

This document details the silicon errata known at the time of publication for the i.MX50 multimedia
applications processors revision 1.1.1.

Table 1 provides a revision history for this document.

Table 1. Document Revision History

Rev.
Number

Date Substantive Changes

Rev. 5 05/2015 • Added WDOG erratum ERR004346.

Rev. 4 03/2014 • Update to DDR PHY erratum ERR007894.

Rev. 3 03/2014 • Added DDR PHY erratum ERR007894.
 • Added USB erratum ERR006308.
 •

Rev. 2 03/2012 • Added EIM erratum ENGcm12379.
 • Added eSDHC erratum ENGcm03648.
 • Updated eSDHC erratum ENGR143117.

Rev. 1 07/2011 Added DPLL erratum ENGcm12051.

Rev. 0 07/2011 Initial release.

Document Number: IMX50CE
Rev. 5, 05/2015

Chip Errata for the
i.MX50

Chip Errata for the i.MX50, Rev. 5

2 Freescale Semiconductor

Table 2 summarizes errata on the i.MX50, categorized by module.

Table 2. Summary of Silicon Errata

Errata Name Solution Page

AIPS

ENGcm07186 AIPS unalign causes abort on writes on internal register No fix scheduled 5

ARM Core

ENGcm02157 ARM #468413: Incorrect L2 cache eviction can occur when L2 configured as inner
cache

No fix scheduled 6

ENGcm02161 ARM #468414: NEON load data can be incorrectly forwarded to a subsequent
request

No fix scheduled 7

ENGcm02163 ARM #468416: Processor deadlock can occur L2 cache servicing write allocate
memory

No fix scheduled 9

ENGcm02164 ARM #468415: Instruction: swap, preload, fetch can interact and cause deadlock No fix scheduled 11

ENGcm03161 ARM #485963: C15 Cache Selection Register (CSSELR) is not banked No fix scheduled 13

ENGcm03162 ARM #488063: ARPROT[0] incorrectly indicates USER transaction for tablewalks No fix scheduled 14

ENGcm07666 ARM #586320: Clean & Clean/Invalidate maintenance ops by MVA&PoC may not
push data to external memory

No fix scheduled 15

ENGcm07667 ARM #586323: Cache clean memory ops by Preload or Clean MVA to PoC may
corrupt the memory

No fix scheduled 17

ENGcm07668 ARM #586324: Cache maintenance operation done by MVA may corrupt memory No fix scheduled 19

ENGcm07669 ARM #588115: A RAW hazard on certain CP15 registers can result in a stale register No fix scheduled 21

ENGcm09828 ARM #709718: Load and store operations to shared device memory regions may
not complete in program order

No fix scheduled 23

ENGcm10693 ARM #628216: Potential OVFL status loss when it occurs at CP15 and CP14 update No fix scheduled 25

ENGcm10702 ARM #687067: BTB invalidate by MVA operations will not work when the IBE bit is
set

No fix scheduled 27

ENGcm10704 ARM #693270: Taking a watchpoint is incorrectly prioritized over a precise data
abort

No fix scheduled 29

ENGcm10713 ARM #507113: A Neon store to device memory can result in dropping a previous
store

No fix scheduled 31

ENGcm10723 ARM #715847: VCVT.f32.u32 can return wrong result in a specific configuration of
Floating Point Unit (FPU)

No fix scheduled 33

ENGcm11134 ARM #468416: Under a specific set of conditions, processor deadlock can occur
when L2 cache is servicing write allocate memory

No fix scheduled 35

ENGcm11231 ARM #728018: MVA Cache operations for non-cacheable memory region cause
deadlock

No fix scheduled 37

CSPI

ENGcm08174 CSPI wrongly clears the overrun status bit No fix scheduled 39

ENGcm11544 Issue in 32-bit Rx when CSPI is configured in slave mode with SSCTL bit set No fix scheduled 40

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 3

DCP

ENGR120443 DCP fails to handle SHA1/SHA256 hashing for inputs that are split across multiple
pages

No fix scheduled 41

DDR PHY

ERR007894 Under certain conditions, the DDR DQS_Gate may close earlier at DDR2 mode,
causing failure on DDR read.

No fix scheduled 42

DPLL

ENGcm12051 DPLL: Meta-stability Issue No fix scheduled 43

DRAM MC

ENGR121624 APBHDMA channel may stall on waiting for PIO grant when freeze bit is set/clr
frequently

No fix scheduled 45

ENGR125340 LPDDR2 ZQ calibrator state machine cannot meet 266 MHz design target 46

eCSPI

ENGcm10185 eCSPI burst completion by SSB signal in slave mode not functional No fix scheduled 47

ENGcm10188 eCSPI should send zeros when the burst is longer than the amount of data in FIFO No fix scheduled 48

EIM

ENGcm12379 EIM: AUS mode is non functional for devices larger than 32 MB. No fix scheduled 49

EPDC

ENGR138633 Histogram Fractional Macro Block Processing Issue No fix scheduled 50

ENGR142735 TCE Underrun in EPDC No fix scheduled 51

EPIT

TLSbo90606 Glitch occurs on SCLK in EPIT when switching clock source No fix scheduled 52

eSDHC

ENGcm03648 eSDHC AutoCMD12 and R1b polling problem No fix scheduled 53

ENGcm11088 eSDHC partial block read problem when block size is not a multiple of 4 (applicable
to both eSDHCv2 and eSDHCv3)

No fix scheduled 54

ENGcm11113 eSDHC problem when ADMA2 last descriptor is LINK or NOP (applicable to both
eSDHCv2 and eSDHCv3)

No fix scheduled 55

ENGR143117 eSDHCv3 on eSDHCv3 port has setup timing issue in SD SDR mode No fix scheduled 56

GPT

ENGcm04874 Glitch on SCLK in GPT while switching the clock source No fix scheduled 57

OCRAM

Table 2. Summary of Silicon Errata (continued)

Errata Name Solution Page

Chip Errata for the i.MX50, Rev. 5

4 Freescale Semiconductor

ENGR139532 OCRAM Setup Timing Issue No fix scheduled 58

ROM

ENGR133711 ROM fails to boot from boot partition 1 or boot partition 2 in 4-bit and 8-bit DDR
non-fast boot modes

No fix scheduled 59

USB

ENGcm07150 Erroneous descriptor handling by USBOH module No fix scheduled 60

ERR006308 USB: HOST controller lock-up issue No fix scheduled 61

WDOG

ERR004346 WDOG: SRS bit requires to be written twice No fix scheduled 62

Table 2. Summary of Silicon Errata (continued)

Errata Name Solution Page

ENGcm07186

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 5

Description:

Unaligned access to AIPS can be driven high by debug access port (DAP) and Fast Ethernet
controller (FEC). If they access the AIPS internal registers during an unaligned access, an ABORT
occurs.

Currently, if unalign is asserted, the AIPS will generate an abort on accesses to internal registers,
as the v6 extensions are not supported.

Projected Impact:

Unaligned access to AIPS internal registers fails.

Workaround:

Make only aligned access to the AIPS internal registers.

Silicon Fix:

No fix scheduled.

ENGcm07186 AIPS unalign causes abort on writes on internal register

ENGcm02157

Chip Errata for the i.MX50, Rev. 5

6 Freescale Semiconductor

Description:

Under specific set of conditions, the stale data saved in the L2 cache can be erroneously returned
to the processor on a subsequent load instruction.

The conditions are as follows:

• The L2 cache must be configured as an inner cache rather than as an outer cache

• The L2 cache must be configured to use write allocate memory type

The issue is reported by ARM, erratum ID 468413, Category 21.

Projected Impact:

If this erratum occurs, stale data can be read by a subsequent load instruction, resulting in an
incorrect program behavior.

Workarounds:

There are two viable workarounds for this erratum. One workaround is, not to configure the L2
cache as an inner cache, but maintain the default setting as an outer cache. The second workaround
is to use the remap registers to remap the inner cache attributes from write allocate to write back
instead.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Workaround implemented in Linux BSP.

The software workaround is to disable write allocate in the Level 2 cache in the bootloader. So no
condition is to trigger this issue. This workaround has performance penalty.

WinCE BSP Status:

Workaround implemented in WinCE BSP.

Write allocate is disabled in L2 cache control register.

ENGcm02157 ARM #468413: Incorrect L2 cache eviction can occur when L2
configured as inner cache

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm02161

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 7

Description:

Under very specific set of conditions, data from a Neon load request can be incorrectly forwarded
to a subsequent, unrelated memory request.

The conditions are as follows:

• Neon loads and stores must be in use

• Neon L1 caching must be disabled

• Trustzone must be configured and in use

• The secure memory address space and the non-secure memory address space both use the same
physical addresses, either as an alias or the same memory location or for separate memory
locations

The issue is reported by ARM, erratum ID 468414, Category 21.

Projected Impact:

If this erratum is encountered, it is possible for a load request to receive the wrong data value which
can likely result in incorrect operation of the program.

Workarounds:

There are many software solutions for this erratum and only one has to be applied. The
recommended solution, if possible, is to map cacheable areas of memory so that both secure and
non-secure do not share the same physical address space.

Another possible solution is to force NEON to cache in the L1 data cache. This can be programmed
using the Auxiliary Control Register bit [5], L1NEON, as follows:
MRC p15, 0, r0, c1, c0, 1; read register

ORR r0, r0, #(1<<5) ; L1NEON caching enable

MCR p15, 0, r0, c1, c0, 1 ; write register.

Another possible solution is to disable L2 data forwarding from the victim buffers. This can be
programmed using the L2 Auxiliary Control Register bit[27], Load data forwarding disable as
follows:
MRC p15, 1, r0, c9, c0, 2 ; read register

ORR r0, r0, #(1<<27) ; L2 load data forwarding disable

MCR p15, 1, r0, c9, c0, 2 ; write register

Both workarounds can be implemented with little or no perceived performance impact in the
majority of applications.

Proposed Solution:

No fix scheduled.

ENGcm02161 ARM #468414: NEON load data can be incorrectly forwarded to a
subsequent request

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm02161

Chip Errata for the i.MX50, Rev. 5

8 Freescale Semiconductor

Linux BSP Status:

Trustzone is not used and Neon L1 caching is enabled. So, this case does not occur.

WinCE BSP Status:

Trustzone is not used in WinCE BSP. Therefore, the erratum does not apply.

The issue occurs when two physical addresses in both Secure (S) and Non-Secure (NS) worlds are
required. If the use of the NS world is never enabled, then the issue cannot occur. The hazard occurs
between the NS and S worlds which does not get flushed properly, and data gets forwarded from
the L2 data buffers.

ENGcm02163

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 9

Description:

If a load request is processed which misses the L2 cache, but cannot be immediately forwarded to
the BIU, it encounters a special hazard which prevents the request from being required to access
the L2 cache RAM again to save power. There can be multiple requestors with unique addresses,
(that is, one address per cache line) with this special hazard. All write-allocate requests that access
the L2 cache RAM, on port1, do not have address comparators to check for this special hazard
condition. So, if a subsequent write-allocate request is issued to the L2 cache RAM on port1 and
allocates a victim buffer, then all requests pending with this special hazard must be forced to
perform a L2 cache RAM lookup again to maintain memory coherency. There is a 1-cycle window
in which the write-allocate request must allocate to a victim buffer and a pending request to the
BIU is not prohibited from going to the BIU, such that a deadlock can occur.

The conditions are as follows:

• The processor must have L2 cache present and enabled.

• The L2 cache must be configured to support the write allocate memory type.

The issue is reported by ARM, erratum ID 468416, Category 2.1

Projected Impact:

If this erratum is encountered and processor deadlock occurs, it can only be interrupted by asserting
RESET on the processor.

Workarounds:

The workaround for this erratum is to disable write-allocate by programming the L2 Auxiliary
Control Register bit[22], Write allocate disable:

MRC p15, 1, r0, c9, c0, 2; read register
ORR r0, r0, #(1<<22); Write allocate disable
MCR p15, 1, r0, c9, c0, 2; write register

Disabling write allocate in the L2 cache could have a performance impact for some applications.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Workaround implemented in Linux BSP.

The software workaround is to disable write allocate in the Level 2 cache. This workaround has
performance penalty.

ENGcm02163 ARM #468416: Processor deadlock can occur L2 cache
servicing write allocate memory

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm02163

Chip Errata for the i.MX50, Rev. 5

10 Freescale Semiconductor

WinCE BSP Status:

Workaround implemented in WinCE BSP.

Write allocate is disabled in L2 cache control register.

ENGcm02164

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 11

Description:

Three memory requests in the L2 cache can interact and result in a deadlock condition. The exact
scenario involves a dependency chain of three requests, an instruction fetch request, a memory
preload instruction (PLD), and a swap instruction (SWP). In this dependency loop, no request can
progress as each one of them is dependent on the next request. That is, the PLD request cannot
complete as the IF request is pending to use the BIU. The IF request cannot complete because of
the pending SWP request, and the SWP request is not allowed to complete as it is waiting on the
PLD to complete before obtaining the lock on the bus.

The conditions are as follows:

• PLD instructions must be used by the processor

• SWP instructions must be used by the processor

The issue is reported by ARM, erratum ID 468415, Category 31.

Projected Impact:

This erratum only impacts the users of swap instructions. Swap instructions have been deprecated
from the ARMv7 version of the ARM Architecture as its functional use in terms of setting up
semaphores is now replaced from the ARMv6 architecture forwards by the LDREX and STREX
instructions. If this erratum is encountered and the processor deadlock occurs, it can only be
interrupted by resetting the processor.

Workarounds:

One software workaround for this erratum is, not to use the swap instructions. If swap instructions
are to be used in the code base, the other software workaround is to disable the PLD instructions
and make them a NOP. The code required to implement this workaround is as follows:

MRC p15, 0, r0, c1, c0, 1; read register
ORR r0, r0, #(1<<9); PLDNOP - force PLD to be NOP
MCR p15, 0, r0, c1, c0, 1; write register

This workaround has some performance impact on the peak memory copy bandwidth.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Not implemented because the swap instructions are not used. They are deprecated for ARMv7.

ENGcm02164 ARM #468415: Instruction: swap, preload, fetch can interact and
cause deadlock

1. Category 3 defined as: Behavior that is not the originally intended behavior but should not cause any problems in applications.

ENGcm02164

Chip Errata for the i.MX50, Rev. 5

12 Freescale Semiconductor

WinCE BSP Status:

Kernel Interlocked APIs do not make use of swap instructions. No usage of swap instruction found
in the public/private code that Freescale has access to. It is confirmed that swap instruction is not
used in the WinCE OS.

Freescale codecs and customer application code must avoid usage of swap instructions.

ENGcm03161

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 13

Description:

ARMv7 architecture specifies that the CSSELR should be banked between Secure and Non-secure
states. Cortex-A8 does not currently bank this register.

The conditions are as follows:

• The system should have an active process in secure state and an active process in non-secure
state at the same time.

• The system should perform cache maintenance operations in both secure and non-secure
processes.

The issue is reported by ARM, erratum ID 485963, Category 21.

Projected Impact:

A cache cleaning sequence that reads the CSSELR may not work as expected. The published
sequence for cleaning the entire cache (see ARM Architecture Reference Manual) includes setting
the CSSELR followed by a read from the selected Cache Size ID register (CCSIDR). If the
non-secure side executes this sequence, and is encountered by a secure interrupt between the
setting of the CSSELR and the reading of the selected CCSIDR, then there is a possibility that the
secure side may also use the CSSELR. On returning to the non-secure side, the CSSELR value may
have changed, which makes the cache cleaning sequence to malfunction. Similarly, a non-secure
interrupt can cause a secure cache cleaning sequence to malfunction.

Workarounds:

When transitioning security state, the secure monitor software should save the current CSSELR
value (corresponding to the security state the processor is transitioning out of) and restore the
previously saved CSSELR value (corresponding to the security state the processor is transitioning
into).

Proposed Solution:

No fix scheduled.

Linux BSP Status:

No software workaround required. Trustzone is not used.

WinCE BSP Status:

No software workaround required. System does not perform cache maintenance in non-secure
mode.

ENGcm03161 ARM #485963: C15 Cache Selection Register (CSSELR) is not
banked

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm03162

Chip Errata for the i.MX50, Rev. 5

14 Freescale Semiconductor

Description:

All memory transactions performed as part of a tablewalk should be considered Privileged, even
in the User mode. However, Cortex-A8 incorrectly marks memory transactions generated from
tablewalks performed in User mode as the user transactions on the AXI bus. This indication is
given by the ARPROT[0] signal, which is set to zero during the transaction.

The conditions are as follows:

• Cortex-A8 must be in User mode

• A memory transaction (instruction or data) misses in the TLB and causes a tablewalk

• The address for the page table entry is not found in the L2 cache, resulting in an external
memory request

• This erratum occurs when ARPROT[0] incorrectly indicates a user transaction for this memory
request on the AXI bus.

The issue is reported by ARM, erratum ID 488063.

Projected Impact:

As the values broadcast on ARPROT[0] are completely transparent to the software, the
implications for this erratum are only on a specific subset of the processor systems, specifically for
a system that includes some form of system level memory protection unit, that uses the ARPROT
bits to determine if a memory request can be allowed. For any system that does include such a unit,
that unit may report false errors on page table accesses due to this erratum.

Workarounds:

As the processor directly does not make use of ARPROT[0], any workaround would be specific to
the device that makes use of the values broadcast on ARPROT[0]. The most likely usage would be
some form of system memory protection unit. If such protection unit exists, it may need to filter
out any access to the page tables from the address space that is protected to operate properly. This
implies that the external protection unit cannot provide additional protection for the page tables.
For example, the page table cannot be inserted in a Secure RAM which cannot be accessed in User
mode, as in this case, an additional protection is added beside the MMU. Alternatively, the CSU
can be configured to transform User access to Privileged on addresses used by PAGE TABLE.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

System memory bus has no user mode protection, so this is not applicable.

WinCE BSP Status:

No software workaround is available.

ENGcm03162 ARM #488063: ARPROT[0] incorrectly indicates USER
transaction for tablewalks

ENGcm07666

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 15

Description:

When a Clean to Point of Coherency or Clean and Invalidate to Point of Coherency by MVA
operation is performed, it is possible that the line remains present in the L2 cache and any dirty data
is not pushed out on to the AXI bus to main memory. This can occur whenever the requested
address is present in the L1 cache but not the L2 cache.

The conditions are as follows:

• The memory region being cleaned is configured in write allocate mode

• The cache line being cleaned is initially present in the L1 cache and not in the L2 cache

The issue is reported by ARM, erratum ID 586320, Category 21.

Projected Impact:

If a Clean or Clean and Invalidate operation does not operate as intended, and leaves the data
present in the L2 cache, the memory coherency in the system can no longer be guaranteed.
Therefore, this erratum impacts any code sequence used to maintain the system coherence.

Workarounds:

The software workaround for this erratum is to disable the write allocate in the L2 cache, as shown
in the following instruction sequence:

MRC p15, 1, <Rd>, c9, c0, 2; read L2 cache Aux Ctrl Reg
ORR <Rd>, <Rd>, #(1 << 22); set the Write Allocate disable bit
MCR p15, 1, <Rd>, c9, c0, 2; write the L2 cache Aux Ctrl Reg

Disabling the write allocate in the L2 cache can impact the performance of some applications. If
this performance impact is deemed to be very high, there are two other software workarounds that
can be used. The first is to disable write allocate around each sequence of clean by MVA to PoC or
clean/invalidate by MVA to PoC instructions, as shown in the following instruction sequence:

MRC p15, 1, <Rd>, c9, c0, 2; read L2 cache Aux Ctrl Reg
ORR <Rd>, <Rd>, #(1 << 22); set the Write Allocate disable bit
MCR p15, 1, <Rd>, c9, c0, 2; write the L2 cache Aux Ctrl Reg

<perform sequence of MVA operations here>

MRC p15, 1, <Rd>, c9, c0, 2; read L2 cache Aux Ctrl Reg
BIC <Rd>, <Rd>, #(1 << 22); clear the Write Allocate disable bit
MCR p15, 1, <Rd>, c9, c0, 2; write the L2 cache Aux Ctrl Reg

The final workaround that can be implemented is to perform each maintenance operation twice
with interrupts disabled. By performing the operation twice in back-to-back successions with no
other memory operations executed in between, it can be assured that the line is evicted from both
L1 and L2 cache and written out to main memory.

ENGcm07666 ARM #586320: Clean & Clean/Invalidate maintenance ops by
MVA&PoC may not push data to external memory

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm07666

Chip Errata for the i.MX50, Rev. 5

16 Freescale Semiconductor

Perform the following steps:

1. Disable the interrupts and the imprecise aborts

2. Execute the maintenance operation first pass

3. Execute the same maintenance operation, second pass

4. Enable the interrupts and the imprecise aborts

Repeat the above sequence for each cache maintenance operation. Interrupts can remain disabled
for a longer sequence of maintenance operations, but this has a negative effect on interrupt latency.
This workaround has a performance impact on the execution time of cache maintenance
operations.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Workaround implemented in Linux BSP.

The software workaround is to disable write allocate in the Level 2 cache in the bootloader. This
workaround has performance penalty.

WinCE BSP Status:

Workaround implemented in WinCE BSP.

Write allocate is disabled in L2 cache control register. This workaround impacts performance.

ENGcm07667

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 17

Description:

When a Clean to Point of Coherency (PoC) by MVA operation is performed, or the Preload Engine
is programmed to clean a region of memory from the L2 cache, a cache line from that region can
be corrupted with a stale copy of memory, and a memory store operation is lost.

The conditions are as follows:

• A Cache Clean by MVA to the PoC instruction is executed to clean cache line A, or the preload
engine is configured to clean a memory region which includes cache line A. Either of the
operations result in the placement of cache line A into a victim buffer for writeback to external
memory. It also keeps the line still valid in the L2 cache.

• A memory store operation is performed to the same cache line A that is evicted by the cache
clean operation. This operation results in a modification of cache line A in the L2 cache (but not
to the copy of the line that may still remain in the victim buffer if memory response is slow).

• A cache eviction is done of cache line A due to an unrelated memory request to load cache line
B. The modified copy of cache line A is placed in a victim buffer. At this point, the two victim
buffers may contain two different versions of cache line A. As each victim buffer uses a
different AXI ID and arbitrates independently for the AXI bus, there is no guarantee for the
order in which the memory updates occur, and the store operation may be overwritten by the
cache clean operation, leaving the external memory with stale contents.

The issue is reported by ARM, erratum ID 586323, Category 21.

Projected Impact:

If the operation sequence occurs as described above, one or more store operations are lost, resulting
in incorrect program behavior. This can occur for any application which either uses the preload
engine to clean a memory region, or uses Clean by MVA to PoC maintenance operations to clean
a region of memory.

Workarounds:

There are two feasible workarounds that can be used for this erratum. The first workaround is to
place a DMB or DSB barrier at the end of each cache clean routine or preload engine memory clean
sequence. This barrier operation ensures that the cleaned line goes out and is seen by main memory
before the store is executed and therefore guarantees that the clean is done correctly and memory
contains the correct final value.

This workaround is consistent with the ARM recommended practice for ending the maintenance
routine. The above workaround is convenient to implement and should work for all expected usage
models. However, there is still the possibility that an interrupt can be taken during the clean routine,
and the interrupt handler can perform a store operation to the line just cleaned, allowing for the
scenario which can lead to the erratum.

ENGcm07667 ARM #586323: Cache clean memory ops by Preload or Clean
MVA to PoC may corrupt the memory

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm07667

Chip Errata for the i.MX50, Rev. 5

18 Freescale Semiconductor

Another workaround that avoids even the case mentioned above, is to convert all Clean by MVA
to PoC operations to Clean and Invalidate by MVA to PoC as described in the code sequence as
follows:

• Replace all uses of: MCR p15, 0, <Rn>, c7, c10, 1;

• Clean Data cache line by MVA to PoC with this instruction: MCR p15, 0, <Rn>, c7, c14, 1;

• Clean and Invalidate cache line by MVA to PoC.

There is no Preload Engine equivalent for the second workaround option as it is not possible to
configure the preload engine to perform a clean and invalidate operation. Therefore, if there are
concerns that the DSB based workaround is insufficient, then it is advisable to not use the Preload
Engine for cleaning memory regions. The preload engine can be configured such that it is not
accessible at user/privilege and nonsecure/secure level of granularity.

For more information on Preload Engine configurability, see Cortex-A8 Technical Reference
Manual.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Workaround implemented in Linux BSP.

All cache flush routines have DSB at end.

WinCE BSP Status:

Workaround implemented in WinCE BSP.

Interrupts are enabled during cache clean operation, so DMB/DSB workaround is not
sufficient.WinCE BSP implements software workaround to replace clean cache line operation with
Clean-and-Invalidate cache line operation. There may be a performance penalty due to the
undesired invalidation of the cache line when invoking OEMCacheRangeFlush to clean individual
cache lines.

ENGcm07668

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 19

Description:

If a non-cacheable memory request is subsequently followed by any cache maintenance operation
done by MVA, then the memory can be corrupted.

The conditions are as follows:

• The L1 data cache must be of size 32 Kbyte

• The L1 data cache hardware alias checks are enabled (the L1ALIAS bit in the Auxiliary Control
Register is set to 0)

• The virtual memory management used by the operating system does not follow the page
coloring guidelines and allows virtual to physical address alias cases to exist on bit 12 of the
address

• A non-cacheable memory request to normal, device, or strongly ordered memory is
subsequently followed by a cache maintenance operation done by MVA without any cacheable
memory operations executed in between. The non-cacheable memory request can be fully
executed, or can be a speculative instruction in the branch shadow that subsequently is flushed.

When the above conditions are met and the cache maintenance operation is performed to generate
a hash alias scenario on its cache lookup, memory corruption or a false parity error can occur.

The issue is reported by ARM, erratum ID 586324, Category 21.

Projected Impact:

If the operation sequence occurs as described above, then memory can be corrupted or a false parity
error can be generated. In addition, even if the workaround as described below is implemented, it
is possible that a nonsecure maintenance operation could result in the invalidation of a secure
memory location. Therefore, this could possibly be viewed as an avenue for a security attack.
However, the contents of secure memory cannot be viewed as a direct result of this erratum and the
lack of consistent repeatability makes it very difficult for the user to make use of this erratum as a
security attack.

Workarounds:

If full PIPT caching support is not required by the operating system, or the processor includes a
16 Kbyte L1 data cache, then no workaround is required. If alias conditions can occur, then the
workaround is to guarantee that a cache maintenance operation is not immediately preceded by a
non-cacheable memory request. This is guaranteed by initiating every cache maintenance by MVA
routine with a cacheable load or store request immediately preceding the main loop and ending
with a DSB barrier operation at the end of the loop. The load or store that precedes the loop can be
done to any cacheable memory location. In addition, both interrupts and aborts should be masked
during the cache maintenance routine. Interrupt masking is required to prevent a non-cacheable
memory request, either fully executed or in a branch shadow, from initiating the sequence that can

ENGcm07668 ARM #586324: Cache maintenance operation done by MVA may
corrupt memory

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm07668

Chip Errata for the i.MX50, Rev. 5

20 Freescale Semiconductor

result in this erratum. If there are concerns about the interrupt latency, the maintenance loop can be
amended to enable and disable the interrupts directly around the maintenance operation. This
impacts the time taken to complete the maintenance loop.

To workaround any concerns of a potential security attack due to this erratum, all secure memory
should be marked as inner write through. This can be done either by using the caching attributes in
the page tables for all secure page tables or by making use of the secure banked version of the
remap registers. Apart from making all secure memory write through, a routine should be run out
of reset to completely fill the cache with dummy data, to prevent invalid, uninitialized data in the
cache from being written out to memory and potentially corrupting secure memory. Making all
secure memory inner write through guarantees that even if the invalidation of a secure line in the
L1 cache occurs due to this erratum, the correct data is not lost.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Does not apply to Linux BSP because page coloring guidelines are followed for VIPT cache types.

WinCE BSP Status:

It was determined that the conditions required by the erratum do not occur within WinCE, and
therefore, no software workaround is required.

ENGcm07669

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 21

Description:

Under certain conditions, a sequence of instructions, where an MCR instruction that writes a CP15
register is closely followed by an MRC that reads the same register, are executed such that the
RAW hazard is not detected and the MRC reads the old value of the register. This scenario can only
occur for accesses to one of the following four CP15 registers:

• CacheSizeSelection Register

• Thread and ProcessID user read/write

• Thread and ProcessID user read only

• Thread and ProcessID privilege only

These registers are both readable and writable and have been optimized to execute in a single cycle.

Furthermore, this scenario occurs only when a specific sequence of instructions is executed
between the MCR and the MRC. The sequence must meet two criteria:

• It must take less than three cycles to execute

• It must have one of the instructions in the following list:

— ARM PLD with [Rn, -Rm, <shift>] addressing mode

— ARM or Thumb PLD with [Rn, Rm,<shift>] addressing mode (unless it is LSL #0 or
LSL #2)

— Thumb or ThumbEE load/store instruction with [Rn, Rm,<shift>] addressing mode (unless
it is LSL #0 or LSL #2)

— Thumb TBB instruction

The issue is reported by ARM, erratum ID 588115, Category 31.

Projected Impact:

If this erratum is encountered, the old stale value of the register is read rather than the newly written
value, in which case the system software may appear to behave incorrectly. However, the usage
model for such a software sequence is unclear, and hence the likelihood of encountering it in
practice is very low, especially considering the requirement of the second unrelated instruction that
must also fall between the MCR and the MRC.

Workarounds:

If a workaround for this erratum is desired, there are two options. The first simple option is to add
a NOP immediately following the MCR register write in any case where encountering this erratum
may be a concern. By adding a single NOP, the minimum required cycle window is guaranteed and
the erratum does not occur.

The second option is to set bit 16 in the CP15 Auxiliary Control Register. This causes a pipeline
flush on every write to the CP15 register and ensures that the RAW hazard condition does not

ENGcm07669 ARM #588115: A RAW hazard on certain CP15 registers can
result in a stale register

1. Category 3 defined as: Behavior that is not the originally intended behavior but should not cause any problems in applications.

ENGcm07669

Chip Errata for the i.MX50, Rev. 5

22 Freescale Semiconductor

occur. The second workaround has the advantage of requiring just one change to the CPU
configuration that can be done statically. The disadvantage is that it has some impact on the
performance of write updates to CP15 registers that would not otherwise require a pipeline flush.
This second workaround can be implemented using the following code sequence to be executed in
the Secure state:
MRC p15, 0, R1, c1, c0, 1 ; read Aux Ctl Register

ORR R1, R1 #(1 << 16) ; set bit 16 to 1

MCR p15, 0, R1, c1, c0, 1 ; write Aux Ctl Register

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Not required because PLD instruction and Thumb mode are not used for affected registers.

WinCE BSP Status:

Fixed in WinCE BSP.

BSP implements software workaround to enable pipeline flush (set bit 16 of Aux Control Register)
on writes to CP15 registers.

OSBench indicates a performance impact of up to 14% for a subset of the OSBench tests
(interprocess PSL calls). An analysis of the OSBench performance on Cortex-A8 determined that
interprocess PSL calls generate excessive cache maintenance.

ENGcm09828

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 23

Description:

If a sequence of load and store operations are performed to different address locations in a memory
region that is marked as shared device, then a load can incorrectly bypass a store.

The issue is reported by ARM, erratum ID 709718, Category 21.

Projected Impact:

If the load address and store address are mapped to access the memory region of the same device,
and the device relies on memory operations to occur in program order, then this device may not
operate as intended.

Workarounds:

The erratum occurs only for the shared device memory regions and not for the non-shared device
memory regions. Therefore, this problem can be worked around by using the remap registers to
remap all the shared device transactions to the non-shared device. The only difference between the
shared device and the non-shared device is the attributes produced for the transaction on the AXI
interface. Therefore, the user does not experience any impact in terms of performance from this
workaround.

Another possible use of the TEX remap is to map the shared device regions to the strongly ordered
transactions. This second remapping option is less desirable as it affects the performance, as
strongly ordered transactions are not buffered.

The following code sequence is required to setup and enable the TEX remap. This should be done
before enabling the MMU.

; Setup PRRR so device is always mapped to non-shared
 MRC p15, 0, r0, c10, c2, 0; Read Primary Region Remap Register
 BIC r0,#3<<16
 MCR p15, 0, r0, c10, c2, 0; Write Primary Region Remap Register

; Enable TEX remap
 MRC p15, 0, r0, c1, c0, 0; Read Control Register
 ORR r0,r0,#1<<28
 MCR p15, 0, r0, c1, c0, 0; Write Control Register

Another valid workaround is to place a data memory barrier (DMB) between all the memory
accesses to the device regions, where ordering is required between a store and a subsequent load
to a different physical address.

Proposed Solution:

No fix scheduled.

ENGcm09828 ARM #709718: Load and store operations to shared device
memory regions may not complete in program order

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm09828

Chip Errata for the i.MX50, Rev. 5

24 Freescale Semiconductor

Linux BSP Status:

Fixed in Linux BSP.

Shared Device memory type is not used. But PRRR setup codes were added before enabling MMU
in the bootloader.

WinCE BSP Status:

Fixed in WinCE BSP.

Workaround implemented.

ENGcm10693

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 25

Description:

If the PMU is in use and an overflow event occurs simultaneously with a write to one of the subsets
of CP15 and CP14 registers, the overflow event can be lost.

The conditions are as follows:

1. The performance counters must be in use

2. The performance counter must have an overflow (counter value goes beyond 0xFFFF_FFFF)

3. Simultaneous with the counter overflow, a MCR instruction must be executed that writes to one
of the following CP14/CP15 registers:

— Any PMU register other than PMU counter registers

— ThumbEE Configuration Register

— ThumbEE Handler Base Register

— System Control Register

— Auxiliary Control Register

— Secure Configuration Register

— Secure Debug Enable Register

— Nonsecure Access Control Register

— Context ID and Thread ID Registers

— Coprocessor Access Register

— Cache Size Select Register

The issue is reported by ARM, erratum ID 628216, Category 21.

Projected Impact:

If the erratum occurs, the overflow status flag is not set for that counter in the Overflow Flag Status
Register, and an interrupt request is not generated, even when the Interrupt Enable Set Register is
configured to generate an interrupt on counter overflow.

Workarounds:

The main workaround is to poll the performance counter. The maximum increment in a single cycle
for a given event is 2. Therefore, polling can be infrequent as no counter can increment by more
than 232 in fewer than 2 billion cycles.

If the main usage model for performance counters is collecting values over a long period, then
polling can be used to collect values (and reset the counter) rather than waiting for an overflow to
occur. Polling can be done infrequently and overflow can be avoided.

If the main usage model for performance counters relies on presetting the counter to some value
and waits for an overflow to occur, then polling can be used to detect when an overflow event is

ENGcm10693 ARM #628216: Potential OVFL status loss when it occurs at
CP15 and CP14 update

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm10693

Chip Errata for the i.MX50, Rev. 5

26 Freescale Semiconductor

missed. An overflow can be determined to have been missed if the unsigned value in the counter
is less than the value preset into the counter. Polling can be done infrequently because of the
number of cycles it requires for this check to fail. If the erratum is triggered and an overflow event
is missed, the counter sample can be thrown away or the true value can be reconstructed.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

No software workaround is implemented because performance counters are not used and are only
for debug.

WinCE BSP Status:

WinCE BSP currently does not use the performance counters. No BSP change required.

ENGcm10702

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 27

Description:

All BTB invalidate operations, including BTB Invalidate by MVA operations, by default are
implemented as a NOP in the Cortex-A8 processor. These operations can be executed as NOPs as
flushing BTB entries are not required by the Cortex-A8 processor for correct functionality, and
there is no additional performance penalty for an incorrect branch prediction versus a
non-prediction. However, it is possible for BTB operations to be enabled by setting the IBE bit in
the CP15 Auxiliary Control Register. When enabled in this fashion, BTB invalidate by MVA
operations may not work as intended. Instead of writing zeros to the valid bit of the BTB entry
matching the MVA provided, the CP15 “Invalidate Branch Predictor by MVA” operation writes the
value currently in the “Instruction L1 System Array Debug Register 0.” This register is not
initialized at the reset time and can only be written in secure, privileged modes when
CP15SDISABLE is not set.

The conditions are as follows:

1. The branch predictor is enabled (SCTLR.Z = 1)

2. The Auxiliary Control Register IBE bit is set to 1

3. An invalidate Branch predictor by MVA operation is executed

4. The Instruction L1 System Array Debug Register 0 contains a non-zero value which sets the
valid bit and clears the page cross bit.

The issue is reported by ARM, erratum ID 687067, Category 31.

Projected Impact:

If the non-zero value contained in L1 System Array Debug Register 0 sets the valid bit of the BTB
entry, then the entry is not invalidated as intended.

Workarounds:

A workaround for this erratum is, not to enable the IBE bit. ARM recommends that the IBE bit
should not be enabled unless it is required for an erratum workaround.

If the IBE is to be enabled, then the L1 System Array Debug Register 0 should be initialized to a
zero value. This register is for RAM array debug purposes and is not used as a part of normal
functionality. It is only accessible in a privileged secure mode. Therefore, it can be statically
initialized as a part of the boot code sequence. If the register is used for debug purposes, the value
should be reset to zero when the debug sequence completes.

The code to initialize the L1 System Array Debug Register 0 is as follows:
MOV r1, #0
MCR p15, 0, r1, c15, c1, 0 ; write instruction data 0 register
MRC p15, 0, R1, c1, c0, 1 ; read Aux Ctl Register
ORR R1, R1 #(1 << 6) ; set IBE to 1
MCR p15, 0, R1, c1, c0, 1 ; write Aux Ctl Register

ENGcm10702 ARM #687067: BTB invalidate by MVA operations will not work
when the IBE bit is set

1. Category 3 defined as: Behavior that is not the originally intended behavior but should not cause any problems in applications.

ENGcm10702

Chip Errata for the i.MX50, Rev. 5

28 Freescale Semiconductor

Proposed Solution:

No fix scheduled.

Linux BSP Status:

No software workaround is implemented because IBE is not set as 1.

WinCE BSP Status:

WinCE BSP does not set the IBE bit. BTB invalidate operations will be NOPs. No BSP change
required.

ENGcm10704

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 29

Description:

If a debug watchpoint and a precise data abort are both triggered from the same data access, the
ARM Architecture specifies that the data abort should be prioritized. However, this does not occur
on the Cortex-A8 and the watchpoint is taken instead.

The conditions for the erratum are as follows:

1. At least one debug watchpoint is programmed

2. A precise data abort occurs on the same address as the watchpoint

The issue is reported by ARM, erratum ID 693270, Category 31.

Projected Impact:

The implications of this erratum only affects the debug software. The data abort should take
precedence over the watchpoint so that the OS has a chance to fix up paged-out memory before
re-executing the instruction and presenting the debugger with the watchpointed address. Due to this
erratum, this fix up does not occur and the debugger should be capable of handling a faulting
address.

Workarounds:

The workaround for this erratum is to ensure that the debugger software handles the faulting
address. When the debugger signals a watchpoint, and identifies that the page being accessed is
subjected to an MMU fault, which it would like the OS to patch up before dealing with itself, it can
perform the following actions:

• Disable the watchpoint

• Set vector catch on the local Data Abort exception (secure or non-secure, as appropriate)

• Set the PC at the watchpointed instruction and restart execution

The processor restarts, re-executes the instruction and generate the MMU fault. It then fetches the
instruction from the Data Abort handler and re-enter Debug state because of the Vector Catch
event. The debugger can then perform the following actions:

• Re-enable the watchpoint

• Disable the vector catch

• Set the PC at the Data Abort vector and restart execution

The processor restarts and re-executes the Data Abort vector instruction. The OS then patches up
the MMU fault and attempts to re-execute the original instruction. Re-executing the instruction
regenerates the Watchpoint debug event, but now the page is properly patched up.

Proposed Solution:

No fix scheduled.

ENGcm10704 ARM #693270: Taking a watchpoint is incorrectly prioritized over
a precise data abort

1. Category 3 defined as: Behavior that is not the originally intended behavior but should not cause any problems in applications.

ENGcm10704

Chip Errata for the i.MX50, Rev. 5

30 Freescale Semiconductor

Linux BSP Status:

No software workaround is implemented because the watchpoints are for debug only.

WinCE BSP Status:

Watchpoints are only used by debug software. WinCE uses Microsoft kernel debugger that does
not utilize hardware watchpoints. No BSP change required.

ENGcm10713

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 31

Description:

If a Neon store is done to Device type memory and is followed in instruction sequence by a load
instruction to Device type memory, then it is possible that an unrelated store instruction, which is
done to cacheable memory and hit the L1 cache, has its data dropped and therefore, does not update
memory.

There are three different memory types defined in the ARM architecture namely, Strongly Ordered,
Device, or Normal. Device type memory is one of the three different memory types. This region is
specified by the page table entries used by the MMU.

The conditions for this erratum are as follows:

• A Neon store is done to Device type memory.

• A load is executed to Device type memory (any load to Device type memory region, not just
from Neon), consecutive to the Neon store.

• Several stores hit the L1 cache. (Any store that hits the L1 cache - Neon or integer core. The
address does not matter.)

The issue is reported by ARM, erratum ID 507113, Category 31.

Projected Impact:

If the erratum occurs, one or more cacheable stores that hit the L1 cache do not update the cache,
leaving stale contents in memory. This is likely to cause observable, incorrect behavior in the
application.

The Neon access to memory region marked as Device is not a practical case in general.

Workarounds:

The only workaround for this erratum is to avoid accessing the Device type memory with Neon
store instructions. (There should be no practical case for this, anyway). However, if needed, define
the region as Strongly Ordered memory, instead.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Not required because Device memory type is not user space accessible.

WinCE BSP Status:

Workaround implemented in WinCE BSP.

ENGcm10713 ARM #507113: A Neon store to device memory can result in
dropping a previous store

1. Category 3 defined as: Behavior that is not the originally intended behavior but should not cause any problems in applications.

ENGcm10713

Chip Errata for the i.MX50, Rev. 5

32 Freescale Semiconductor

The memory which is Device Shared should be mapped as Normal Outer/Inner Non-Cacheable.
This is the preferred memory type for RAM memory mapped as NCB. Customer software must
avoid Device memory types.

ENGcm10723

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 33

Description:

If the integer to floating point conversion operation, VCVT.f32.u32, is executed with the FPSCR
register configured for Default NaN and Flush-to-zero enabled, and the rounding mode used is RP
(Round-to-Positive infinity), it returns the incorrect result for the source operation 0xFFFF_FF01.
Specifically, it returns the result 0x0000_0000 instead of the correct result 0x4F80_0000. The
erratum can occur only for this specific input value and this specific configuration of the FPSCR
register.

The conditions are as follows:

1. Default NaN is enabled (FPSCR[25] = 1’b1)

2. Flush-to-zero is enabled (FPSCR[24] = 1’b1)

3. RP rounding mode is enabled (FPSCR[23:22] = 2’b01)

4. A VCVT.f32.u32 instruction is executed with the source operand 0xFFFF_FF01

5. The result of the instruction is incorrect 0x0000_0000 rather than 0x4F80_0000

The issue is reported by ARM, erratum ID 715847, Category 31.

Projected Impact:

The incorrect result from the conversion operation can result in further incorrect results calculated
and unexpected program behavior.

Workarounds:

The erratum only occurs if the floating point unit is configured in run fast mode with RP rounding.
The easiest workaround is to avoid using this particular mode combination. Round-to-Nearest
(RN) is a common rounding mode used, but if RP functionality is desired, it should be done without
using Default NaN and/or without Flush-to-zero enabled. Default NaN signalling, Flush-to-zero,
and rounding mode are all configured using bits [25:22] of the FPSCR register. This register is
typically configured by the system software and should not change within an application.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

No software workaround is implemented because the RN mode is used.

WinCE BSP Status:

The WinCE BSP configures the VFP for run-fast mode (default NAN enabled, flush-to-zero
enabled), so it is subject to the erratum. WinCE BSP does not specifically configure RP rounding
mode which is another condition for this erratum. Our FP support comes from a DLL provided by

ENGcm10723 ARM #715847: VCVT.f32.u32 can return wrong result in a specific
configuration of Floating Point Unit (FPU)

1. Category 3 defined as: Behavior that is not the originally intended behavior but should not cause any problems in applications.

ENGcm10723

Chip Errata for the i.MX50, Rev. 5

34 Freescale Semiconductor

ARM. The ARM DLL should avoid the specific rounding mode associated with the erratum. Need
to ensure RP rounding mode is not enabled.

ENGcm11134

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 35

Description:

If a load request is processed which misses the L2 cache, but cannot be immediately forwarded to
the BIU, it encounters a special hazard which prevents the request from being required to access
the L2 cache RAM again to save power. There can be multiple requestors with unique addresses,
(that is, one address per cache line) with this special hazard. All write-allocate requests that access
the L2 cache RAM, on port1, do not have address comparators to check for this special hazard
condition. So, if a subsequent write-allocate request is issued to the L2 cache RAM on port1 and
allocates a victim buffer, then all requests pending with this special hazard must be forced to
perform a L2 cache RAM lookup again to maintain memory coherency. There is a 1-cycle window
in which the write-allocate request must allocate to a victim buffer and a pending request to the
BIU is not prohibited from going to the BIU, such that a deadlock can occur.

The conditions are as follows:

• The processor must have L2 cache present and enabled.

• The L2 cache must be configured to support the write allocate memory type.

The issue is reported by ARM, erratum ID 468416, Category 21.

Projected Impact:

If this erratum is encountered and processor deadlock occurs, it can only be interrupted by asserting
RESET on the processor.

Workarounds:

The workaround for this erratum is to disable write-allocate by programming the L2 Auxiliary
Control Register bit[22], Write allocate disable:

MRC p15, 1, r0, c9, c0, 2; read register
ORR r0, r0, #(1<<22); Write allocate disable
MCR p15, 1, r0, c9, c0, 2; write register

Disabling write allocate in the L2 cache could have a performance impact for some applications.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Workaround implemented in Linux BSP.

The software workaround is to disable write allocate in the Level 2 cache. This workaround has
performance penalty.

ENGcm11134 ARM #468416: Under a specific set of conditions, processor
deadlock can occur when L2 cache is servicing write allocate
memory

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm11134

Chip Errata for the i.MX50, Rev. 5

36 Freescale Semiconductor

WinCE BSP Status:

Workaround implemented in WinCE BSP.

Write allocate is disabled in L2 cache control register.

ENGcm11231

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 37

Description:

If a Clean by MVA, Invalidate by MVA, or Clean and Invalidate by MVA cache maintenance
operation is performed in a memory region that is marked non-cacheable, device, or strongly
ordered, it is possible for the processor to deadlock or have stale data left in the processor. This
erratum occurs when the address hits the cache in a way that is not predicted by the Hash Virtual
Address Buffer (HVAB), which is a cache way predictor inside the processor. This erratum can
occur only for the cache maintenance operations that are performed by MVA. It does not occur for
the set/way based cache maintenance operations.

The conditions are as follows:

1. A memory region is marked cacheable in a page table entry, and a cache line from that region
is placed in the data cache.

2. A second page table entry marks the same memory region as non-cacheable, device, or strongly
ordered. This can occur by changing the memory attributes in the existing page table entry, or
through an alternative page table entry that maps the same virtual to physical address but with
non-cacheable, device, or strongly ordered attributes rather than cacheable.

3. A Clean by MVA, Invalidate by MVA, or Clean and Invalidate by MVA cache maintenance
operation is done to this address

4. The maintenance operation receives a false hit indication from the HVAB array

5. The maintenance operation receives a true hit indication from the Tag lookup, which implies
that the data is present in the array, but located in a different way that is not predicted by the
HVAB.

6. An eviction of the dirty line has started but not finished, and the processor leaves stale data in
the cache and can potentially enter a deadlock state.

The issue is reported by ARM, erratum ID 728018, Category 21.

Projected Impact:

If stale data is left in the cache, the processor does not work as intended. If deadlock state occurs,
it can only be exited by asserting the RESET pin on the processor.

Workarounds:

There are two possible workarounds for this erratum.

The first workaround is to avoid performing the cache maintenance operations to non-cacheable
addresses previously marked cacheable and therefore may be resident in the cache. If the address
is present in the cache, it implies that the memory region is marked cacheable at some earlier point
of time and explicitly changed to non-cacheable before the maintenance operation is performed. If
the region type is not changed to non-cacheable before executing the maintenance operation, this
erratum can be avoided. The value of changing a memory region from cacheable to non-cacheable

ENGcm11231 ARM #728018: MVA Cache operations for non-cacheable
memory region cause deadlock

1. Category 2 defined as: Behavior that contravenes the specified behavior and that can limit or severely impair the intended use
of specified features, but does not render the product unusable in all or the majority of applications.

ENGcm11231

Chip Errata for the i.MX50, Rev. 5

38 Freescale Semiconductor

before performing the maintenance operations is that this is the only way by which the ARM v7
Architecture guarantees that the line is not immediately placed back into the cache due to the
possibility of data speculation. However, in Cortex-A8, this degree of data speculation is never
done. Therefore, changing the memory type to non-cacheable before executing the cache
maintenance operation is not required to assure that the line is not immediately placed back into
the cache. However, if there is a code compatibility with other v7 implementations (that may
exhibit this level of data speculation) is a concern, then this first workaround is insufficient, and
the second workaround should be used.

The second workaround is to execute the loop of cache maintenance operations twice. Execute the
loop once with the memory region still marked cacheable. Then change the page table entry to
make the memory region non-cacheable and execute the loop for a second time. The first loop
cleans the data from the cache in the Cortex-A8. On the Cortex-A8, the second loop is redundant
as it misses on all lines in the cache, but resolves the data speculation issue that can occur on a
different v7 architecture implementation. The existing cache maintenance code in a dynamically
paged environment can be dependent on the maintenance operation triggering a page fault to set
the correct page table entry. The workaround code must independently ensure that the correct page
table entry is present.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Not required because set/way is used in cache maintenance.

WinCE BSP Status:

Not implemented.

ENGcm08174

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 39

Description:

The CSPI automatically clears the overrun error status bit when the RxFIFO is read. This bit should
not be cleared. This bit is designed for the interrupt access mode, and not for the DMA access
mode.

The conditions are as follows:

• When the RxFIFO overflow/overrun bit is cleared by an RxFIFO read, it does not cause a
problem if no DMA accesses to the CSPI occur.

• When DMA is utilized, the interrupt status of RxFIFO overflow/overrun can be lost because of
uncontrolled RxFIFO access by DMA.

Projected Impact:

If the RxFIFO is read before reading the Overrun error status bit, it is possible to miss the overrun
and thus miss the data.

Workaround:

When DMA is used for data transfer, the software can program the CSPI to allow only the interrupt
generation during the overrun condition and not enable any other interrupt sources. In this way,
whenever an interrupt comes from CSPI, the software can assume that it is the result of an overrun
condition.

BSP Implementation:

BSP uses the PIO mode. No workaround required in the PIO mode.

Silicon Fix:

No fix scheduled.

ENGcm08174 CSPI wrongly clears the overrun status bit

ENGcm11544

Chip Errata for the i.MX50, Rev. 5

40 Freescale Semiconductor

Description:

CSPI is configured in the slave mode to receive 32-bit data and SSCTL bit of CONREG is set.

The Rx FIFO is loaded twice for every 32-bit data Rx:

• First—when the 32 bit is received (32 pulses of CSPI clock)

• Second—when the SS signal goes low (SSPOL = 1)

Projected Impact:

When bit cnt is matched, it will store the data in rxfifo, while SSB de-active, it will store the data
in shifter to rxfifo, so the last data will be stored twice.

Workaround:

The workaround is to discard one data for a length[11:5]+1 of word valid data received.

BSP Implementation:

No plan to implement. BSP does not support the eCSPI slave mode.

Silicon Fix:

No fix scheduled.

ENGcm11544 Issue in 32-bit Rx when CSPI is configured in slave mode with
SSCTL bit set

ENGR120443

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 41

Description:

DCP has the requirement that the length of data in the non-final buffers in a chain be 64-byte
aligned for SHA1/SHA256 hashing. When the data in a buffer is not 64-byte aligned, DCP pads it
with 1 followed by 0s to make it 64-byte aligned.

In operating systems such as Linux, it is very common for allocated memory to be non-contiguous.
When a user allocates memory for some data to be hashed, it may split across multiple physical
pages that are not in 64-byte-aligned chunks. In such cases, the DCP will pad the buffer, resulting
in the wrong hash being computed. This is because NIST only allows padding at the end of the data,
not at the page boundary, if it splits across pages.

Projected Impact:

Crypto API in Linux BSP generates a test vector for SHA1 hashing that is 56 bytes of data split
across 2 pages that have 28 bytes each. When the Linux DCP driver is loaded, it has to be registered
with the Crypto API in order for users to take advantage of the hardware acceleration. But during
registration, the above mentioned test vector fails, resulting in a failure to register the driver for
hashing, rendering the DCP useless.

Workaround:

For each 64 B block that crosses page boundary, software will copy these bytes to a contiguous
buffer and perform two hashing operations instead of one.

BSP Implementation:

Workaround is already implemented in Linux BSP.

Silicon Fix:

No fix scheduled.

ENGR120443 DCP fails to handle SHA1/SHA256 hashing for inputs that are
split across multiple pages

ERR007894

Chip Errata for the i.MX50, Rev. 5

42 Freescale Semiconductor

Description:

In DDR read access, an internal signal, DQS_Gate, is generated by DDR PHY to filter out noise on DQS
signal. If pull-down on DQS signal is not enabled, the DQS_Gate must be opened at the middle of DQS
pre-amble, and closed at the DQS post-amble. However, when DDR mode is set to DDR2 mode, a glitch
may be generated at the input port of the DQS_Gate close logic under certain condition. If the generated
glitch is captured by read DQS, the DQS_Gate close logic will generate incorrect output, which will cause
the DQS_Gate to close earlier than expected. Then the DDR PHY will latch in wrong data.

This issue may happen when all the following conditions are met:

1. DRAM_CLASS in Register DRAM_CTL00 is set to b’0100 (DDR2 mode).

2. DDR CLK frequency is lower than 266MHz.

3. ENABLE_HALF_CAS in Register DRAM_PHY02 is set to 1.

Projected Impact:

DDR PHY may latch in wrong data during read access.

Workarounds:

In DDR2 mode, when DDR CLK frequency is lower than 266MHz:

1. In DRAM_PHY02, set ENABLE_HALF_CAS = 0.

2. In IOMUXC_SPADC_PDRAM_SDQS0/1/2/3, set PKE = 1 and PUE = 1.

3. In IOMUXC_SPAD_GDDRMODE_CTL, set DDR_INPUT = 0.

4. In DRAM_PHY03/05/07/09/11, set DQS_TSEL_EN = 0.

BSP Implementation:

Linux BSP adopts 266MHz for DDR2.

Silicon Fix:

No fix scheduled.

ERR007894 Under certain conditions, the DDR DQS_Gate may close earlier
at DDR2 mode, causing failure on DDR read.

ENGcm12051

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 43

Description:

The PLL loses frequency lock, drifting either higher or lower than the locked frequency, for a
period of ~2 μs, before re-locking itself with no user intervention. The root cause is a meta stable
analog signal, which may cause the VCO to adjust the frequency of the output clock significantly
out of range. The meta stable signal returns to normal operation after one VCO/4 clock cycle, and
the PLL then acts as designed to return the PLL output to the programmed frequency (within ~2
μs).

Projected Impact:

Drifting faster than the lock frequency can result in DDR and internal logic failures. Drifting
slower than the lock frequency can result in DDR failures. Depending on system activity and
magnitude of frequency drift, corrupt memory transactions may occur, possibly causing system
failure.

Workarounds:

The issue can be mitigated by using a Multiplication Factor Numerator (MFN) software
workaround which puts the PLL into an operating mode to avoid unintended VCO adjustments in
response to any potential meta stable event. The PLL should also be configured into Phase Lock
Mode (PLM = 1). The MFN implementation is accomplished by locking the PLL at a higher than
targeted frequency (864 MHz), and then changing the MFN to reach the target frequency (800
MHz). This is a specified dither mode PLL function. By running the PLL slower than the locked
frequency, even if a meta stable event occurs, erroneous deviations to the VCO are avoided. The
workaround applies to devices with a target CPU frequency of 800 MHz operation.

There are two parts to the workaround, and they need to be applied whenever the PLL shuts down
and restarts. The implementation below assumes PLL1 is being used as the source for the CPU and
DDR clock.

• Part 1: Workaround applied during system initialization (boot code)

— Workaround should be applied before DDR is initialized when the boot code is running
from IRAM.

– Change ARM clock to be sourced from 24 MHz OSC

– Disable auto-restart of PLL1 by clearing AREN bit in DP_CONFIG

– Configure PLL1 multiplication factors for 864 MHz using the following factors: MFI =
8; MFN = 180; MFD = 179; PDF = 0

– Manually restart PLL1 (RST = 1) with phase and frequency lock (PLM = 1) using
DP_CTL

– Wait for PLL1 to lock by polling lock ready flag (LRF) in DP_CTL

– PLL1 will now be locked at 864 MHz

– Update MFN to transition PLL1 to 800 MHz by applying the following factor: MFN =
60

ENGcm12051 DPLL: Meta-stability Issue

ENGcm12051

Chip Errata for the i.MX50, Rev. 5

44 Freescale Semiconductor

– Request PLL to load new MFN using DP_CONFIG (LDREQ bit)

– Wait for acknowledgement of new MFN factor from PLL by polling DP_CONFIG
(LDREQ bit)

– PLL1 will now be locked at 800 MHz

– Delay 4 μs to avoid PLL instability window

– Move ARM clock to be sourced from PLL1

• Part 2: Workaround applied to suspend/resume code or whenever PLL1 is disabled/enabled
(kernel)

– Put DDR into self-refresh

– Change ARM clock to be sourced from 24 MHz OSC

– Update MFN to transition PLL1 to 864 MHz by applying the following factor: MFN =
180

– Request PLL to load new MFN using DP_CONFIG (LDREQ bit)

– No need to wait for new PLL rate, PLL will be disabled during suspend

– Enter suspend

– Interrupt wakes system

– System will resume with PLL1 locked at 864 MHz

– Update MFN to transition PLL1 to 800 MHz by applying the following factor: MFN =
60

– Request PLL to load new MFN using DP_CONFIG (LDREQ bit)

– Wait for acknowledgement of new MFN factor from PLL by polling DP_CONFIG
(LDREQ bit)

– PLL1 will now be locked at 800 MHz

– Delay 4 μs to avoid PLL instability window

– Move ARM clock to be sourced from PLL1

– Move DDR clock to be sourced from PLL1

– Continue resuming system

Proposed Solution:

No fix scheduled.

BSP Status:

Workaround is implemented through standalone software patch to u-boot and kernel, available on
www.freescale.com/imx50tools. Software workaround implemented in BSP releases dated
7/15/2011 or later; refer to the accompanying BSP release notes for details.

ENGR121624

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 45

Description:

Frequent setting and clearing of the freeze bit to stop communications to the DRAM MC during
the refresh period may cause the APBHDMA channel to stall.

Projected Impact:

None. On previous i.MX chips, it was necessary to set the freeze bit to stop the APBHDMA
channel when the DRAM enters refresh. On the i.MX508, the DRAM controller can accept
commands during the refresh period. So, although the APBHDMA errata item exists, there is no
impact on the i.MX50.

Workaround:

None. The i.MX50 DRAM MC does not require use of the freeze bit; so, this issue should not
occur.

Silicon Fix:

No fix scheduled.

ENGR121624 APBHDMA channel may stall on waiting for PIO grant when
freeze bit is set/clr frequently

ENGR125340

Chip Errata for the i.MX50, Rev. 5

46 Freescale Semiconductor

Description:

The design target requires the digital state machine that controls the ZQ Calibrator to work at
266 MHz. But calibrator cannot operate at greater than 2.5 MHz due to a large comparator delay.

Projected Impact:

This issue affects the impedance matching between the i.MX50 and the DRAM device. The board
design must take care of impedance matching issue.

Workaround:

Calibrate ZQ before initializing DRAM_MC with very low ddr_clk frequency. It is easy to
implement this workaround in software, but it cannot compensate for temperature and voltage
changes.

To compensate the temperature and voltage changes, calibrate the ZQ during ddr self-refresh
period with very low ddr_clk frequency. This might have impact to the software, for both system
efficiency and software complexity.

Silicon Fix:

No fix scheduled.

ENGR125340 LPDDR2 ZQ calibrator state machine cannot meet 266 MHz
design target

ENGcm10185

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 47

Description:

According to the eCSPI specifications, when eCSPI is set to operate in the Slave mode
(CHANNEL_MODE[x] = 0), the SSB_CTRL[x] bit controls the behavior of burst completion.

In the Slave mode, the SSB_CTRL bit controls the behavior of SPI burst completion as follows:

• 0—SPI burst completed when (BURST_LENGTH + 1) bits are received

• 1—SPI burst completed when SSB input negated

In the BURST_LENGTH definition, it is stated “In the Slave mode, this field takes effect in SPI
transfer only when SSCTL is cleared.” However, the mode SSB_CTRL[x] = 1 is not functional in
the Slave mode. Currently, BURST_LENGTH always defines the burst length. According to the
SPI protocol, negation of SSB always causes completion of the burst. However, due to the above
issue, the data is not sampled correctly in RxFIFO when {BURST_LENGTH+1}mod32 is not
equal to {actual burst length}mod32. Therefore, setting the BURST_LENGTH parameter to a
value greater than the actual burst does not resolve the issue.

Projected Impact:

Slave mode with unspecified burst length cannot be supported due to this issue. The burst length
should always be specified with the BURST_LENGTH parameter and SSB_CTRL[x] should be
set to zero.

Workaround:

There is no workaround except for not using the SSB_CTRL[x] = 1 option in the Slave mode. The
accurate burst length should always be specified using the BURST_LENGTH parameter.

BSP Implementation:

No plan to implement. BSP does not support eCSPI slave mode.

Silicon Fix:

No fix scheduled.

ENGcm10185 eCSPI burst completion by SSB signal in slave mode not
functional

ENGcm10188

Chip Errata for the i.MX50, Rev. 5

48 Freescale Semiconductor

Description:

The current IP behavior in Slave mode: when the burst continues beyond the BURST_LENGTH,
the eCSPI continues sending the data from TxFIFO and corrupts the contents that has been
prepared for the next burst. If there is no more data in the FIFO, then it continues repeatedly
sending the last word. This is in case the SSB_CTRL[x] = 0. The SSB_CTRL[x] = 1 mode is not
functional.

Projected Impact:

Corrupted SPI data.

Workaround:

None. The functionality does not differ to what is described in the specification and this is not
specified facet of the standard.

BSP Implementation:

No plan to implement. BSP does not support eCSPI slave mode.

Silicon Fix:

No fix scheduled.

ENGcm10188 eCSPI should send zeros when the burst is longer than the
amount of data in FIFO

ENGcm12379

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 49

Description:

When AUS bit is set, the address lines of the EIM are un-shifted. Due to an error, the address bits
27:24 are shifted when AUS = 1.

Projected Impact:

This mode is related to a unique memory configuration, which is used very rarely. Most systems
can work in the default mode (AUS = 0). Board designers should connect the EIM address bus
without a shift (A0 -> A0, A1 -> A1, etc.), while working in AUS = 0 mode.

Workaround:

Use the AUS = 0 mode (default) while connecting the address signals without a shift (A0 -> A0,
A1 -> A1, etc.).

Proposed Solution:

No fix scheduled.

Linux BSP Status:

NA

WinCE BSP Status:

NA

ENGcm12379 EIM: AUS mode is non functional for devices larger than 32 MB.

ENGR138633

Chip Errata for the i.MX50, Rev. 5

50 Freescale Semiconductor

Description:

The histogram hardware always processes complete macro blocks. For frame buffers that are not
an integral multiple of the selected block size, either 8x8 or 16x16, the histogram will check all
pixels in the frame buffer that is rounded up to the macro block boundary. This could result in
pixels that are not in the desired frame buffer to be checked by the histogram hardware. In other
words, this could result in pixels that are outside the frame buffer to affect the histogram result.

The histogram hardware checking module currently exists between the CSC2 and ROT processing
engines. The histogram should be relocated to the output of the ROT engine, which has all the
controls necessary to detect output frames that are not a multiple of the block size.

Projected Impact:

As an example, let’s assume a frame buffer of 12x12 pixels. Regardless of block size selected, the
desired frame buffer is not a multiple of the block size, either 8x8 or 16x16. The PXP always
processes complete blocks. There are four pixels on the right side and bottom side that will be
processed by the PXP. These four vertical columns and horizontal rows of pixels will effect the
histogram results even though they are not written to the output buffer. If these redundant pixels
contain values that affect the histogram in a way that is different from the way the pixels inside the
12x12 region will, then the histogram will not correctly indicate the state of the 12x12 process
output frame buffer.

Workaround:

There are two workarounds:

1. Always guarantee that the processed frame buffer is a multiple of the block size.

2. The right vertical column and/or the bottom horizontal row can be copied to a temporary buffer
for processing. The redundant pixels that are outside the actual frame buffer can be overwritten to
a state that will not effect the histogram state. Then, the PXP can be programmed to process these
regions to return the correct state for pixels that will be inside the desired frame buffer.

Silicon Fix:

No fix scheduled.

ENGR138633 Histogram Fractional Macro Block Processing Issue

ENGR142735

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 51

Description:

This issue is caused by a corner condition: when the LUT[n] finished waveform loading but still
working on WB processing, the LUT[n+1:15] waveform loading will be hold. It will be triggered
when the working buffer processing time for LUT[n] spans over 2 blanking periods.

Projected Impact:

One frame scan of data will be corrupted on the frame in which the TCE underrun occurred. All
subsequent frames will be correct.

Software Workarounds:

The issue may be resolved by implementing one or all of the below workarounds:

1. When update is submitted, ensure the LUT acquires a higher LUT number than current active
LUTs.

— Order— LUT[0], LUT[1], LUT[15]

— If LUT[15] is in use, TCE Underrun could still occur if new update is sent.

2. Ignore TCE Underrun IRQ

— If TCE Underrun occurs, EPD hardware will continue to complete the update.

— On frame where TCE Underrun occurs, the frame's data will be corrupted. All pixels will
receive the last value in the FIFO. The rest of frames for an update are accurate.

3. Time update request with Frame End IRQ

— If the update is submitted to the EPD, just after the VSCAN hold off, it will allow for ~2
full frames or over 23.4 mS to complete WB preprocessing for an 85-Hz panel.

4. Increase DRAM bandwidth to ensure the working buffer processing finishes within 1 frame
scan.

— For example, if the TCE Underrun occurs when the DRAM clock = 160 MHz, increase the
DRAM clock to 200 MHz.

BSP Implementation:

• Workarounds 1, 2, and 3 available in the Linux BSP release 11.04.01.

• WINCE EPDC driver always ignores TCE Underrun IRQ (workaround 2 is available).

Silicon Fix:

No fix scheduled.

ENGR142735 TCE Underrun in EPDC

TLSbo90606

Chip Errata for the i.MX50, Rev. 5

52 Freescale Semiconductor

Description:

There is a possibility of an extra pulse occurring on SCLK in the EPIT when switching between
the clock sources.

Projected Impact:

It can result in an incorrect counter increment in the EPIT.

Workaround:

Clock source should be changed only when the EPIT is disabled. Following is the method to
accomplish this:

• Disable EPIT—EPITCR[0] = 0 (EN = 0)

• Disable EPIT output—EPITCR[23:22] = 00 (OM = 00)

• Disable EPIT capture interrupt—EPITCR[2] = 0 (OCIEN = 0)

• Change clock source—EPITCR[25:24] (CLKSRC), determines which clock source is selected
for running the counter

• Clear status register—EPITSR[0] (OCIF), this is a write one to clear register

• Configure EPIT to start count once enabled from load value—EPITCR[1] = 1 (ENMOD = 1)

• Re-enable EPIT EPITCR[0] = 1 (EN = 1), that is, enable EPIT

• Reconfigure output and interrupt

BSP Implementation:

Use case not implemented in Linux BSP.

Silicon Fix:

No fix scheduled.

TLSbo90606 Glitch occurs on SCLK in EPIT when switching clock source

ENGcm03648

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 53

Description:

According to the Standard Host Controller Spec, for a command with R1b response, a TC interrupt
should happen when command with busy state is complete. eSDHC does not implement this
feature. So, before sending the next command, we need to do polling on DLA for R1b commands.
However, this signaling is not working properly.

Projected Impact:

Cannot poll on DLA in PRSSTAT register to wait for busy state completion.

Software Workarounds:

Poll DAT[0], not DLA, to detect when busy state is over.

Silicon Fix:

No fix scheduled.

ENGcm03648 eSDHC AutoCMD12 and R1b polling problem

ENGcm11088

Chip Errata for the i.MX50, Rev. 5

54 Freescale Semiconductor

Description:

The following is a test case description:

• Working with an SD card. Using ADMA1.

• Performing partial block read.

• Write 1 block of length 0x200. (Data written in bytes 0x1, 0x2, 0x3 and so on)

• Reading 2 blocks of length 0x22 each. Reading from the address where the write was done. Start
address is 0x512 aligned. Watermark is set as 1 word during read. This read is done using only
1 ADMA1 descriptor in which the total size of the transfer is programmed as 0x44 (2 blocks *
0x22)

In this case, the read transfer is not getting completed. The eSDHC is stuck waiting in the loop for
TC bit in the interrupt status register to get set.

Projected Impact:

Minor error

Workaround:

eSDHC should use only block sizes that are multiples of 4, or host driver can insert several dummy
bytes to ensure each block has multiples of 4 bytes.

BSP Implementation:

Linux and WinCE use a eSDHC block size that is a multiple of 4.

Silicon Fix:

No fix scheduled.

ENGcm11088 eSDHC partial block read problem when block size is not a
multiple of 4 (applicable to both eSDHCv2 and eSDHCv3)

ENGcm11113

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 55

Description:

ADMA2 in eSDHC is used for transfers to/from the SD card. ADMA2 descriptors are created with
TRANS, LINK, and NOP descriptors. The issue occurs when the last descriptor (which has the End
bit 1) is a LINK descriptor or a NOP descriptor. In this case, eSDHC is completing the transfers
associated with this descriptor set, whereas it does not even start the transfers associated with the
new data command. For example, if a WRITE transfer is being done to the card using ADMA2,
and the last descriptor of the WRITE descriptor set is a LINK descriptor, then the WRITE is
successfully finished. Now, if a READ transfer is programmed from the SD card using ADMA2,
then this transfer does not go through.

Projected Impact:

Minor error.

Workaround:

Always program TRANS descriptor as the last descriptor.

BSP Implementation:

Linux BSP uses simple DMA rather than ADMA2, so this errata is avoided.

Silicon Fix:

No fix scheduled.

ENGcm11113 eSDHC problem when ADMA2 last descriptor is LINK or NOP
(applicable to both eSDHCv2 and eSDHCv3)

ENGR143117

Chip Errata for the i.MX50, Rev. 5

56 Freescale Semiconductor

Description:

STA report on eSDHCv3 in SDR mode is passed, which is based on EMMC4.4 timing
requirement. EMMC4.4 requires 3 ns setup time but SD3.0 requires 6 ns setup time. eSDHCv3
cannot match SD setup timing requirement.

Projected Impact:

May have write timing issue if SD cards require more than 5 ns setup timing.

Software Workarounds:

Once we find write timing issue while connecting SD card, we need to slow down SD clock to 40
MHz in SDR mode. Actually, all the SD cards we have tested don't have such strict timing
requirement. All the SD cards in hand can be passed on Linux and WinCE stress test.

Silicon Fix:

No fix scheduled.

ENGR143117 eSDHCv3 on eSDHCv3 port has setup timing issue in SD SDR
mode

ENGcm04874

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 57

Description:

There is a possibility of an extra pulse occurring on SCLK in the GPT when switching between the
clock sources.

Projected Impact:

It can result in an incorrect counter increment in the GPT.

Workaround:

Changing the clock source should only be done when the GPT is disabled. The following is the
method to accomplish this:

• Disable GPT—Write 1'b0 to EN bit of GPTCR

• Disable interrupts—Write 6'b000000 in bits [5:0] of GPTIR

• Configure output mode to unconnected/disconnected—Write zeros in OM3, OM2, and OM1 in
GPTCR

• Disable input capture modes—Write zeros in IM1 and IM2 in GPTCR

• Change clock source CLKSRC in GPTCR

• Clear status register—Write 003F in GPTSR

• Set ENMOD in GPTCR

• ENABLE GPT—Write 1'b1 to EN bit of GPTCR. The GPTSR should not be read immediately
after changing the clock source (a wait of at least one SCLK is required)

BSP Implementation:

Use case not implemented in Linux BSP.

Silicon Fix:

No fix scheduled.

ENGcm04874 Glitch on SCLK in GPT while switching the clock source

ENGR139532

Chip Errata for the i.MX50, Rev. 5

58 Freescale Semiconductor

Description:

Incorrect parasitic modeling of the WEM pins on the OCRAM has resulted in a setup timing issue
on the OCRAM write paths.

Projected Impact:

Review of the logic associated with this timing path has determined that this path can only be
activated in one of the following two scenarios:

1) When 8 masters (for example, ARM, DCP, PXP, DCP, AHBMAX, USBOH1, EPDC, SDMA,
or FEC) attempt to simultaneously access the OCRAM. This would be highly unlikely to occur as
there are only 8 masters on the i.MX50 and some of them would not be used with OCRAM (for
example, EPDC).

2) During a GPU2D write to OCRAM. As long as the GPU2D is not used with OCRAM, the issue
should not occur.

Workaround:

Because this issue only occurs in the two scenarios described above, the software should be written
to prevent those scenarios from occuring. Analysis of FSL drivers and software has determined that
neither of the above use cases occur in our deliverables.

Silicon Fix:

No fix scheduled.

ENGR139532 OCRAM Setup Timing Issue

ENGR133711

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 59

Description:

The ROM attempts to read the extended csd structure from card after setting the card into DDR
mode. It should read ext_csd before setting card into DDR mode. This causes the i.MX50 TO 1.1
ROM to fail to boot from boot partition for 4-bit or 8-bit DDR mode.

Projected Impact:

The impact should be minimal as the i.MX50 supports several other eMMC boot modes without
this issue.

Workarounds:

There are several workarounds:

1. Boot in fast boot mode. Fast boot is validated to work for all modes (SDR, DDR, 8-bit and 4-bit
bus widths).

2. Boot from user partition for non-fast-boot DDR mode. The problem only occurs when booting
from a boot partition— no issues occur when booting from a user partition

3. Use single data rate (SDR) mode instead of dual-data rate (DDR) if fast boot is not an option.

Silicon Fix:

No fix scheduled.

ENGR133711 ROM fails to boot from boot partition 1 or boot partition 2 in 4-bit
and 8-bit DDR non-fast boot modes

ENGcm07150

Chip Errata for the i.MX50, Rev. 5

60 Freescale Semiconductor

Description:

This issue can occur if the driver does not set up the buffers correctly. For example, the error could
occur if the buffers were declared when the driver submits the request, but during the USB transfer
the memory is reassigned. The USBOH core uses the erroneous hrdata (when hresp is high) and
results in a false USB transfer at the external interface.

Projected Impact:

False transfer of USB.

Workaround:

The following are the two levels of workaround:

• First level workaround—Configure driver correctly to ensure that the USB data buffer is
allocated in software. The issue should only occur if the driver did not set up the buffers
correctly. So, the first level workaround is simply to write the driver so that this situation does
not occur.

• Second level workaround—If for some reason the issue does occur, the second level
workaround is to implement USB bus error handling. In this case, the USB module is reset when
an error is detected.

BSP Implementation:

Implemented in WinCE ER2 and Linux ER3.

Silicon Fix:

No fix scheduled.

ENGcm07150 Erroneous descriptor handling by USBOH module

ERR006308

Chip Errata for the i.MX50, Rev. 5

Freescale Semiconductor 61

Description:

The USB host controller can lock-up when a FIFO under run occurs on a non-32-bit aligned data buffer.
This applies to both the Host controller and OTG controller in host mode.

Projected Impact:

USB HOST Controller may lock up.

Workaround:

1. Set Stream Disable bit (SDIS) in the USBMODE register. This will force the controller to load
an entire packet in the FIFO before starting to transmit on the USB bus. Hence, the FIFO will
never under run. This will somewhat reduce the max bandwidth of the USB since there will be
idle time as the the controller waits for the entire packet to be loaded.

2. Instead of setting SDIS, the FIFO threshold can be increased such that more data will be in the
FIFO before a packet transmit is started. This increases the tolerance to bus latency and avoid
FIFO under run. The Threshold can be increased by using higher values for the
TXTHRESHOLD filed in the TXFILLTUNING register. The default value is 2 bursts (64 bytes
if burst size=8).

Silicon Fix:

No fix scheduled.

ERR006308 USB: HOST controller lock-up issue

ERR004346

Chip Errata for the i.MX50, Rev. 5

62 Freescale Semiconductor

Description:

In order to initiate a software reset through WDOG, the SRS bit should be written twice.

Projected Impact:

WDOG software reset request might be ignored.

Workarounds:

The WDOG SRS software reset bit should be written twice within one period of the 32 kHz clock.

Proposed Solution:

No fix scheduled.

Linux BSP Status:

Software workaround implemented in BSP version ER3.

ERR004346 WDOG: WDOG SRS bit requires to be written twice

Document Number: IMX50CE
Rev. 5
05/2015

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:
Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARM Cortex™-A8 is a trademark of ARM
Limited.

© 2011-2015 Freescale Semiconductor, Inc. All rights reserved.

	Chip Errata for the i.MX50
	Table 1. Document Revision History
	Table 2. Summary of Silicon Errata
	ENGcm07186
	ENGcm02157
	ENGcm02161
	ENGcm02163
	ENGcm02164
	ENGcm03161
	ENGcm03162
	ENGcm07666
	ENGcm07667
	ENGcm07668
	ENGcm07669
	ENGcm09828
	ENGcm10693
	ENGcm10702
	ENGcm10704
	ENGcm10713
	ENGcm10723
	ENGcm11134
	ENGcm11231
	ENGcm08174
	ENGcm11544
	ENGR120443
	ERR007894
	ENGcm12051
	ENGR121624
	ENGR125340
	ENGcm10185
	ENGcm10188
	ENGcm12379
	ENGR138633
	ENGR142735
	TLSbo90606
	ENGcm03648
	ENGcm11088
	ENGcm11113
	ENGR143117
	ENGcm04874
	ENGR139532
	ENGR133711
	ENGcm07150
	ERR006308
	ERR004346

