
© 2016 NXP B.V.

 Preliminary Information, Subject to Change without Notice

Features and Operation Modes of FlexTimer

Module on S32K

1. Introduction

This application note describes the multiple features

and operation modes of the FlexTimer (FTM) module

supported by code examples and oscilloscope

snapshots. The FTM module is used on many Kinetis

and Vybrid MCUs. However, this application note is

primarily focused on the S32K product series of 32-bit

automotive MCUs. The FTM module is an enhanced

version of the Timer/PWM module (TPM) that

provides new features for motor-control, lighting, and

power-conversion applications. The key enhancements

are:

• Signed-up counter

• Hardware dead-time insertion

• Fault-control inputs

• Enhanced triggering functionality

• Initialization and polarity control

The masking, inverting, polarity and fault control, and

hardware dead-time insertion are the main features of

the FTM module dedicated for motor-control

applications. They provide greater flexibility and they

significantly reduce the CPU load. On the other hand,

the FTM module retains standard timer functions (such

as the input capture or output compare modes) if it is

not used for motor control. This makes FTM more

flexible, covering a wide range of applications.

NXP Semiconductors Document Number: AN5303

Application Note Rev. 0 , 06/2016

Contents

1. Introduction .. 1

2. FTM Overview ... 2

3. FTM Operation Modes ... 3

3.1. Edge-align PWM (EPWM) mode 3

3.2. Center-align PWM (CPWM) mode 4

3.3. Complementary mode and dead-time insertion 6

3.4. Combine mode .. 7

3.5. Single-edge capture mode 9

3.6. Dual-edge capture mode .. 11

3.7. Quadrature decoder mode 13

4. FTM Features ... 15

4.1. Masking, inverting, and software-controlling

features .. 15

4.2. Fault control feature .. 16

4.3. Updating FTM registers .. 19

4.4. Global Time Base (GTB) 28

4.5. ADC triggering by FTM and PDB modules 30

5. Revision History ... 33

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

FTM Overview

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

2 Preliminary Information, Subject to Change without Notice NXP Semiconductors

2. FTM Overview

The FTM module has a single 16-bit counter that is used by the FTM channels for either the input or

output modes. There are three possible clock sources that can be selected for the FTM counter: the

system clock, the fixed-frequency clock, and the external clock (see the Clock Distribution chapter in

the S32K family reference manual for a detailed clocking description). The selected counter-clock signal

then passes through a pre-scaler which enables dividing the clock source by up to 128 by setting PS[2:0]

in the FTM_SC register. If the CPWMS bit in the FTM_SC register is disabled, the FTM counter

operates in the up-counting mode. Otherwise, it operates in the up/down-counting mode.

The current implementation of the S32K device is equipped with four FTMs. Each FTM module has

eight channels which work either independently or in pairs (CH0/CH1, CH2/CH3, CH4/CH5, and

CH5/CH6). All channels can be configured for the input capture, output compare, or edge/center-align

PWM modes. In the edge-align PWM mode, the FTM channel pairs can work in the complementary

or/and combine modes. In addition, FTM1 and FTM2 are able to work in the quadrature-decoder mode

that enables processing signals from the incremental rotary position sensor (encoder). This table shows

the channels’ modes selection.

Table 1. Channels’ modes selection

DECAPEN MCOMBINE COMBINE CPWMS
MSnB:

MSnA

ELSnB:

ELSnA
Mode Configuration

0 0

0

0

00

01

Input capture

Capture on rising edge only

10 Capture on falling edge only

11 Capture on rising or falling edge

01

01
Output

compare

Toggle output on match

10 Clear output on match

11 Set output on match

1X

10
Edge-align

PWM

High-true pulses (clear output on

match)

X1
Low-true pulses (set output on

match)

1 XX

10
Center-align

PWM

High-true pulses (clear output on

match)

X1
Low-true pulses (set output on

match)

1 0 XX

10

Combine

PWM

High-true pulses (set on channel

(n) match, and clear on channel

(n+1) match)

X1

Low-true pulses (clear on channel

(n) match, and set on channel

(n+1) match)

 1 0 0 XX

10
Modified

combine

PWM

High-true pulses (set on channel

(n) match, and clear on channel

(n+1) match)

X1

Low-true pulses (clear on channel

(n) match, and set on channel

(n+1) match)

1 0 0 0

X0
See

Table 2

Dual edge

capture

One-shot capture mode

X1 Continuous capture mode

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 3

Table 2. Dual edge capture mode—edge polarity selection

ELSnB ELSnA Channel port enable Detected edges

0 0 Disabled No edge

0 1 Enabled Rising edge

1 0 Enabled Falling edge

1 1 Enabled Rising and falling edges

In sensor-based motor-control applications, it is necessary to use two FTM modules. The first FTM is

used to generate six PWM signals to control the acceleration of the motor and the second FTM module

works in the quadrature-decoder mode to determine the position from two 90°-shifted encoder signals,

Phase A and Phase B. If the Hall sensors are used instead of the encoder, the second FTM module is

configured for the input capture mode and the PWM signals of the first FTM module are controlled

according to the Hall sensor logic. For more details, see BLDC motor control w/ Hall Effect sensor—

Kinetis MCUs (document AN4376).

3. FTM Operation Modes

3.1. Edge-align PWM (EPWM) mode

In the edge-align PWM mode, the FTM counter counts up from the FTM_CNTIN value to the

FTM_MOD value. All FTM channels’ signals align at the edge when the FTM counter changes from the

MOD value to the CNTIN value.

The edge-align PWM mode is selected when QUADEN = 0, DECAPEN = 0, MCOMBINE = 0,

COMBINE = 0, CPWMS = 0. and MSnB = 1.

The edge-align PWM period is determined by MOD – CNTIN + 0x0001 and the pulse width (or the

duty cycle) is determined by CnV – CNTIN or MOD – CNTIN – CnV, depending on the control bits

ELSnB:ELSnA.

Example 1. Edge-align PWM
void Edge_Align_PWM_Init()

{

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM0 */

 PCC->PCCn[PCC_FLEXTMR0_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 /* Set PORTD pins for FTM0 */

 PORTD->PCR[15] = PORT_PCR_MUX(2); // FTM0, Channel0

 PORTD->PCR[16] = PORT_PCR_MUX(2); // FTM0, Channel1

 PORTD->PCR[0] = PORT_PCR_MUX(2); // FTM0, Channel2

 PORTD->PCR[1] = PORT_PCR_MUX(2); // FTM0, Channel3

 /* Enable registers updating from write buffers */

 FTM0->MODE = FTM_MODE_FTMEN_MASK;

 /* Enable sync, combine mode and dead-time for pair channel n=1 and n=2 */

 FTM0->COMBINE = FTM_COMBINE_COMP0_MASK | FTM_COMBINE_DTEN0_MASK

 | FTM_COMBINE_COMP1_MASK | FTM_COMBINE_DTEN1_MASK;

 /* Set Modulo in initialization stage (10kHz PWM frequency @112MHz system clock) */

 FTM0->MOD = FTM_MOD_MOD(11200-1);

 /* Set CNTIN in initialization stage */

 FTM0->CNTIN = FTM_CNTIN_INIT(0);

 /* Enable high-true pulses of PWM signals */

 FTM0->CONTROLS[0].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[1].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[2].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;

http://www.fsls.co/doc/AN4376

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

4 Preliminary Information, Subject to Change without Notice NXP Semiconductors

 FTM0->CONTROLS[3].CnSC = FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK;

 /* Set channel value in initialization stage */

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(5600); // 50% duty cycle

 FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(5600); // 50% duty cycle

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(2800); // 25% duty cycle

 FTM0->CONTROLS[3].CnV=FTM_CnV_VAL(2800); // 25% duty cycle

 /* Reset FTM counter */

 FTM0->CNT = 0;

 /* Insert deadtime (1us) */

 FTM0->DEADTIME = FTM_DEADTIME_DTPS(3) | FTM_DEADTIME_DTVAL(7);

 /* Clock selection and enabling PWM generation */

 FTM0->SC = FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_PWMEN2_MASK |

 FTM_SC_PWMEN3_MASK;

 }

Up counter period

FTM0_CH0

FTM0_CH1

FTM0_CH2

FTM1_CH3

Figure 1. Edge-align PWM

In Figure 1, the scope channels CH1, CH2, CH3, and CH4 represent FTM_CH0, FTM_CH1,

FTM_CH2, and FTM_CH3 of the FTM module, respectively. The first channel pair

(FTM_CH0/FTM_CH1) and the second channel pair (FTM_CH2/FTM_CH3) work in the

complementary mode with 50 % and 25 % duty cycles, respectively. The second channel pair

(FTM_CH2/FTM_CH3) demonstrates the edge alignment.

3.2. Center-align PWM (CPWM) mode

In the center-align PWM mode, the FTM counter counts up from FTM_CNTIN to FTM_MOD and then

counts down from FTM_MOD to FTM_CTNIN. All FTM channels’ signals align at the point where the

FTM counter reaches the FTM_MOD value. The center-align PWM mode is selected when

QUADEN = 0, DECAPEN = 0, MCOMBINE = 0, COMBINE = 0, and CPWMS = 1.

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 5

The duty cycle of the center-align PWM is determined as 2 × (CnV − CNTIN). The period is determined

as 2 × (MOD − CNTIN).

Example 2. Center-align PWM
void Center_Align_PWM_Init()

 {

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM0 */

 PCC->PCCn[PCC_FLEXTMR0_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 /* Set PORTD pins for FTM0 */

 PORTD->PCR[15] = PORT_PCR_MUX(2);

 PORTD->PCR[16] = PORT_PCR_MUX(2);

 PORTD->PCR[0] = PORT_PCR_MUX(2);

 PORTD->PCR[1] = PORT_PCR_MUX(2);

 /* Select up-down counter for Center-Align PWM */

 FTM0->SC = FTM_SC_CPWMS_MASK;

 /* Combine mode and dead-time enable for channel0 and channel1 */

 FTM0->COMBINE = FTM_COMBINE_COMP0_MASK | FTM_COMBINE_DTEN0_MASK;

 /* Combine mode and dead-time enable for channel2 and channel3 */

 FTM0->COMBINE |= FTM_COMBINE_COMP1_MASK | FTM_COMBINE_DTEN1_MASK;

 /* Set Modulo (10kHz PWM frequency @112MHz system clock) */

 FTM0->MOD = FTM_MOD_MOD(5600-1);

 /* Set CNTIN */

 FTM0->CNTIN = FTM_CNTIN_INIT(0);

 /* High-true pulses of PWM signals */

 FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[2].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[3].CnSC = FTM_CnSC_ELSB_MASK;

 /* Set Channel Value */

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(2800); // 50% duty cycle

 FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(2800); // 50% duty cycle

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(1400); // 25% duty cycle

 FTM0->CONTROLS[3].CnV=FTM_CnV_VAL(1400); // 25% duty cycle

 /* FTM counter reset */

 FTM0->CNT = 0;

 /* Insert DeadTime (1us) */

 FTM0->DEADTIME = FTM_DEADTIME_DTPS(3) | FTM_DEADTIME_DTVAL(7);

 /* Clock selection and enabling PWM generation */

 FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_PWMEN2_MASK |

FTM_SC_PWMEN3_MASK;

 }

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

6 Preliminary Information, Subject to Change without Notice NXP Semiconductors

Up-down counter
period

FTM0_CH0

FTM0_CH1

FTM0_CH2

FTM1_CH3

Figure 2. Center-align PWM

In Figure 2, the scope channels CH1, CH2, CH3, and CH4 represent FTM_CH0, FTM_CH1,

FTM_CH2, and FTM_CH3 of the FTM module, respectively. The first channel pair

(FTM_CH0/FTM_CH1) and the second channel pair (FTM_CH2/FTM_CH3) work in the

complementary mode with 50 % and 25 % duty cycles, respectively. The second channel pair

(FTM_CH2/FTM_CH3) demonstrates the center alignment.

NOTE

The up/down-counting mode is dedicated for generating the center-align

PWM. The up-counting mode can be used as well. However, the FTM

channels must be configured to work in the combine mode. For more

information, see Section 3.4, “Combine mode”.

3.3. Complementary mode and dead-time insertion

The FTM module supports the complementary mode. If the complementary mode is enabled by the

COMP bit in the FTM_COMBINE register, the output signal is generated by the even FTM channel

only. The odd output signal is generated by the complementary logic as a complement to the even FTM

channel. The complementary signal generation can be set individually for each pair of the FTM outputs.

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 7

FTM_CH0

FTM_CH1

Figure 3. Complementary mode of channel pair FTM_CH0/FTM_CH1 with dead-time insertion

To avoid short-circuit, the dead time must be inserted into the complementary signals. The dead-time

insertion is provided by the dead-time logic, following the complementary logic. This feature can be

enabled by the DTEN bit in the FTMxCOMBINEm register. The dead-time logic delays every rising

edge by a time set in the FTM_DEADTIME register. The dead time consists of two parts. The first two

most significant bits DTPS[1:0] define the pre-scaler of the system clock. The bits DTVAL[5:0] define

the duty-cycle value using the pre-scaled clock.

The complementary mode and dead-time insertion are applied to the edge-align PWM and center-align

PWM modes, described in the previous sections.

3.4. Combine mode

The combine mode provides a higher flexibility because the PWM channel (n) output is generated by

combining the even channel (n) and the adjacent odd channel (n+1). This implies that the even and odd

channels must work in the complementary mode.

The combine mode enables generating the EPWM and CPWM using only the up-counter, the

asymmetrical PWM, or the phase-shifted PWM. The phase-shifted PWM generation is commonly used

in phase-shifted full-bridge converters and motor-control applications, where the 3-phase stator currents

are reconstructed from the current sensed by a single shunt resistor placed in the DC-link and the actual

combination of the power supply inverter switches. For more details, see 3-phase Sensorless BLDC

Motor Control Reference Design Using Kinetis KEA128 (document DRM151).

The combine mode is selected when QUADEN = 0, DECAPEN = 0, MCOMBINE = 0, COMBINE = 1,

and CPWMS = 0.

To generate a phase-shifted PWM with high-true pulses, set the control bits as ELSnB: ELSnA = 1:0.

This code example shows the configuration of the FTM0 module used for the phase-shifted PWM

generation.

Example 3. Phase-shifted PWM
void Phase_Shifted_PWM()

{

 /* Enable clock for FTM1 */

 PCC->PCCn[PCC_FLEXTMR1_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 /* Enable clock for PORTB */

 PCC->PCCn[PCC_PORTB_INDEX] = PCC_PCCn_CGC_MASK;

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

http://www.fsls.co/doc/DRM151

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

8 Preliminary Information, Subject to Change without Notice NXP Semiconductors

 PORTB->PCR[2] = PORT_PCR_MUX(2); // Set PTB2 for FTM1 – Channel0

 PORTB->PCR[3] = PORT_PCR_MUX(2); // Set PTB3 for FTM1 – Channel1

 PORTD->PCR[8] = PORT_PCR_MUX(6); // Set PTD8 for FTM1 – Channel4

 PORTD->PCR[9] = PORT_PCR_MUX(6); // Set PTd9 for FTM1 – Channel5

 /* Enable combine, complementary mode and dead-time for channel pair CH0/CH1 and CH4/CH5 */

 FTM1->COMBINE = FTM_COMBINE_COMBINE0_MASK | FTM_COMBINE_COMP0_MASK | FTM_COMBINE_DTEN0_MASK

 | FTM_COMBINE_COMBINE2_MASK | FTM_COMBINE_COMP2_MASK | FTM_COMBINE_DTEN2_MASK;

 FTM1->CONTROLS[0].CnSC=FTM_CnSC_ELSB_MASK; // Select high-true pulses

 FTM1->CONTROLS[1].CnSC=FTM_CnSC_ELSB_MASK; // Select high-true pulses

 FTM1->CONTROLS[4].CnSC=FTM_CnSC_ELSB_MASK; // Select high-true pulses

 FTM1->CONTROLS[5].CnSC=FTM_CnSC_ELSB_MASK; // Select high-true pulses

 /* Set Modulo (10kHz PWM frequency @112MHz system clock) */

 FTM1->MOD = FTM_MOD_MOD(11200-1); // Set modulo

 FTM1->CONTROLS[0].CnV=FTM_CnV_VAL(2800); // Set channel Value

 FTM1->CONTROLS[1].CnV=FTM_CnV_VAL(8400); // Set channel Value

 FTM1->CONTROLS[4].CnV=FTM_CnV_VAL(5600); // Set channel Value

 FTM1->CONTROLS[5].CnV=FTM_CnV_VAL(11200); // Set channel Value

 FTM1->CNT = 0; // Counter reset

 /* Insert DeadTime (1us) */

 FTM1->DEADTIME = FTM_DEADTIME_DTPS(3) | FTM_DEADTIME_DTVAL(7);

 FTM1->SC|=FTM_SC_CLKS(1)|FTM_SC_PWMEN0_MASK|FTM_SC_PWMEN1_MASK|FTM_SC_PWMEN4_MASK

 |FTM_SC_PWMEN5_MASK; // Select clock and enable PWM

}

The resulting behavior of the code example is shown in this figure:

FTM1_CH0

FTM1_CH1

FTM1_CH4

FTM1_CH5

90 phase shift Up-counter period

50% duty cycle

50% duty cycle

Figure 4. Phase-shifted PWM

In Figure 4, the scope channels CH1, CH2, CH3, and CH4 represent the FTM1 module channels

FTM1_CH0, FTM1_CH1, FTM_CH4, and FTM_CH5, respectively. The first channel pair

(FTM_CH0/FTM_CH1) and the second channel pair (FTM_CH4/FTM_CH5) both work in the

complementary mode with a 50 % duty cycle. The second channel pair (FTM_CH4/FTM_CH5) is

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 9

phase-shifted by 90° to the first channel pair (FTM_CH0/FTM_CH1). Figure 4 also shows the flexibility

of the PWM generation because the 50 % duty cycle can be edge-aligned, center-aligned, or variously

shifted according to the specific application requirements.

3.5. Single-edge capture mode

The FTM capture mode is used mostly to determine the pulse width or the period of the tested signal.

Another option of the FTM capture mode is to detect the rising/falling edge of an external signal and to

generate an interrupt to notify that an external event appeared. The FTM capture mode is also used in

BLDC motor-control applications, where the Hall sensors are used to detect the position of the rotor and

to compute the rotor speed, so that the speed loop can be established. The Hall sensors are connected to

the channels of the independent FTM (FTM_CHx). The FTM can then detect both the falling and rising

edges of the Hall sensor signals and generate a capture interrupt. In the capture-interrupt routine, the

duty cycles of the PWM signals are then modified according to the Hall sensor logic.

The single-edge capture mode is selected when DECAPEN = 0, MCOMBINE = 0, COMBINE = 0,

CPWMS = 0, MSnB:MSnA = 0:0, and ELSnB:ELSnA ≠ 0:0.

To measure either the pulse width or the period of the tested signal, select the input channel of the FTM

module FTM_CHx and select the edge-sensitive input by the control bits ELSnB:ELSnA. When the

selected edge occurs on the channel input, the current value of the FTM counter is captured in the CnV

register and a channel interrupt is generated (if CH(n)IE = 1). In the interrupt routine, save the value of

the CnV register into a variable and make a difference between the current value and the saved value

from the previous interrupt routine. If the selected capture mode is sensitive either on the rising edge

(ELSnB:ELSnA= 0:1) or on the falling edge (ELSnB:ELSnA= 1:0), the difference is equal to the signal

period. If the selected capture mode is sensitive on both edges (ELSnB:ELSnA = 1:1), the difference is

equal to the pulse width of the tested signal.

This example shows the input capture mode of FTM0 that measures the time period of the input signal

through the FTM0_CH0 channel:

Example 4. Single-edge capture mode
void FTM0_Single_Edge_Capture_Mode()

{

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM0 */

 PCC->PCCn[PCC_FLEXTMR0_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 PORTD->PCR[15] = PORT_PCR_MUX(2); // Set PTD15 for FTM0 - Channel0

 FSL_NVIC->ISER[FTM0_IRQn / 32] |= (1 << (FTM0_IRQn % 32)); // Enable FTM0 interrupt

 /* Input capture mode sensitive on rising edge to measure period of tested signal */

 FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSA_MASK | FTM_CnSC_CHIE_MASK;

 /* Reset counter */

 FTM0->CNT = 0;

 /* Select clock */

 FTM0->SC = FTM_SC_CLKS(1);

}

/* Interrupt routine to determine period of tested signal */

void FTM0_IRQHandler()

{

 FTM0_CH0_period = FTM0->CONTROLS[0].CnV - temp; // Period calculation

 temp = FTM0->CONTROLS[0].CnV; // Save C0V value into the variable

 FTM0->CONTROLS[0].CnSC &= ~FTM_CnSC_CHF_MASK; // clear channel flag

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

10 Preliminary Information, Subject to Change without Notice NXP Semiconductors

}

Figure 5. FTM0_CH0 input signal

In Figure 5, the scope channel CH0 represents the tested signal that is input to the FTM0_CH0 channel.

Every time a rising edge occurs, the capture interrupt is generated and the period of the signal is

calculated in the interrupt routine, as shown in Example 4. The result is displayed in the S32 design

studio, as shown in this figure:

Figure 6. Period of tested signal displayed in number of cycles

The period of the measured signal is displayed in the number of cycles (FTM0_CH0_period = 11200).

Because FTM0 uses the system clock frequency set to 112 MHz, the period of the tested signal can be

converted into a time quantity (FTM0_CH0_period = 100 µs).

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 11

3.6. Dual-edge capture mode

The dual-edge capture mode uses two FTM channels that enable measuring the positive-polarity or

negative-polarity pulse width of the signals. In this mode, the signals must input through the even FTM

channels, while the odd channels are ignored.

The dual-edge capture mode is selected when DECAPEN = 1. The dual-edge capture mode of the FTM

can work either in the one-shot capture mode or the continuous capture mode. The one-shot capture

mode is selected when MS(n)A = 0. The edges are captured if the DECAP bit is enabled. For every new

measurement, CH(n)F and CH(n+1)F must be cleared and the DECAP bit must be set again. The

continuous capture mode is selected when MS(n)A = 1. In this mode, the edges are captured

continuously if the DECAP bit is set. For each new measurement, it is necessary to clear the CH(n)F and

CH(n+1)F bits.

To measure the positive-polarity pulse width of the tested signal (either in the one-shot mode or in the

continuous modes), channel (n) must be configured to capture the rising edge (ELS(n)B:ELS(n)A = 1:0)

and channel (n+1) must be configured to capture the falling edge (ELS(n+1)B:ELS(n+1)A = 0:1). When

a second falling edge of the tested signal is detected, CH(n+1)F is set, the DECAP bit is cleared, and an

interrupt is generated (if CH(n+1)IE=1). In the interrupt routine, make a subtraction of the values saved

in the C(n+1)V and C(n)V registers to determine the positive-polarity pulse width of the tested signal

and clear the CH(n+1)F bit.

If the application requires to measure the negative-polarity pulse width of the tested signal, channel (n)

must be configured to capture the falling edge (ELS(n)B:ELS(n)A = 0:1) and channel (n+1) must be

configured to capture the rising edge (ELS(n+1)B:ELS(n+1)A = 1:0). To determine the period of the

tested signal, channel (n) and channel (n+1) must be sensitive on the same edges.

This example shows the dual-edge capture mode of the FTM0 module that is used to determine the

positive pulse width of two input signals.

Example 5. Dual-edge capture mode
void FTM0_Dual_Edge_Capture_Mode()

{

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM0 */

 PCC->PCCn[PCC_FLEXTMR0_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 PORTD->PCR[15] = PORT_PCR_MUX(2); // Set PTD15 for FTM0 - Channel0

 PORTD->PCR[0] = PORT_PCR_MUX(2); // Set PTD0 for FTM0 - Channel2

 FSL_NVIC->ISER[FTM0_IRQn / 32] |= (1 << (FTM0_IRQn % 32)); // Enable FTM0 interrupt

 /* Enable dual-edge capture mode */

 FTM0->COMBINE = FTM_COMBINE_DECAPEN0_MASK | FTM_COMBINE_DECAP0_MASK

 | FTM_COMBINE_DECAPEN1_MASK | FTM_COMBINE_DECAP1_MASK;

 /* Select positive polarity pulse width measurement and enable continuous mode for FTM0_CH0/CH2 */

 FTM0->CONTROLS[0].CnSC = FTM_CnSC_MSA_MASK | FTM_CnSC_ELSA_MASK;

 FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK | FTM_CnSC_CHIE_MASK;

 FTM0->CONTROLS[2].CnSC = FTM_CnSC_MSA_MASK | FTM_CnSC_ELSA_MASK;

 FTM0->CONTROLS[3].CnSC = FTM_CnSC_ELSB_MASK | FTM_CnSC_CHIE_MASK;

 /* Reset counter */

 FTM0->CNT = 0;

 /* Select clock */

 FTM0->SC = FTM_SC_CLKS(1);

}

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

12 Preliminary Information, Subject to Change without Notice NXP Semiconductors

/* Interrupt routine to measure positive polarity pulse width of tested input signals */

void FTM0_IRQHandler()

{

 if(FTM0->CONTROLS[1].CnSC & FTM_CnSC_CHF_MASK) // wait for falling edge of FTM0_CH0 signal

 {

 CH0_edge1 = FTM0->CONTROLS[0].CnV;

 CH0_edge2 = FTM0->CONTROLS[1].CnV;

 FTM0_CH0_pulse_width = CH0_edge2 - CH0_edge1; // pulse width calculation of FTM0_CH0 signal

 FTM0->CONTROLS[1].CnSC &= ~FTM_CnSC_CHF_MASK; // clear FTM0_CH1 capture flag

 }

 if(FTM0->CONTROLS[3].CnSC & FTM_CnSC_CHF_MASK) // wait for falling edge of FTM0_CH2 signal

 {

 CH2_edge1 = FTM0->CONTROLS[2].CnV;

 CH2_edge2 = FTM0->CONTROLS[3].CnV;

 FTM0_CH2_pulse_width = CH2_edge2 - CH2_edge1; // pulse width calculation of FTM0_CH2 signal

 FTM0->CONTROLS[3].CnSC &= ~FTM_CnSC_CHF_MASK; // clear FTM0_CH3 capture flag

 }

}

Figure 7. FTM0_CH0 and FTM0_CH2 input signals

Figure 7 shows two measured signals that are put through the FTM0_CH0 and FTM0_CH2 channels

into the FTM0 module. Their positive-polarity pulse widths are 17.8 µs and 50 µs. The results of the

code in Example 5 are displayed in the S32 design studio:

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 13

Figure 8. Positive-polarity pulse width of tested signals displayed in number of cycles

Figure 8 shows the pulse widths of the tested signals displayed in the number of cycles

(FTM0_CH0_pulse_width = 2000, FTM0_CH2_pulse_width = 5600). Considering the 112 MHz clock

as the source of the FTM0 module, the positive-polarity pulse widths of the measured signals can be

converted into time quantities (FTM0_CH0_pulse_width = 17.8 µs, FTM0_CH2_pulse_width = 50 µs).

3.7. Quadrature decoder mode

The quadrature decoder mode of the FTM module is used to decode the signals from the incremental

encoder sensor which is commonly used in motor-control applications for the position measurement.

The incremental encoders are usually based on the optical technology. The light emitted by an LED

passes through the slots in the metal discs and it is detected by phototransistors. The output signals of an

encoder with 1024 pulses are shown in this figure:

Figure 9. Encoder output signals

There are three output signals. The Phase A and Phase B signals consist of a series of pulses which are

phase-shifted by 90° (therefore the term “quadrature” is used). The third signal (called “Index”) provides

the absolute position information. In the motion control, it is used to check the pulse-counting

consistency. After each revolution, the value of the counted pulses is captured and compared to the

defined value. If a difference is detected, the control algorithm must perform the position offset

compensation.

The current implementation of the S32K device is equipped with four FTM modules: FTM0, FTM1,

FTM2, and FTM3. While all FTMs can be configured to generate PWM signals to control electric

motors, only the FTM1 and FTM2 modules can work in the quadrature decoder mode to measure the

rotor position. They have dedicated pins for the Phase A and Phase B signals.

FTM Operation Modes

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

14 Preliminary Information, Subject to Change without Notice NXP Semiconductors

The quadrature encoder mode is selected when QUADEN = 1. There are two sub-modes that can be

used in the quadrature encoder mode: the count and direction encoding mode and the Phase A and

Phase B encoding mode. The count and direction encoding mode is enabled when QUADMODE = 1. In

this mode, the Phase B input indicates the counting direction and the Phase A input defines the counting

rate.

To process the Phase A and Phase B signals from the encoder sensor, enable the Phase A and Phase B

encoding mode (QUADMODE = 0). In this mode, the Phase A and Phase B signals indicate the

counting direction as well as the counting rate. If the Phase B signal lags the Phase A signal, the FTM

counter increments after every detected rising/falling edge of both signals. If the Phase B signal leads

the Phase A signal, the FTM counter decrements after every detected rising/falling edge of both signals

and the QUADIR bit in the FTM_QDCTRL register indicates the counting direction.

This code example demonstrates the functionality of the quadrature decoder mode with the activated

Phase A and Phase B encoding sub-mode:

Example 6. Quadrature decoder mode
void FTM2_Quadrature_Decoder_Mode()

{

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM0 */

 PCC->PCCn[PCC_FLEXTMR2_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 PORTD->PCR[10] = PORT_PCR_MUX(3); // Set PTD10 for FTM2 - Phase B input

 PORTD->PCR[11] = PORT_PCR_MUX(3); // Set PTD11 for FTM2 - Phase A input

 PORTD->PCR[0] = PORT_PCR_MUX(1);

 PTD->PDDR=1<<0;

 FSL_NVIC->ISER[FTM2_IRQn / 32] |= (1 << (FTM2_IRQn % 32)); // Enable interrupt

 /* Encoder simulation with totally 10 rising/falling edges */

 FTM2->MOD = FTM_MOD_MOD(10);

 FTM2->CNTIN = FTM_CNTIN_INIT(0);

 FTM2->QDCTRL= FTM_QDCTRL_QUADEN_MASK;

 FTM2->CNT = 0;

 /* Select clock */

 FTM2->SC = FTM_SC_CLKS(1) | FTM_SC_TOIE_MASK;

}

/* Timer overflow interrupt routine indicating one mechanical revolution */

void FTM2_IRQHandler()

{

 PTD->PTOR|=1<<0;

 FTM2->SC &= ~FTM_SC_TOF_MASK;

}

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 15

Phase A signal

PTD0

Phase B signal

FTM Timer overflow
TOF and TOFDIR bits are set

FTM Timer overflow
TOF and TOFDIR bits are set

FTM2_MOD = 10 FTM2_MOD = 10

Figure 10. Quadrature decoder mode

In Figure 10, the scope channels CH1 and CH2 display the encoder signals Phase A and Phase B that are

input to the FTM2 module. The scope channel CH3 represents the FTM2 counter overflow interrupt

generated every time the FTM counter reaches the value of the MODULO register (every time 10

rising/falling edges of the Phase A and Phase B signals are detected). When the FTM2 timer overflow

occurs, the TOF bit and TOFDIR are set because the Phase B signal lags the Phase A signal (as shown

in Figure 10).

4. FTM Features

4.1. Masking, inverting, and software-controlling features

The masking and software-controlling features force the FTM channels’ output to the inactive/required

state, keeping a constant logic to the channels’ output. These FTM functions can turn the power devices

on/off via software. The inverting feature swaps the signals between the FTM channel pairs.

The masking feature is used in BLDC motor-control applications. A 3-phase BLDC motor is normally

supplied by a 3-phase power inverter equipped with either six MOSFETs or six IGBTs (Insulated-Gate

Bipolar Transistors). A commonly used control technique for BLDC motors is the 6-step commutation

method. In this control technique, two phases are energized and the third one is disconnected. Therefore,

both power devices of the corresponding inverter branch must be turned off. The masking feature of the

FTM module can be implemented in this application to fulfill such function. Each FTM channel has a

corresponding bit in the FTM_OUTMASK register. Any write to the OUTMASK register just latches

the value in its write buffer. The FTM channels’ output logic can then be updated immediately after

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

16 Preliminary Information, Subject to Change without Notice NXP Semiconductors

writing into the FTM_OUTMASK register while the FTM clock is disabled (at each rising edge of the

FTM input clock when FTM_SYNC[SYNCHOM] = 0) or updated by the software or hardware

synchronization, enabling the SWOM bit or the HWOM bit in the FTM_SYNCONF register (see

Section 4.3, “Updating FTM registers”). When the FTM_CHx channel is masked, its output logic is kept

high/low, according to the bit enabled in the FTM_POL register.

The software-controlling feature forces the FTM channels’ output to the software-defined values by

setting or clearing the CHxOC bits in the FTM_SWOCTRL register. If the CHxOC bits are cleared, the

FTM channels’ output remains driven by the PWM or another source. If the CHxOC bits are set, the

corresponding FTM channel’s output is affected by the software. The CHxOCV bit in the

FTM_SWOCTRL register controls the logic of the individual FTM channel. The output of the

FTM_CHx channel is high when CHxOCV = 1. Otherwise, it is 0.

The inverting function is commonly used in DC motor-control applications. The DC motor is supplied

by the H-bridge and one channel pair (FTM_CH0/CH1) is connected to one branch while the other

channel pair (FTM_CH2/CH3) is connected to another branch. Both channel pairs work in the

complementary mode. Such application requires that the diagonal power devices turn on/off at the same

time which means that the FTM_CH0 and FTM_CH3 must have the same timing. To guarantee such

condition, the FTM_CH1 and FTM_CH3 must work in the inverting mode. The INVmEN bit in the

FTM_INVCTRL register enables inverting the corresponding channel pair. The value written in the

FTM_INVCTRL register can be updated from the buffer in the same way as the FTM_OUTMASK

register.

The masking function is demonstrated in Section 4.3.3, “Updating FTM registers by software trigger”.

4.2. Fault control feature

The fault control of the FTM module plays an important role in motor-control applications because it

provides an opportunity to protect the power devices as well as the whole electrical drive system in

critical moments, when undesirable behaviors such as over-temperature, over-voltage, or over-current

occur. In such case, the fault signal can be generated via a sensor or a special circuit. The fault control is

able to stop all PWM channels as soon as a fault signal is detected on the input of the FTM fault

pin/pins. An interrupt can be generated after receiving the fault signal and the undesirable behavior can

be mitigated.

All FTM interrupt sources (fault interrupt, FTM counter overflow and reload opportunity interrupt,

channel-compare event interrupt, and capture interrupt) share the same interrupt vector. When a fault

signal appears, the FTM channels’ outputs are disabled and kept at a safe logic defined in the FTM_POL

register. For example, if POL0 = 1 and a fault is present, the FTM_CH0 is disabled and forced to a high

logic. On the contrary, if POL0 = 0 and a fault is present, the FTM_CH0 is disabled, but forced to a low

logic.

FTM has multiple channels. However, FTM can’t disable the specific channels by the means of specific

fault signals. One fault signal is generated as a result of the OR operation of all entering fault signals.

Whether the FTM channel can be disabled by the fault signal or not depends on the FAULTENx bit in

the FTM_COMBINE register. The resulting fault signal can disable all FTM channels or disable only

the even channels (FTM_CH0/CH2/CH4/CH6). The selection depends on the FAULTM bit field in the

FTM_MODE register.

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 17

There are two ways of recovering the PWM channels’ output: the automatic fault clearing set by

FAULTM[1:0] = 11 and the manual fault clearing when FAULTM[1:0] = 0:1 or 1:0. The PWM signals

are recovered from the safety state in the next PWM cycle without any software intervention when the

automatic fault-clearing mode is selected. To recover the PWM signals in the manual clearing mode, the

FAULTF bit in the FTM_MODE register must be cleared and the PWM is then enabled in the next

PWM cycle.

In the following code example, two FTM modules are initiated to demonstrate the fault-control feature.

While FTM0 is configured to generate the center-align PWM, FTM1 is used to generate the fault signal

that affects the output of the FTM0 channels externally through the fault pin FTM0_FLT0.

Example 7. Fault control of center-align PWM
/* FTM0 configured to generate Center-Align PWM with fault control */

void CPWM_and_Fault_Control()

{

 /* Enable clock for PORTA */

 PCC->PCCn[PCC_PORTA_INDEX] = PCC_PCCn_CGC_MASK;

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM0 */

 PCC->PCCn[PCC_FLEXTMR0_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 PORTD->PCR[15] = PORT_PCR_MUX(2); // Set PTD15 for FTM0 - Channel0

 PORTD->PCR[16] = PORT_PCR_MUX(2); // Set PTD16 for FTM0 - Channel1

 PORTD->PCR[0] = PORT_PCR_MUX(2); // Set PTD0 for FTM0 - Channel2

 PORTD->PCR[1] = PORT_PCR_MUX(2); // Set PTD0 for FTM0 - Channel3

 PORTA->PCR[14] = PORT_PCR_MUX(2); // Set PTD14 as a fault pin

 /* Enable registers updating from write buffers */

 FTM0->MODE = FTM_MODE_FTMEN_MASK;

 /* Enable combine, complementary mode and dead-time for pair channel n=1 and n=2 */

 FTM0->COMBINE=FTM_COMBINE_COMBINE0_MASK|FTM_COMBINE_COMP0_MASK|FTM_COMBINE_DTEN0_MASK

 |FTM_COMBINE_FAULTEN0_MASK|FTM_COMBINE_COMBINE1_MASK|FTM_COMBINE_COMP1_MASK

 |FTM_COMBINE_DTEN1_MASK|FTM_COMBINE_FAULTEN1_MASK;

 /* Set Modulo (10kHz PWM frequency @112MHz system clock) */

 FTM0->MOD = FTM_MOD_MOD(11200-1);

 /* Set CNTIN */

 FTM0->CNTIN = FTM_CNTIN_INIT(0);

 /* High-true pulses of PWM signals */

 FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[2].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[3].CnSC = FTM_CnSC_ELSB_MASK;

 /* Set Channel Value */

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(1120);

 FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(11200-1120);

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(2800);

 FTM0->CONTROLS[3].CnV=FTM_CnV_VAL(11200-2800);

 /* FTM counter reset */

 FTM0->CNT = 0;

 /* Insert DeadTime (1us) */

 FTM0->DEADTIME = FTM_DEADTIME_DTPS(3) | FTM_DEADTIME_DTVAL(7);

 /* Set PTA14 pin as a fault input FTM0_FLT0 */

 FTM0->FLTCTRL = FTM_FLTCTRL_FAULT0EN_MASK;

 /* Enable fault control for all channels and select automatic fault clearing mode */

 FTM0->MODE |= FTM_MODE_FAULTM(3);

 /* Safe value is set as a low after fault input is detected */

 FTM0->POL = (~FTM_POL_POL0_MASK) & (~FTM_POL_POL1_MASK);

 /* A 1 at the fault input indicates the fault */

 FTM0->FLTPOL &= ~FTM_FLTPOL_FLT0POL_MASK;

 /* Select clock and enable PWM */

 FTM0->SC = FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_PWMEN2_MASK

 |FTM_SC_PWMEN3_MASK;

}

/* FTM1 is configured to generate fault signals for FTM0 module */

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

18 Preliminary Information, Subject to Change without Notice NXP Semiconductors

void Fault_Signals_Generator()

{

 /* Enable clock for FTM1 */

 PCC->PCCn[PCC_FLEXTMR1_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 /* Enable clock for PORTB */

 PCC->PCCn[PCC_PORTB_INDEX] = PCC_PCCn_CGC_MASK;

 PORTB->PCR[2] = PORT_PCR_MUX(2); // Set PTB2 for FTM1 – Channel0

 FTM1->SC = FTM_SC_CPWMS_MASK; // Select up-down counter for Center-Align PWM

 FTM1->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK; // Select high-true pulses

 /* Set Modulo (2240Hz PWM frequency @112MHz system clock) */

 FTM1->MOD = FTM_MOD_MOD(50000-1); // Set modulo

 FTM1->CONTROLS[0].CnV = FTM_CnV_VAL(25000); // Set channel Value

 FTM1->CNT = 0; // Counter reset

 FTM1->SC |= FTM_SC_CLKS(1)|FTM_SC_PWMEN0_MASK; // Select clock and enable PWM

}

The resulting behavior of the code example is shown in this figure:

External fault signal

Active fault control Active fault controlUp counter period

Active fault control Active fault controlUp counter period

Figure 11. Fault control of center-align PWM

In Figure 11, the scope channels CH1, CH2, and CH3 represent the FTM0 module channels

FTM0_CH0, FTM0_CH1, and FTM0_CH2, respectively. FTM0_CH0 and FTM0_CH1 work in the

complementary and combine mode, same as FTM0_CH2 and FTM0_CH3. Channel CH4 shows the

external fault signal (generated from FTM1) whose frequency is one tenth of the FTM0 frequency.

When a rising edge is detected on the FTM0_FLT0 fault input pin, all FTM0 channels are forced to the

safe (low) logic. Figure 11 also shows that all FTM0 channels are recovered at the next counter cycle,

when the fault input signal is 0.

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 19

4.3. Updating FTM registers

In motor-control or switched-mode power supply applications, the voltage applied on the load must be

controlled by the PWM duty cycle. The PWM duty cycle can be controlled by setting the appropriate

values in the FTM_CnV and FTM_CNTIN registers. Some applications require to change the period of

the PWM as well. The period is controlled by the value in the FTM_MOD register.

The FTM_CnV, FTM_CNTIN, and FTM_MOD are double-buffered registers which means that a write

to these registers just latches their values into their write buffers. The double-buffered registers of the

FTM module are the Channel (n) Value (FTM_CnV), Counter Initial Value (FTM_CNTIN), Modulo

(FTM_MOD), Half Cycle Register (FTM_HCR), Output Mask (OUTMASK), Software Output Control

(SWOCTRL), and Inverting Control register (INVCTRL). The double-buffered registers can be then

updated with their buffered values according to the updating scheme chosen. The current

implementation on the S32K device enables using the half or full cycle reload strategy, software or

hardware PWM synchronization, or it is possible to bypass the buffers. All double-buffered registers and

their updating methods are summarized in this table:

Table 3. Updating double-buffered FTM register

Update technique Double-buffered FTM registers Note

Initialization stage

CLKS[1:0] = 0:0
CnV, CNTIN, MOD, HCR The registers are loaded immediately.

TPM compatibility

CLKS[1:0] ≠ 0:0, FTMEN = 0
CnV, CNTIN, MOD, HCR

The CNTIN register is loaded immediately and

the CnV, MOD, and HCR registers at the end of

the FTM counter period.

The CnV register is loaded immediately in the

output compare mode.

Software synchronization

CLKS[1:0] ≠ 0:0, FTMEN=1,

SYNCMODE = 1

CnV, CNTIN, MOD, HCR

(SWWRBUF = 1)

The registers are updated by the software

trigger-enabling SWSYNC bit.

If SWRSTCNT = 1, the software trigger resets

the FTM counter reset.

SWOCTRL

(SWOC = 1, SWSOC = 1)

The registers are updated by the software

trigger-enabling SWSYNC bit.

OUTMASK

(SYNCHOM = 1, SWOM = 1)

INVCTRL

(INVC = 1, SWINVC = 1)

Hardware synchronization

CLKS[1:0] ≠ 0:0, FTMEN=1,

SYNCMODE = 1

CnV, CNTIN, MOD, HCR

(HWWRBUF = 1)
The registers are updated when TRIGn = 1 and

the hardware trigger is detected at the trigger

(n) input signal.

If HWTRIGMODE = 1, the hardware trigger

clears the TRIGn bit.

SWOCTRL

(SWOC = 1, HWSOC = 1)

OUTMASK

(SYNCHOM = 1, HWOM = 1)

INVCTRL

(INVC = 1, HWINVC = 1)

Half and full cycle reload

strategy

CLKS[1:0] ≠ 0:0, FTMEN=1,

CnV, CNTIN, MOD, HCR

In the up-counting mode, the synchronization

points are when the FTM counter changes from

MOD to CNTIN, enable CNTMIN, or CNTMAX

bit.

For the up/down-counting mode, see Table 4.

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

20 Preliminary Information, Subject to Change without Notice NXP Semiconductors

Table 4. Reload opportunities in up/down-counting mode

FTM_SYNC bits Reload opportunities selected

CNTMIN = 0 and CNTMAX = 0
When the counter turns from up to down

(compatibility mode).

CNTMIN = 1 and CNTMAX = 0 When the counter turns from down to up.

CNTMIN = 0 and CNTMAX = 1 When the counter turns from up to down.

CNTMIN = 1 and CNTMAX = 1
When the counter turns from down to up and

when the counter turns from up to down.

Table 3 provides the summarization of all double-buffered registers and their updating methods. The

configuration steps of the updating methods are discussed in detail in the following sections.

4.3.1. Updating FTM registers in initialization stage

In the initialization stage, when the FTM module is disabled (CLKS[1:0] = 0:0), the FTM registers are

updated immediately after writing to the FTM_CnV, FTM_CNTIN, and FTM_MOD registers. After the

initialization step, the FTM module starts to generate the PWM by setting CLKS[1:0] ≠ 0:0 and enabling

the PWMENn bits in the FTM_SC register (see Example 1 or Example 2).

4.3.2. Half and full cycle reload strategies

To change the PWM duty cycle or the PWM time period while the FTM counter is running, it is possible

to apply the half and full cycle reload strategies. This feature enables updating the FTM registers with

the content of their buffers, depending on the chosen reload opportunity by setting the LDOK bit in the

FTM_PWMLOAD register. When a reload opportunity occurs, the RF bit in the FTM_SC register is set

and the reload-opportunity interrupt is generated if RIE = 1. In the interrupt routine, the FTM registers

can be changed and updated simultaneously.

If the up-counting mode is selected to generate the edge-align PWM, the half and full cycle reload

opportunities can update the FTM registers according to these steps:

1. Initialize FTM0 to generate the edge-align PWM and enable the FTMEN bit in the FTM_MODE

register and the RIE bit in the FTM_SC register.

2. Enable the HCSEL bit in the FTM_PWMLOAD register and adjust the value in the FTM_HCR

register to MOD/2 for the half cycle reload opportunity and HCSEL = 0 for the full cycle reload

opportunity.

3. In the interrupt routine, change the value of the FTM registers to update the values from their

buffers and clear the RF bit in the FTM_SC register.

A different scenario must be considered when the up/down-counting mode is selected to generate the

center-align PWM:

1. Initialize FTM0 to generate the center-align PWM and enable the FTMEN bit in the

FTM_MODE register and the RIE bit in the FTM_SC register.

2. Enable the CNTMIN and CNTMAX bits in the FTM_SYNC register for the half cycle reload

opportunity and the CNTMIN = CNTMAX = 0 for the full cycle reload opportunity.

3. In the interrupt routine, change the value of the FTM registers to update the values from their

buffers and clear the RF bit in the FTM_SC register.

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 21

The following code example shows a part of the FTM0 initialization for the center-align PWM and the

half cycle reload opportunity interrupt routine, where the channels’ values C0V and C2V are modified

according to the variable flag.

Example 8. Half/full cycle reload strategy
void Center_Align_PWM_Init()

{

 ...

 /* Enable half cycle reload */

 FTM0->SYNC = FTM_SYNC_CNTMAX_MASK | FTM_SYNC_CNTMIN_MASK;

 /* Select clock, enable reload opportunity interrupt and enable PWM generation */

 FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_PWMEN2_MASK |

 | FTM_SC_PWMEN3_MASK | FTM_SC_RIE_MASK;

}

/* Half cycle reload opportunity interrupt routine */

void FTM0_IRQHandler()

{

 if(flag)

 {

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(5600);

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(2800);

 }

 else

 {

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(2800);

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(5600);

 }

 flag = !flag;

 PTD->PTOR |= 1<<3; // Toggle PTD3 to show reload opportunities

 FTM0->PWMLOAD |= FTM_PWMLOAD_LDOK_MASK; // Set LDOK bit

 FTM0->SC &= ~FTM_SC_RF_MASK; // Clear Timer Flag

}

The following figures demonstrate the half and full cycle reload strategy of the FTM registers

performing the center-align PWM.

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

22 Preliminary Information, Subject to Change without Notice NXP Semiconductors

reload opportunity

50%
duty
cycle

100% duty
cycle

Write to
C0V=2800

50% duty
cycle

100% duty
cycle

100%
duty
cycle

50%
duty
cycle

up-down
counter period

reload opportunity

Write to
C0V=5600

Write to
C2V=5600

Write to
C2V=2800

Figure 12. Center-align PWM and half cycle reload strategy

reload opportunity

50%
duty
cycle

100% duty
cycle

50% duty
cycle

100% duty
cycle

100%
duty
cycle

50%
duty
cycle

up-down
counter
period

reload opportunity

up-down
counter
period

Write to
C0V=2800

Write to
C0V=5600

Write to
C2V=5600

Write to
C2V=2800

Figure 13. Center-align PWM and full cycle reload strategy

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 23

In Figure 12 and Figure 13, the scope channels CH1, CH2, and CH3 represent the FTM_CH0,

FTM_CH1, and FTM_CH2 of the FTM module, respectively. The FTM_CH0 and FTM_CH1 work in

the complementary mode, same as the FTM_CH2 and FTM_CH3. CH4 is used to show the reload

opportunity of the FTM registers that occurs every half/full cycle of the up-down counter. In the first

reload opportunity, the 100 % and 50 % duty cycles are applied to the complementary channel pairs

FTM_CH0/CH1 and FTM_CH2/CH3, respectively. At next reload opportunity, the C0V and C2V

registers are updated from their new buffed values, therefore the duty cycles of FTM_CH0/CH1 and

FTM_CH2/CH3 are changed to 50 % and 100 %, respectively.

4.3.3. Updating FTM registers by software trigger—software

synchronization

All double-buffered FTM registers can be also updated by the software synchronization, enabling the

SWSYNC bit in the FTM_SYNC register (as shown in Table 3). The update can take place immediately

or at the next loading point selected, according to the boundary cycle and the loading points of the

selected counting mode.

In the up-counting mode, the boundary cycle is defined as when the counter wraps to its initial value

(CNTIN). When in the up/down-counting mode, the boundary cycle is defined as when the counter turns

from the down-counting to the up-counting and from the up-counting to the down-counting. In the

up-counting mode, the loading points are enabled if one of the CNTMIN or CTMAX bits is 1.

If the SWRSTCNT bit is set in the FTM_SYNCONF register, the FTM counter restarts from the

FTM_CNTIN and the FTM registers are updated immediately. If the SWRSTCNT bit is cleared, the

FTM counter remains counting and the FTM registers are updated at the next loading point.

Perform the following steps to configure the FTM module to generate the center-align PWM and use the

software synchronization to update the FTM_CnV and FTM_OUTMASK registers:

1. Initialize FTM0 to generate the center-align PWM and enable the FTMEN bit in the

FTM_MODE register and the RIE bit in the FTM_SC register.

2. Enable the SYNCMODE, SWWRBUF, and SWOM bits in the SYNCONF register to select the

software synchronization of the CnV and OUTMASK registers.

3. Enable the software trigger by FTM_SYNC[SWSYNC] = 1 and wait for the next loading point.

4. In the reload opportunity interrupt routine, change the value of the CnV and OUTMASK

registers and enable the software trigger by SWSYNC.

The following code example shows a part of the FTM0 initialization for the center-align PWM and

demonstrates the software synchronization for updating the FTM_CnV and FTM_OUTMASK registers.

Example 9. Software synchronization of center-align PWM
void CPWM_SoftSync_Init()

{

 ...

 /* Select clock, enable reload opportunity interrupt */

 FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_RIE_MASK;

 /* Enable reload opportunity interrupt when FTM counter reach CNTMAX value */

 FTM0->SYNC |= FTM_SYNC_SYNCHOM_MASK | FTM_SYNC_CNTMAX_MASK;

 /* Allow each fourth reload opportunity interrupt */

 FTM0->CONF = FTM_CONF_LDFQ(3);

 /* Enable software synchronization */

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

24 Preliminary Information, Subject to Change without Notice NXP Semiconductors

 FTM0->SYNCONF = FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_SWWRBUF_MASK | FTM_SYNCONF_SWOM_MASK

 FTM_SYNCONF_SWRSTCNT_MASK;

 /* Enable PWM generation */

 FTM0->SC |= FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_PWMEN2_MASK | FTM_SC_PWMEN3_MASK;

}

/* Interrupt routine for updating FTM registers - Software synchronization */

void FTM0_IRQHandler()

{

 if(flag)

 {

 /* Enable FTM0_CH0/FTM0_CH1 mask */

 FTM0->OUTMASK = FTM_OUTMASK_CH0OM_MASK | FTM_OUTMASK_CH1OM_MASK;

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(1120);

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(1120);

 if(flagMask)

 {

 /* Set FTM0_CH0/FTM0_CH1 output polarity to high */

 FTM0->POL = FTM_POL_POL0_MASK | FTM_POL_POL1_MASK;

 }

 else

 {

 /* Set FTM0_CH0/FTM0_CH1 output polarity to low */

 FTM0->POL &= (~FTM_POL_POL0_MASK) & (~FTM_POL_POL1_MASK);

 }

 flagMask = !flagMask;

 }

 else

 {

 /* Set FTM0_CH0/FTM0_CH1 output polarity to low */

 FTM0->POL &= (~FTM_POL_POL0_MASK) & (~FTM_POL_POL1_MASK);

 /* Disable FTM0_CH0/FTM0_CH1 mask */

 FTM0->OUTMASK &= (~FTM_OUTMASK_CH0OM_MASK) & (~FTM_OUTMASK_CH1OM_MASK);

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(2800);

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(2800);

 }

 flag = !flag;

 PTD->PTOR |= 1<<3; // Toggle PTD3 to show reload opportunities

 FTM0->SYNC |= FTM_SYNC_SWSYNC_MASK; // Software sync

 FTM0->SC &= ~FTM_SC_RF_MASK; // Clear Reload Flag bit

 }

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 25

up-down
counter period

software trigger

active masking active masking

up-down
counter period

software trigger

20% duty cycle50% duty cycle

50% duty cycle50% duty cycle

Write CH0O = 1,
CH1O = 1

Write CH0O = 0,
CH1O = 0

Figure 14. Software synchronization of center-align PWM

In Figure 14, the scope channels CH1, CH2, and CH3 represent FTM_CH0, FTM_CH1, and FTM_CH2

of the FTM module, respectively. FTM_CH0 and FTM_CH1 work in the complementary mode, same as

FTM_CH2 and FTM_CH3. Channel CH4 is used to show the software trigger which occurs every fourth

PWM period. The duty cycles of channel pairs FTM_CH0/FTM_CH1 and FTM_CH2/FTM_CH3

change from 50 % to 20 % (and vice-versa), depending on the software trigger events that update the

C0V and C2V registers. Moreover, the first complementary channel pair FTM_CH0/FTM_CH1 shows

the masking feature.

4.3.4. Updating FTM registers by hardware trigger—hardware

synchronization

The hardware synchronization is another way of updating the FTM registers when the counter is

running. In this case, the interrupt routine is not necessary because the FTM registers can be changed at

any time during the code execution and their values are updated as soon as a hardware trigger occurs.

The CPU load can be significantly reduced this way.

Three hardware trigger signal inputs of the FTM module can be selected depending on the enabled

TRIGn bit in the FTM_SYNC register. If TRIG0 is set, the hardware trigger source comes from many

other modules, such as LPIT and CMP (and other) through a flexible TRIGMUX module. By setting the

TRIG1 bit in the FTM_SYNC register, a hardware trigger is generated according to the

FTM0SYNCBIT bit in the SIM_FTMOPT1 register. In this section, the third option is demonstrated by

enabling the TRIG2 bit. In this case, the FTMx_FLT0 fault pin is chosen as the hardware trigger input

for the FTM hardware synchronization.

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

26 Preliminary Information, Subject to Change without Notice NXP Semiconductors

1. Initialize FTM0 to generate the center-align PWM and enable the FTMEN bit in the

FTM_MODE register.

2. Enable the SYNCMODE and HWWRBUF bits in the FTM0_SYNCONF register to select the

hardware synchronization.

3. Enable the TRIG2 bit in the FTM0_SYNC register to select the FTM0_FLT0 fault pin as the

hardware trigger input for the FTM0 hardware synchronization.

4. Initialize the FTM1 module to generate a periodic signal for the FTM0 hardware trigger input.

To better demonstrate the FTM0 hardware synchronization, the frequency of FTM1 must be

lower than the frequency of FTM0.

5. Generate a reload opportunity interrupt by enabling the RIE bit in the FTM1_SC register and

change the values in the C0V and C2V registers. Wait for a hardware trigger event that updates

the values from the buffers.

Example 10. Hardware synchronization of center-align PWM
void CPWM_HardSync_Init()

{

 /* Enable clock for PORTA */

 PCC->PCCn[PCC_PORTA_INDEX] = PCC_PCCn_CGC_MASK;

 /* Set PTD14 as fault pin of FTM0 */

 PORTA->PCR[14] = PORT_PCR_MUX(2);

 ...

 /* Select and enable clock */

 FTM0->SC |= FTM_SC_CLKS(1);

 /* Enable hardware synchronization */

 FTM0->SYNCONF = FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_HWWRBUF_MASK;

 /* Enable FTM counter reset after hardware trigger */

 FTM0->SYNCONF |= FTM_SYNCONF_HWRSTCNT_MASK | FTM_SYNCONF_HWTRIGMODE_MASK;

 /* Select FTM0_FLT0 pin as a hardware trigger input */

 FTM0->SYNC = FTM_SYNC_TRIG2_MASK;

 /* Enable PWM generation */

 FTM0->SC |= FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_PWMEN2_MASK | FTM_SC_PWMEN3_MASK;

}

/* Set FTM1 as a hardware trigger source for FTM0 through FTM0_FLT0 input

 PTB2 and PTA14 have to be interconnected to each other */

void FTM1_Init()

{

 /* Enable clock for FTM1 */

 PCC->PCCn[PCC_FLEXTMR1_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 /* Enable clock for PORTB */

 PCC->PCCn[PCC_PORTB_INDEX] = PCC_PCCn_CGC_MASK;

 PORTB->PCR[2] = PORT_PCR_MUX(2); // PTB2 is used for FTM1-Channel0

 FTM1->SC=FTM_SC_CPWMS_MASK; // Select up-down counter for Center-Align PWM

 FTM1->CONTROLS[0].CnSC=FTM_CnSC_ELSB_MASK; // Select high-true pulses

 FTM1->MOD = FTM_MOD_MOD(15000-1); // Set modulo

 FTM1->CONTROLS[0].CnV=FTM_CnV_VAL(7500); // Set channel Value

 FTM1->CNT = 0; // Counter reset

 /* Select clock, enable reload opportunity interrupt and PWM generation */

 FTM1->SC|=FTM_SC_CLKS(1)|FTM_SC_RIE_MASK|FTM_SC_PWMEN0_MASK;

 /* Reload opportunity interrupt occurs when FTM counter reach CNTMAX value */

 FTM1->SYNC |= FTM_SYNC_CNTMAX_MASK;

}

/* FTM1 interrupt routine to change values of FTM0 registers */

void FTM1_IRQHandler()

{

 if(flag)

 {

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(1000);

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 27

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(4000);

 }

 else

 {

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(4000);

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(1000);

 }

 flag = !flag;

 FTM1->SC &= ~FTM_SC_RF_MASK; // Clear Reload Flag bit

}

The resulting behavior of the code example is shown in this figure:

up-down
counter
period

up-down
counter
period

up-down
counter
period

hardware trigger
(counter reset)

hardware trigger
(counter reset)

hardware trigger
(counter reset)

20% duty cycle

70% duty cycle 20% duty cycle

70% duty cycle

Figure 15. Hardware synchronization of center-align PWM

In Figure 15, the scope channels CH1, CH2, and CH3 represent the FTM0 module channels

FTM0_CH0, FTM0_CH1, and FTM0_CH2, respectively. FTM0_CH0 and FTM0_CH1 work in the

complementary mode, same as FTM0_CH2 and FTM0_CH3. Channel CH4 shows the hardware trigger

generated from FTM1 whose frequency is one third of the FTM0 frequency. After receiving the first

hardware trigger, the duty cycles of the channel pair FTM_CH0/FTM_CH1 and the channel pair

FTM_CH2/FTM_CH3 change from 20 % to 70 % and from 70 % to 20 %, respectively. The next

hardware trigger updates the new values of the C0V and C2V registers and the duty cycle of the

corresponding channel pair changes back to the previous value.

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

28 Preliminary Information, Subject to Change without Notice NXP Semiconductors

4.4. Global Time Base (GTB)

There are multiple FTMs on the chip, but the multiple FTM modules are independent. If the application

requires more PWM channels than what one FTM can provide, multiple FTM modules can be used, but,

they must be synchronized. The synchronization of two (or more) FTM modules means that their

counters have the same values at any time instant.

The S32K device provides the GTB mechanism to synchronize multiple FTMs. The GTB is a

synchronous signal generated by the master FTM that launches the counter of all FTMs used. These two

conditions must be met when using the GTB function: each FTM must have the same clock source and

each FTM must start at the same time.

To enable the GTB feature, perform these steps for each participating FTM module:

1. Stop the FTM counter (write 00b to SC[CLKS]).

2. Program the FTM to the intended configuration. The FTM counter mode must be consistent

across all participating modules.

3. Write 1 to CONF[GTBEEN] and write 0 to CONF[GTBEOUT] at the same time.

4. Select the intended FTM counter clock source in SC[CLKS]. The clock source must be

consistent across all participating modules.

5. Reset the FTM counter (write any value to the CNT register).

The following example shows the synchronization of two generating FMTs—FTM0 and FTM2. The

duty cycles of both PWMs are adjusted to very low values to better demonstrate the functionality of the

GTB mechanism.

Example 11. Center-align PWM and GTB function

void CPWM_and_Global_Time_Base()

{

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM0 */

 PCC->PCCn[PCC_FLEXTMR0_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM2 */

 PCC->PCCn[PCC_FLEXTMR2_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 PORTD->PCR[15] = PORT_PCR_MUX(2); // Set PTD15 for FTM0 - Channel0

 PORTD->PCR[16] = PORT_PCR_MUX(2); // Set PTD16 for FTM0 - Channel1

 PORTD->PCR[0] = PORT_PCR_MUX(4); // Set PTD0 for FTM2 - Channel0

 PORTD->PCR[1] = PORT_PCR_MUX(4); // Set PTD1 for FTM2 - Channel1

 /* Select up-down counter for Center-Align PWM */

 FTM0->SC = FTM_SC_CPWMS_MASK;

 FTM2->SC = FTM_SC_CPWMS_MASK;

 /* Enable registers updating from write buffers */

 FTM0->MODE = FTM_MODE_FTMEN_MASK;

 FTM2->MODE = FTM_MODE_FTMEN_MASK;

 /* Enable complementary mode for channels pair n=1 */

 FTM0->COMBINE = FTM_COMBINE_COMP0_MASK;

 FTM2->COMBINE = FTM_COMBINE_COMP0_MASK;

 /* Set Modulo (10kHz PWM frequency @112MHz system clock) */

 FTM0->MOD = FTM_MOD_MOD(5600-1);

 FTM2->MOD = FTM_MOD_MOD(5600-1);

 /* Set CNTIN */

 FTM0->CNTIN = FTM_CNTIN_INIT(0);

 FTM2->CNTIN = FTM_CNTIN_INIT(0);

 /* High-true pulses of PWM signals */

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 29

 FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;

 FTM2->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;

 FTM2->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;

 /* Set Channel Value – 1% duty cycle */

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(56);

 FTM2->CONTROLS[0].CnV=FTM_CnV_VAL(56);

 /* FTM counter reset */

 FTM0->CNT = 0;

 FTM2->CNT = 0;

 /* Enable global time base to control FTM0 and FTM2 */

 FTM0->CONF = FTM_CONF_GTBEEN_MASK;

 FTM2->CONF = FTM_CONF_GTBEEN_MASK;

 /* Select clock */

 FTM0->SC |= FTM_SC_CLKS(1);

 FTM2->SC |= FTM_SC_CLKS(1);

 /* Synchronization signal for FTM0 and FTM2 */

 FTM0->CONF |= FTM_CONF_GTBEOUT_MASK;

 /* Enable PWM generation */

 FTM0->SC |= FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK;

 FTM2->SC |= FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK;

}

The center-align PWMs of FTM0 and FTM2 with no GTB activated and with the GTB activated are

shown in these two figures:

1% duty-cycle of
FTM0

1% duty-cycle
of FTM2

Up-down counters of FTM0 and
FTM2 are not synchronized by GTB

Figure 16. Center–align PWM with no GTB activated

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

30 Preliminary Information, Subject to Change without Notice NXP Semiconductors

1% duty-cycle of
FTM0

1% duty-cycle
of FTM2

Up-down counters of FTM0 and
FTM2 are synchronized by GTB

Figure 17. Center–align PWM with GTB activated

In Figure 16 and Figure 17, the scope channels CH1, CH2, CH3, and CH4 represent the FTM0 and

FTM2 modules’ channels FTM0_CH0, FTM0_CH1, FTM2_CH0, and FTM2_CH1, respectively.

FTM0_CH0 and FTM0_CH1 work in the complementary mode, same as FTM2_CH0 and FTM2_CH1.

The time base of the scope is adjusted so that a 1 % duty cycle of channels FTM0 and FTM2 can be

clearly seen on the scope display. If the global time base is not activated, the up-down counters of the

FTMs used are not perfectly aligned to each other, neither are their channel signals (see Figure 16). Such

problem is handled by applying the GTB function to the FTM modules (see Figure 17).

NOTE

The GTB feature does not provide a continuous synchronization of the

FTM counters, meaning that the FTM counters may lose the

synchronization during the FTM operation. The GTB feature only enables

the FTM counters to start their operation synchronously.

4.5. ADC triggering by FTM and PDB modules

In motor-control applications, as well as in switched-mode power supply applications, it is necessary to

measure the currents at the center of the PWM signal. The power devices do not switch at this time

instant, therefore the voltage drop sensed on the shunt resistor is stable.

All four FTM modules of the S32K device have up to eight channels. Six channels are usually enough to

generate the PWM signals necessary to control commonly used 3-phase motors. The remaining two

channels of the FTM module can then be used to control the instant of the ADC conversions.

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 31

The triggering signal of the FTM module can be selected in the FTM_EXTTRIG register. All FTM

channels can be used to trigger the ADC module. For example, if CH0 is set in the FTM_EXTTRIG

register, the FTM counter counts until it reaches the value written in the C0V register. At this time

instant, CH0 generates a signal that triggers the ADC module on every FTM counter period. If the

INITTRIG bit is set in the FTM_EXTTRIG register, the trigger signal is generated every time the FTM

counter reaches the value of the CNTIN register.

The default and suggested hardware triggering scheme for the ADC module is through the

Programmable Delay Block (PDB). The current implementation of the S32K device is equipped with

two ADC modules and two PDB modules that work in pairs. This means that PDB0 is linked with

ADC0 and PDB1 is linked with ADC1. Each PDB module can be triggered either by software or

hardware. The FTM module is one of the trigger sources that can be enabled through the TRGMUX

registers TRGMUX_PDB0 and TRGMUX_PDB1.

To generate the center-align PWM and to trigger ADC0 by FTM0 through PDB0, perform these steps:

1. Initialize the FTM0 module to generate the center-align PWM and enable the INITTRIGEN bit

in the FTM0_EXTTRIG register to generate a hardware trigger for the ADC0 module.

2. Configure the TRGMUX module to trigger ADC0 by FTM0 through the PDB0 module by

writing 0x16 to the SEL0 bit field in the TRGMUX_PDB0 register.

3. Delay the FTM0 initialization trigger by the PDB0 block to trigger ADC0 at the center of the

PWM cycle by writing appropriate values into the PDB0_MOD and PDB0_CH0DLY0 registers.

4. Initialize the ADC0 module and enable the ADTRG bit in the ADC0_SC2 register to trigger

ADC0 by the FTM0 module.

The following code example demonstrates the configuration of the FTM0, PDB0, and ADC0 modules,

where FTM0 is used to generate the center-align PWM and to trigger ADC0 through the PDB0 module.

Example 12. ADC triggering by FTM and PDB modules
/* FTM0 Initialization */

void FTM0_Init()

{

 /* Enable clock for PORTD */

 PCC->PCCn[PCC_PORTD_INDEX] = PCC_PCCn_CGC_MASK;

 /* Select and enable clock for FTM0 */

 PCC->PCCn[PCC_FLEXTMR0_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK;

 PORTD->PCR[15] = PORT_PCR_MUX(2); // Set PTD15 for FTM0 – Channel0

 PORTD->PCR[16] = PORT_PCR_MUX(2); // Set PTD16 for FTM0 – Channel1

 PORTD->PCR[0] = PORT_PCR_MUX(2); // Set PTD0 for FTM0 – Channel2

 PORTD->PCR[1] = PORT_PCR_MUX(2); // Set PTD1 for FTM0 – Channel3

 PORTD->PCR[2] = PORT_PCR_MUX(1); // Set PTD2 as a PTD2

 PORTD->PCR[3] = PORT_PCR_MUX(1); // Set PTD3 as a PTD3

 PTD->PDDR = (1<<2) | (1<<3); // Set PTD2 and PTD3 as an output

 /* Select up-down counter for Center-Align PWM */

 FTM0->SC = FTM_SC_CPWMS_MASK;

 /* Enable combine, complementary mode and dead-time for channels pair CH0/CH1 and CH2/CH3 */

 FTM0->COMBINE = FTM_COMBINE_SYNCEN0_MASK | FTM_COMBINE_COMP0_MASK | FTM_COMBINE_DTEN0_MASK;

 FTM0->COMBINE |= FTM_COMBINE_SYNCEN1_MASK | FTM_COMBINE_COMP1_MASK | FTM_COMBINE_DTEN1_MASK;

 /* Set Modulo (10kHz PWM frequency @112MHz system clock) */

 FTM0->MOD = FTM_MOD_MOD(5600-1);

 /* Set CNTIN */

 FTM0->CNTIN = FTM_CNTIN_INIT(0);

 /* High-true pulses of PWM signals */

 FTM0->CONTROLS[0].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[1].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[2].CnSC = FTM_CnSC_ELSB_MASK;

 FTM0->CONTROLS[3].CnSC = FTM_CnSC_ELSB_MASK;

FTM Features

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

32 Preliminary Information, Subject to Change without Notice NXP Semiconductors

 /* Set Channel Value */

 FTM0->CONTROLS[0].CnV=FTM_CnV_VAL(2800); // 50% duty cycle

 FTM0->CONTROLS[1].CnV=FTM_CnV_VAL(2800); // 50% duty cycle

 FTM0->CONTROLS[2].CnV=FTM_CnV_VAL(2800); // 50% duty cycle

 FTM0->CONTROLS[3].CnV=FTM_CnV_VAL(2800); // 50% duty cycle

 /* FTM counter reset */

 FTM0->CNT = 0;

 /* Insert DeadTime (1us) */

 FTM0->DEADTIME = FTM_DEADTIME_DTPS(3) | FTM_DEADTIME_DTVAL(7);

 /* Enable trigger generation when FTM counter = CNTIN */

 FTM0->EXTTRIG = FTM_EXTTRIG_INITTRIGEN_MASK;

 /* Enable clock and PWM */

 FTM0->SC |= FTM_SC_CLKS(1) | FTM_SC_PWMEN0_MASK | FTM_SC_PWMEN1_MASK | FTM_SC_PWMEN2_MASK|

 FTM_SC_PWMEN3_MASK;

}

/* PDB0 Initialization */

void PDB0_Init()

{

 PCC->PCCn[PCC_PDB0_INDEX] = PCC_PCCn_CGC_MASK; // Enable clock for PDB0

 FSL_NVIC->ISER[PDB0_IRQn / 32] |= (1 << (PDB0_IRQn % 32)); // Enable interrupt

 PDB0->MOD = 11200; // Set Modulo

 PDB0->CH[0].C1 = PDB_C1_TOS(1) | PDB_C1_EN(1); // Select and enable Channel0

 PDB0->CH[0].DLY[0] = 5600; // Set delay

 PDB0->IDLY = 0; // Set interrupt delay

 PDB0->SC |= PDB_SC_PRESCALER(0) | PDB_SC_MULT(0); // Select clock prescaler and mult factor

 /* Select trigger input source and enable interrupt */

 PDB0->SC |= PDB_SC_TRGSEL(0) | PDB_SC_PDBIE_MASK;

 /* Enable PDB and update PDB registers */

 PDB0->SC |= PDB_SC_PDBEN_MASK | PDB_SC_LDOK_MASK;

}

/* TRGMUX Initialization */

void TRGMUX_Init()

{

 PCC->PCCn[PCC_TRGMUX_INDEX] = PCC_PCCn_CGC_MASK; // Enable clock for TRGMUX module

 /* Set FTM as a trigger source for PDB0 */

 TRGMUX->TRGMUXn[TRGMUX_PDB0_INDEX] = TRGMUX_TRGMUXn_SEL0(0x16);

}

void ADC0_Init()

{

 PCC->PCCn[PCC_ADC0_INDEX] = 0; // Disable clock for ADC0

 PCC->PCCn[PCC_ADC0_INDEX] = PCC_PCCn_PCS(6) | PCC_PCCn_CGC_MASK; // Enable clock for ADC0

 FSL_NVIC->ISER[ADC0_IRQn / 32] |= (1 << (ADC0_IRQn % 32)); // Enable interrupt

 /* Set divide ratio to 1 and select 8-bit conversion */

 ADC0->CFG1 = ADC_CFG1_ADIV(0) | ADC_CFG1_MODE(0) | ADC_CFG1_ADICLK(0);

 /* Select hardware trigger */

 ADC0->SC2 = ADC_SC2_ADTRG_MASK;

 /* Select channel 12 as an input and enable conversion complete interrupt */

 ADC0->SC1[0] = ADC_SC1_AIEN_MASK | ADC_SC1_ADCH(12);

}

/* ADC0 interrupt routine */

void ADC0_IRQHandler()

{

 PTD->PTOR |= 1<<3; // Toggle PTD2 to show completed ADC conversions

 ADC0_RA = ADC0->R[0]; // Read ADC result register

}

/* PDB0 interrupt routine */

void PDB0_IRQHandler()

{

 PTD->PTOR |= 1<<2; // Toggle PTD2 to show FTM0 trigger signal

 PDB0->SC &= ~PDB_SC_PDBIF_MASK; // Clear PDB interrupt flag

}

Revision History

Features and Operation Modes of FlexTimer Module on S32K, Application Note, Rev. 0, 06/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 33

The resulting behavior of the code example is shown in this figure:

FTM0_CH0

FTM0_CH1

ADC Conversion
complete (COCO=1)

FTM trigger generated when
FTM counter = CNTIN

Up-counter period PDB delay ADC conversion delay

Figure 18. ADC triggering by FTM and PDB modules

In Figure 18, the scope channels CH1 and CH2 represent the FTM0 channels FTM0_CH0 and

FTM0_CH1, respectively. The channel pair FTM0_CH0/FTM0_CH1 works in the complementary

mode, same as the channel pair FTM0_CH2/FTM0_CH3. The scope channels CH3 and CH4

demonstrate the interconnection between the FTM0, PDB0, and ADC0 modules. While channel CH3

represents the PTD2 pin toggling in the PDB0 interrupt routine every time the FTM0 counter reaches the

value of the CNTIN register, channel CH4 displays the PTD3 pin toggling in the ADC0 interrupt routine

every time the ADC0 conversion is completed (COCO = 1). The FTM0 trigger signal is delayed by the

PDB0 module so that the ADC0 conversion occurs at the center of the PWM signal.

5. Revision History

This table summarizes the changes done to the document since the initial release:

Table 5. Revision history

Revision number Date Substantive changes

0 06/2016 Initial release.

Document Number: AN5303
Rev. 0

06/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

Kinetis, Vybrid, Freescale, and the Freescale logo are trademarks of NXP B.V. All other

product or service names are the property of their respective owners.

© 2016 NXP B.V.

Preliminary Information, Subject to Change without Notice

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. FTM Overview
	3. FTM Operation Modes
	3.1. Edge-align PWM (EPWM) mode
	3.2. Center-align PWM (CPWM) mode
	3.3. Complementary mode and dead-time insertion
	3.4. Combine mode
	3.5. Single-edge capture mode
	3.6. Dual-edge capture mode
	3.7. Quadrature decoder mode

	4. FTM Features
	4.1. Masking, inverting, and software-controlling features
	4.2. Fault control feature
	4.3. Updating FTM registers
	4.3.1. Updating FTM registers in initialization stage
	4.3.2. Half and full cycle reload strategies
	4.3.3. Updating FTM registers by software trigger—software synchronization
	4.3.4. Updating FTM registers by hardware trigger—hardware synchronization

	4.4. Global Time Base (GTB)
	4.5. ADC triggering by FTM and PDB modules

	5. Revision History

