
Freescale Semiconductor
Mask Set Errata

MSE912DG128C_1M63Z
Rev. 0, 6/2011
Mask Set Errata for 
68HC912DG128C, Mask 1M63Z

Introduction

This mask set errata applies to this 68HC912DG128C MCU mask set:

• 1M63Z

MCU Device Mask Set Identification

The mask set is identified by a 5-character code consisting of a version number, a letter, two numerical
digits, and a letter, for example 2J88Y. All standard devices are marked with a mask set number and a
date code.

MCU Device Date Codes

Device markings indicate the week of manufacture and the mask set used. The date is coded as four
numerical digits where the first two digits indicate the year and the last two digits indicate the work week.
For instance, the date code “0401” indicates the first week of the year 2004.

MCU Device Part Number Prefixes

Some MCU samples and devices are marked with an SC, PC, or XC prefix. An SC prefix denotes
special/custom device. A PC prefix indicates a prototype device which has undergone basic testing only.
An XC prefix denotes that the device is tested but is not fully characterized or qualified over the full range
of normal manufacturing process variations. After full characterization and qualification, devices will be
marked with the MC or SC prefix.
© Freescale Semiconductor, Inc., 2004. All rights reserved.

IIC Bus Frequency Errata Number: HC12_AR_526

Description

At maximum system frequency, the IIC bus rate slows down as much as 5%.

Workaround

Communication rate will be adjusted automatically to slower rate.

Disabling Interrupts Errata Number: HC12_AR_527

Description

If the source of an interrupt is taken away by disabling the interrupt without setting the I mask bit in the
CCR, an SWI interrupt may be fetched instead of the vector for the interrupt source that was disabled.

Workaround

Before disabling an interrupt using a local interrupt control bit, set the I mask bit in the CCR.

Errata
number

Module
affected Description

AR_526 IIC SCL divider has an extra clock at 8Mhz bus frequency

Errata
number

Module
affected Description

AR_527 INT Disabling interrupt with I mask bit clear can cause SWI
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

2 Freescale Semiconductor

Disabling IIC Errata Number: HC12_AR_548

Description

If the IIC module is disabled by clearing the IBEN bit in IBCR register, the SDA and SCL lines in the IIC
bus will glitch to zero if PORTIB bits 6 and 7 are zero.

Workaround

Set PORTIB bits 6 and 7 to one prior to clearing IBEN bit in IBCR register.

SCL Line During Start Signal Errata Number: HC12_AR_573

Description

If SCL line is pulled low when generating a start signal the device will lock up.

Workaround

After trying to generate a START signal and neither the IBB nor IBAL bits are set after several cycles, the
IIC should be disabled and reenabled with the IBEN bit.

Errata
number

Module
affected Description

AR_548 IIC Disabling IIC can glitch and corrupt IIC bus

Errata
number

Module
affected Description

AR_573 IIC IIC hold both SCL and SDA line low when IBB bit is not busy
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

Freescale Semiconductor 3

Operation with 16MHz Quartz Crystals Errata Number: HC12_AR_593

Description

The variation of operational parameters within a given crystal part number may include a distribution of
parts that present impedance conditions at startup that will not function with the current design of the
CGM. While typical parts may function correctly, problems may be seen in actual production runs.

Workaround

Quartz crystal operation should be restricted to maximum of 8 MHz. Workarounds include:

• Use an 8 MHz (or slower) oscillator and generate higher bus frequencies using the PLL module.

• Use alternative ceramic resonator.

• Where minimal clock jitter is critical, use external “brick” quartz oscillator module.

PA Overflow Flag Errata Number: HC12_AR_644

Description

When the value $FFFF is written to PACA or PACB and, at the same time, an external clocking pulse is
applied to the PAC, the pulse accumulator may overflow from $FFFF to $0000, but the pulse accumulator
overflow flag [PAFLG,PBFLG] is not set. Same situation may happen with 8-bit pulse accumulators PAC1
and PAC3.

Errata
number

Module
affected Description

AR_593 CGM Operation with 16MHz quartz crystals is not recommended

Errata
number

Module
affected Description

AR_644 ECT PA Overflow flag not set when event is concurrent with write of $FFFF
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

4 Freescale Semiconductor

Workaround

The input capture function for the subject channel be enabled prior to writing a value to the PACA or
PACB. Write to the pulse accumulator register. Then do one NOP (to allow the input capture to update
the interrupt flag) followed by a read of the input capture interrupt flag to see if it set. If yes, a check must
be made for a missing pulse accumulator event. Steps for software workaround to see if event happens
while writing to PAC:

1. Enable Input Capture on same pin as the pulse accumulator (and same type of event).

2. Clear the appropriate CxF in the timer interrupt flag register.

3. Read PAC and store as “Old PAC”.

4. Calculate desired PAC value and write it to the PAC.

5. Execute 1 NOP.

6. Read CxF in the timer interrupt flag register.

If flag is not set, done (no events happened while writing to the PAC).

If flag is set read PAC

If “Old PAC” = PAC, then update PAC (event happened while writing to PAC and the PAC did
not capture it). Note, if the updated PAC value is $00 jump to PACOV ISR.

If “Old PAC” does not equal PAC, does PAC = $00 ?

If yes, jump to PACOV ISR.

If no, done (event happened while writing to the PAC and PAC captured it). Read CxF in the
timer interrupt.
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

Freescale Semiconductor 5

& clear CxF
Enable Input capture

Read PAC & store as

Calc next PAC value &

Execute NOP

Is TICx flag
set?

Is "Old PAC"
= PAC?

Y

N

Y

N

Is PAC
= $00?

Y

N

Update PAC

Jmp to PACOV
ISR

"Old PAC"

write it to PAC
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

6 Freescale Semiconductor

MSCAN Extended ID Errata Number: HC12_AR_646

Description

For 32-bit and 16-bit identifier acceptance modes, an extended ID CAN frame with a stuff bit between
ID16 and ID15 can be erroneously rejected, depending on IDAR0, IDAR1, and IDMR1.

Extended IDs (ID28-ID0) which generate a stuff bit between ID16 and ID15:

where x = 0 or 1 (don't care)
* = pattern for ID28 to ID18 (see following).

Affected extended IDs (ID28 - ID18) patterns:

a. xxxxxxxxx01 exceptions:00000000001
01111100001
xxxx1000001 except 11111000001

b. xxxxx100000 exception: 01111100000
c. xxxx0111111 exception: 00000111111
d. x0111110000
e. 10000000000
f. 11111111111
g. 10000011111

When an affected ID is received, an incorrect value is compared to the 2nd byte of the filter (IDAR1 and
IDAR5, plus IDAR3 and IDAR7 in 16-bit mode). This incorrect value is the shift register contents before
ID15 is shifted in (i.e. right shifted by 1).

Workaround

If the problematic IDs cannot be avoided, the workaround is to mask certain bits with IDMR1 (and IDMR5,
plus IDMR3 and IDMR7 in 16-bit mode).

Example 1: to receive the message IDs
xxxx xxxx x011 111x xxxx xxxx xxxx xxxx
IDMR1 etc. must be 111x xxx1, i.e. ID20,19,18,15 must be masked.

Errata
number

Module
affected Description

AR_646 MSCAN MSCAN extended ID rejected if stuff bit between ID16 and ID15

IDAR0 IDAR1 IDAR2 IDAR3

******** ***1111x xxxxxxxx xxxxxxxx
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

Freescale Semiconductor 7

Example 2: to receive the message IDs
xxxx 0111 1111 111x xxxx xxxx xxxx xxxx
IDMR1 etc. must be 1xxx xxx1, i.e. ID20 and ID15 must be masked.

In general, using IDMR1 etc. 1111 xxx1, i.e. masking ID20,19,18,SRR,15, hides the problem.

Note:
The wording of the workaround varies depending on whether the errata mentioned is AR562, AR564,
AR565, AR566 or AR567. Substitute as necessary, according to errata list.

XIRQ during last cycle of STOP instruction causes run away
Errata Number: HC12_AR_650

Description

If an XIRQ interrupt occurs during the execution of the STOP instruction with the control bit DLY=0
(located in the INTCR register), the CPU may not run the software code as designed.

Workaround
1. Set the delay control bit DLY=1 so that a delay will be imposed prior to coming out of STOP. The

user must also implement the workaround for AR_566 (Exiting STOP with DLY=1) as well.

2. If using XIRQ with a stable external clock and DLY=0, contact Motorola Applications Department
for a detailed workaround.

Errata
number

Module
affected Description

AR_650 CGM XIRQ during last cycle of STOP instruction causes run away
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

8 Freescale Semiconductor

Abort in last ATDCLK of sequence does not restart Errata Number: HC12_AR_659

Description

When writing ATDCTL4 and/or ATDCTL5 during an active conversion the write is considered an abort
and restart. However, when writing during the last ATDCLK of a sequence, the current conversion is
aborted, but a new conversion is not started. This occurs whether the sequence is 1 or 4 or 8 conversions.
Since writes to ATDCTL4 start a conversion then it is possible for successive byte writes to ATDCTL4/5
to result in this problem. This would occur if an IRQ service related to another interrupt source occurs,
separating the two byte writes, and the RTI of this returns delaying the second write to occur in the last
ATDCLK.

Workaround

The first aspect of the solution is to use word writes to ATDCTL4/5. This eliminates the possibility of other
IRQ sources causing delay between writes to ATDCTL4/5. This would be the only solution required when
starting the first conversion. It would also be the only solution needed when SCAN=0 if all further
conversion sequences are initiated from an ATD interrupt routine. In addition, this is the only solution
needed if code, in general, does not abort ongoing conversions.

The second aspect to the solution regards cases that abort conversions. The easiest solution is to toggle
the S8C bit. This effectively cleans up the abort and the second write to the ATDCTL5 will perform a
successful restart. Bracket this toggle sequence with SEI and CLI to prevent the second write from
occurring during a last ATDCLK of a sequence.

Another method is possible using dual writes to start a conversion with a minimum of an ATDCLK period
between the writes. This effectively allows the first write to abort and flush by the next write which would
start (or restart) the conversion. The second write also needs to occur before another sequence complete
time elapses. This method should also be prefixed by a SEI and followed by a CLI. This would prevent
the case of other IRQ sources causing the same problem as well.

Errata
number

Module
affected Description

AR_659 ATD Abort in last ATDCLK of sequence does not restart
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

Freescale Semiconductor 9

XIRQ interrupt and IRQ Errata Number: HC12_AR_700

Description

If all of the following conditions are met, the XIRQ asynchronous path can prevent the CPU from
generating the vector request signal for the IRQ:

• Using an MCU in the HC12 Family (not the HCS12 Family)

• Using XIRQs (X-bit is cleared in the CCR by software)

• Asserting an XIRQ interrupt (through the XIRQ pin)

• XIRQ interrupt occurs at the start of an IRQ interrupt exception processing

Because XIRQs interrupt IRQs, the XIRQ stack will follow the IRQ stack. The lack of the IRQ vector
request signal will cause the XIRQ stack to have an invalid return address. As soon as the XIRQ finishes
executing the XIRQ interrupt service routine, the XIRQ RTI (return from interrupt) causes the CPU to use
that invalid return address, leading to code runaway.

The potential failure window is only a few nanoseconds and varies with process, temperature, design, etc.

Workaround

There are two identified workarounds: one hardware and one software.

Hardware

Because the failure window is small and occurs near the T1 cycle, the external XIRQ signal could be
gated to the rising edge of ECLK.

Software

Because the XIRQ interrupt service routine (ISR) still executes correctly, code can be added to the XIRQ
ISR to determine whether the error may have occurred and use software to work around the situation.
Because the problem only occurs if the XIRQ interrupts an IRQ before any ISR instructions are executed,
the CCR in the XIRQ stack could be checked to determine whether the I-bit was set and two stack frames
were created (first one for the IRQ and second one for the XIRQ). Further checks can then be done to
determine whether the two stacks are identical except for the return address. If they are, use the IRQ
stack as the return address for the XIRQ.

Here is an example of that code:

Errata
number

Module
affected Description

AR_700 CPU
Asserting an XIRQ interrupt can prevent the CPU from generating the vector request

signal for the IRQ
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

10 Freescale Semiconductor

ALL_ISRs:
pshy ;First instruction of the ALL ISRs need to push something
inx ; (Y for example) onto stack to separate the stack frames

; to help to determine if any instructions from the ISR were
; run. That will determine if the workaround need to be
; done when in the XIRQ ISR.

;Note: this must be done in all ISRs, also adding the inx makes it less likely
; you would falsely think you fell into the erratum. Increment what you tend
; to not use in ISRs first, you could also increment D and Y for even further
; security that the software does not falsely think it fell into the erratum.

;Normal user ISR code here [except no RTI (yet)].

leas 2,SP ; return SP to adjust for the pshy

rti ; normal user rti

XIRQ_ISR:

;normal user ISR code here [except no RTI (yet)].

 brset 0,SP,#$10,Check;If CCR had I-bit set in the stack, this is the first part
;of the workaround to determine if the XIRQ interrupted
;an IRQ or a section of code that had the I bit set
;If not just return since no problem.

Okrti:
 rti ;Normal user code (unstack registers, etc.)

Check: ;The I bit was set in the XIRQ stack so we need

; to further check and see if we should do the
; workaround. Need to check to see if there are two
; nearly identical stack frames with the exception of the
; I-bit and the return address. If so adjust the Stack Pointer
; to point to the ISR stack frame before the XIRQ RTI.
;Note, non interruptible code that gets an XIRQ
; will also go here. If X or Y was not used in the XIRQ
; ISR then this code could be reduced in size, (by removing
; the appropriate loads from below)

ldd 1,SP ;Load ACCD from XIRQ stack frame ACCB:ACCA value
;Note the values of A and B are interchanged from a
;normal pull for easier checking.

cpd 10,SP ;Compare ACCD from suspect IRQ stack frame with XIRQ
; stack. Note the values of A and B are still interchanged.

bne Okrti ;Not the same, so not in erratum, just return (RTI).
ldx 3,SP ;Load X with XIRQ stack frame X value.
cpx 12,SP ;Compare X from suspect IRQ stack frame with XIRQ stack.
bne Okrti ;Not the same, so not in erratum, just return (RTI).
ldy 5,SP ;Load Y with XIRQ stack frame Y value.
cpy 14,SP ;Compare Y from suspect IRQ stack frame with XIRQ stack.
bne Okrti ;Not the same, so not in erratum, just return (RTI).

;Next we check the CCR to see if they are the same except
; for the I bit which should be different.

ldaa 0,SP ;Load the CCR from the XIRQ stack into ACCA
eora 9,SP ;Exclusive OR XIRQ CCR with suspect IRQ CCR
anda #$EF ;AND with the I bit mask to not check the I bit.
bne Okrti ;Not the same, so not in erratum, just return (RTI).

;if all checks the same could be in the erratum
;could check return address from IRQ ISR as a further check
;to make sure it is a normal ISR program space
;could also check to make sure room for SP to back up
Mask Set Errata for 68HC912DG128C, Mask 1M63Z

Freescale Semiconductor 11

leas 9,SP ;add 9 to SP (to point to IRQ stack frame)

 rti ;Return using IRQ stack (unstack registers, etc)

As with most code workarounds, there are a few situations where there still may be an issue. For example,
if you pushed information on to the stack that exactly matched the stack frame before you did the XIRQ
and that XIRQ occurred while the I bit was set, the software could falsely think it was the ISR stack. This
is a very rare situation.
MSE912DG128C_1M63Z
Rev. 0, 6/2011

How to Reach Us:

USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components

in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use

Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.

