thisregister’s contents will be available
for use on the immediately following instruction. In this case the instruction that writesthe N address
register will be stretched one additional instruction cycle. Thisistrue for the case when the N register
is used by the immediately following instruction; if N isnot used, then theinstruction is not stretched
an additional cycle. If the N address register is changed with a bit-field instruction, the new contents
will not be available for use until the second following instruction.
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M OVE(C) Move Control Register M OVE(C)

Example:

MOVEC LC, X0 ; move the LC register into
; the X0 register

Before Execution After Execution

LC 0100 \ ~ 0100
X0 0123 X0 0100
Explanation of Example:

Execution of the MOV EC instruction movesthe contents of the program controller’ s 13-bit L C register
into the data ALU’ s 16-bit XO register.

Example:

MOVEC X:$CC00,N ; move X data memory value into the
; N register

Before Execution After Execution

X:$CC00 0100 X:$CCO00 0100

/

N 0123 0100

Explanation of Example:
Execution of the MOV EC instruction movesthe contents of the X datamemory at location $CC00 into
the AGU’s 16-hit N register.

Example:
MOVEC R2,X: (R3+83072) ; move R2 register into X data
; memory
Before Execution After Execution

X:$4072 1234 / X:$4072 AAAA
R2 AAAA R2 AAAA
Explanation of Example:

Prior to execution, the contents of R3 is $1000. Execution of the MOVEC instruction moves the
AGU’s 16-hit R2 register contents into the X data memory at the location $4072.

Restrictions:
A MOVEC instruction used within a DO loop that specifies the HWS as the source or that specifies
the SR or HWS as the destination cannot begin at the LA-2, LA-1, or LA within that DO loop.
A MOVEC ingtruction that specifies the HWS as the source or as the destination cannot be used im-
mediately before a DO instruction.
A MOVEC ingtruction that specifies the HWS as the source or that specifies the SR or HWS as the
destination cannot be used immediately before an ENDDO instruction.
A MOVEC instruction that specifies the SR, HWS, or SP as the destination cannot be used immedi-
ately before an RTI or RTS instruction.
A MOVEC HWSHWS instruction isillegal and cannot be used.
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MOVE(C)

Move Control Register

Condition Codes Affected:

MR

)l

15 14

13 12 11

10 9 8 7 6 5

LF | *

If DistheSR:

Oo<NzCm F'FG

If SR isnot the destination:

Instruction Fields:

L

— Set if datalimiting has occurred during move

— Set according to bit 7 of the source operand
— Set according to hit 6 of the source operand
— Set according to bit 5 of the source operand
— Set according to bit 4 of the source operand
— Set according to bit 3 of the source operand
— Set according to hit 2 of the source operand
— Set according to bit 1 of the source operand
— Set according to hit 0 of the source operand

MOVE(C)

Operation Source Destination C Comments
MOVE X:(Rn) DDDDD 2 —
or X:(Rn)+
MOVEC X:(Rn)-
X:(Rn)+N
XIXXXX DDDDD 4 16-bit absol ute address
X:(Rn+N) DDDDD 4 —
X:(Rn+xxxX) DDDDD 6 Signed 16-bit index
X:(R2+xx) X0, Y1, YO, 4 —
X:(SP-xx) A,B,Al1,B1
RO-R3,N

Freescale Semiconductor
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MOVE(C)

Instruction Fields:

Move Control Register

MOVE(C)

Operation Source Destination C Comments
MOVE DDDDD X:(Rn) 2 —
or X:(Rn)+
MOVEC X:(Rn)-
X:(Rn)+N
DDDDD XIXXXX 4 16-bit absolute address
DDDDD X:(Rn+N) 4
DDDDD X:(Rn+xxxX) 6
X0,Y1, Y0, X:(R2+xx) 4
A,B,Al B1 X:(SP-xx)
RO-R3, N
DDDDD DDDDD 2 Move signed word to register
Timing: 2 + mvc oscillator clock cycles
Memory: 1 + eaprogram words
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MOVE(') Move Immediate MOVE(')

Operation: Assembler Syntax:

#xx — D MOVEI #xx,D

#xxxx — D MOVEI #xxxx,D
#XXXX — X:<ea> MOVEI H#XXXX, X <ea>

Description: The 7-bit signed immediate operand is stored in the lowest 7 bits of the destination (D), and the upper
bits are filled with sign extension. The destination can be any register, X data memory location, or
on-chip peripheral register.

Example:
MOVEI #<SFFC7,X0 ; moves negative value into X0
Before Execution After Execution
X0 1234 X0 FFC7

Explanation of Example:
Prior to execution, X0 contains the value $1234. Execution of the instruction moves the value $FFC7

into XO.
Example:
MOVEI #SC33C,X:3A009 ; moves 16-bit value directly into a
; memory location
Before Execution After Execution
X:$A009 1234 X:$A009 C33C

Explanation of Example:
Prior to execution, the X data memory location $A009 contains the value $1234. Execution of the in-
struction moves the value $C33C into this memory location.

Note: The MOV EP and MOV ES instructions also provide a mechanism for loading 16-bit immediate values
directly into the last 64 and first 64 locations, respectively, in X data memory.

Condition Codes Affected:
The condition codes are not affected by this instruction.
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MOVE(I)

Instruction Fields:

Move Immediate

MOVE(I)

Operation Source Destination C w Comments
MOVE #<-64-63> A,B,Al,B1 2 1 Signed 7-bit integer data (datais put in the
or X0,Y0, Y1 lowest 7 bits of the word portion of any accu-
MOVEI RO-R3, N mulator, upper 9 bits and extension reg are
sign extended, L SP portion is set to “0")
HXXXX DDDDD 4 2 Signed 16-bit immediate data. When LC isthe
destination, use 13-bit values only.
X:(R2+xx) 6 2
X:(SP-xx) 6 2
XIXXXX 6 3
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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MOVE(M) Move Program Memory MOVE(M)

Operation: Assembler Syntax:
P.<ea>—> D MOVEM P:<ea>,D
S— P:<ea> MOVEM S,P.<ea>

Description: Move the specified register from or to the specified program memory location. The source register (S)
and destination registers (D) are data ALU registers.

When a 36-bit accumulator (A or B) is specified as a source operand, there is a possibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register isin use,
and the data is to be moved into a 16-bit destination, the value stored in the destination islimited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if anindividual 16-bit accumulator register (A1, AQ, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source datato be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
the individual 16-bit accumulator registers (A1 or B1).

Example:
MOVEM P: (R2)+N,A ; move P:(R2) into A,
; update R2 with N
Before Execution After Execution
A 1234 5678 0 0116 0000
A2 Al AO A2 Al AO
P:$0077 0116 P:$0077 0116
R2 $0077 R2 $007A

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $A:1234:5678, R2 contains the value

$0077, the N register contains the value $0003, and the 16-bit program memory location P:(R2) con-
tains the value $0116. Execution of the MOV EM instruction moves the 16-bit program memory loca-
tion P:(R2) into the 36-bit A accumulator. R2 is then post-incremented by N.
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MOVE(M) Move Program Memory MOVE(M)

Condition Codes Affected:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF | * * * * * IL|10|sz|L E U N 4 vV | C

L — Setif datalimiting has occurred during the move
Instruction Fields:
Operationl Source Destination C W Comments
MOVE P:(Rj)+ A,B,Al Bl 8 1 Read signed word from program mem-
or P:(Rj)+N X0,Y0,Y1 ory
MOVEM RO-R3, N

A,B,Al, Bl P:(Rj)+ Write word to program memory

X0,Y0, Y1 P:(Rj)*+N
RO-R3, N

1. Theseinstructions are not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

Timing: 8 + mvm oscillator clock cycles

Memory: 1 program word
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MOVE(P) Move Peripheral Data MOVE(P)

Operation: Assembler Syntax:
X:<pp>—>D MOVEP X:<pp>D

S — Xi<pp> MOVEP S X:<pp>
HXXXX — X:<pp> MOVEP HXXXX, X <pp>

Description: Move the specified operand to or from alocation in the last 64 words of the X data memory map. The
6-bit short absolute address is one-extended to generate a 16-hit address.

When a 36-bit accumulator (A or B) is specified as a source operand, there is apossibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register isin use,
and the data is to be moved into a 16-bit destination, the value stored in the destination islimited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if anindividual 16-bit accumulator register (A1, AO, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source datato be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-
tension and zeroing features may be circumvented by specifying the destination register to be one of
theindividual 16-bit accumulator registers (A1 or B1).

Usage: ThisMOV EP instruction provides amore efficient way of accessing thelast 64 [ocationsin X memory,
which may be allocated to memory-mapped peripheral registers. If located outside the
X:$FFCO-X:$FFFF range, use other suitable addressing mode. Consult the specific DSP56800-based
device's user manual for information on where in the memory map peripheral registers are located.

Example:
MOVEP R1,X:<<SFFE2 ; write to location X:$SFFE2
Before Execution After Execution
X:$FFE2 0123 / X:$FFE2 5555
R1 5555 R1 5555

Explanation of Example:
Prior to execution, the peripheral location <<$FFE2 contains the value $0123. Execution of the
MOVEP R1,X:<<$FFE2 instruction moves the value $5555 contained in the R1 register into the lo-

cation.
Example:
MOVEP #50342,X:SFFE4 ; moves 16-bit value into
; peripheral location SFFE4
Before Execution After Execution
X:$FFE4 AAAA X:$FFE4 0342

Explanation of Example:
Prior to execution, the word at X data memory location $FFE4 contains the value $AAAA. Execution
of theinstruction moves the value $0342 into thislocation. Note that $FFE4 is recognized as a periph-
eral mapped register.
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MOVE(P)

Condition Codes Affected:

Move Peripheral Data

MOVE(P)

Note:

< MR > CCR

15 14 13 12 11 10 9 8 |7 6 5 3 2 1 0

LF | * | *|*|*|*|nn|wo|sz|L|E N[z ]|V |C
L — Setif datalimiting has occurred during move

Itisalso possible to access the last 64 locationsin the X datamemory map using the MOV EC instruc-

tion, which can directly access these locations either using the address-register-indirect addressing
modes or the absolute address addressing mode, which specifies a 16-bit absolute address.

Instruction Fields:

Operation1 Source Destination C Comments
MOVE X:pp A, B, Al B1 2 Last 64 locations in data memory.
or or X0,Y0,Y1
MOVEP X:<<pp RO-R3, N X:<<pp represents a 6-bit absolute 1/0
address. Refer to 1/0 Short Address
A, B,Al1,B1 (Direct Addressing): <pp> on page
X0,Y0,Y1 4-23,
RO-R3, N X:pp
or
HXXXX X:<<pp 4 Move 16-bit immediate data to the last

64 locations of X data memory-periph-
eral registers. X:<<pp represents a 6-bit
absolute 1/0 address.

1. The MOVEP instruction provides a more efficient way of accessing the last 64 locations in X memory, which may
be allocated to memory-mapped peripheral registers. If peripheral registers are located outside the X:$FFCO-X:$FFFF
range, use other suitable addressing mode. Consult the specific DSP56800-based device's user manual for information
on where in the memory map peripheral registers are located.

Timing:

Memory:

A-118
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MOVE(S) Move Absolute Short MOVE(S)

Operation: Assembler Syntax:
X:<aa>—> D MOVES X:<aa>,D

S — X:<aa> MOVES S X :<aa>
H#XXXX — X:<aa> MOVES H#XXXX, X <aa>

Description: Move the specified operand from or to the first 64 memory locationsin X data memory. The 6-bit ab-

Example:

solute short address is zero-extended to generate a 16-bit X data memory address.

When a 36-bit accumulator (A or B) is specified as a source operand, there is apossibility that the data
may be limited. If the data out of the shifter indicates that the accumulator extension register isin use,
and the dataisto be moved into a 16-bit destination, the value stored in the destination islimited to a
maximum positive or negative saturation constant to minimize truncation error. Limiting does not oc-
cur if anindividual 16-bit accumulator register (A1, AO, B1, or BO) is specified as a source operand
instead of the full 36-bit accumulator (A or B). Thislimiting feature allows block floating-point oper-
ations to be performed with error detection since the L bit in the CCR islatched (that is, sticky).

When a 36-bit accumulator (A or B) is specified as a destination operand, any 16-bit source datato be
moved into that accumulator is automatically extended to 36 bits by sign extending the MSB of the
source operand (bit 15) and appending the source operand with 16 LS zeros. The automatic sign ex-

tension and zeroing features may be circumvented by specifying the destination register to be one of
theindividual 16-bit accumulator registers (A1 or B1).

MOVES X:<$0034,Y1 ; write to X:30034

Before Execution After Execution

X:$0034 5555 \mf034 5555
Y1l 0123 Y1 5555

Explanation of Example:

Example:

Prior to execution, X:$0034 contains the value $5555 and Y 1 contains the value $0123. Execution of
the instruction moves the value $5555 into the Y 1 register.

MOVES #$50342,X:324 ; moves 16-bit value directly
into memory location

1

Before Execution After Execution

X:$0024 AAAA X:$0024 0342

Explanation of Example:

Prior to execution, the contents of the X data memory location $24 contains the value SAAAA. The
MOVES zero-extends the value $24 to form the memory address $0024. Execution of the instruction
moves the value $0342 into this location. Note that address $24 is recognized as a candidate for short

addressing.
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MOVE(S)

Condition Codes Affected:

Move Absolute Short

MOVE(S)

15

MR
14 13 12

11

10 9 8

7

LF

*

* 11 ] 10

SZ

L

E

N 4 vV | C

Note:

SZ — Set according to the standard definition of the SZ bit
L — Setif datalimiting has occurred during move

It isalso possible to access the first 64 locations in the X data memory using the MOV EC instruction,

which can directly access these locations either using the address-register-indirect addressing modes
or the absolute address addressing mode, which specifies a 16-bit absolute address.

Instruction Fields:

Operation Source Destination C Comments
MOVE X:aa A, B, Al B1 2 First 64 locations in data memory.
or or X0,Y0,Y1
MOVES X:<aa RO-R3, N X:aarepresents a 6-bit absolute address.
Refer to Absolute Short Address
A,B,Al, Bl (Direct Addressing): <aa> on page
X0,Y0,Y1 4-22.
RO-R3, N X:aa
or
HXXXX X:<aa 4 Move 16-bit immediate date to aloca-
tion within the first 64 words of X data
memory.
X:aarepresents a 6-bit absolute address.
Timing: 2 + eaoscillator clock cycles
Memory: 1 + eaprogram word
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MPY

Operation:

+S1*S2—-D
S1*S2—-D
S1*S2—-D

Description:

Signed Multiply MPY

Assembler Syntax:

MPY (¥)SLS2,D
(single parallel move) MPY S1,82,D (single parallel move)
(dual parallel read) MPY S1,82,D (dual parallel read)
Multiply the two signed 16-hit source operands, and place the 32-bit fractional product in the destina-

tion (D). Both source operands must be located in the FF1 portion of an accumulator or in X0, YO, or
Y 1. If an accumulator is used as the destination, the result is sign extended into the extension portion
(FF2) of the accumulator. If the destination is one of the 16-bit registers, only the higher 16 bits of the
fractional product are stored.

Usage: Thisinstruction is used for multiplication of fractional data or integer data when afull 32-bit product
is required (see Section 3.3.5.2, “Integer Multiplication,” on page 3-20). When the destination is a
16-bit register, thisinstruction is useful only for fractional data.

Example:

MPY X0,Y1,A ; multiply X0 by Y1
Before Execution After Execution
0 1000 0000 F FA2B 0000
A2 Al A0 A2 Al A0
X0 4000 X0 4000
Y1 F456 Y1 F456

Explanation of Example:

Condition Co

Prior to execution, the 16-bit X0 register containsthe value $4000 (0.5), the 16-bit Y 1 register contains
the value $F456 (-0.09112), and the 36-bit A accumulator contains the value $0:1000:0000 (0.125).
Execution of the MPY X0, Y1, A instruction multiplies the 16-bit signed value in the X0 register by
the 16-bit signed value in Y1 and stores the result ($F:FA2B:0000) into the A accumulator,
X0* Y1=-0.04556 (truncated hereto 5 decimal places).

des Affected:

MR g CCR
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| * | * | *|*]|*|nn|lwo|SZ|L|E|JU|N|Z|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow (result) has occurred

— Set if the extension portion of accumulator result isin use

Set according to the standard definition of the U bit

— Setif MSB of result is set

— Setif result equals zero

— Alwayscleared

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

<Nzcmr @
|
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MPY

Signed Multiply MPY

Instruction Fields:

Operation Operands w Comments
MPY (¥)Y1,XO0,FDD 1 Fractional multiply where one operand is optionally
(¥)Y0,X0,FDD negated before multiplication
(£)Y1YO,FDD
(¥)YO,YO,FDD Note: Assembler also accepts first two operands when
()A1,YO,FDD they are specified in opposite order
(¥)BLY1,FDD

Parallel Moves:

Data ALU Operation Parallel Memory Move
Operation! Operands Sour ce Destination®
MPY Y1,XO,F X:(Rn)+ X0
YO,XOF X:(Rn)+N Y1
Y1LYOF YO
YO,YO,F
A
ALYO,F B
B1Y1F Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
Bl

A-122

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cycle

for every addressing mode.

2. The destination of the data ALU operation is not allowed to be the same register
asthe destination of the parallel read operation. Memory writes are allowed in this case.
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MPY Signed Multiply MPY

Parallel Dual Reads:

Data ALU Operation® First Memory Read Second Memory Read
Oper ation? Operands Source 1 Destination 1 Source 2 Destination 2
MPY Y1,X0,F X:(RO)+ YO X:(R3)+ X0
Y1,YOF X:(RO)+N Y1 X:(R3)-
YO0,X0,F
X:(R1)+
(F=A or B) X:(R1)+N

1. Thisparalé instructionisnot alowed when the XP bit in the OMR is set (that is, when the instructions
are executing from data memory).

2. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cycle for every addressing
mode.

Timing: 2 + mv oscillator clock cyclesfor MPY instructions with parallel move
2 oscillator clock cycles for MPY instructions without parallel move

Memory: 1 program word
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MPYR Signed Multiply and Round MPYR

Operation:

Assembler Syntax:

+S1*S2+r—D MPYR (+)S1,S2,D
S1* S2+r — D (single parallel move) MPYR S1,S2,D (single parallel move)
S1* S2 +r — D (dua parallel read) MPYR S1,82,D (dual parallel read)

Description:

Usage:

Example:

Multiply the two signed 16-bit source operands, round the 32-bit fractional product, and place the re-
sult in the destination (D). Both source operands must be located in the FF1 portion of an accumulator
or in X0, YO, or Y1. The fractional product is sign extended before the rounding operation, and the
result isthen stored in the destination. If the destination is one of the 16-bit registers, only the high-or-
der 16 bits of the rounded fractional result are stored. Thisinstruction uses the rounding technique that
is selected by the R bit in the OMR. When the R bit is cleared (default mode), convergent rounding is
selected; when the R bit is set, two’ s-complement rounding is selected. Refer to Section 3.5, “Round-
ing,” on page 3-30 for more information about the rounding modes. Note that the rounding operation
will always zero the LSP of the result if the destination (D) is an accumulator.

Thisinstruction is used for multiplication and rounding of fractional data.

MPYR -X0,Y1,A ; multiply X0 by Y1 and
; negate the product

Before Execution After Execution

0

1000 1234 0 05D5 0000

A2 Al AO A2 Al AO

X0 4000 X0 4000

Y1 F456 Y1 F456

Explanation of Example:

A-124

Prior to execution, the 16-bit X 0 register contains the value $4000 (0.5), the 16-bit Y 1 register contains
the value $F456 (-0.09112), and the 36-bit A accumulator contains the value $00:1000:1234
(0.12500). Execution of theMPYR -X0, Y1, A instruction multipliesthe 16-bit signed valuein the X0
register by the 16-bit signed value in Y 1, rounds the result, and stores the result ($0:05D5:0000) into
the A accumulator, -X0 * Y1 = 0.04556 (truncated here to 5 decimal places). In this example, the de-
fault rounding (convergent rounding) is performed.
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MPYR

Signed Multiply and Round

Condition Codes Affected:

MPYR

< MR > CCR
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF| * | * | *| *|*|n|w0o|SZIL|E|JU|N|Z|V]|C
SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Setif limiting (parallel move) or overflow has occurred in result
E — Setif the extension portion of accumulator result isin use
U — Setaccording to the standard definition of the U bit
N — Setif MSB of result is set
Z — Setif result equals zero
V — Alwayscleared

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations— CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC hit is set.

Instruction Fields:
Operation Operands C w Comments
MPYR (x)Y1,X0,FDD 2 1 Fractional multiply where one operand is optionally

(¥)Y0,X0,FDD negated before multiplication; result is rounded
(+)Y1,YO,FDD
(¥)YO,YO,FDD Note: Assembler also accepts first two operands when
(£)A1,YO,FDD they are specified in opposite order
(+)B1Y1,FDD
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MPYR Signed Multiply and Round MPYR

Parallel Moves:

Data ALU Operation Parallel Memory Move
Operation! Operands Sour ce Destination®
MPYR Y1,X0,F X:(Rn)+ X0
YO,X0,F X:(Rn)+N Y1
Y1YOF YO
YO,YO,F
A
ALYO,F B
B1Y1F Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cycle
for every addressing mode.

2. The destination of the data ALU operation is not allowed to be the same register
asthe destination of the parallel read operation. Memory writes are allowed in this case.

Parallel Dual Reads:

Data ALU Operation® First Memory Read Second Memory Read
Operation? Operands Source 1 Destination 1 Source 2 Destination 2
MPYR Y1,XO0F X:(RO)+ YO X:(R3)+ X0
Y1YOF X:(RO)+N Y1 X:(R3)-
Y0,X0,F
X:(RD)+
(F=A or B) X:(R1)+N

1. Thisparalé instructionisnot alowed when the XP bit in the OMR is set (that is, when the instructions
are executing from data memory).

2. Thisinstruction occupies only 1 program word and executesin 1 instruction cycle for every addressing
mode.

Timing: 2 + mv oscillator clock cycles for MPY R instructions with parallel move
2 oscillator clock cycles for MPY R instructions without parallel move

Memory: 1 program word
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MPYSU

Operation:

Signed Unsigned Multiply

S1* S2 — D (S1 signed, S2 unsigned)

Description: Multiply one signed 16-bit source operand by one unsigned 16-bit operand, and place the 32-bit frac-
tional product in the destination (D). The order of the registersis important. The first source register
(S1) must contain the signed value, and the second source (S2) must contain the unsigned value to pro-
duce correct fractional results. If the destination is one of the 16-bit registers, only the high-order
16 bits of the fractional result are stored. The result is not affected by the state of the saturation bit

Usage:

Example:

(SA). Note that for 16-bit destinations, the sign bit may be lost for large fractional magnitudes.

Assembler Syntax:

MPY SU S1,82,D

MPYSU

In addition to single-precision multiplication of a signed value times unsigned value, this instruction
is also used for multi-precision multiplications, as shown in Section 3.3.8.2, “Multi-Precision Multi-
plication,” on page 3-23.

MPYSU X0,Y0,A
Before Execution
0 0000 0000
A2 Al A0
X0 3456
YO 8000

Explanation of Example:
The 16-bit X0 register contains the value $3456, and the 16-bit Y O register contains the val ue $8000.
Execution of the MPYSU X0, YO0, A instruction multiplies the 16-bit signed value in the X0 register
by the 16-bit unsigned value in Y0 and stores the signed result into the A accumulator. If thiswas a
MPY instruction, YO ($8000) would equal -1.0, and the multiplication result would be
$F:CBAA:0000. Sincethisisan MPY SU instruction, Y0 isconsidered unsigned and equals +1.0. This
gives amultiplication result of $0:3456:0000.

Condition Codes Affected:

After Execution

0 3456 0000
A2 Al A0

X0 3456

YO 8000

MR » CCR
15 14 13 12 11 10 9 8 7 6 4 3 2 0
LF | * * * * *1L|j1o|sz|L U|INJ|Z C

See Section 3.6.5, “ 16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.

<Nzcmr

Set if overflow has occurred in result
Set if the extension portion of accumulator result isin use
Set according to the standard definition of the U bit

Set if MSB of result is set
Set if result equals zero
Always cleared

See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-

tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.
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MPYSU

Instruction Fields:

Signed Unsigned Multiply M PYSU

Operation Operands C w Comments
MPY SU X0,Y1,FDD 2 1 Signed or unsigned 16x16 fractional multiply with 32-bit

X0,YO,FDD result.
YO0,Y1,FDD
YO0,YO,FDD Thefirst operand is treated as signed and the second as
YO0,A1,FDD unsigned.
Y1,B1,FDD

Timing: 2 oscillator clock cycles

Memory: 1 program word
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NEG Negate Accumulator NEG

Operation: Assembler Syntax:
0-D— D NEG D
0-D— D (single parallel move) NEG D (single parallel move)

Description: The destination operand (D) is subtracted from zero, and the two’ s-complement result is stored in the
destination (D). If the destination isa 16-bit register, it isfirst sign extended internally and concatenat-
ed with 16 zero bitsto form a 36-bit operand.

Usage: Thisinstruction is used for negating a 36-bit accumulator. It can also be used to negate a 16-bit value
loaded in the MSP of an accumulator if the L SP of the accumulator is $0000 (see Section 8.1.6, “Un-
signed Load of an Accumulator,” on page 8-7).

Example:
NEG B X0,X:(R3)+ ; 0-B —- B, save X0, update R3
Before Execution After Execution
0 1234 5678 F EDCB A988
B2 Bl BO B2 Bl BO
SR 0300 SR 0309

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $0:1234:5678. The NEG B instruction
takes the two' s-complement of the value in the B accumulator and stores the 36-hit result back in the
B accumulator.

Condition Codes Affected:

MR g CCR
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| = | x| *|*]| | n1|lwo|SZ|L|E|JU|N|Z|V|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the extension portion of accumulator isin use

Set according to the standard definition of the U bit

— Setif MSB of result isset

— Setif result equals zero

— Setif overflow has occurred in accumulator result

— Setif aborrow is generated from the MSB of the result

See Section 3.6.2, “36-Bit Destinations— CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

o<NzcmE @
|
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NEG

Instruction Fields:

Negate Accumulator

NEG

Operation

Operands

Comments

NEG

1 Two' s-complement negation

Parallel Moves:

Data ALU Operation

Parallel Memory Move

Operation! Operands Source Destination®
NEG F X:(Rn)+ X0
X:(Rn)+N Y1
YO
A
B
Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cycle
for every addressing mode.

2. The destination of the data ALU operation is not allowed to be the same register
asthe destination of the parallel read operation. Memory writes are allowed in this case.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word
A-130
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NOP No Operation NOP

Operation: Assembler Syntax:
PC+1— PC NOP

Description: Increment the PC. Pending pipeline actions, if any, are completed. Execution continues with the in-
struction following the NOP.

Example:
NOP ; ilncrement the program counter

Explanation of Example:
The NOP instruction increments the PC and completes any pending pipeline actions.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C w Comments
NOP 2 1 No operation
Timing: 2 oscillator clock cycles
Memory: 1 program word
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NORM Normalize Accumulator Iteration NORM

Operation: Assembler Syntax:
If (E-U-Z=1) NORM RO,D
then ASLDandRO-1— RO
dseif (E=1)
then ASRDandRO+1— RO
ese NOP

where X denotes the logical complement of X and
where « denotes the logical AND operator

Description: Perform one normalization iteration on the specified destination operand (D), update the address reg-

Example:

ister RO based upon the results of that iteration, and store the result back in the destination accumul ator.
Thisisa36-bit operation. If the accumulator extension isnot in use, the accumulator is not normalized,
and the accumulator is not zero, then the destination operand is arithmetically shifted 1 bit to the left,
and the RO address register is decremented by one. If the accumulator extension register isin use, the
destination operand is arithmetically shifted 1 bit to theright, and the RO address register isincrement-
ed by one. If the accumulator is normalized or zero, a NOP is executed, and the RO address register is
not affected. Since the operation of the NORM instruction depends on the E, U, and Z CCR bits, these
bitsmust correctly reflect the current state of the destination accumulator prior to executing the NORM
instruction. The L and V bitsin the CCR will be cleared unless they have been improperly set up prior
to executing the NORM instruction.

TST A
REP #31 ; maximum number of iterations
; (31) needed
NORM RO,A ; perform one normalization
; iteration
Before Execution After Execution
0 0000 8000 0 4000 0000
A2 Al A0 A2 Al AO
RO 0000 RO FFF1

Explanation of Example:

A-132

Prior to execution, the 36-bit A accumulator contains the value $0:0000:8000, and the 16-bit RO ad-
dress register contains the value $0000. The repetition of the NORM RO, A instruction normalizes the
valuein the 36-bit accumulator and stores the resulting number of shifts performed during that normal -
ization processin the RO addressregister. A negative value reflects the number of left shifts performed,
while a positive value reflects the number of right shifts performed during the normalization process.
In this example, 15 left shifts are required for normalization.

DSP56800 Family Manual Freescale Semiconductor



NORM

Normalize Accumulator Iteration

Condition Codes Affected:

NORM

< MR > CCR
15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
LF | * * * * *lmjwow|sz|L|E|J]U|N|Z|V]|C

<Nzcmr

— Setif overflow has occurred in accumulator result

— Setif the extension portion of accumulator result isin use
— Set according to the standard definition of the U bit

— Setif bit 35 of accumulator result is set
— Setif result equals zero

— Setif bit 35ischanged as aresult of aleft shift

See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:
Operation Operands C w Comments
NORM RO,A 2 1 Normalization iteration instruction for normalizing the F
RO,B accumul ator
Timing: 2 oscillator clock cycles

Memory:

Freescale Semiconductor

1 program word
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NOT Logical Complement NOT

Operation: Assembler Syntax:
D—-D NOT D
D[31:16] — D[31:16] NOT D

where the bar over the D (D) denotes the logical NOT operator

Description: Compute the one’ s-complement of the destination operand (D), and store the result in the destination.
Thisinstruction is a 16-bit operation. If the destination is a 36-bit accumulator, the one’ s-complement
is performed on bits 31-16 of the accumulator. The remaining bits of the destination accumulator are
not affected. The result is not affected by the state of the saturation bit (SA).

Example:
NOT A A,X: (R2)+ ; save Al and take the 1’'s complement
i of Al
Before Execution After Execution
5 1234 5678 5 EDCB 5678
A2 Al A0 A2 Al A0
SR 0300 SR 0300

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $5:1234:5678. The NOT A instruction

takes the one’ s-complement of bits 31-16 of the A accumulator (A1) and stores the result back in the
Al register. The remaining A accumulator bits are not affected.

Condition Codes Affected:

< MR » CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LF | * * * * *limjwow|sz|L|E|JU|N|Z|V]|C

N — Setif bit 31 of accumulator result or MSB of register result is set
Z — Setif bits 31-16 of accumulator result or all 16 bits or register are zero
V — Alwayscleared

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for caseswith X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:

Operation Operands C w Comments
NOT FDD 2 1 One’ s-complement (bit-wise negation)
Timing: 2 oscillator clock cycles
Memory: 1 program word
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NOTC Logical Complement with Carry NOTC

Operation: Assembler Syntax:
X:<ea> — X:(ed) NOTC X:<ea>
D-D NOTC D

Implementation Note:
Thisinstruction is an dliasto the BFCHG instruction, and assembles as BFCHG with the 16-bit imme-
diate mask set to $FFFF. Thisinstruction will disassemble as aBFCHG instruction.

Description: Takethe one' s complement of the destination operand (D), and store the result in the destination. This
instruction is a 16-bit operation. If the destination is a 36-bit accumulator, the one’ s-complement is
performed on bits 31-16 of the accumulator. The remaining bits of the destination accumulator are not
affected. Cis also modified as described in following discussion.

Example:
NOTC R2
Before Execution After Execution
R2 CAA3 R2 355C
SR 3456 SR 3456

Explanation of Example:
Prior to execution, the R2 register contains the value $CAA3. Execution of the instruction comple-
ments the value in R2. C is modified as described in following discussion.

Condition Codes Affected:

< MR > CCR
15 14 13 12 11 10 9 8 (7 6 5 4 3 2 1 O

LF | * * * * * IL|10|sz|L E U N z v | C

For destination operand SR:

? — Changed if specified in the field

For other destination operands:
L — Setif datalimiting occurred during 36-bit source move
C — Setif the value equals $FFFF before the complement
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NOTC

Instruction Fields:

Logical Complement with Carry NOTC

Operation Operands C w Comments
NOTC DDDDD 4 2 One' s-complement (bit-wise negation). Implemented
with BFCHG
X:(R2+xx) 6 2
All registersin DDDDD are permitted except HWS.
X:(SP-xx) 6 2
X:aarepresents a 6-bit absolute address. Refer to Abso-
X:aa 4 2| Jute Short Address (Direct Addressing): <aa> on page
4-22.
X:<<pp 4 2
" 6 3 X:<<pp represents a 6-bit absolute 1/0 address. Refer to
XXX 1/0 Short Address (Direct Addressing): <pp> on page
4-23.
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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OR Logical Inclusive OR OR

Operation: Assembler Syntax:
S+D—D OR SD
S+ D[31:16] — D[31:16] OR SD

where + denotes the logical inclusive OR operator

Description: Perform alogical OR operation on the source operand (S) with the destination operand (D), and store
theresult in the destination. Thisinstruction isa 16-bit operation. If the destination is a 36-bit accumu-
lator, the OR operation is performed on the source with bits 31-16 of the accumulator. The remaining
bits of the destination accumulator are not affected. The result is not affected by the state of the satu-

ration bit (SA).
Usage: Thisinstruction is used for the logical OR of two registers. If it is desired to OR a 16-bit immediate
value with aregister or memory location, then the ORC instruction is appropriate.
Example:
OR Y1,B ; OR Y1 with B
Before Execution After Execution
0 1234 5678 0 FF34 5678
B2 B1 BO B2 B1 BO
Y1 FFOO0 Y1 FFOO0

Explanation of Example:
Prior to execution, the 16-bit Y 1 register contains the value $FF00, and the 36-bit B accumulator con-

tainsthe value $0:1234:5678. The OR Y1, B instruction logically ORsthe 16-bit valuein the Y 1 reg-
ister with B1 and stores the 36-bit result in the B accumulator.
Condition Codes Affected:

MR g CCR
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| * | | *|*|*|11|lOo|sz|]L|E|U|N|Z]|V]|C

N — Setif bit 31 of accumulator result or MSB or register result is set
Z — Setif bits 31-16 of accumulator result or all 16 bits or register are zero
V — Alwayscleared

Instruction Fields:

Operation Operands C w Comments
OR DD,FDD 2 1 16-hit logical OR
F1,DD
Timing: 2 oscillator clock cycles
Memory: 1 program word
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ORC Logical Inclusive OR Immediate
Operation: Assembler Syntax:
#XXXX + X:<ea> — X:<ea> ORC #iiii, X :<ea>
#xxxx+D — D ORC #iiii,D

where + denotes the logical inclusive OR operator

Implementation Note:

ORC

Thisinstruction is an alias to the BFSET instruction, and assembles as BFSET with the 16-bit imme-
diate value used as the bit mask. Thisinstruction will disassemble as a BFSET instruction.

Description: Logicaly OR a16-hit immediate dataval ue with the destination operand (D) and store the results back
into the destination. C isa so modified as described in following discussion. Thisinstruction performs

aread-modify-write operation on the destination and requires two destination accesses.

Example:
ORC #$5050,X:<<S$S7C30 ; OR with immediate data
Before Execution After Execution
X:$7C30 00AA X:$7C30 50FA
SR 0300 SR 0300

Explanation of Example:

Prior to execution, the 16-bit X memory location X:$7C30 contains the value S00AA. Execution of the
instruction teststhe state of bits 14, 12, 6, and 4 in X:$7C30; does not set C (because all these bitswere

not set); and then sets the bits.

Condition Codes Affected:

< MR > CCR
15 14 13 12 11 10 9 8 |7 6 5 4 3 1
LF| * | * | *|*|*]mk|wo|sz|L|E|U]|N v
For destination operand SR:
? — Setasdefinedinthefield and if specified in thefield
For other destination operands:
L — Setif datalimiting occurred during 36-bit source move

C — Setif al bits specified by the mask are set
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ORC Logical Inclusive OR Immediate ORC

Instruction Fields:

Operation Operands C W Comments
ORC #<MASK16>,DDDDD 4 2 16-hit logical OR of immediate data. Implemented with
BFSET.
#<MASK 16>,X:(R2+xx) 6 2

All registersin DDDDD are permitted except HWS.
#<MASK16>,X:(SP-xx) 6 2

X:aarepresents a 6-hit absolute address. Refer to Abso-
#<MASK16>,X:2a 4 2 | |ute Short Address (Direct Addressing): <aa> on page
4-22.

#<MASK 16> X:<<pp 4 2

X:<<pp represents a 6-bit absolute I/O address. Refer to
1/0 Short Address (Direct Addressing): <pp> on page
4-23.

H#<MASK 16>, X :XXXX 6 3

Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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POP Pop from Stack POP

Operation: Assembler Syntax:
X:(SP)—» D POP D
SP-1 -  SP

Description: Read one location from the software stack into a destination register (D) and post-decrement the SP.

Implementation Note:
Thisinstruction isimplemented by the assembler using either aMOVE or LEA instruction, depending
on the form. When a destination register is specified, aMOVE X: (SP) -, <register> instruction
is assembled. When no destination register is specified, POP assemblesas LEA (SP) -. Theinstruc-
tion will always disassemble as either MOVE or LEA.

Example:
POP LC
Before Execution After Execution
X:$0100 AAAA X:$0100 AAAA
LC 0099 LC AAAA
SP 0100 SP OOFF

Explanation of Example:
Prior to execution, the L C register contains the value $0099, and the SP contains the value $0100. The

POP instruction reads from the location in X data memory pointed to by the SP and places this value
in the LC register. The SP is then decremented after the read from memory.

Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C w Comments

POP DDDDD 2 1 Pop a single stack location.
ALIAS, refer to Section 6.5.5, “POP Alias.”
Implemented as:. MOVE X:(SP)-,<register>

(None specified) ALIAS, refer to Section 6.5.5, “POP Alias.”
Implemented as: LEA (SP)-

Timing: 2 oscillator clock cycles

Memory: 1 program word
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REP Repeat Next Instruction REP

Operation: Assembler Syntax:

LC—> TEMP; #xx —» LC REP #xx
Repeat next instruction until LC =1
TEMP—> LC

LC—> TEMP;, S—LC REP S
Repeat next instruction until LC =1
TEMP— LC

Description: Repeat the single word instruction immediately following the REP instruction the specified number of
times. The value specifying the number of times the given instruction isto be repeated is loaded into
the 13-bit LC register. The contents of the 13-bit LC register are treated as unsigned (that is, always
positive). The single word instruction is then executed the specified number of times, decrementing
the LC after each execution until LC equals one. When the REP instruction is in effect, the repeated
instruction is fetched only one time, and it remains in the instruction register for the duration of the
loop count. Thus, the REP instruction isnot interruptible. The contents of the L C register upon entering
the REP instruction are stored in an internal temporary register and are restored into the LC register
upon exiting the REP loop. If LC is set equal to zero, theinstruction is not repeated and execution con-
tinues with the instruction immediately following the instruction that was to be repeated. The instruc-
tion’s effective address specifies the address of the value that is to be loaded into the LC.

The REP instruction allows all registers on the DSC core to specify the number of loop iterations ex-
cept for the following: M01, HWS, OMR, and SR. If immediate short data is instead used to specify
the loop count, the 6 L SBs of the L C register are loaded from the instruction and the upper 7 MSBs are
cleared.

Note: If the A or B accumulator is specified as a source operand, and the data out of the accumulator indicates
that extension isin use, the value to be loaded into the L C register will be limited to a 16-bit maximum
positive or negative saturation constant. If positive saturation occurs, the limiter places $7FFF onto the
bus, and the lower 13 bits of thisvalue are all ones. The 13 ones are loaded into the L C register as the
maximum unsigned positive loop count allowed. If negative saturation occurs, the limiter places $8000
onto the bus, and the lower 13 bits of thisvalue are all zeros. The 13 zeros are loaded into the LC reg-
ister, specifying aloop count of zero. The A and B accumulators remain unchanged.

Note: Oncein progress, the REP instruction and the REP loop may not be interrupted until completion of the
REP loop.

Restrictions:
The REP instruction can repeat any single word instruction except the REP instruction itself and any
instruction that changes program flow. The following instructions are not allowed to follow a REP in-

struction:
Any instruction that occupies multiple words
DO Bcc, Jec
BRCLR, BRSET BRA, IMP
MOVEM JSR
REP RTI
RTS STOP, WAIT

SwWI, DEBUG  Tcc
Also, a REP instruction cannot be the last instruction in a DO loop (at the LA). The assembler will

generate an error if any of the preceding instructions are found immediately following a REP instruc-
tion.
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REP

Example:

Repeat Next Instruction

REP X0
INCW Y1l

Before Execution

X0 0003
Y1 0000
LC 00A5

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0003, and the 13-bit L C register contains
the value $00AS5. Execution of the REP X0 instruction takes the lower 13 hits of the value in the X0
register and stores it in the 13-bit LC register. Then, the single word INCW instruction immediately
following the REP instruction is repeated $0003 times. The contents of the L C register before the REP

Example:

loop are restored upon exiting the REP loop.

REP X0
INCW Y1l
ASL Y1l

Before Execution

X0 0000
Y1 0005
LC 00A5

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0000, and the 13-bit L C register contains
the value $00AS5. Execution of the REP X0 instruction takes the lower 13 hits of the value in the X0
register and storesit in the 13-bit LC register. Since the loop count is zero, the single word INCW in-
struction immediately following the REP instruction is skipped and execution continues with the ASL
instruction. The contents of the LC register before the REP loop are restored upon exiting the REP
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loop.

; repeat (XO0)

REP

times

; increment the Y1 register

After Execution

X0 0003
Y1 0003
LC 00A5

; repeat (XO0)

times

; ilncrement the Y1 register
; multiply the Y1 register by 2

After Execution

X0 0000
Y1 000A
LC 00A5
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REP

Condition Codes Affected:

Repeat Next Instruction REP

)l

MR

15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O

> CCR

LF|* | *|*|*|*|n1|jwo|sz|L|E|U|N|Z]|V]|C
L — Setif datalimiting occurred using accumulator as source operand
Instruction Fields:
Operation Operands C w Comments
REP #<0-63> 6 1 Hardware repeat of a one-word instruction with immedi-
ate loop count
DDDDD 6 1 Hardware repeat of a one-word instruction with loop
count specified in register
Any register allowed except: SP, M01, SR, OMR, and
HWS
Timing: 6 oscillator clock cycles
Memory: 1 program word
Freescal e Semiconductor Instruction Set Details A-143



RND Round Accumulator RND

Operation: Assembler Syntax:
D+r— D RND D
D+r— D (single parallel move) RND D (single parallel move)

Description: Round the 36-bit or 32-bit value in the specified destination operand (D). If the destination is an accu-
mulator, store the result in the EXT:M SP portions of the accumulator and clear the L SP. This instruc-
tion uses the rounding technique that is selected by the R bit in the OMR. When the R bit is cleared
(default mode), convergent rounding is selected; when the R bit is set, two's-complement rounding is
selected. Refer to Section 3.5, “Rounding,” on page 3-30 for more information about the rounding

modes.
Example:
RND A ; round A accumulator into
; A2:Al1, zero A0
Before Execution After Execution
| 5 1236 789A 5 1236 0000
A2 Al A0 A2 Al A0
Before Execution After Execution
Il 0 1236 8000 0 1236 0000
A2 Al A0 A2 Al A0
Before Execution After Execution
m{ O 1235 8000 0 1236 0000
A2 Al A0 A2 Al A0

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $5:1236:789A for Case |, the value
$0:1236:8000 for Case || and the value $0:1235:8000 for Case 1. Execution of theRND A instruction
roundsthevalue in the A accumulator into the M SP of the A accumulator (A1) and then zerosthe L SP
of the A accumulator (A0). The example is given assuming that the convergent rounding is selected.
Case |l isthe special case that distinguishes convergent rounding from the two’ s-complement round-
ing, sinceit clearsthe LSB of the MSP after the rounding operation is performed.

Condition Codes Affected:

< MR > CCR
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O

LF| = | x| *|*|*~|n|lwo|SZ|L|E|JU|N|Z|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result

— Setif the extension portion of accumulator result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of accumulator result is set

—  Setif result equals zero

— Setif overflow has occurred in accumulator result

Note: If the CC hit is set and bit 31 of the result is set, then N is set. If the CC bit is set and bits 31-0 of the
result equal zero, then Z is set. Therest of the bits are unaffected by the setting of the CC hit.

<Nzcmr @
|
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RND

Round Accumulator

Instruction Fields:

RND

Operation Operands C w Comments
RND F 2 1 Round
Parallel Moves:
Data ALU Operation Parallel Memory Move
Operation® Operands Sour ce Destination?
RND F X:(Rn)+ X0
X:(Rn)+N Y1l
YO
A
B
Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cy-

clefor every addressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register
as the destination of the parallel read operation. Memory writes are allowed in this

case.
Timing: 2 + mv oscillator clock cycles
Memory: 1 program word
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ROL

Operation:

(seefigure)

Rotate Left

Assembler Syntax:

ROL D
v
C<+— |Unch. “— Unchanged
D1 DO

l D2

ROL

Description: Logicaly shift 16 bits of the destination operand (D) 1 hit to the |eft, and store the result in the desti-
nation. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator
(FF1 portion), and the remaining portions of the accumulator are not modified. The MSB of the desti-
nation (bit 31 for accumulators or bit 15 for registers) prior to the execution of the instruction is shifted
into C, and the previous value of C is shifted into the LSB of the destination (bit 16 if the destination

isa36-bit accumulator). The result is not affected by the state of the saturation bit (SA).

Example:
ROL

Before Execution

F 0000 00AA
B2 Bl BO
SR 0001

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $F:0001:00AA. Execution of the
ROL B instruction shifts the 16-bit value in the B1 register 1 hit to the left, shifting bit 31 into C, ro-
tating C into bit 16, and storing the result back in the B1 register.

Condition Codes Affected:

; rotate Bl left 1 bit

After Execution

F 0001 00AA
B2 Bl BO
SR 0000

Instruction Fields:

of theinstruction

< MR »>< CCR >
5 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O
LF|* | *| *|*|*|nr|jwo|sz|L|E|JU|N|Z]|V]|C
N — Setif bit 31 of accumulator result or bit 15 of register result is set
Z — Setif bits 31-16 of accumulator result or all bitsin register result are zero
V — Alwayscleared
CcC —

Setif bit 31 of accumulator or bit 15 or register result was set prior to the execution

Operation Operands C w Comments
ROL FDD 2 1 Rotate 16-bit register left by 1 bit through the carry bit
Timing: 2 oscillator clock cycles
Memory: 1 program word
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ROR

Operation:

(seefigure)

Example:

ROR

Rotate Right

Assembler Syntax:

ROR D
] f
C—>» |Unch. —> Unchanged
D2 D1 DO

!

Description: Logicaly shift 16 bits of the destination operand (D) 1 bit to the right, and store the result in the des-
tination. If the destination is a 36-bit accumulator, the result is stored in the MSP of the accumulator
(FF1 portion), and the remaining portions of the accumulator are not modified. The LSB of the desti-
nation (bit 16 for a 36-bit accumulator) prior to the execution of the instruction is shifted into C, and
the previous value of C isshifted into the M SB of the destination (bit 31 for a 36-bit accumulator). The
result is not affected by the state of the saturation bit (SA).

Before Execution

F 0001 00AA
B2 Bl BO
SR 0000

Explanation of Example:
Prior to execution, the 36-bit B accumulator contains the value $F:0001:00AA. Execution of the
ROR B ingtruction shifts the 16-bit value in the B1 register 1 hit to the right, shifting bit 16 into C,

rotating C into bit 31, and storing the result back in the B1 register.

Condition Codes Affected:

1

After Execution

rotate Bl right 1 bit

ROR

F 0000 00AA
B2 B1 BO
SR 0005

MR > CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LF| * | *|*|*|*|1|lo|sz|L|E|U|IN|Z|V]|C
N — Setif bit 31 of accumulator result or MSB of register is set
Z — Setif bits 31-16 of accumulator result or al bits of register are zero
V — Alwayscleared
C — Setif bit 16 of accumulator or bit O of register was set prior to the execution of the
instruction
Instruction Fields:
Operation Operands C w Comments
ROR FDD 2 1 Rotate 16-bit register right by 1 bit through the carry bit
Timing: 2 oscillator clock cycles
Memory: 1 program word
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RTl Return from Interrupt RTl

Operation: Assembler Syntax:
X:(SP) - SR; SP-1- SP RTI
X:(SP) - PC;, SP-1- SP

Description: Returnto normal execution at the end of an interrupt service routine. The return restores the status reg-
ister (SR) and program counter (PC) from the software stack. The previous PC is lost, and execution
resumes at the address that is indicated by the (restored) PC.

Example:
RTT ; pull the SR and PC registers
; from the stack

Before Execution After Execution

X:$0100 1300 X:$0100 1300

X:$00FF 754C X:$00FF 754C
SR 0309 SR 1300
SP 0100 SP O0FE

Explanation of Example:
The RTI instruction pulls the 16-bit PC and the 16-bit SR from the stack and updates the system SP.

Program execution continues at $754C.

Restrictions:
Due to pipelining in the program controller and the fact that the RTI instruction accesses certain pro-

gram controller registers, the RTI instruction must not be immediately preceded by any of the follow-
ing instructions:

MOVE(C) to the SP
Any bit-field instruction performed on the SR

An RTI instruction cannot be the last instruction in aDO loop (at the LA).
An RTI instruction cannot be repeated using the REP instruction.

Condition Codes Affected:

MR > CCR
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| > | *| | *~|*|11]|]I0|SZ|L|E|JU|IN|Z|V]|C

All bits — Set according to the value pulled from the stack

Instruction Fields:

Operation Operands C w Comments
RTI 10 1 Return from interrupt, restoring 16-bit PC and SR from
the stack
Timing: 10 + rx oscillator clock cycles
Memory: 1 program word
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RTS Return from Subroutine RTS

Operation: Assembler Syntax:
X:(SP) — (stored SR; discarded); SP-1— SP RTS
X:(SP) - PC; SP-1- SP

Description: Returnfromacall to asubroutine. To perform thereturn, RTS pullsand discardsthe previously pushed
SR and popsthe PC from the software stack. The previous PC islost. The generated SR from the called
function is not affected.

Example:

RTS ; pull SR (and discard it) &
; pull PC from the stack

Before Execution After Execution

X:$0100 8000 X:$0100 8000

X:$00FF 754C X:$00FF 754C
SR 8009 SR 8009
SP 0100 SP OOFE

Explanation of Example:
The example makes the assumption that during entry of the subroutine, only the LF bit (SR bit 15) is
on. During execution of the subroutine, the C and N bits were set. To perform thereturn, RTS pops the
16-bit PC from the software stack, and updates the SP. Program execution continues at $754C.

Restrictions:
Due to pipelining in the program controller and the fact that the RTS instruction accesses certain pro-
gram controller registers, the RTS instruction must not be immediately preceded by the following in-
struction:

MOVE(C) to the SP

An RTS instruction cannot be the last instruction in aDO loop (at the LA).
An RTSinstruction cannot be repeated using the REP instruction.

Manipulation of bits 10-14 in the stack | ocation corresponding to the SR register may generate unwant-
ed behavior. These bits will read as zero during DSC read operations and should be written as zero to
ensure future compatibility.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C w Comments
RTS 10 1 Return from subroutine, restoring 16-bit PC from the
stack
Timing: 10 + rx oscillator clock cycles
Memory: 1 program word
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SBC

Operation:
D-S-C— D

Subtract Long with Carry SBC

Assembler Syntax:
SBC SD

Description: Subtract the source operand (S) and the carry bit (C) from the second operand, and store the result in

Usage:

Example:

the destination (D). The source operand (S) isalwaysregister Y, which isfirst sign extended internally
to form a 36-bit value before being subtracted from the destination accumulator. When the saturation
bit (SA) is set, the MAC Output Limiter is enabled and this instruction will saturate the result if an
overflow occurred, (refer to Section 3.4, “ Saturation and Data Limiting,” on page 3-26).

This instruction is typically used in multi-precision subtraction operations (see Section 3.3.8.1,
“Multi-Precision Addition and Subtraction,” on page 3-23) when it is necessary to subtract two num-
bersthat are larger than 32 bits, such as 64-bit or 96-bit subtraction.

SBC Y,A
Before Execution After Execution
0 4000 0000 0 0000 0001
A2 Al AO A2 Al AO
Y 3FFF FFFE Y 3FFF FFFE
Y1 YO Y1 YO
SR 0301 SR 0310

Explanation of Example:

Note:

Prior to execution, the 32-bit Y register (comprised of the Y1 and YO registers) contains the value
$3FFF:FFFE, and the 36-bit accumulator contains the val ue $0:4000:0000. In addition, C is set to one.
The SBC instruction automatically sign extends the 32-bit Y registersto 36-bits and subtractsthis val-
ue from the 36-bit accumulator. In addition, C is subtracted from the L SB of this 36-bit addition. The
36-bit result is stored back in the A accumulator, and the conditions codes are set correctly. TheY1:YO
register pair is not affected by thisinstruction.

Cisset correctly for multi-precision arithmetic using long-word operands only when the extension reg-
ister of the destination accumulator (A2 or B2) contains sign extension of bit 31 of the destination ac-
cumulator (A or B).

Condition Codes Affected:
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< MR > CCR >
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LF | * * * * *lm|jwow|sz|L|E|J]U|N|Z|V]|C

— Setif overflow has occurred in result

— Setif the extension portion of accumulator result isin use
— Set according to the standard definition of the U bit

Set if bit 35 of accumulator result is set

— Setif result equals zero; cleared otherwise

— Setif overflow has occurred in result

— Setif acarry (or borrow) occurs from bit 35 of result

o<Nzcmr
|

DSP56800 Family Manual Freescale Semiconductor



SBC

Instruction Fields:

Subtract Long with Carry

SBC

Operation Operands C w Comments
SBC YA 2 1 Subtract with carry (set C bit also)
Y.,B
Timing: 2 oscillator clock cycles
Memory: 1 program word

Freescale Semiconductor
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STOP Stop Instruction Processing STOP

Operation: Assembler Syntax:
Enter the stop processing state STOP
Description: Enter the stop processing state. All activity in the processor is suspended until the RESET pin is as-

Restrictions:

Example:

serted, the IRQA pin is asserted, or an on-chip peripheral asserts a signal to exit the stop processing
state. The stop processing state is a very low-power standby mode where all clocks to the DSC core,
as well as the clocks to many of the on-chip peripherals such as serial ports, are gated off. It is till
possiblefor timersto continueto runin stop state. In these casesthetimers can beindividually powered
down at the peripheral itself for lower power consumption. The clock oscillator can also be disabled
for lowest power consumption.

When the exit from the stop stateis caused by alow level onthe RESET pin, then the processor enters
the reset processing state. The time to recover from the stop state using RESET will depend on a clock
stabilization delay controlled by the stop delay (SD) bit in the OMR.

When the exit from the stop state is caused by alow level on the IRQA pin, then the processor will
servicethe highest priority pending interrupt and will not servicethe IRQA interrupt unlessit is highest
priority. Theinterrupt will be serviced after aninternal delay counter counts 524,284 clock phases (that
is, [21°-4]T) or 28 clock phases (that is, [2°-4]T) of delay if the SD bit is set to one. During this clock
stabilization count delay, all peripherals and external interrupts are cleared and re-enabled/arbitrated
at the start of the 17T period following the count interval. The processor will resume program execu-
tion at the instruction following the STOP instruction (the one that caused the entry into the stop state)
after the interrupts have been serviced or, if no interrupt was pending, immediately after the delay
count plus 17T. If the IRQA pin is asserted when the STOP instruction is executed, the internal delay
counter will be started. Refer to Section 7.5, “ Stop Processing State,” on page 7-19 for details on the
stop mode.

A STOP instruction cannot be repeated using the REP instruction.
A STOP instruction cannot be the last instruction in aDO loop (that is, at the LA).

STOP ; enter low-power standby mode

Explanation of Example:

The STOP instruction suspends al processor activity until the processor is reset or interrupted as pre-
viously described. The STOP instruction puts the processor in alow-power standby mode. No new in-
structions are fetched until the processor exits the STOP processing state.

Condition Codes Affected:

The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C w Comments

STOP

N/A 1 Enter STOP low-power mode

Timing:

Memory:
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The STOPIinstruction disablesinternal distribution of the clock. Thetimeto exit the stop state depends
on the value of the SD hit.

1 program word
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SUB Subtract SUB

Operation: Assembler Syntax:

D-S— D SUB SD

D-S— D (single parallel move) SUB SD (single parallel move)
D-S— D (dual parallel read) SuB SD (dual parallel read)

Description: Subtract the source register from the destination register and store the result in the destination (D). If
the destination is a 36-bit accumulator, 16-bit source registers are first sign extended internally and
concatenated with 16 zero bits to form a 36-bit operand. When the destination is X0, YO, or Y1, 16-hit
subtraction is performed. In this case, if the source operand is one of the accumul ators; the FF1 portion
(properly sign extended) is used in the 16-bit subtraction (the FF2 and FFO portions are ignored).

Usage: Thisinstruction can be used for both integer and fractional two’s-complement data.
Example:
SUB X0,A X: (R2) +N, X0 ; 16-bit subtract, load XO,
; update R2
Before Execution After Execution
0 0058 1234 0 0055 1234
A2 Al A0 A2 Al A0
X0 0003 X0 3456

Explanation of Example:
Prior to execution, the 16-bit X0 register contains the value $0003 and the 36-bit A accumulator con-
tains the value $0:0058:1234. The SUB instruction automatically appends the 16-bit value in the X0
register with 16 L S zeros, sign extends the resulting 32-bit long word to 36 bits, and subtractsthe result
from the 36-bit A accumulator. Thus, 16-bit operands are always subtracted from the MSP of A or B
(A1 or B1) with the results correctly extending into the extension register (A2 or B2).

Operands of 16 hits can be subtracted from the LSP of A or B (A0 or B0). This can be achieved using
the Y register. When loading the 16-bit operand into Y 0 and loading Y 1 with the sign extension of YO,
a 32-bit word isformed. ExecutingaSUB Y, A or SUB Y, B instruction generates the desired opera-
tion. Similarly, the second accumulator can also be used for the source operand.

Note: Bit Cisset correctly using word or long word source operands if the extension register of the destina-
tion accumulator (A2 or B2) contains sign extension from bit 31 of the destination accumulator (A or
B). C isaways set correctly using accumulator source operands.
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SUB

Condition Codes Affected:

Subtract S U B
< MR > CCR
15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0
LF | = * * * *|l1n|wo|SZ|L|E|JU|[N|Z]|V]|C

o<NzcmrQ
|

— Set according to the standard definition of the SZ bit (parallel move)
— Setif limiting (parallel move) or overflow has occurred in result
— Setif the extension portion of accumulator result isin use

— Setif MSB of result is set
—  Setif result equals zero
— Setif overflow has occurred in the result

— Setif acarry (or borrow) occurs from MSB of result

Set according to the standard definition of the U bit

See Section 3.6.5, “16-Bit Destinations,” on page 3-35 for cases with X0, YO, or Y1 asD.
See Section 3.6.2, “36-Bit Destinations — CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

Instruction Fields:
Operation Operands C w Comments
SUB DD,FDD 2 1 36-bit subtract of two registers. 16-bit sourceregistersare
first sign extended internally and concatenated with 16
F1,DD zero bits to form a 36-bit operand.
AB
B,A
YA
Y.B
X:(SP-xx),FDD 6 1 Subtract memory word from register.
X:aa,FDD 4 1 X:aa represents a 6-bit absolute address. Refer to Abso-
lute Short Address (Direct Addressing): <aa> on page
X:xxxx,FDD 6 2 4-22.
#<0-31>,FDD 4 1 Subtract an immediate value 0-31
#xxxx,FDD 6 2 Subtract a signed 16-bit immediate integer
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SUB Subtract SUB

Parallel Moves:

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination?
SUB XO,F X:(Rn)+ X0
Y1,F X:(Rn)+N Y1
YO,F YO
AB A
B,A B
Al
Bl
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=Aor B) Al
Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cy-
clefor every addressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register
as the destination of the parallel read operation. Memory writes are allowed in this
case.

Parallel Dual Reads:

Data ALU Operation® First Memory Read Second Memory Read
Oper ation? Operands Source 1 Destination 1 Source 2 Destination 2
SuUB XO0,F X:(RO)+ YO X:(R3)+ X0
Y1,F X:(RO)+N Y1 X:(R3)-
YO,F
X:(RD)+
(F = A or B) X:(R1)+N

1. Thisparalel instructionisnot allowed when the XP bit in the OMR is set (that is, when the instructions
are executing from data memory).

2. Thisinstruction occupies only 1 program word and executesin 1 instruction cycle for every addressing
mode.

Timing: 2 + mv oscillator clock cyclesfor SUB instructions with a parallel move
Refer to previous tables for SUB instructions without a parallel move

Memory: 1 program word for SUB instructions with a parallel move
Refer to previous tables for SUB instructions without a parallel move
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SWl Software Interrupt SWl

Operation: Assembler Syntax:
Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception processing. The interrupt priority lev-
el, specified by the 11 and 10 bitsin the SR, is set to the highest interrupt priority level upon entering
the interrupt service routine.

Example:
SWI ; begin SWI exception processing

Explanation of Example:
The SWI instruction suspends normal instruction execution and initiates SWI exception processing.

Restrictions:
A SWI instruction cannot be repeated using the REP instruction.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Fields:

Operation Operands C w Comments

SWiI 8 1 Execute the trap exception at the highest interrupt priority
level, level 1 (non-maskable)

Timing: 8 oscillator clock cycles

Memory: 1 program word
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Tcc Transfer Conditionally Tcc

Operation: Assembler Syntax:
If cc,thenS— D Tce SD
If cc, then S— D and RO — R1 Tcc SD RO,R1

Description: Transfer datafrom the specified sourceregister (S) to the specified destination (D) if the specified con-
ditionistrue. If the sourceis a 16-bit register, it isfirst sign extended and concatenated to 16 zero bits
to form a 36-bit value before the transfer. When the saturation bit (SA) is set, saturation may occur if
necessary—that is, the value transferred is substituted by the maximum positive (or negative) value. If
a second source register RO and a second destination register R1 are also specified, the instruction
transfers the value from address register RO to address register R1 if the specified condition is true. If
the specified condition isfalse, aNOP is executed.

Usage: When used after the CMP instruction, the Tcc instruction can perform many useful functions such as
a“maximum value”’ or “minimum value’ function. The desired value is stored in the destination accu-
mulator. If address register RO is used as an address pointer into an array of data, the address of the
desired valueis stored in the addressregister R1. The Tcc instruction may be used after any instruction
and allows efficient searching and sorting algorithms.

Theterm “cc” specifies the following:

“cc” Mnemonic Condition
CC (HS*) — carry clear (higher or same) C=0
CS(LO*) — carry set (lower) c=1
EQ — equa Z=1
GE — greater than or equal N @ V=0
GT — greater than Z+(N @ V)=0
LE — lessthan or equal Z+(N @ V)=1
LT — lessthan N @ V=1
NE — not equal Z=0
* Only available when CC hit set in the OMR
+ denotesthelogical OR operator,
@ denotesthelogical exclusive OR operator

Note: This instruction is considered to be a move-type instruction. Due to pipelining, if an address register
(RO or R1 for the Tcc instruction) is changed using a move-type instruction, the new contents of the
destination address register will not be available for use during the following instruction (that is, there
isasingle-instruction-cycle pipeline delay).
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Tcc Transfer Conditionally Tcc

Example:

CMP X0,A ; compare X0 and A (sort for minimum)
TGT X0,A RO,R1 ; transfer X0 — A and
; RO — R1 if X0 < A

Explanation of Example:
In this example, the contents of the 16-bit X0 register are transferred to the 36-bit A accumulator, and
the contents of the 16-bit RO address register are transferred to the 16-bit R1 address register if the
specified condition istrue. If the specified condition is not true, a NOP is executed.

Condition Codes Affected:
The condition codes are tested but not modified by thisinstruction.

Instruction Fields:

Data ALU Transfer AGU Transfer
Operation cC | W Comments
Source Destination Source Destination

Tce DD F (No transfer) 2 1 | Conditionally transfer one register.
A B (No transfer)
B A (No transfer)
DD F RO R1 Conditionally transfer onedataALU
register and one AGU register.
A B RO R1
B A RO R1

Note:  The Tcc instruction does not alow the following condition codes: HI, LS, NN, and NR.

Timing: 2 oscillator clock cycles

Memory: 1 program word
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TFR Transfer Data ALU Register TFR

Operation: Assembler Syntax:
S—>D TFR SD
S—»D (single parallel move) TFR SD (single parallel move)

Description: Transfer data from the specified source data ALU register (S) to the specified data ALU destination
(D). The TFR instruction can be used to move the full 36-bit contents from one accumulator to another.
Thistransfer occurs with saturation when the saturation bit, SA, is set. If the sourceisa 16-bit register,
itisfirst sign extended and concatenated to 16 zero bits to form a 36-bit value before the transfer. The
TFR instruction only affectsthe L and SZ bitsin the CCR (which can be set by data movement that is
associated with the instruction’s parallel operations).

Usage: Thisinstructionisvery similar toaMOVE instruction but has two uses. First, it can be used to perform
a 36-bit transfer of one accumulator to another. Second, when used with a parallel move, thisinstruc-
tion allows aregister move and amemory move to occur simultaneoudly in 1 instruction that executes
in 1 instruction cycle.

Example:
TFR B,A X:(RO)+,Y1 ; move B to A and update Y1, RO
Before Execution After Execution
3 0123 0123 A CCcCC EEEE
A2 Al A0 A2 Al A0
A CcccC EEEE A CcccC EEEE
B2 B1 BO B2 B1 BO

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $3:0123:0123 and the 36-bit B accu-
mulator contains the value $A:CCCC:.EEEE. Execution of the TFR B, A instruction moves the 36-bit
valuein B into the 36-bit A accumulator.

Condition Codes Affected:

MR > CCR
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| * | | * | * | *|11|10|SZ|L|E|U|N|]Z]|V]|C

SZ — Set according to the standard definition of the SZ bit (parallel move)
L — Setif datalimiting has occurred during parallel move
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TFR

Instruction Fields:

Transfer Data ALU Register

Operation Operands w Comments
TFR DD,F 1 Transfer register to register
AB Transfer one accumulator to another (36-bits)
B,A

Parallel Moves:

Data ALU Operation

Parallel Memory Move

Operation® Operands Source Destination?
TFR XO,F X:(Rn)+ X0
YL1F X:(Rn)+N Y1
YO,F YO
AB A
B,A B
Al
B1
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
Al
(F=Aor B) Bl

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cy-
clefor every addressing mode.

2. Thedestination of the data ALU operation is not allowed to be the same register
as the destination of the parallel read operation. Memory writes are allowed in this

case.

Timing: 2 + mv oscillator clock cycles

Memory: 1 program word
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TST Test Accumulator TST

Operation: Assembler Syntax:
S-0 TST S
S-0 (single parallel move) TST S (single parallel move)

Description: Compare the specified source accumulator (S) with zero, and set the condition codes accordingly. No
result is stored, although the condition codes are updated. The result is not affected by the state of the
saturation bit (SA).

Example:
TST A X:(RO)+N,B ; set condition codes for the
; value in A, update B & RO
Before Execution After Execution
8 0203 0000 8 0203 0000
A2 Al A0 A2 Al A0
SR 0300 SR 0338

Explanation of Example:
Prior to execution, the 36-bit A accumulator contains the value $8:0203:0000, and the 16-bit SR con-
tains the value $0300. Execution of the TST A instruction compares the value in the A register with
zero and updates the CCR accordingly. The contents of the A accumulator are not affected.

Condition Codes Affected:

MR > CCR
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF| * | | *| | * 1 112]|]10|SZ|L|E|JU|IN|Z]|V]|C

— Set according to the standard definition of the SZ bit (parallel move)
— Setif datalimiting has occurred during parallel move

— Set if the extension portion of accumulator result isin use

Set according to the standard definition of the U bit

— Setif bit 35 of accumulator result is set

— Setif result equals zero

— Alwayscleared

— Alwayscleared

See Section 3.6.2, “36-Bit Destinations— CC Bit Set,” on page 3-34 and Section 3.6.4, “20-Bit Des-
tinations— CC Bit Set,” on page 3-34 for the case when the CC bit is set.

o<Nzcmr @
|
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TST

Instruction Fields:

Test Accumulator

TST

Operation Operands w Comments
TST F 1 Test 36-bit accumulator
Parallel Moves:
Data ALU Operation Parallel Memory Move
Operation® Operands Source Destination®
TST F X:(Rn)+ X0
X:(Rn)+N Y1
YO0
A
B
Al
Bl
X0 X:(Rn)+
Y1 X:(Rn)+N
YO
A
B
(F=A or B) Al
B1

1. Thisinstruction occupiesonly 1 program word and executesin 1 instruction cyclefor ev-
ery addressing mode.

2. The destination of the data ALU operation is not allowed to be the same register as the
destination of the parallel read operation. Memory writes are allowed in this case.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word
A-162
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TSTW Test Register or Memory TSTW

Operation:

S-0

Assembler Syntax:
TSTW S

Description: Compare 16 bits of the specified source register or memory location with zero, and set the condition

Example:

codes accordingly. No result is stored, although the condition codes are updated. If the source is an
accumulator, limiting can occur if the extension register (FF2) isin use.

TSTW X:$0007 ; set condition codes using X:$0007
Before Execution After Execution
X:$0007 FCO00 X:$0007 FCO00
SR 0300 SR 0308

Explanation of Example:

Note:

Prior to execution, location X:$0007 contains the value $FC00 and the 16-bit SR contains the value
$0300. Execution of theinstruction compares the value in memory location X:$0007 with zero and up-
dates the CCR accordingly. The value of location X:$0007 is not affected.

This instruction does not set the same set of condition codes that the TST instruction does. Both in-
structions correctly set the V, N, Z, and C bits, but TST sets the E bit and TSTW does not. Thisis a
16-bit test operation when done on an accumulator (A or B), wherelimiting is performed if appropriate
when reading the accumulator.

Condition Codes Affected:

< MR > CCR
15 14 13 12 11 10 9 8 |7 6 5 4 3 2 1 O

LF | * * * * * IL|10|sz|L E UulN|Z]|V |C

L — Setif overflow hasoccurred in result
V — Setif bit MSB of result is set

Z — Setif result equals zero

V — Alwayscleared

C — Alwayscleared

Freescale Semiconductor Instruction Set Details A-163



TSTW

Instruction Fields:

Test Register or Memory

TSTW

Operation Operands Comments
TSTW DDDDD Test 16-bit word in register. All registers allowed except
(except HWS) HWS. Limiting performed if an accumulator is specified
and the extension register isin use.
X:(Rn) Test aword in memory using appropriate addressing
X:(Rn)+ mode.
X:(Rn)-
X:(Rn)+N
X:(Rn+N)
X:(Rn+xxxX)
X:(R2+xx)
X:(SP-xx)
X X:aarepresents a 6-bit absolute address. Refer to Abso-
-aa lute Short Address (Direct Addressing): <aa> on page
X:<<pp 4-22.
X XXXX X:<<pp represents a 6-bit absolute 1/0 address. Refer to
' I/O Short Address (Direct Addressing): <pp> on page
4-23.
(Rn)- Test and decrement AGU register
Timing: Refer to the preceding Instruction Fields table

Memory: Refer to the preceding Instruction Fields table
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WA |T Wait for Interrupt WA |T

Operation: Assembler Syntax:

Disable clocks to the processor core WAIT
and enter the wait processing state.

Description: Enter the wait processing state. The internal clocks to the processor core and memories are gated off,
and all activity in the processor is suspended until an unmasked interrupt occurs. The clock oscillator
and the internal 1/0 peripheral clocks remain active.

When an unmasked interrupt or external (hardware) processor reset occurs, the processor leaves the
wait state and begins exception processing of the unmasked interrupt or reset condition.

Restrictions:
A WAIT instruction cannot be the last instruction in aDO loop (at the LA).
A WAIT instruction cannot be repeated using the REP instruction.

Example:
WAIT ; enter low-power mode,
; wait for interrupt

Explanation of Example:
The WAIT instruction suspends normal instruction execution and waits for an unmasked interrupt or
external reset to occur. No new instructions are fetched until the processor exits the wait processing
state.

Condition Codes Affected:
The condition codes are not affected by thisinstruction.

Instruction Fields:

Operation Operands C w Comments
WAIT n/a 1 Enter WAIT low-power mode
Timing: If aninternal interrupt is pending during the execution of the WAIT instruction, the WAIT instruction

takes aminimum of 32T cyclesto execute.

If no internal interrupt is pending when the WAIT instruction is executed, the period that the DSC is
in the wait state equal's the sum of the period before the interrupt or reset causing the DSC to exit the
wait state and aminimum of 28T cyclesto amaximum of 31T cycles (see the appropriate data sheet).

Memory: 1 program word
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Appendix B
DSC Benchmarks

The following benchmarks illustrate source code syntax and programming techniques for the DSP56800.
The assembly language source is organized into five columns, as shown in Example B-1.

Example B-1. Source Code L ayout

Labell Opcode?>  Operands® Data bus®

FIR: MAC Y0,X0,A X:(RO)+,Y0 X:(R3)+,X0

1. Used for program entry points and end-of-loop indication.

2. Indicates the data ALU, address ALU, or program-controller operation to be performed. This column must also be

included in the source code.
3. Specifies the operands to be used by the opcode.

w_cnt®

;1 1

4. Specifies an optional datatransfer over the data bus and the addressing mode to be used.

cycles

Comment’

Do each tap

5. Word count specified from assembler. Sometimes a 16-bit addressis used in order to create the worst case.

6. Cycle count refers to instruction cycle count required to execute the instruction.

7. Used for documentation purposes and does not affect the assembled code.

In each code example, the number of program words that each instruction occupies and the execution time
(ininstruction cycles) for each are listed in the comments and summed at the end.

Table B-1 shows the number of program words and instruction cycles for each benchmark. All the 1/O

accesses in this chapter are assumed to be implemented using /O short addressing mode.

TableB-1. Benchmark Summary

Benchmark Exec(;tli g;lc-)l-i me Plj Zgg??

(#Words)
Real Correlation or Convolution (FIR Filter) IN 11
N Complex Multiplies 6N 18
Complex Corrélation or Convolution (Complex FIR) 5N 17
Nth Order Power Series (Real, Fractional Data) IN 14
N Cascaded Real Biquad IIR Filters (Direct Form 1) 6N 18
N Radix 2 FFT Butterflies 14N 32
LMS Adaptive Filter: Single Precision N + 2NTaps 28

Freescale Semiconductor DSC Benchmarks
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TableB-1. Benchmark Summary (Continued)

. . Program
Benchmark Exec(;tll Onc;-I me Length

Ed (#Words)
LMS Adaptive Filter: Double Precision 2N + 5NTaps 35
LMS Adaptive Filter: Double Precision Delayed 5NTaps 30
Vector Multiply-Accumulate 2N 14
Energy ina Signa IN 7
[3x3][3x1] Matrix Multiply 21 21
[NXN][NxN] Matrix Multiply N3 + 8N2+12N 26
N Point 3x3 2-D FIR Convolution 13N2 + 14N 39
Sine Wave Generation: Double Integration Technique 2N 13
Sine Wave Generation: Second Order Oscillator 5N 16
Array Search: Index of the Highest Signed Vaue AN 14
Array Search: Index of the Highest Positive Value 2N 15
Proportional Integrator Differentiator (PID) Algorithm 9 9
Autocorrelation Algorithm ((P+D2(N-p/2) 19

B.1 Benchmark Code

The following source code lists all the “ defines’ for the benchmarks. The addresses used in the definition
section are selected arbitrarily to demonstrate the algorithm. Whenever possible, the long addressing mode
will be used in order to generate the worst case scenario. The location of the peripheral space and the
individual 1/0 assignments are dependent on chip implementation—I/O short addressing mode assumed.

page 132
opt cc
; Global Definition for Loop Count
N EQU 100 ; loop count in various benchmarks

; Peripheral addr are dependent on device implementation (assumes short addr mode)

InputValue EQU SFFC8 ; I/0 peripheral address used for input
Output EQU SFFCO ; I/0 peripheral address used for output

; Section B.1l.1l (correlation)
A Vecl EQU $0200 ; initial address of vector A
B Vecl EQU $0100 ; initial address of vector B
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; Section B.1.2 (N complex multiplication)

A Vec2 EQU $0200 ;
B Vec2 EQU $0100 ;
C Vec2 EQU $2000 ;

; Section B.1l.3 (complex correlation)
A Vec3 EQU $0200 ;
B Vec3 EQU $0100 ;

; Section B.1.4 (Nth order power series)
A Vec4 EQU $0200 ;
B Data4 EQU $0100 ;

initial
initial

initial

initial

initial

initial

initial

; Section B.1.5 (N cascaded real biquad IIR filter)

W_Vecb EQU $3000 ;
C Vec5 EQU $2000 ;
N Biquads EQU 16 ;

; Section B.1l.6 (N radix 2 FFT butterflies)

N BFlies EQU 50 H
VEC_SIZE6 EQU 2*N BFlies ;
A Vecé EQU $1000 ;
DummyTL.oc6 EQU A Vec6+VEC SIZE6 ;
B Vecé EQU DummyLoc6+1 ;
Twiddle fac EQU B Vec6+VEC SIZE6 ;
ToDummyLOC EQU - (2+VEC SIZE6) ;

; Section B.1.7 (LMS adaptive filter)

X Vec?7 EQU $0100 ;
Coeff EQU $0500 ;
NTaps EQU $10 i

; Section B.1l.8 (vector multiply-accumulate)

VEC SIZES8 EQU 100 i
A Vecs8 EQU $1000 ;
B Vecs8 EQU A Vec8+VEC SIZES ;
C Vec8 EQU B Vec8+VEC SIZES i

; Section B.1l.9 (energy of a signal)

A Vec9 EQU $0100 ;

Freescale Semiconductorim

initial

initial

address
address

address

address

address

address

address

address

address

of
of
of

of
of

of
of

of
of

number of cascaded

A elements
B elements

result

A elements

B elements

A elements

B power multiplier

W vector

coefficients

real biquads

number of butterflies

size of
initial
initial
initial

address

vector {re,im}* butterflies
address, size=VEC SIZE6
store is a dummy store

address, size=VEC SIZE6

of twiddle factor

to advance to {B Vec6-1}

initial address of X state

initial address of coefficients

number of taps for LMS filter

size of
initial
initial

initial

initial

DSC Benchmarks

vector

address, size=VEC SIZES8
address, size=VEC SIZES8

address of vector result

address of signal vector
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; Section B.1.10 (matrix multiply [3x3] [3x1])

ROW _STIZE10 EQU 3

MATRX SIZE10 EQU ROW STIZE10*ROW_SIZE10
A Matrx10 EQU $1000

B VeclO EQU A Matrx10+MATRX SIZE10

C VeclO EQU B VeclO+ROW _SIZE10

1

1

I

; Section B.1.11 (matrix multiply [NxN] [NxN])

ROW_SIZE1l EQU 10

MATRX SIZE1l1l EQU ROW STZE11*ROW_SIZEI1l
A Matrxll EQU $1000

B Matrxll EQU A Matrx11l+MATRX SIZE1ll
C Matrx1l EQU B Matrx11+MATRX SIZE1l
RowsCnt EQU $0005

1

I

1

7

row size of C and B

; matrix A size

initial address of 3x3 matrix
initial address of 3x1 vector

initial address of 3x1 result vector

row size of A, B and C sq. matrices

; matrices A,B and C size

initial address of A matrix
initial address of B matrix
initial address of C matrix (result)

address of count for s/w loop

; Section B.1.12 (N-point 3x3 2-D FIR convolution)

Image EQU $2000
OutputImage EQU $7000
ImageRowsCnt EQU SO001F
CoeffMask EQU $0020

; Section B.1.13 (sine-wave generation)
DummyTLocl3 EQU $0010

; Section B.1.14 (array search)
A Vecl4 EQU $1000
; Section B.1.15 (PID)
EQU $000A
EQU $0020

X Vecl5
K Vecl5

; Section B.1l.16 (autocorrelation)

Frame Veclé EQU $0200
Corr Veclé6 EQU $0100
LPC EQU 8

P EQU 10

7 org p:%40
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1

1

initial address of image
initial address of output result image
address of count for s/w loop

initial address of 3x3 coeff mask

dummy address for storage swap

initial address of vector, size N_

initial address of inputs X

initial address of gain const in PID

initial address of frame

address of correlation vector

the beginning of the program will
be dictated by the tool used.
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B.1.1 Real Correlation or Convolution (FIR Filter)

; c(n) = SUM(I=0,...,N-1) { a(I) * b(n-I) }

opt cc

MOVE #N ,N ;
MOVE #A Vecl,RO ;
MOVE #B Vecl,R3 ;

load size of vector
pointer to vector

pointer to vector

CLR A X: (RO)+,YO0 ; clear & load 1st element in A
MOVE X: (R3)+,X0 ; load 1st element in B
REP N ; repeat until done

MAC YO0,X0,A X:(RO)+,Y0 X:(R3)+,X0 ; correlation and load new val

RND A 7

H R R R RN NN
N I = T = S S N

rounding the result

; Total: 11 IN+12

B.1.2 N Complex Multiplication

; cr(I) + jei(I) = ( ar(I) + jai(I) ) * ( br(I) + jbi(r) ), I =1,...,N
; cr(I) = ar(I) * br(I) - ai(I) * bi(I) Yl=ar
; ci(I) = ar(I) * bi(I) + ai(I) * br(I) YO0=ail X0=br, bi

; NOTE: array size of complex product result must be >= 2*N_

opt cc
MOVE  #N_,N ;20 2
MOVE #A Vec2,RO ;2 2
MOVE #C Vec2-1,R2 ;2 2 set R2=dest-1
MOVE #B Vec2,R3 ;2 2
MOVE X:(R2),B ;1 1 dest-1 saved
DO N, EndDO1 2 ;2 3
MOVE X:(RO)+,Y1 X:(R3)+,X0 ; 1 1 get ar,br
MPY Y1,X0,A B,X: (R2) + ;11 ar*br,
; store imag
MOVE X:(RO)+,YO0 ;01 1 get ai
MPY Y0,X0,B X: (R3)+,X0 ;1 1 ai*br, get bi
MACR -Y0,X0,A ;1 1 ar*br-ai*bi
MACR  Y1,X0,B A,X: (R2)+ ;11 ar*bi+ai*br,
EndDO1 2: ; store real
MOVE B,X: (R2)+ ;01 1
; Total: 18 6N+13
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; cr(n) + jci(n) = SuM(I=0,...,N-1)
; { (ar(I) + jai(r) ) * ( br(n-I) + jbi(n-I) ) }
; cr(n) = SUM(I=0,...,N-1) YO=ar Yl=br
; { ar(I) * br(n-I) - ai(I) * bi(n-I) }
; ci(n) = SUM(I=0,...,N-1) Y0=ai XO0=bi
; { ar(I) * bi(n-I) + ai(I) * br(n-I) }
opt cc
MOVE #N ,N ;2 2
MOVE #A Vec3,R0 ;2 2
MOVE #B Vec3,R3 ;2 2
CLR A X: (RO)+,Y0 ;1 1 ar and clear result
CLR B X:(R3)+,Y1 ;1 1 br and clear result
DO N, EndDO1 3 ;2 3
MAC Y0,Y1,A X:(R3)+,X0 ;1 1 ar*br, get next bi
MAC Y0,X0,B X: (RO)+,YO0 ;1 1 ar*bi, get next ai
MAC Y0,Y1,B X:(R3)+,Y1 ;1 1 ar*bi+ai*br, next br
MAC -Y0,X0,A ;1 1 ar*br-ai*bi
MOVE X: (RO)+,YO0 ;1 1 get next ar
EndDO1 3:
RND A ;1 1
RND B ;1 1
; Total: 17 5N+13
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B.1.4 Nth Order Power Series(Real, Fractional Data)

(for N even)

; [....[[a(n)*b + a(n-1)]1*b + a(n-2)]*b + a(n-3)1*b + .....

; © = SUM(I=0,...,N) { a(I) * b**I }
opt cc
MOVE #N_/2,N
MOVE #B Data4,Rl
MOVE #A Vec4,RO
MOVE
MOVE YO,Y1
MOVE
MOVE
DO N, EndDO1 4
MAC Al,YO0,B
MAC B1,Y1,A
EndDO1 4:

Freescale Semiconductorim

:(R1),YO i

: (RO)+,A H
:(RO)+,B i

: (RO)+,A H
:(RO)+,B i

Total: 14

DSC Benchmarks

I = T = S S U R SR

get
get

get

R = = = S S
o

get

a(n-2), next a(n-4)

a(n-3), next a(n-5)

1IN+13 Loop is N/2 times 2 inst
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B.1.5 N Cascaded Real Biquad I IR Filters (Direct Form I1)

Many digital-filter design packages generate coefficientsfor Direct Form Il infinite impul se response (11R)
filters. Often, these coefficients are greater in magnitude than 1.0. This implementation is suitable for IR
filters with coefficients greater in magnitude than 1.0 because it allows the user to simply divide all
coefficients generated by 2. The general form of the IR filter’s output y(n) at time n, alinear combination
of the present input, the M previous inputs and the N previous outputs, is given by:

N M

y()= > ayk—nm+ % byx(k—m)

n=1 m=0

The Biquad Direct Form |1 realization of the lIR filter above can be described in the following two
eguations:

N
w(k)= z a, - W(k—n)+x(k) = a;-w(k=1)+a,-w(k-2) +x(k) for N=2
n=1
M
y(k)= z by, -W(k=m) = by-w(k)+b;-w(k-1) +b,-w(k-2) for M=2
m=20
; Biquad: M=N=2 (normalizing by b0). This version uses two pointers.

; wk)/2 = x(k)/2 + (al/2) * w(k-1) + (a2/2) * w(k-2)

; yk)/2 = wk)/2 + (b1/2) * w(k-1) + (b2/2) * w(k-2)

; D High Memory Order - w(k-2)1,w(k-1)1,w(k-2)2,w(k-1)2,...

; D Low Memory Order - (a2/2)1, (al/2)1, (b2/2)1, (b1/2)1, (a2/2)2,...

opt cc

MOVE #W Vec5,R0 ;2 2 ptr to w(k-2),

MOVE #C Vec5,R3 ; 2 2 ptr to a2 coeff
MOVE #N Biquads,LC i 2 2 number of biquads
MOVE #-1,N ;1 1 allow traverse prev
MOVE X:InputValue, A ;1 1 input fr peripheral
ASR A X:(R3)+,X0 ; 1 1 X0=.5a2

MOVE X:(RO)+,YO ;1 1 YO=w(k-2)

DO LC,EndDO1_5 ;2 3 start casc biquads
MAC YO0,XO0,A X:(RO)+N,Y1l X:(R3)+,X0 ; 1 1 Yl=w(k-1) X0=.5al
MAC Y1,X0,A Y1l,X: (RO)+ ;1 1 store interm result
ASL, A X:(R3)+,X0 ; 1 1 X0=.5b2

ASR A A,X:(RO)+ ;01 1

MAC YO0,X0,A X:(R3)+,X0 ; 1 1 X0=.5bl

MAC Y1,X0,A X:(RO)+,YO X:(R3)+,X0 ; 1 1 A=.5Y (k) for biquad
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EndDO1_5:

Total:

18

6N+13

(N = #cascades)

Freescale Semiconductorim
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B.1.6 N Radix 2 FFT Butterflies

Thisisadecimation in time (DIT), in-place algorithm. Figure B-1 gives a graphic overview and memory
map.

7

7

10r2 X memory
A X=A+BWK — arfxr
ai/xi
r3rl
E— briyr
bilyi
T o | cos(2nk/N)
-sin(2nk/N)
X0 YO Y1
bi br wr -Wi
A B
B v=A-BWK =
yilailyrlar xifailxrlar

FigureB-1. N Radix 2 FFT ButterfliesMemory Map

Twiddle Factor Wk= wr + jwi = cos(2nk/N) +j sin(2mk/N)
- saved on each pass

Xr
xi
yr
yi
RO
R2
R3
R1

= ar + wr * br - wi * bi

=ai + wi * br + wr * bi

=ar - wr * br + wi * bi = 2 * ar - xvr
=ai-wi*br - wr *bi=2*%*ai - xi

is pointer to Vector A {ar,ai}

AA0079

pointed by R1

points to same initial location as RO, it stores result Vector X {xr,xi}

is pointer to Vector B {br,bi}

initially points to Twiddle Factor: Wk {wr,wi}, then updated to DummyLocé to

store accum A that is meaningless at first pass. R1 then points to Vector B

AT end of algorithm, R1 will point again to Twiddle Factor.

Rl points to same Vector B where it stores result Vector Y {yr,yi}

Location of arrays for vectors A, B is conveniently selected based on butterflies

For demonstration, B is chosent to follow A by 2*N BFlies+l word locations.

; After accessing Twiddle, R1 points to {Location(B)-1}.

;PUSH MACRO REG1

7

1

1

B-10

LEA (SP) +
MOVE REG1,X: (SP)
ENDM
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!

7

1

!

This is DummyLocé.

Macro definition
Increment SP
Push REG1 to stk

End macro def
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opt cc
MOVE  #Twiddle fac,R1
MOVE #A Vec6,RO
MOVE RO,R2
MOVEI #B Vecé,R3
MOVEI #ToDummyLOC,N
MOVET #N_BFlieS,LC
MOVE X:(R1)+,Y0 X: (R3)+,X0
MOVE X:(RO),B
MOVE X:(R1)+N, Y1l
; R1 now points to {location (B Vec6)-1}
MOVET #0,N
DO L.C, EndDO1 6
PUSH X0
MAC Y0,X0,B X:(R3)+,X0
MACR -Y1,X0,B
MOVE A,X: (R1)+
MOVE X:(RO)+,A
ASL B,X: (R2)+
SUB B,A X: (RO) +N,B
MOVE A,X:(R1)+
MAC Y0,X0,B X:(RO)+,A
POP X0
MACR Y1l,X0,B X: (R3)+,X0
ASL B,X: (R2)+
SUB B,A X: (RO) +N,B
EndDO1 6:
MOVE A,X:(R1)+
i Total:

; R1 now points to Twiddle factors

Freescale Semiconductorim
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Twiddle Fac address
A vec start address
X {xr,xi} strt addr
B vec start address
to set Rl=loc{B}-1
for loop count
YO=wr XO=br

B=ar

R R R NN N R NN
R R R NN N R NN

Yl=wi Rl=(loc)B-1
for emulating X: (Rn)
; addressing mode
repeat butterflies
save br

B=ar+wrbr XO0=bi

B=ar+wrbr+wibi=Xr

= SN
HoRE RN W

STORE Yi fr previous
; (1st is dummy store)
A=ar RO points to ai
A=2ar STORE Xr

A=2ar-Xr=Yr B=ai
STORE Yr
B=ai+wrbi A=ai

restore br

e o T = S S S S S P
e = T B S S

B=ai+wrbi+wibr=Xi
i X0= (next)br
A=2ai STORE Xi

=)
=)

A=2ai-Xi=Yi
i b=(next)ar
; RO points (next)ar
; end butterfly

STORE last Yi

32 14N+19

(by selecting appropriate locations for vectors)

B-11



B.1.7 LMSAdaptiveFilter

x(n) x(n-1) x(n-K)

Figure B-2 gives a graphical representation of thisimplementation of the LM S adaptive filter.

x(n-N+1)

\
d(n) Wa
N

> AA0080

FigureB-2. LMS Adaptive Filter Graphic Representation

Thefollowing three LM S adaptive filter benchmarks are provided:

e Singleprecision
» Double precision
* Double precision delayed

; Notation and symbols:

MM mm<N QX

(n) - Input sample at time n.

(n) - Desired signal at time n.

(n) - FIR filter output at time n.

(n) - Filter coefficient vector at time n.
={c0,c1,c2,,...,¢ck,...,c(N-1)}

(n) - Filter state variable vector at time N.
={x(n),xn-1),....,x(n-N+1) }

; Mu - Adaptation gain.
; N - Number of coefficient taps in the filter.

; True IMS Algorithm
; Get input sample

; Save input sample

; Do FIR

; Get d(n), find e(n)
; Update coefficients
; Output y(n)

; Shift vector X

; System equations:

; e(n)=d(n)-H(n)X(n)
; H(n+l)=H(n)+uX(n)e (n)

B-12

Delayed IMS Algorithm
Get input sample

Save input sample

Do FIR

Update coefficients
Get d(n), find e(n)
Output y(n)

Shift wvector X

H(n+l)=H(n)+uX(n-1)e(n-1)
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(FIR filter and error)

(Coefficient update)
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The references for this code include the following:
» Adaptive Digital Filtersand Sgnal Analysis, Maurice G. Bellanger (Marcel Dekker: 1987)

* “TheDLMS Algorithm Suitable for the Pipelined Realization of Adaptive Filters,” Proc. IEEE
ASSP Workshop, Academia Sinica, Beijing (IEEE: 1986)

NOTE:

The sections of code shown describe how to initialize all registers, filter an
input sample, and perform the coefficient update. Only the instructions
relating to the filtering and coefficient update are shown as part of the
benchmark. Instructions executed only once (for initialization) or

instructions that may be user application dependent are not included in the
benchmark.
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B.1.7.1 SinglePrecision

Figure B-3 shows a memory map for thisimplementation of the single-precision LM S adaptive filter.

; (Get d(n), subtract fir output, multiply by “u”,

opt
PUSH
MOVE
MOVE
MOVE
MOVE
MOVEP
MOVE
CLR
MOVE
REP
MAC
MACR
MOVEP

X memory

n —»

3, rl —>»

x(n)
x(n-1)
x(n-N+1)
c0
cl
c2

c(l\i-l)

AA0081

FigureB-3. LMS AdaptiveFilter — Single Precision Memory Map

cc

MOl

#X Vec7,R0

#N -1,M01

MO1,Y1l

#-2,N
X:InputValue, YO
#Coeff,R3

A Y0,X: (RO) +

X:(R3)+,X0 ;

Y1

Y0,X0,A X:(RO)+,Y0 X:(R3)+,X0 ;

Y0,X0,A

A,X:Output ;

; This section is application dependent.)

MOVE
MOVE
MOVE
MOVE
DO

MACR

TFR

#Coeff,R3
R3,R1
X: (RO) +, YO
X:(R3)+,A
#NTaps, EndDO1 7 1

X0,Y0,A X:(RO)+,Y0 X:(R3)+,X0 ;

X0,A A,X:(R1)+

_COEFF_UPDATE1 7 1:

B-14
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2
2
2
1
1
1
; 2
1
1
1
1
1
1

[ S = S S V)

H R R W R R NRE R B NN

save addr mode state

start of X
modulo N
initialize
adjustment

get input

REP loop count
for filtering

sample

start of coefficients

save input

in x(n),incr RO

X0=c[0] and incr R3

do fir

accum & update x[i] and c[i]

last tap

output fir

if desired

put the result in y1l.

N = e )

start of coefficients

start of coefficients

Y0=x(n) and incr RO

a=c[0] and
update coe
A=c[i]*x[n
X0=c [1+1]
A=c[i+1],

incr R3
fficients

-i]  Y0=x[n-i-1]

save c[i] *x[n-i]
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EndDO1 7 1:

MOVE X: (RO)+N, YO ;1 1 Y0=x (n-N+1) and update RO
POP MO1 ;01 1 restore previous addr mode
; Total: 28 N+2NTaps+27 (N=size of X VECTOR)
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B.1.7.2 DoublePrecision

Figure B-4 shows a memory map for this implementation of the double-precision LM S adaptive filter.

X memory

o —>» X(n)
x(n-1)

x(n-N+1)

r1, 3 —» cO H

AA0082

FigureB-4. LMS Adaptive Filter — Double Precision Memory Map

opt cc
PUSH MO1 ;2 2 save addr mode state
MOVE #X Vec7,R0 ;2 2 start of X
MOVE #N -1,MO01 ; 2 2 modulo N_
MOVE MO01,Y1 ;1 1 initialize REP loop count
MOVE #2,N ;101 adjustment for filtering
MOVEP X:InputValue, YO ;101 get input sample
MOVE #Coeff,R3 ;2 2 start of coefficients
CLR A Y0, X: (RO) + ;01 1 save input in x(n),incr RO
MOVE X:(R3)+N,X0 ; 1 1 X0=c[0,H] and incr R3
DO Y1l,Do FIR ;2 3 do fir
MAC X0,Y0,A X: (RO)+, Y0 ;101 accum & update x[i]
MOVE X: (R3)+N, X0 ;01 1 update c[i,H]

Do FIR:
MACR XO0,YO0,A ;101 last tap
MOVEP A,X:Output ;01 1 output fir if desired

; (Get d(n), subtract fir output, multiply by “u”, put the result in x0.

; This section is application dependent.)

MOVE #Coeff,R3 ;2 2 start of coefficients
MOVE R3,R1 ;1 1 start of coefficients
MOVE X: (RO)+,y0 ;101 Y0=x(n) and incr RO
MOVE X:(R3)+,A ;011 a=c[0,H] and incr R3
MOVE X:(R3)+,A0 ; 1 1 al0=c[0,L] and incr R3
DO #NTaps, EndDO1 7 2 ; 2 3 update coef.

1 1

MAC X0,Y0,A X: (RO)+,YO H u e(n) x(n)+c; fetch x(n)
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b -

MOVE

MOVE

MOVE

MOVE
_COEFF_UPDATE1 7 2:
EndDO1 7 2:

MOVE #-2,N

MOVE

POP MOl

A,X:(R1)+
A0,X: (R1)+
X: (R3)+,A
X: (R3)+,A0

X: (RO) +N, YO

Total: 35

save updated c[i, H]
save updated c[i, L]

fetch next cl[i,H]

T

fetch next cl[i, L]

1 adjustment for filtering
1 update r0

1 restore previous addr mode

2N+5NTaps+28 (N=size of X Vec7)

Freescale Semiconductorim
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B.1.7.3 Double Precision Delayed
Figure B-5 shows a memory map for thisimplementation of the double-precision delayed LM S adaptive

filter.

X memory

x(n)
x(n-1)

o —»

1,13 ——

x(n-N+1)

AA0083

FigureB-5. LM S Adaptive Filter — Double Precision Delayed Memory Map

; Delayed LMS algorithm with matched coefficient and data vectors

; Algorithm runs in 5N (2 coeffs processed in each 10 cycle loop)

; Data Sample is stored in Y0 and Y1.

; Coefficient is stored in XO

; Loop Gain * Error is stored in X: (R2)

; FIR operation done in B.

; Coeff update operation done in A.

; FIR sum = a = a +c(k)old*x(n—k)
; new b = c(k)old —mu*eold *x (n-k-1)
opt cc
PUSH MO1
MOVE #X Vec7,R0
MOVE #NTaps,M01
MOVE #Coeff,R3
MOVE  #Coeff-2,R1
MOVE #0,N
CLR B X: (RO) +,YO
MOVE X:(RO)+,Y1l X:(R3)+,X0
DO #NTaps/2,EndDO1_7 3
MAC Y0,X0,B A,X:(R1)+
MOVE AO0,X: (R1)+
TFR X0,A X: (R2) +N, X0
MOVE X:(R3)+,A0
MACR X0,Y1,A X:(RO)+,Y0 X:(R3)+,X0
MAC X0,Y1,B A,X:(R1)+
MOVE A0, X: (R1)+
B-18
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(will be placed in XO0).

save addr mode state
start of X

modulo NTaps

start of coefficients
start of delayed coef
to emulate (Rn) adr mode

y0 = x[n]

yl= x[n-1], x0=c[0,H]

do FIR and update coefficients
update coefficient

update coefficient

x0=1loop gain * error

al0=c [k, L]

x0=c [k+1,H]

update coefficient

update coefficient
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TFR X0,A X: (R2) +N, X0 ;11 x0=1loop gain * error

MOVE X:(R3)+,20 ; 1 1 al0=c[i, L]

MACR X0,Y0,A X:(RO)+,Yl X:(R3)+,X0 ; 1 1 yl=next x[n] x0=c[i, H]
End IMS2:

EndDO1 7 3:
MOVE #-2,N ;11 to correct RO
MOVE A,X:(R1)+ ;11 last coefficient update c[i,H]
MOVE AQ,X: (R1)+ ;101 last coefficient update c[i,L]
LEA (RO) +N ;11 correct RO
POP MO1 ;1 1 restore previous addr mode

; Total: 30 5N+21 (N=NTaps)

Freescale Semiconductorim DSC Benchmarks B-19



B.1.8 Vector Multiply-Accumulate

This code multiples avector by a scalar and adds the result to another vector. The YO register holds the
scalar value. Figure B-6 gives agraphical overview and memory map for the vector multiply-accumul ate
code.

X memory
L al
a2
a3
NG bl
cl al bl b2
c2 | = [az2 | + |:y0:| X | b2 b3
c3 a3 b3
L» cl
c2
c3
AA0084
FigureB-6. Vector Multiply-Accumulate
opt cc
; YO is assumed to have been initialized with the multiplier scalar value
MOVEI #N N ;2 2 vector size
MOVE #A Vec8,RO P2 2 point to vec a
MOVE #B Vec8,R3 ;2 2 point to vec b
MOVE #C Vec8,R1 ;2 2 point to vec c
CLR A X:(R3)+,X0 ; 1 1 X0=Db RESULT :A=0
MOVE X:(RO)+,A ;1 1 A=a
DO N, EndDO1_8 ;2 3 repeat prod N times
MAC vy0,x0,a X:(RO)+,Y1 X:(R3)+,X0 ; 1 1 A=Y0*b+a load nxt a,b
TFR vl,a A,X: (R1)+ ;1 1 A=next (a) STORE c
EndDO1_8:

1

; Total: 14 2N+13
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B.1.9 EnergyinasSignal

This code calculates the energy in asignal by summing together the square of each sample.

opt cc
MOVE #A Vec9,R0O
MOVEI #N_ ,N

CLR A X:(RO)+,YO

DO N, EndDO1_9

MAC Y0,Y0,A X: (RO) +, YO
EndDO1 9:

1

7

1

7

Total:

R N NN

8

B W Pk NN

1N+8

point to signal a
load vector size
clear and load 1st val
repeat size N times

square value & load nxt

if vector pointer located inside 128 addresses, use MOVES X:<AA,RO0 (lcyc, lwrd)

if vector size is less than 63, initializing N is not required.

Second option when the DO instruction is replaced by REP. This sequence is uninterruptible while
performing the MAC instruction.

7

7

opt cc
MOVE #A Vec9,R0
MOVEI #N ,N

CLR A X: (RO) +, YO
REP N
MAC YO0,YO0,A X: (RO) +, YO

Total:

S S S SN

7

R W kNN

1N+8

point to signal a
load vector size
clear and load 1lst wval
repeat size N times

square value & load nxt

if vector pointer located inside 128 addresses, use MOVES X:<AA,RO0 (lcyc, lwrd)

if vector size is less than 63, initializing N is not required.

Freescale Semiconductorim DSC Benchmarks
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B.1.10 [3x3][3x1] Matrix Multiply

Figure B-7 gives agraphical overview and memory map for a[3x3][3x1] matrix multiply.

B-22

opt

MOVE
MOVE
MOVE
MOVE
MOVE
MPY

MACR
MOVE
MPY

MACR
MOVE
MPY

MACR
MOVE

r3
cl all al2 al3 bl
c2 | =] a21 a22 a23 | x| b2
c3 a3l a32 a33 b3
0
2

X memory
all
al2
al3
a2l
a22
a23
a3l
a32
a33

bl
b2
b3

cl
c2
c3

FigureB-7. [3x3][1x3] Matrix Multiply

cc
#A Matrx10,R3 ;
#B VeclO,RO ;
#2,M01 ;
#C VeclO,R2 ;
X: (RO)+,Y0 X: (R3)+,X0 ;
YO0,X0,A X: (RO)+, YO0 X: (R3)+,X0 ;
Y0,X0,A X: (RO) +, YO X: (R3)+,X0 ;
Y0,X0,A X: (RO)+,YO0 X: (R3)+,X0 ;
A,X: (R2)+ ;
Y0,X0,A X: (RO) +, YO X: (R3)+,X0 ;
Y0,X0,A X: (RO)+,YO0 X: (R3)+,X0 ;
YO0,X0,A X:(RO)+,Y0 X: (R3)+,X0 ;
A,X:(R2)+ H
Y0,X0,A X: (RO)+,Y0 X: (R3)+,X0 ;
YO0,X0,A X:(RO)+,Y0 X: (R3)+,X0 ;
Y0,X0,A H
A,X:(R2)+ i

Total: 21
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AA0085

point to mat a
point to vec b
mod 3 addr on RO
point to vec c
y0=all; x0=bl
all*bl

+al2*b2
+al3*b3

store cl
a2l*pbl

+a22*b2
+a23*b3

store c2
al3l*bl

+a32*b2
+a33*b3->c3

store c3
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B.1.11 [NxN][NxN] Matrix Multiply (for fractional elements)

The matrix multiplications are for square NxN matrices (all fractional elements are in row-major format).
Figure B-8 gives agraphical overview and memory map of an [NxN][NxN] matrix multiply.

X memory
all .. alk .. alN bll . blk . bIN| - | all
akl .. akk .. akN « bkl .. bkk .. bkN alk
aN1 .. aNk .. aNN bNL .. bNK .. bNN akl

aN 1

cll .. clk .. ciIN

. r0 b1l
ckl .. ckk .. ckN

cN1 .. cNK .. cNN bk

25 | c11

AA0086

Figure B-8. [NXN][NxN] Matrix Multiply

opt cc
; This algorithm utilizes hardware nesting looping; user care necessary on next loop.

; The main assumption: no hardware loops active when this function is called.

MOVE #A Matrxll,R3 ;2 2 point to A[1,1]

MOVE R3,Y1 ;11 save pntr to A[1l,1]

MOVE #B Matrx1l,RO ;2 2 point to B[1,1]

MOVE RO,R1 ;11 save pntr to B[1,1]

MOVE #C Matrxll,R2 ;2 2 point to C[1,1] (result)
MOVE #ROW SIZE1ll,B ;1 1 number of rows (N x N)
MOVE B,N ;11 number of repetitions N
DO N, Traverse A rows 1 ;2 3 do all rows

PUSH LC ;2 2 save LC to allow nesting
PUSH LA ;2 2 save LA to allow nesting
DO N, Traverse B columns_1 ;2 3 compute a row in C

MOVE Y1,R3 ;1 1 1lst element in A row
MOVE R1,RO0 ;11 1st element in B column
CLR A X: (R3)+,X0 ;101 clr sum, get elemnt in A
MOVE X:(RO)+N, YO ;01 1 element in B, next B row
REP #ROW_SIZE11l-1 ;1 3 sum products except last
MAC YO0,XO0,A X:(RO)+N,Y0 X:(R3)+,X0 ;101 traverse B rows, A col

; FOR FRACTIONAL ELEMENTS, THE FOLLOWING TWO INSTRUCTIONS ARE REQUIRED
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; THE MACR DOES THE FINAL ACCUMULATION WITH ROUNDING FOR FRACTIONAL RESULTS

MACR YO0,X0,A
MOVE A,X: (R2)+

X: (R1)+,X0 i

!

1
1

1
1

last sum, next col in R1

save result in C row

; FOR INTEGER ELEMENTS, THE FOLLOWING 3 INSTRUCTIONS WILL REPLACE: MACR & MOVE ABOVE

; MAC YO,X0,A X: (R1)+,X0 ;
; ASR A i
; MOVE AO0,X: (R2)+ i
Traverse B columns 1:
POP LA ;
POP LC i
ADD B1,Y1 i
MOVE #B Matrxll,R1 ;
Traverse A rows 1:
; Words: Cycles:
; Total: 31

N R R R

N R R R

last sum, no rounding
convert to integer in A0

save integer result

restore LA, outer loop
restore LC, outer loop
for traverse next A row

point to B[1,1]

3 2
((N+8)N+12)N+14 = N +8N +12N+13

This next version makes use of software loop avoiding the hardware nested |ooping.

opt

ccC

; This algorithm utilizes software outer loop avoiding nesting and saving LC,LA regs.

; The main assumption: no hardware nesting loops active when function is called.

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

MOVES

#A Matrxll,R3
R3,Y1

#B Matrxl1l,RO
RO,R1

#C Matrxl1l,R2
#ROW SIZE11l,B
B,N

N, X:RowsCnt

Traverse A rows 2:

7

7

DO
MOVE
MOVE
CLR
MOVE
REP
MAC

N, Traverse B columns_ 2

Y1,R3

R1,RO
A
X: (RO) +N, YO
#ROW_SIZE11-1
Y0,X0,A X: (RO) +N, YO

X: (R3)+,X0

X: (R3)+,X0

I

7

7

7

H R RN RN RN

R = = = )

1

2

e = S = S =

N )

1

point to A[1,1]
save pntr to A[1,1]
point to BI[1,1]
save pntr to B[1,1]
point to C[1,1] (result)
number of rows (N x N)
number of repetitions N

number of A rows to do

compute a row in C

1st element in A row

1st element in B column
clr sum, get elemnt in A
element in B, next B row
sum products except last

traverse B rows, A col

FOR FRACTIONAL ELEMENTS, THE FOLLOWING TWO INSTRUCTIONS ARE REQUIRED
THE MACR DOES THE FINAL ACCUMULATION WITH ROUNDING FOR FRACTIONAL RESULTS

MACR
MOVE

B-24

Y0,X0,A
A,X: (R2)+

X: (R1)+,X0

7

7

1
1
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1
1

last sum, next col in R1

save result in C row
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; FOR INTEGER ELEMENTS, THE FOLLOWING 3 INSTRUCTIONS WILL REPLACE: MACR & MOVE ABOVE

; MAC
; ASR
; MOVE

Y0,X0,A
A
A0,X: (R2)+

Traverse B columns 2:

ADD
MOVE
DECW
BGT

Bl,Y1
#B Matrx1l,R1
X:RowsCnt

Traverse A rows 2

Words :

Total: 26

Freescale Semiconductorim

X: (R1)+,X0

Cycles:

1

I

[ e S

w w N

last sum, no rounding
convert to integer in A0

save integer, LSP of A

for traverse next A row
point to B[1,1]
decrement A rows count

loop back if not done

3 2
((N+8)N+12)N+1l= N +8N +12N+11

DSC Benchmarks
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B.1.12 N Point 3x3 2-D FIR Convolution

The two-dimensional FIR uses a 3x3 coefficient mask as shown in Figure B-9.

cll cl2 cl13
c21l c22 c23
c31 ¢332 ¢33
AA0087

FigureB-9. 3x3 Coefficient Mask
Theimageisan array of 128 pixels x 128 pixels. To provide boundary conditions for the FIR filtering, the

image is surrounded by a set of zeros such that the image is actually stored as a 130x130 array (see
Figure B-10).

130

A
\/

0 0 0 A
A
0 128 0
130
0 Image 0
Area
\
0 0 0 Y
AA0088

Figure B-10. Image Stored as 130x130 Array

The image (with boundary) is stored in row-major storage. Thefirst element of the array image is
image(1,1) followed by image(1,2). The last element of the first row isimage(1,130) followed by the
beginning of the next column image(2,1). These are stored sequentialy in the array Image (“im” on
instruction comment) in data memory. For example;

* Image(1,1) mapsto index O.
* Image(1,130) maps to index 129.
* Image(2,1) mapsto index 130.
See Table B-2 for the definitions of RO, R2, and R3.

Although many other implementations are possible, thisisarealistic type of image environment where the
actual size of theimage may not be an exact power of two. Other possibilitiesinclude storing a 128x128
image but computing only a127x127 result, computing a 128x128 result without boundary conditions but
throwing away the pixels on the border, and so on.

TableB-2. Variable Descriptions

Variable Description
RO image(n,m) image(n,m+1) image(n,m+2)
image(n+130,m) image(n+130,m+1) image(n+130,m+2)
image(n+2* 130,m) image(n+2* 130,m+1) image(n+2* 130,m+2)
R2 output image
R3 FIR coefficients
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opt cc

MOVE #CoeffMask,R3

MOVE #Image,RO

MOVE #128,Y1

MOVE #-261,R1

MOVE #OutputImage,R2

MOVE X: (RO)+,Y0
MOVE Y1,N

MOVE  Y1,X:ImageRowsCnt
PUSH LC

PUSH LA

Rows_Traverse:

DO Y1l,Cols Traverse

MPY Y0,X0,A X: (RO) +,YO
MAC Y0,X0,A : (RO) +N, YO
MAC Y0,X0,A X: (RO)+,Y0
MAC Y0,X0,A X: (RO)+,Y0
MAC Y0,X0,A X: (RO) 4N, YO
MOVE R1,N

MAC Y0,X0,A X: (RO)+,YO
MAC Y0,X0,A X: (RO)+,Y0
MAC Y0,X0,A X: (RO) 4N, YO
MOVE  #CoeffMask,R3

MOVE Y1l,N

MACR Y0,X0,A X: (RO)+,y0
MOVE A,X: (R2)+

Cols Traverse:

X:(R3)+,X0 ;

NSRS R N T e S ) T O B O R ]

Moo X X

b
]
w w
+ o+
bl
o O

X:(R3)+,x0 ;

L = T B o e O = = T = =T = N}

; adjust pointers for frame boundary

LEA (RO) +

LEA (RO) +

LEA (R2) +

LEA (R2) +

DECW  X:ImageRowsCnt
BGT Rows Traverse
POP LA

POP LC

Freescale Semiconductorim

S = T = TR = S S S S SRR

Total: 39

DSC Benchmarks

1 pointer to coef (short addr)
2 top boundary

2 image row,column order

2 jump to next row

2 output image

1 YO0=im([1,1], X0=cll

1 row i to i+l adjust

1 number of rows to process

2 save possible incoming LC

2 save possible incoming LA

3 process all columns

1 im[1,1] *cl1

1 +im[1,2] *cl2

1 +im[1,3] *cl13

1 +im[2,1] *c21

1 +im[2,2] *c22

1 for row i to i-2 adjust

1 +im[2,3] *c23

1 +im[3,1] *c31

1 +im[3,2] *c32

1 back to first coeff

1 for row 1 to i+l adjust

1 +im[3,3] *c33

1 store output computed pixel
1 adjust RO

1

1 adjust R2

1

1 decrement to do numb of rows
6/4 continue until all row done
1 restore incoming LA

1 restore incoming LC
13N2+14N+18

Kernel: 13
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B.1.13 Sine-Wave Generation

The following two sine-wave generation benchmarks are provided:
» Double integration technique
»  Second order oscillator

B.1.13.1 DoubleIntegration Technique

Figure B-11 gives a graphical overview of the double integration technique.

a= Stored initial value which isthe
desired tone amplitude X0

\ ®
—(5)—

a

U
Y
_‘

Y

4

Y
S
N

s n(WOt)

|

y1 = 2*sin(rF</FO)
FO = Oscillation Frequency
Fs = Sampling Frequency

AA0089

FigureB-11. Sine Wave Generator — Double I ntegration Technique
opt cc
CLR B ;1 1 integration initial wvalue
MOVE #34000,A ;2 2 initial value, tone amplitude
MOVE #0,N ;1 1 set for no post-increment
MOVE #$4532,Y1 ;2 2 2*gin (pi*Fs/Fo)
MOVE #$1,R1 ;1 1 arbitrary location for store
MOVE Y1,Y0 ;1 1 copy for 2nd integ component
DO X0,EndDO1 13 1 i 2 3 repeat x0 times
MAC Y1l,B1,A B,X:(R1)+N ;1 1 accumulate 1lst integration
MAC -Y0,Al1,B ;1 1 2nd integration

EndDO1 13 1:

MOVE B,X: (R1) ;1 1 final value stored

; Total: 13 2N+12
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B.1.13.2 Second Order Oscillator

Figure B-12 gives a graphical overview of a second order oscillator.

a= Stored initial valuewhich ig|
the desired tone amplitude

Y

S n(wot) _

) x0
N
T \J_/ »— T

y0 = 2* cos(2nFs/FO)
FO = Oscillation Frequency
Fs = Sampling Frequency

[
L

Y
\

AA0090

FigureB-12. Sine Wave Generator — Second Order Oscillator

opt cc
CLR A ;1 1
MOVE #$4000,Y1 ;2 2
MOVE #$6D4B, YO ;2 2
MOVE #$1,R1 ;1 1
MOVE #DummyLocl3, RO ;1 1
MOVE #0,N 71 1
DO X0,EndDO1 13 2 ;2 3
MAC -Y1,Y0,A ;1 1
NEG A Y1,X: (R1)+N ;1 1
MAC Y1l,Y0,A ;1 1
MOVE A,X: (RO)+N ;1 1
TFR Y1l,A X: (RO)+N, Y1 ;1 1
EndDO1 13 2:
MOVE Y1,X:(R1) ;1 1
; Total: 16

Freescale Semiconductorim
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5N+12

integration initial wvalue
initial value, tone amplitude
2*gin (pi*Fs/Fo)

arbitrary location for store
temporary location to swap val
set for no post-increment
repeat x0 times

1st integration

correct and store a result

2nd integration

use TempLoc for swapping values

prepare for next integration

final approx stored
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B.1.14 Array Search

The following two array search benchmarks are provided:
» Index of the highest signed value
* Index of the highest positive value

B.1.14.1 Index of the Highest Signed Value

opt cc

MOVE #A Vecl4,rO ;2 2 vec addr, must be lwr 32k

MOVEI #N_,X0 ;2 2 load number of elements

MOVE #- (A Vecl4+1),N ;2 2 N calc index into A Vecl4

CLR A X:(RO)+,B ;1 1 set lowest, load 1lst elmnt

DO X0,EndDO1 14 1 ;2 3 repeat # elmnts times

ABS B ;1 1 for largest this not regq

CMP B,A ;01 1 which magnitude largest?

TLE B,A RO,R1 ;1 1 transfer if A<=B & pntrs

MOVE X:(RO)+,B ;01 1 load next element,

; RO has +1 of desired pntr

EndDO1 14 1:

LEA (R1) +N ;1 1 R1 is corrected for index
; Total: 14 4N+11 (worst case)

B.1.14.2 Index of the Highest Positive Value

opt cc
MOVE #A Vecl4,RO ; 2 2 vec addr, must be lwr 32k
MOVEI #N /2,Y1 ;2 2 load even number of elements
MOVE #- (A Vecl4+2),N ;2 2 N calc index into A Vecl4
CLR A X: (RO) +,X0 ;1 1 set lowest, load 1lst elmnt
DO Y1l,EndDO1 14 2 ;2 3 repeat # elmnts times (
CMP X0,A X: (RO) +, Y0 ;1 1 which pos element largest?
TLE X0,A RO,R1 ;1 1 transfer if A<=X0 & pntrs
CMP YO0,A X: (RO) +,X0 ;1 1 which pos element largest?
TLE Y0,A RO,R1 ;1 1 transfer if A<=Y0 & pntrs
EndDO1 14 2:
NOP ;01 1 required to access Rl
LEA (R1) +N ;1 1 R1 is corrected for index

; Total: 15 2N+12 (worst case)
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B.1.15 Proportional Integrator Differentiator (PID) Algorithm

The proportional integrator differentiator (PID) algorithm is the most commonly used algorithm in control
applications. Figure B-13 gives a graphical overview and memory map of thisimplementation of a
proportional integrator differentiator.

x(n)

wa D

ko

y(n)

L/
A

Y
N
\V
Y
N
\V

y(n)=y(n-1) + kO x(n) + k1 x(n-1) + k2 x(n-2)

X memory
NG kO
k1
k2

x(n-1)

x(n-2)

05 | x(n)

FigureB-13. Proportional Integrator Differentiator Algorithm

B.1.15.1 PID (Version 1)

7

y(n) =

y(n-1)

+ k0O x(n)

+ k1 x(n-1)

+ k2 x(n-2)

AA0091

; The constants and input history stored in low mem to take adv of short addressing.

1

7

opt

MOVE
PUSH
MOVE
MOVE

cc
#X Vecl5+2,r0 ;1
MO1 P2
#2,M01 ;2
#K Vecl5,R3 ;1
X:(RO)+,B i1
X:(RO)+,Y0 X:(R3)+,X0 ; 1
X0,Y0,B X:(RO)+,Y0 X:(R3)+,X0 ; 1
Y0,X0,B X:(R3)+,X0 ; 1
X:InputValue, YO ;1
Y0,X0,B i1
B,X: (RO) ;01
B,X:Output ;1
MO1 i1
Total: 15

becomes x(n-2) and x(n)

; shift out x(n-2), x(n-1)

Freescale Semiconductorim
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P NN

R N e = T = T = T = T = R

15

load address of x(n-1)

save state of MOl

r0 mod 3

load address of constants

y(n-1)
x(n-2)
x(n-1)
ko0

x(n)

in accum
& k2
& k1

[accum+kl*x (n-1)]

vy (n) =prev + x(n)*ko0

save y(n)

[accum+k2*x (n-2) ]

write y(n) to peripheral

restore original MOl

becomes x(n-1)

for next iterate.
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B.1.15.2 PID (Version 2)

A faster version of the PID

y(n) = y(n-1)

+ k0 x(n) + k1 x(n-1)

+ k2 x(n-2)

; The constants and input history stored in low mem to take adv of short addressing.

B-32

opt cc

MOVE #X Vecl5,RO
MOVE #K;VeCIS,R3

CLR B

!

I

!

accumulator holds y(n-1), Y1 holds the KO

MOVE
MAC X0,Y0,B
MAC Y0,X0,B
MOVEP
MACR Y1,X0,B
MOVEP

X: (RO)+,YO
X: (RO) +,YO

X:(R3)+,X0 ;
X:(R3)-,X0 ;

’

X:InputValue, X0 ;

X0,X: (RO) +
B, X:Output

DSP56800 Family Manual

1 1 load address of x(n-2)

1 1 load address of constants

1 1 zero the y(n) accum

coefficient

1 1 x(n-2) & k2

1 1 x(n-1) & k1 [accum+k2*x(n-2)]

1 1 ko [accum+kl*x (n-1) ]

1 1 x (n)

1 1 save x(n) [accum+kO*x(n)]

1 1 write y(n) to peripheral
9
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B.1.16 Autocorrelation Algorithm

opt cc
MOVE #Corr Vecl6,R1
MOVE #Frame Veclé6,R2
DO #LPC+1,EndDO1_16 1
MOVE R2,R3
CLR B
MOVE #Frame Vecl6,RO
LEA (R2) +
MOVE LC,Y1
MOVE #>N - (p+1) ,A
ADD Y1l,A X:(RO)+,Y0 X:(R3)+,X0
REP A
MAC Y0,X0,B X:(RO)+,Y0 X:(R3)+,X0
MOVE BO,X:(R1)+
MOVE B1,X:(R1)+
EndDO1 16 1:

I

Freescale Semiconductorim

19

R = = VS SR VRS CHE SR

DSC Benchmarks

results

start of frame elements

start from term

clear corr for this run
start of elements
adjust pntr to traverse

capture # remaining terms

compute correlation term

store lwr 16-bits of rslt

H R R W R N R R NR PR WNDN

store upr 16-bits of rslt

(p+1)2(N—p/2) + 15(p+1) + 9
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Glossary

See Section A.1, “Notation,” on page A-1 for notations and symbols not listed here.

A/D analog-to-digital

ADM application devel opment module
ADS application development system
AGU address generation unit

ALU arithmetic logic unit

AS accumulator shifter

BCR bus control register

BE1-BEO breakpoint enable bits

BK4—BKO  breakpoint configuration bits

BS1-BS0O  breakpoint selection bits
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CcC

CCR

CID

CGDB

CMOS

COFF

COP

COPDIS

CPU

CS

D/A

DAC

DRM

G-2

carry bit

condition code bit

condition code register

chip identification register

core global data bus

complementary metal oxide semiconductor

common object file format

computer operating properly

COP timer disable

central processing unit

carry bit set

digital-to-analog

digital-to-analog converter

debug request mask bit
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DSC

EM1-EMO

EX

EXT

FH

FIFO

GE

GPIO

GT

GUI

HBO

HI

HS

Freescale Semiconductor

digital signal controller

extension hit

event modifier bits

external X memory bit

extension register

FIFO halt bit

first-in-last-out

greater than or equa to

general-purpose input/output

greater than

graphical user interface

hardware breakpoint occurrence

high

high or same

Glossary
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HWS

11, 10

JTAG

1/O

IPL

IPR

K&R

LA

LC

LE

LF

LIFO

G-4

hardware stack

interrupt mask bits

integrated circuit

Joint Test Access Group

input/output

interrupt priority level

interrupt priority register

Kernighan and Ritchie

limit bit

loop address register

loop counter register

less than or equal to

loop flag bit

|ast-in-first-out
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LO

LS

LSB

LSP

LT

MA, MB

MAC

MCU

MIPS

MO1

MR

MS

MSB

MSP

low

least significant; low or same

least significant bit

least significant portion

less than

operating modes

multiply-accumul ate

microcontroller unit

million instructions per second

modifier register

mode register

most significant

most significant bit

most significant portion
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NL

OBAR

OCMDR

OCNTR

ODEC

OISR

OMAC

OMAL

OMR

OPABDR

OPABER

OPABFR

G-6

offset register

negative bit in condition code register

nested looping bit

OnCE breakpoint address register

OnCE command register

OnCE breakpoint counter

ONnCE decoder

OnCE input shift register

OnCE memory address comparator

OnCE breakpoint address latch

operating mode register

OnCE PAB decode register

OnCE PAB execute register

OnCE PAB fetch register
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OPDBR

OPGDBR

OS1, 0S0

OSR

OnCE™

PAB

PC

PGDB

PWD

PLL

Rj

Rn

SA

OnCE PDB register

Once PGDB register

ONCE status bits

OnCE status register

On-Chip Emulation (unit)

program address bus

program counter

peripheral global data bus

power-down mode bit

phase-locked loop

rounding bit

address registers (RO-R3)

address registers (RO-R3, SP)

saturation bit

Freescal e Semiconductor Glossary
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SBO

SD

SP

SPI

SR

SSi

SZ

TAP

TO

XAB1

software breakpoint occurrence

stop delay bit

stack pointer

seria peripheral interface

status register

synchronous serial interface

size bit

test access port

trace occurrence

unnormalized bit

overflow bit

World Wide Web

externd

X memory address bus one
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XAB2 X memory address bus two

XDB2 X memory data bus two

XP X/P memory bit

Z zero bit
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| ndex

A

A accumulator 3-2, 3-4
A0, see A accumulator
A1, see A accumulator
ABS A-28
Absolute Value ABS A-28
accumulator extension register (A2 or B2) 3-4
accumulator registers 3-2, 3-4
accumul ator shifter 3-2, 3-6
accumulator sign-extend 8-7
ADC A-30
ADD A-32
Add ADD A-32
Add Long with Carry ADC A-30
addition
fractional 3-18
multi-precision 3-23
unsigned 3-22
Address Generation Unit (AGU) 2-3, 4-1
address registers (R0-R3) 4-4
incrementer/decrementer unit 4-5
Modifier Register (M01) 4-5
modulo arithmetic unit 4-5
Offset Register (N) 4-4
Stack Pointer Register (SP) 4-4
address register indirect modes 4-7
addressing modes 4-1, 4-6, A-6
addressing modes summary 4-23
AGU, see Address Generation Unit (AGU) 4-1
ALU, see Data Arithmetic Logic Unit (ALU)
analog signal processing 1-5
analog-to-digital 1-6
AND A-35
ANDC A-36
arithmetic
division 3-21
multiplication 3-19
unsigned 3-22, 3-36
arithmetic instructions 6-6
Arithmetic Right Shift with Accumulate ASRAC A-43
Arithmetic Shift Left ASL A-38
Arithmetic Shift Right ASR A-41
array indexes 8-26
ASL A-38
ASLL A-40
ASR A-41
ASRAC A-43

Freescale Semiconductor

Index

ASRR A-44
B

B accumulator 3-2, 3-4

B0, see B accumulator

B1, see B accumulator

barrel shifter 3-2, 3-5

Bcc A-45

BEC 8-4

benchmarks B-1

BES 8-4

BFCHG A-47

BFCLR A-49

BFSET A-51

BFTSTH A-53

BFTSTL A-55
bit-manipulation instructions 6-8
bit-manipulation unit 2-5

BLC 8-4

BLS 8-4

BMI 8-4

bootstrap memory 2-8
boundary scan cell 9-1

BPL 8-4

BR1CLR operation 8-3
BR1SET operation 8-3

BRA A-56

Branch BRA A-56

Branch Conditionally Bcc A-45
Branch if Bits Clear BRCLR A-57
Branch if Bits Set BRSET A-59
branching techniques, software 8-2
BRCLR A-57

BRSET A-59

bus unit 2-5

BVC 8-4

BVS 8-4

C

C condition bit 5-7, A-10

CC, see condition code (CC) bit

CCR, see Condition Code Register (CCR)
CGDB, see core global data bus (CGDB)
Clear Accumulator CLR A-61

CLR A-61

CMP A-63

Compare CMP A-63
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comparing 3-18
condition code (CC) bit 3-33, 3-34, 3-35, 3-36, 5-12
condition code computation A-7
condition code generation 3-33
Condition Code Register (CCR) 5-6
Condition Codes
carry (C) condition 5-7, A-10
effect of CC hit A-11
effect of SA bit A-11
extension in use (E) condition 5-8, A-8
limit (L) condition 5-8, A-8
negative (N) condition 5-7, A-9
overflow (V) condition 5-7, A-10
size (SZ) condition 5-8, A-7
unnormalized (U) condition 5-8, A-9
zero (Z) condition 5-7, A-10
convergent rounding 3-30
core global databus (CGDB) 2-5

D

data ALU input registers (X0, Y1, and YO0) 3-4
Data ALU, see Data Arithmetic Logic Unit (ALU)
Data Arithmetic Logic Unit (ALU) 2-3, 3-1
accumulator registers (A and B) 3-4
accumulator shifter 3-6
barrel shifter 3-5
Data Limiter 3-6, 3-26
input registers (X0, Y1, and YO0) 3-4
logic unit 3-5
MAC Output Limiter 3-6, 3-28
multiply-accumulator (MAC) 3-5
Data Limiter 3-2, 3-6, 3-26
DEBUG A-66
debug processing state 7-1, 7-22
DEC(W) A-67
Decrement Word DEC(W) A-67
digital signal processing 1-6
digital-to-analog 1-6
DIV A-69
Divide Iteration DIV A-69, A-70
division 3-21, 8-13, A-69
fractional 3-21, 8-13
integer 3-21, 8-13
DO A-71
DO looping 5-15
DO loops 8-20
DSP56800 1-1
DSP56800 core 1-2

E

E condition bit 5-8, A-8
End Current DO Loop ENDDO A-75
ENDDO A-75

Index-ii DSP56800 Family Manual

Enter Debug Mode DEBUG A-66
EOR A-76

EORC A-77

EX, see externa X memory (EX)
exception processing state 7-1, 7-5
extension register (A2 or B2) 3-4
external address bus one (XAB1) 2-5
external address bustwo (XAB2) 2-5
external data bustwo (XDB2) 2-5
external data memory 2-7

external X memory (EX) 5-11

F

fractional arithmetic 3-14
fractional division 3-21, 8-13
fractional multiplication 3-19

H

hardware interrupt sources 7-10
Hardware Stack (HWS) 5-6

11 and 10 interrupt mask bits 5-8
ILLEGAL A-79
Illegal Instruction Interrupt ILLEGAL A-79
IMPY (16) A-80
INC(W) A-82
Increment Word INC(W) A-82
incrementer/decrementer unit 4-5
indexes 8-26
instruction decoder 5-3
instruction execution pipelining 6-30
instruction formats 6-3
instruction groups 6-6
instruction latch 5-3
Instruction Processing 6-30
instruction set restrictions A-26
instruction set summary 6-17
instruction timing A-16
integer arithmetic 3-14, 3-20
integer division 3-21, 8-13
integer multiplication 3-20
Integer Multiply IMPY (16) A-80
interrupt arbitration 7-12
interrupt control unit 5-3
interrupt latency 7-16
interrupt mask (11 and 10) 5-8
interrupt pipeline 7-14
interrupt priority level (IPL) 5-3
Interrupt Priority Register (IPR) 7-9
interrupt priority structure 7-8
interrupt sources 7-9

hardware 7-10

Freescale Semiconductor



other 7-11
software 7-11
interrupt vector table 7-7
interrupts 8-30
IPL, seeinterrupt priority level (IPL)
IPR, see Interrupt Priority Register (IPR)

J

Jec A-84

JEC 8-4

JES 8-4

JLC8-4

S84

JMI 8-4

JMP A-86

Joint Test Action Group (JTAG), see JTAG
JPL 8-4

JR1CLR operation 8-3

JR1SET operation 8-3

JRCLR operation 8-2

JRSET operation 8-2

JSR A-87

JTAG 9-2

JTAG port 9-2

Jump Conditionally Jcc A-84
Jump IMP A-86

Jump to Subroutine JSR A-87
jump with register argument 8-33
jumping techniques, software 8-2
JVC 84

VS84

L

L condition bit 5-8, A-8

LEA A-88

LF, seeloop flag (LF)

Load Effective Address LEA A-88

local variables 8-28

logic unit 3-5

Logical AND A-35

Logical AND, Immediate ANDC A-36
Logical Complement NOT A-134

Logical Complement with Carry NOTC A-135
Logical Exclusive OR EOR A-76

Logical Exclusive OR Immediate EORC A-77
Logical Inclusive OR Immediate ORC A-138
Logical Inclusive OR OR A-137

logical instructions 6-7

logical operations 3-19

Logical Right Shift with Accumulate LSRAC A-92
Logical Shift Left LSL A-89

Logical Shift Right LSR A-91

Loop Address Register (LA) 5-5

Freescale Semiconductor

Loop Count Register (LC) 5-4
loop flag (LF) 5-9
looping control unit 5-4
looping instructions 6-9
looping termination 5-16
loops 5-14, 8-20

LSL A-89

LSLL A-90

LSR A-91

LSRAC A-92

LSRR A-93

M

MO1, see Modifier Register (M01)
MAC 3-2, A-94
MAC Output Limiter 3-6, 3-28
MAC, see multiply-accumulator (MAC)
MACR A-97
MACSU A-100
MAX operation 8-6
MB and MA, see operating mode (MB and MA)
memory access processing 6-31
MIN operation 8-7
Mode Register (MR) 5-6
Modifier Register (M01) 4-5
modulo arithmetic unit 4-5
MOVE A-102, A-104, A-107
Move Absolute Short MOVE(S) A-119
Move Control Register MOVE(C) A-109
Move Immediate MOV E(l) A-113
move instructions 6-9
Move Peripheral Data MOV E(P) A-117
Move Program Memory MOVE(M) A-115
MOVE(C) A-109
MOVE(l) A-113
MOVE(M) A-115
MOVE(P) A-117
MOVE(S) A-119
MPY A-121
MPYR A-124
MPYSU A-127
MR, see Mode Register (MR)
Multi-Bit Arithmetic Left Shift ASLL A-40
Multi-Bit Arithmetic Right Shift ASRR A-44
Multi-Bit Logical Left Shift LSLL A-90
Multi-Bit Logical Right Shift LSRR A-93
multiplication 3-19

fractional 3-19

integer 3-20

multi-precision 3-23

unsigned 3-22
Multiply Accumulate and Round MACR A-97
Multiply-Accumulate MAC A-94
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Multiply-Accumulate Signed x Unsigned

MACSU A-100
multiply-accumulator (MAC) 3-2, 3-5
multi-tasking 8-34

N

N condition bit 5-7, A-9

N, see Offset Register (N)

NEG A-129

Negate Accumulator NEG A-129
NEGW 8-4

nested looping 5-15

nested looping bit (NL) 5-13

NL, see nested looping bit (NL)
No Operation NOP A-131

NOP A-131

NORM A-132

normal processing state 7-1, 7-2
Normalize Accumulator Iteration NORM A-132
NOT A-134

notations A-1

NOTC A-135

O

Offset Register (N) 4-4
OMR, see Operating Mode Register (OMR)
OnCE 2-5
ONCE pipeline 9-7
OnCE port
FIFO history buffer 9-7
overview 9-4
PAB FIFO 9-7
ONCE port architecture 9-5
On-Chip Emulation (OnCE) 2-5
operating mode (MB and MA) 5-10
Operating Mode Register (OMR) 5-10
Condition Code bit (CC) 5-12, A-11
External X memory bit (EX) 5-11
Nested Looping bit (NL) 5-13
Operating Mode bits (MB and MA) 5-10
Rounding bit (R) 5-12
Saturation bit (SA) 5-11, A-11
Stop Delay hit (SD) 5-12
OR A-137
ORC A-138

P

Parallel Move—Dual Paralel Reads A-107
parallel moves 6-1

Parallel Move—Single Parallel Move A-104
parameters, passing subroutine 8-28

PC, see Program Counter (PC)

PDB, see program data bus (PDB)
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peripheral blocks 1-3
periphera data bus 2-5

PGDB, see peripheral global data bus (PGDB)

phase-locked loop (PLL) 2-8
pipeline dependencies 4-33
pipelining 6-30
PLL, see phase-locked loop (PLL)
POP A-140
Pop from Stack POP A-140
power consumption 7-19
processing states 7-1

debug 7-1, 7-22

exception 7-1, 7-5

normal 7-1, 7-2

reset 7-1

stop 7-1, 7-19

wait 7-1, 7-17
program control instructions 6-10
Program Controller 2-4
Program Counter (PC) 5-3
program data bus (PDB) 2-5
program memory 2-8
programming model 2-8, 6-5
PUSH operation 8-19

R

R rounding bit 5-12
RO-R3 4-4
register direct addressing modes 4-7
REP A-141
repeat looping 5-14
Repeat Next Instruction REP A-141
reset processing state 7-1
entering 7-1
leaving 7-2
restrictions, instruction set A-26
Return from Interrupt RTI1 A-148
Return from Subroutine RTS A-149
RND A-144
ROL A-146
ROR A-147
Rotate Left ROL A-146
Rotate Right ROR A-147
Round Accumulator RND A-144
rounding 3-30
convergent 3-30
two’s-complement 3-31
Rounding bit (R) 5-12
RTI A-148
RTS A-149

S
saturation 3-26
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Saturation bit (SA) 5-11
SBC A-150
SD stop delay bit 5-12
shift operations 8-8
Signed Multiply and Round MPYR A-124
Signed Multiply MPY A-121
Signed Unsigned Multiply MPY SU A-127
software interrupt sources
illega instruction (111) 7-11
software interrupt (SWI) 7-11
Software Interrupt SWI A-156
software stack 5-13
SP, see Stack Pointer Register (SP)
SR, see Status Register (SR)
Stack Pointer Register (SP) 4-4
Start Hardware Do Loop DO A-71
Status Register (SR) 5-6
carry bit (C) 5-7
extension bit (E) 5-8
interrupt mask bits (11 and 10) 5-8
limit bit (L) 5-8
loop flag bit (LF) 5-9
negative bit (N) 5-7
overflow bit (V) 5-7
reserved bits 5-9
size bit (Sz) 5-8
unnormalized bit (U) 5-8
zero bit (2) 5-7
STOP A-152
stop delay (SD) 5-12
STOP instruction 7-19
Stop Instruction Processing STOP A-152
stop processing state 7-1, 7-19
SUB A-153
Subtract Long with Carry SBC A-150
Subtract SUB A-153
subtraction
fractional 3-18
multi-precision 3-23
SWI A-156
SZ condition bit 5-8, A-7

T

TAP, seetest access port (TAP)

Tcc A-157

test access port (TAP) 9-2

Test Accumulator TST A-161

Test Bitfield and Change BFCHG A-47
Test Bitfield and Clear BFCLR A-49
Test Bitfield and Set BFSET A-51

Test Bitfield High BFTSTH A-53

Test Bitfield Low BFTSTL A-55

Test Register or Memory TSTW A-163
TFR A-159
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time-critical loops 8-29

Transfer Conditionally Tcc A-157
Transfer Data ALU Register TFR A-159
TST A-161

TSTW A-163

two’ s-complement rounding 3-31

U

U condition bit 5-8, A-9
unsigned arithmetic 3-22
addition 3-22
condition code computation 3-22
multiplication 3-22
subtraction 3-22
unsigned load of an accumulator 8-7

Vv
V condition bit 5-7, A-10
W

WAIT A-165
Wait for interrupt WAIT A-165
walit processing state 7-1, 7-17

X

X0 input register 3-2, 3-4

XAB1, see external address bus one (XAB1)
XAB2, see external address bustwo (XAB2)
XCHG register exchange operation 8-6
XDB2, see external data bustwo (XDB2)

Y

YO input register 3-2, 3-4
Y 1input register 3-2, 3-4

Z
Z condition bit 5-7, A-10
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