
1 Introduction
This application note aims to teach the reader how to migrate
projects from CodeWarrior v10.6 (CW Eclipse or CWE) and
CodeWarrior for MPC55xx, MPC56xx 2.10 (Classic CW or
CCW) embedded software development tools to S32 Design
Studio (S32DS). There are code examples included in this
application note which support KEAZ128 for the ARM®

portion and MPC5604B and MPC5644C for the Power
Architecture® section.

1.1 What is S32DS?

S32DS is NXP’s new development tool for Ultra-Reliable
Automotive and Industrial MCUs. It is a no-cost, Eclipse-
based integrated development environment (IDE) that
integrates various open-source software components, such as
the GNU Compiler Collection (GCC) and GNU Debugger
(GDB), as well as NXP proprietary device initialization tools.
The latter provides a layer of abstraction so that a user needs
only call device registers by name, rather than having to
specify their memory locations as well. NXP’s goal with this
tool is to provide customers with an easy-to-use IDE that gives
the look and feel of CWE at no cost and provides customers
with faster development cycle time than previously available.

NXP Semiconductors Document Number: AN5282

Application Note Rev. 3, 09/2016

CodeWarrior to S32 Design Studio
(S32DS) Migration Guide
Migrating legacy programs to the new S32DS IDE
environment

by: David Chung

Contents

1 Introduction.............................. 1

2 How to Migrate an ARM project from
CodeWarrior to S32DS.............................. 3

3 CodeWarrior Eclipse and S32DS
Comparison for Power Architecture........................6

4 Project Migration from CodeWarrior
Eclipse for Power Architecture................26

5 Project Migration from CodeWarrior
Classic for Power Architecture..............................51

6 Assembly Translation..53

7 Debug Configurations...................55

8 Building the Converted Project.........58

9 Conclusion...58

10 Revision History........................ 58

https://www.nxp.com/design/software/development-software/s32-design-studio-ide:S32-DESIGN-STUDIO-IDE?utm_medium=AN-2021

1.2 Why migrate?
There are no plans to discontinue CodeWarrior in the near-future, but software enablement for future automotive and ultra-
reliable industrial releases from NXP will be supported through S32DS. CodeWarrior support for existing products will
remain available. Products released in between tool transition, including the Kinetis EA (KEA), MPC57xx series, and
MPC56xx, will be supported by both CodeWarrior and S32DS. However, migrating code to S32DS where available will
allow for maximum software reusability for future NXP products. The table below summarizes tool support for selected
product lines.

Table 1. Product Support from S32DS, CWE, and CCW

Device S32DS1 CWE CCW

KEAZ128 Yes Yes No

KEAZN64 Yes Yes No

KEAZN8 Yes Yes No

S32K Yes No No

MPC560xB/C/D Yes Yes Yes

MPC560xP Yes Yes Yes

MPC564xB Yes Yes Yes

MPC564xC Yes Yes Yes

MPC560xS Yes Yes Yes

MPC574xG Yes No No

MPC574xB/C/D Yes No No

MPC5777C Yes No No

MPC5777M Yes No No

MPC574xP Yes No No

MPC574xR Yes No No

MPC574xK Yes No No

S12G128 No Yes No

S12XE No Yes No

S12ZVM No Yes No

S12ZVC No Yes No

S12VL No Yes No

S12ZVR No Yes No

1. Future S32DS releases will support more products

S32DS features a CodeWarrior project importer for KEA MCUs that allows a user to migrate a CodeWarrior KEA MCU
project to S32DS with a click of a button, because CodeWarrior projects for KEA MCUs and S32DS both use the GCC
Compiler. Power Architecture Processor projects are not so lucky: CodeWarrior project for Power Architecture products use
a propriety NXP compiler. CWE and S32DS may share the same Eclipse tools framework, but differences such as compiler
and project structure schemes prohibit a straight one-to-one migration of CodeWarrior Power Architecture projects to S32DS.
An owner of a CodeWarrior Power Architecture project that wishes to migrate to S32DS will have to start a new project. This
application note seeks to help the user streamline the migration process, covering the items that must be migrated over, what
needs to stay, and what has to be modified in order for the new S32DS project to work the same as its CodeWarrior
counterpart did.

Introduction

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

2 NXP Semiconductors

2 How to Migrate an ARM project from CodeWarrior to
S32DS

There are separate versions of S32DS for ARM and Power Architecture. The ARM tool is called S32 Design Studio for
ARM.

KEA is the only ARM device that is supported by both CodeWarrior and S32DS. Importing a KEA project from CWE to
S32DS requires the CodeWarrior project importer. Go to File>Import as shown in the following figure.

Figure 1. S32DS import option

The CodeWarrior project importer option is located within the S32DS Design Studio folder. Expand it, as shown in the figure
below.

How to Migrate an ARM project from CodeWarrior to S32DS

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 3

Figure 2. CW Project Importer option

Select CW Project Importer and click Next. Configure the importer options to your liking and browse for your CWE project.
You can also give your imported project a new name. If you choose not to, the wizard will give your imported project the
same name as the CWE project. In this application note’s example, Old Project_KEA is selected as shown in the figure
below.

How to Migrate an ARM project from CodeWarrior to S32DS

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

4 NXP Semiconductors

Figure 3. CW Project Importer

Then click on Finish. An S32DS project will appear in your S32DS Project Explorer, as shown in the figure below.

Figure 4. KEA project migrated to S32DS

The CodeWarrior project importer does not modify the original CWE project. It creates a copy of the CWE project,
configures it for S32DS, and stores it in your S32DS workspace directory. Since CWE ARM projects use the GCC compiler
just like S32DS, migration is straightforward enough, compared to Power Architecture, for the process to be automated. The
project importer adjusts the sysroot, which specifies the path to compiler libraries, to link to the S32DS libraries. The
importer then modifies the toolchain selection in the debug configurations of the CWE project. If you simply import a CWE
project using the Existing Projects into Workspace option, these steps would not be performed and the project would be
unable to compile in S32DS.

How to Migrate an ARM project from CodeWarrior to S32DS

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 5

An imported CWE project will retain the folder structure of the original CodeWarrior project. Therefore, a blank CWE
project imported into S32DS will still look different from a blank project generated by S32DS. Regardless, a CWE project
imported using the CodeWarrior project importer will work fine on S32DS.

3 CodeWarrior Eclipse and S32DS Comparison for Power
Architecture

The version of S32DS for Power Architecture is called S32 Design Studio for Power Architecture. Since Power Architecture
products use a legacy NXP compiler in CWE while S32DS uses GCC for all devices, migration of Power Architecture
products is much more complex than for ARM.

CodeWarrior Eclipse and CodeWarrior Classic, despite sharing the same branding, are ultimately very different IDEs. This
application note will start with CodeWarrior Eclipse, as it shares a framework with S32DS.

CWE and S32DS are both based on the Eclipse open-source IDE. The respective user interfaces of the development tools
look virtually identical as shown in the figure below and Figure 6.

Figure 5. CWE UI

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

6 NXP Semiconductors

Figure 6. S32DS UI

3.1 Workspace Structure of CWE and S32DS

The NXP Power Architecture portfolio comprises many products that differ from each other in many respects, including core
types and core counts. Projects within CWE will differ based on whether the Power Architecture project is for a single core
device or a multi-core one; the same is true of S32DS. For the sake of organization, this application note will explain single
and multi-core workspace structures in separate sections. The current section will discuss single core projects.

3.2 Workspace Structure for Single-Core Projects

Since both IDEs are Eclipse-based, project structures look similar, but are ultimately different. Figure 7 shows new projects
as they appear in CWE and S32DS, respectively. In both screenshots, the project has been compiled once in debug/FLASH
configuration so that each already has an automatically generated folder containing object files and binaries.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 7

Figure 7. a) New Project on CW b) New project on S32DS

CWE and S32DS project folders use different names, but, with the exception of Includes (with the capital ‘I’),
MPC56xxx_readme.txt, and Prefix, every folder in one IDE has a functional equivalent in the other. This section will cover
each folder one-by-one. The table below summarizes the folder equivalents between the two tools and the following sections
explain each folder in more detail.

Table 2. S32DS and CodeWarrior folder equivalents

CodeWarrior S32DS

Binaries Binaries

FLASH Debug

Project_Headers include

Project_Settings Project_Settings

Sources src

[No Equivalent] Includes

Prefix [No Equivalent]

MPC56xxx_readme.txt [No Equivalent]

3.2.1 FLASH/Debug

To start with, FLASH in CWE is the same as Debug in S32DS. These two folders do not exist when a new project is first
created. They are automatically generated upon compilation and contain the object files and binaries created during
compilation, such as the project binary .elf file, which stands for Executable and Linkable Format. The name of this folder is
not always Debug/FLASH; it inherits the name of the active build configuration at the time of compilation. Build
configurations will be further explained in a subsequent section.

3.2.2 Binaries

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

8 NXP Semiconductors

The two Binaries folders are identical and are also created by the tool upon compilation. These are virtual folders in the sense
that no Binaries folder actually exists in the file system. CWE and S32DS generate the folder in the workspace to show the
user the .elf file to which a project corresponds.

3.2.3 Project_Headers/include

Project_Headers in CodeWarrior is equivalent to the include (all lower case) folder in S32DS. This folder contains the for
header files. The files that populate this folder by default vary depending on the embedded target of the associated project,
but for single-core Power Architecture projects, the folder contains Exceptions.h, IntcInterrupts.h, MPC56xxx_HWInit.h,
typedefs.h, and the device header. S32DS’s include folder contains derivative.h, typedefs.h, and the device header. Figure 8
below shows the two folders side-by-side.

Figure 8. a) Project_Headers b) include

The files Exceptions.h, IntcInterrupts.h, and MPC56xxx_HWInit.h contain function prototypes related to interrupt handler
initialization and have source file counterparts in the Sources folder, explained later. The device header file, which specifies a
target’s embedded register addresses, inherits the name of the target device. So an MPC5604B project would have a device
header called MPC5604B.h. Lastly, typedefs.h contain certain type definitions that are commonly used in Power Architecture
projects, such as vuint8_t, which is an unsigned, 8-bit integer.

S32DS initializes the flash and interrupts differently and so does not contain such files as Exceptions.h. The device header is
identical to the CWE version and typedefs.h nearly so. S32DS’s version of typedefs.h contains an extra section of definition
for when the macro __STDC__ is defined. No types are lost to this change so it makes no real difference to a project.
derivative.h, whose purpose is to save users time, is the only new file. Users might have multiple headers that every source
file of a project will need to reference, for example the device header, to which derivative.h generates with a reference using
the “#include” preprocessor command. So instead of having to include every header file in every source file, the user can do
it once in derivative.h and then reference only derivative.h in each source file. The figure below juxtaposes a newly generated
derivative.h and one being used as is intended.

Figure 9. a) New derivative.h b) Typical derivative.h

There is also the compiler_api.h file that only exists in the S32DS. This file contains the definitions for calling assembly
functions and is intended for the exception handling and accessing the e200 special-purpose registers. The user does not have
to worry about this file for the vast majority of the time. Table 3 sums up the purpose of the header files.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 9

Table 3. Project_Headers/include Files, Equivalents, and Function

CWE S32DS Function

[No Equivalent] derivative.h Save users time. Include multiple source files in
derivative.h once, then just include derivative.h in

each source file instead of having to include multiple
headers everywhere.

MPCxxxx.h MPCxxxx.h Device header. Contains peripheral register definitions
and memory locations

typedefs.h typedefs.h Declarations of various types for use in code, such as
different-byte-sized integers, signed/unsigned, etc.

Exceptions.h [No Equivalent] Function prototypes for Exceptions.c

IntcInterrupts.h [No Equivalent] Function prototypes for IntcInterrupts.c

MPCxxxx_HWInit.h [No Equivalent] Function prototypes for MPCxxxx_HWInit.c

[No Equivalent] compiler_api.h Assembly language macros for exception handling

3.2.3.1 Project_Settings

The Project_Settings folders on both IDEs are functionally identical. The folder is target-specific and contains linker, debug,
and device startup information. Organizationally, both versions’ subfolders are Debugger, Linker_Files, and Startup_Code,
but the contents within the subfolders are different, as in Figure 10.

Figure 10. Project_Settings in a) CWE and b) S32DS

Debugger in CWE contains two MCU initialization scripts for Power Architecture devices and a memory configuration file;
S32DS instead has a single launch script. The initialization scripts and memory config, instead of being copied into the
project, are hardcoded in S32DS, which the launch script calls.

Linker_Files are organized differently as well. CWE has an MPCxxxx_FLASH.lcf and an MPCxxxx_RAM.lcf. Only one is
used at any time, depending on the build configuration selected. S32DS holds a libs.ld, mem.ld, and sections.ld.

Startup_Code in CWE contains five files to S32DS’s one file. CWE includes __ppc_eabi_init.c, MPCxxxx_HWInit.c,
MPCxxxx_init_flash.c, MPCxxxx_init_ram.c, and MPCxxxx_Startup.c, whereas S32DS simply contains startup.S. Despite all
the differences, the two IDEs just perform the same task differently. S32DS just initializes everything from a single assembly
file. CWE’s entry point is in MPCxxxx_Startup.c. The __startup() function branches to __start(), which is a CodeWarrior
library function. All the other files within Startup_Code are callbacks for __start(). Because __start() is a library function, it
is a generic implementation. It calls the functions in the source files for anything device-specific. For example,
__ppc_eabi_init.c determines the build configuration (e.g. flash or RAM) and calls the appropriate hardware initialization

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

10 NXP Semiconductors

functions. These include the functions in MPCxxxx_init_flash/ram.c, which in turn call MPCxxxx_HWInit.c.
MPCxxxx_HWInit.c disables the watchdog, initializes the SRAM, and initializes the external bus. MPCxxxx_init_flash.c also
has definitions for the reset vector and boot information by the name RCHW. Such information can be found in S32DS in the
file flashrchw.c. Table 4 summarizes these files.

Table 4. Project_Settings Files, Equivalents, and Functions

CWE S32DS Function

MPCxxxx_VLE.tcl and MPCxxxx.mem [Project Name]_Debug/Release.launch Initializes the debugger.

MPCxxxx_FLASH.lcf and
MPCxxxx_RAM.lcf

libs.ld, mem.ld, and sections.ld Linker files. CWE separates by build
configuration and S32DS by component

__ppc_eabi_init.c, MPCxxxx_HWInit.c,
MPCxxxx_init_flash.c,
MPCxxxx_init_ram.c,

MPCxxxx_Startup.c

startup.S S32DS uses a single assembly file to
initializes the MCU. CWE calls a generic
library function. The multiple files in the

list are device-specific callbacks

3.2.4 Sources/src

Source and src are the respective source file directories for CodeWarrior and S32DS (Figure 11).

Figure 11. a) Sources b) src

The new build of S32DS changes the naming convention for new projects.

IntcInterrupts.c in CWE does everything that S32DS’s MPC56xx_Interrupt_Init.c, intc_sw_handlers.S, and
INTCISRVEC_table.c collectively do. MPC56xx_Interrupt_Init.c contains functions to initialize the interrupt controller
peripheral (INTC), which sets the interrupt vector table base address and software/hardware interrupt mode. IntcInterrupts.c
has the same function, just by a different name.

In S32DS, intc_sw_handlers.S is an assembly file that contains instructions for saving the state of the program at the time of
an interrupt and for restoring the state once the CPU returns from interrupt. For example, general purpose registers and the
return address must be pushed onto the stack before entering the interrupt service routine (ISR) and then retrieved once the
ISR is done. Only nested interrupt implementation is supported. In CWE, IntcInterrupts.c contains the same assembly
function for context preservation, but it is only used in nested interrupt mode. If CWE is left in the default configuration,
which does not allow for nested interrupts, a CWE library function is used instead, and the assembly function is not
compiled.

INTCISRVECT_table.c contains an array of function pointers called IntcIsrVectorTable. S32DS ISRs must be implemented
in flash. You must reference your ISR in that table at the correct vector position of your interrupt. Therefore if you use an
RTC interrupt on the MPC5604B, which is vector 38 (see MPC5604B reference manual), and you write an RTC_ISR (you

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 11

can call it whatever you want), then “&RTC_ISR”, must be written at IntcIsrVectorTable[38]. CWE ISRs, by contrast, are
implemented in RAM. IntcInterrupts.c contains a function called INTC_InstallINTCInterruptHandler, which you must call
during initialization and pass it your ISR’s address and priority level.

Vector.c and ivor_branch_table.c serve the same purpose. There are multiple IVOR vectors. Each IVOR responds to a
different type of exception, such as when an alignment interrupt occurs or the core executes an instruction that does not exist.
In the case of peripheral interrupts, IVOR4 is called. The interrupt handler then branches to the location specified in the
IVOR4 section of the ivor branch table in ivor_branch_table.c and Vector.c for CWE and S32DS, respectively.

flashrchw.c has to do with program startup from flash. Its CWE counterpart is in MPCxxxx_init_flash.c from the
Project_Settings folder. It generates the rest vector and a special reset word used by the core internal flash boot, which
identifies which core should run. Table 5 describes each file’s purpose and equivalents between CWE and S32DS.

Table 5. Sources/src Files, Equivalents, and Functions

CWE S32DS Function

Project_Settings>

Startup_Code>

MPCxxxx_init_flash.c

flashrchw.c See table 2-3

IntcInterrupts.c intc_sw_handlers.S,
INTCISRVEC_table.c,

MPC56xx_Interrupt_Init.c

Initializes interrupt controller and functions for
registering ISRs

ivor_branch_table.c Vector.c Branch table for core exceptions. When external
interrupts from peripherals fire, IVOR4 is called.

Interrupts then branch to the function specified in the
IVOR4 section. INTC_INTC_InterruptHandler/

IVOR4_Handler

main.c main.c The file where main() function is located

3.2.5 Includes (S32DS Only)

Finally, S32DS has the Includes directory, which has no equivalent in CodeWarrior. Like Binaries, it is not a true folder but
is a list of include paths for the project. Figure 12 shows the Includes directory of a blank project for the KEAZ128. The
Includes directory contains the various paths to the Embedded Warrior Library (ewl) and the include folder. Other compiler
libraries offered by S32DS are newlib and newlib_nano.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

12 NXP Semiconductors

Figure 12. Includes in S32DS

3.3 Prefix (CWE Only)

The Prefix folder contains the files MPC56xxx_FLASH_VLE.prefix and MPCMPC56xxx_RAM_VLE.prefix, where the
“prefix” means that the contents are included in every C file in the project. Only one of the prefix files is included in the build
at a time, depending on which build configuration is selected. “VLE” stands for “variable-length encoding”. Each file
contains three definitions which are necessary for the CWE preprocessor in determining which parts of the startup sequence
must be compiled. S32DS does not contain prefix files because it uses the GCC Compiler.

3.4 MPC5604B_readme.txt

This purpose of this text file is to give some guidance and tips to the user. There is no code in the file, so its presence in a
migrated project or lack thereof would not affect the performance of the migrated project

3.5 Workspace Structure for Multi-Core Projects

CWE and S32DS treat multi-core projects differently. CWE creates one project that contains as many additional folders as
there are cores in the target device, named PRCx_Sources, where ‘x’ is the index of the core. S32DS generates a separate
project for each core that follows the naming convention [project name]_[core type], such as Test_Z4. If the project has
multiple cores of the same type, S32DS adds an additional suffix so a project would generate as for example Test_Z4_1 and
Test_Z4_2. The screenshot below shows the workspace of a multi-core project on CWE and S32DS. Each individual S32DS
project’s structure in the multi-core working set is the same as a standalone Power Architecture project. CWE’s structure
does change, which the following subsections will describe. Any folders that are not mentioned in the following subsections
can be assumed to be unchanged from the single-core description. Figure 13 displays how multi-core projects appear in the
respective CWE and S32DS project explorer windows.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 13

Figure 13. a) Multi-core project in CWE b) Multi-core project in S32DS

The standalone projects for each core link together in S32DS by referencing each other under Project References in the
project settings, as shown in Figure 14.

Figure 14. S32DS Multi-core project references

3.6 Project_Headers

The Project_Headers folder in a multi-core project contains the header files Exceptions.h and IntcInterrupts.h for each core
that the project uses. The first core’s (Core 0) header files still go by the names Exceptions.h and IntcInterrupts.h. All
subsequent core header files follow the naming convention Exceptions_px.h and IntcInterrupts_px.h, where ‘x’ goes from 1
to the index of the last core in use. The dual-core MPC5644C’s Project_Headers folder is shown in Figure 15.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

14 NXP Semiconductors

Figure 15. Dual Core header files in CWE

3.7 Project_Settings\Debugger

There is a very minor change between single-core and multi-core projects in CWE. The latter contains separate launch script
for FLASH and RAM configurations. This does not affect migration.

3.8 Sources

The CWE Sources folder only has main.c, which pertains to the first core; the second core’s main file, main_p1.c, resides
within PRC1_Sources. There are no changes to the S32DS src folders. Each core gets a standalone project so the projects
looks like a single-core project.

3.9 PRCx_Sources

For the first core, this folder contains Exceptions.c, IntcInterrupts_p0.c, and ivor_branch_table_p0.c. Every additional
PRCx_Sources folder has its own version of these three files, by the names Excpetions_px.c, IntcInterrupts_px.c,
ivor_branch_table_px.c, as well as its own main, main_px.c, and a startup file, __start_px.c.

3.10 Project Options

Right-clicking on a project will show various options. The CWE and S32DS project options are largely the same, but the
respective lists are arranged differently. For example, CWE has an option called Show in Windows Explorer, which opens an
explorer at the project’s location within the file system; S32DS also has that capability but one must select a project in the
project explorer, press ALT+SHIFT+W, and select System Explorer. Refer to Figure 16 for screenshots of the two menus.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 15

Figure 16. a) Project options on CWE. b) Project options on S32DS.

3.11 Project Properties

Of the options available, arguably the most important to a user is Properties. In both tools, selecting Properties opens a
window, as shown in Figure 17 and Figure 18.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

16 NXP Semiconductors

Figure 17. Project Properties on CWE

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 17

Figure 18. Project Properties on S32DS

S32DS for Power v1.1 and newer supports translation from the BookE (Power Architecture) instruction set to the Variable
Length Encoding (VLE) instruction set. The extra steps needed to enable assembly translation are described in Assembly
Translation. Library support from CodeWarrior has also been extended: S32DS offers the Embedded Warrior Library (EWL)
and Newlib as well as their more compact cousins, ewl_nano and newlib_nano.

Another useful feature within Properties is the optimization level. You can select the your project’s degree of optimization
by going to Properties>C/C++ Build>Settings>Standard S32DS C Compiler>Optimization and Properties>C/C++
Build>Settings>Standard S32DS Assembler>Optimization. The optimization options available to the user are, in order of
increasing optimization, None, Optimize, Optimize More, Optimize Most, and Optimize for size. Figure 19 shows the
optimization window for the C compiler.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

18 NXP Semiconductors

Figure 19. S32DS Optimization Window

Increasing optimization decreases code size, but usually comes at the expense of performance. High levels of optimization
also makes a program difficult to debug as some instructions are stripped from the build by the optimizer and others are
linked. The best level of optimization ultimately depends on the project.

3.12 Compiler and Debugger

S32DS for Power Architecture uses the GCC v4.92-based Power Architecture Compiler. CWE supports both GCC and a

legacy NXP compiler, but Power Architecture CWE projects use the latter. Build a project by clicking on the hammer ()
icon on the toolbar. Like CodeWarrior, S32DS performs a dynamic build which generates binaries and stores them in a folder
called either Debug, Release, or Debug_RAM, depending on which build configuration is selected via the drop down arrow in
the above icon.

The debugger consists of three parts. There is the debug interface, which the user interacts with; then there is the core debug
engine, which translates the user inputs to debug the code, such as writing breakpoints and program execution; and also a
probe interface, which facilitates communications between the computer and the board. S32DS mostly uses a GNU-based
debugger, while CWE uses custom legacy-NXP software. Below is a graphical description. Figure 20 shows the debugger
layout of CWE and S32DS, where the top label of each block is the component and the bottom one is the developer of the
component used by the associated IDE. The important takeaway from this information is that both IDEs use P&E software

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 19

for the probe interface. This means that you only need to set your S32DS debug interface configurations to be the same as it
was in CWE. So if you used OpenSDA in CWE, keep it OpenSDA in S32DS. The differences between the GNU and legacy
NXP debuggers only make a difference behind the scenes.

Figure 20. CWE and S32DS Debugger Setup

3.13 New Projects

Project creation in both IDEs follows nearly identical procedures:
1. Select the type of project and give it a name
2. Choose the target MCU (Figure 21)
3. Select connection type. Once the user clicks Finish in the project wizard, both IDEs generates the files described in

FLASH/Debug.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

20 NXP Semiconductors

Figure 21. a) CW Target Selection Table. b) S32DS Equivalent.

In both instances, the tool populates the workspace with a project configured for the target. When a new MPC5604B project
is created in CWE, for example, main initializes a counter to 0, which increments forever, as seen in Figure 22. S32DS’s
version also generates a counter as well as a function call to xcptn_xmpl(), which initializes the interrupt controller. CWE
initializes the interrupt controller during startup.

Figure 22. Blank MPC5604B project in a) CWE and b) S32DS

From here writing a project in S32DS is virtually identical to CWE, except the folders for headers and sources files are called
include and src, respectively, rather than Project_Headers and Sources.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 21

3.14 Workspace structure of CCW and S32DS

CodeWarrior Classic is the other IDE that takes the CodeWarrior name. Built on a custom NXP IDE framework, CCW looks
radically different from CWE. Where CWE had FLASH and RAM build configurations, CCW has, upon project generation,
internal_FLASH and RAM. These names can be changed in the project settings, discussed later. Figure 23 is a screenshot of a
blank CCW project for the MPC5604B.

Figure 23. CodeWarrior Classic Blank MPC5604B Project

3.15 Classic CodeWarrior Differences From S32DS

CCW also supports both single-core and multi-core products. Their projects differ in structure accordingly. The following
sections will describe the differences.

3.16 Classic CodeWarrior Differences From S32DS, Single-Core

A CCW project contains much the same files as a CWE, but the CCW organizational scheme differs greatly from both CWE
and S32DS. Another difference is that the folders that most of the folders that appear in the CCW workspace are virtual
folders, similar to the Include (with the capital ‘I’) folder of S32DS. These folders do not actually exist in the file system and
and exist in the CCW workspace for organizational purposes. Table 6 summarizes CCW differences from S32DS in the
workspace realm.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

22 NXP Semiconductors

Table 6. CCW Workspace v S32DS Workspace

CCW S32DS Remark

[No Equivalent] Binaries Explained earlier.

[No Workspace Equivalent] Debug Binaries generated from compilation in
CCW are stored in a bin folder, which

does not appear in the workspace.

Header Files include Same function, different name.

[No Equivalent] Project_Settings>Debugger Debug launcher in CCW integrated into
IDE.

Lcf Files Project_Settings>Linker_Files CCW also uses .lcf files but the naming
convention follows the scheme
MPCxxxx_[derivative].lcf and

MPCxxxx_[derivative]_DEBUG.lcf,
such as MPC5604B_M27V.lcf. The file
with the DEBUG suffix is for RAM build

configuration.

Startup Code Project_Settings>Startup_Code The difference between CCW and
S32DS is the same as that between

CWE and S32DS except that CCW is
missing MPCxxxx_Startup.c, because

entry point is in the library.

Sources src Same as CWE.

[No Equivalent] Includes Explained Earlier.

Runtime [No Equivalent] Contains the libraries
Runtime.PPCEABI.VS.UC.a and

MSL_C.PPCEABI.bare.VS.UC.a. In
S32DS you would have to link these

libraries in the project settings using the
libraries’ paths in the S32DS

installation directory.

readme.txt [No Equivalent] Text file with tips and instructions for
the user to get started, just like
MPC56xxx_readme.txt in CWE.

Most of the CCW workspace folders are virtual directories. Figure 24 shows how the files of a CCW project are actually
organized in the file system.

Figure 24. CCW project file directory

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 23

Table 7 explains the purpose of each of these file folders.

Table 7. CCW File Directory Summary

Folder Function

bin Stores the binary files that are generated during
compilation.

lcf Store the linker files.

[Project Name]_Data Storage directory for temporary files.
Automatically generated from compilation.

Temporary files include data files regarding IDE
preferences and object files.

src The directory that contains the source allsource
files that were seen in the CCW workspace.

3.17 Classic CodeWarrior differences from S32DS, Multi-Core

A multi-core CCW project generates the same files as in CWE, with the same names. So migrating a multi-core CCW project
to S32DS is, practically speaking, the same as going from CWE to S32DS. Figure 25 is a screenshot of a multi-core CCW
project workspace.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

24 NXP Semiconductors

Figure 25. Multi-core project in CCW

3.18 Project Properties

Project properties in CCW are called [Build Configuration] Settings, for example, internal_FLASH Settings or RAM Settings.

You can access them by click the settings icon (). When you open settings, a dialog-box will appear. The options are
different than CWE and S32DS, but for the purposes of project migration, make no practical difference. The CCW options
window is shown in Figure 26.

CodeWarrior Eclipse and S32DS Comparison for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 25

Figure 26. CCW Project Properties

3.19 Compiler and Debugger

CCW’s build icon looks like a hand writing on paper () and debug is the green arrow (). CCW uses a custom legacy
NXP compiler and P&E-based debugger. As is the case for CWE, S32DS multi-core support is much better than in CCW.
The figure below shows CCW’s debugger setup.

Figure 27. CCW Debugger Setup

4 Project Migration from CodeWarrior Eclipse for Power
Architecture

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

26 NXP Semiconductors

To migrate a CWE project to S32DS, one must:
• Create a new project S32DS
• Copy the source files and headers over to the new project
• Incorporate them into the build
• Specify the include paths and symbols
• Compile the new project.

Create a new S32DS project by clicking on File>New>New S32DS Project (Figure 28).

Figure 28. Creating a new S32DS project

Choose the MCU for the project you wish to port (Figure 29).

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 27

Figure 29. S32DS Project Creator

A single-core project like the MPC5604B will follow a largely identical organizational scheme to a CWE project. A multi-
core one will generate one project for each core in use by the target device. From here the migration process for multi-core
deviates slightly from single-core.

4.1 Headers and Sources

Move all user-written source files ,including derivative.h if it was modified, from CWE to S32DS. The appropriate location
for the files in S32DS depends on whether the project is single-core or multi-core.

4.2 Headers and Sources, Single-Core

Open windows explorer and find your CWE project. As an example, this application note will move the following
MPC5604B CWE project to S32DS (Figure 30).

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

28 NXP Semiconductors

Figure 30. CodeWarrior Project to be migrated

Old Project Eclipse’s is not a working project; it is just used as a demonstration for migrating to S32DS. The main.c file
includes extra_source_file.h, registers an RTC_ISR, and makes a function call to extra_function(), which exists within main.c
as well, shown in Figure 31.

Figure 31. main.c of Old Project Eclipse

A new S32DS project will appear in the Project Explorer as in Figure 32.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 29

Figure 32. New S32DS project workspace

Copy all non-automatically generated header files within Project_Headers over to the include folder of S32DS. This can be
done either by dragging and dropping the files into your project in the S32DS user interface or by copying them over to the
directory and then refreshing the S32DS workspace (the refresh option is shown in Figure 33). In the case of Old Project
Eclipse, extra_source_file.h would be moved over.

Next, do the same for the non-automatically generated source files Sources into src. Therefore, extra_source_file.c would be
moved over to src.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

30 NXP Semiconductors

Figure 33. Refresh for files copied into a directory

Your S32DS project should now look like the figure below in the Project Explorer.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 31

Figure 34. S32DS after source file migration

The file main.c cannot simply be copied over, since there are inherent differences between CWE and S32DS, such as how
interrupts are handled. But first, copy all user-written includes, functions, and function prototypes as is. For Old Project
Eclipse, that means copying over “#include “extra_source_file.h”, RTC_ISR, and extra_function(). Migrated_Project_Eclipse
will look as follows. The figure below, is the main source file as it would appear at this point in the migration.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

32 NXP Semiconductors

Figure 35. Functions in main.c migrated, except for main() itself

Special care must be taken for main(). In CWE, ISRs must be registered into the interrupt vector table via an automatically
generated function from the file IntcInterrupts.c called INTC_InstallINTCInterruptHandler, which adds the interrupt to the
table and sets its priority level. Old Project Eclipse shows such an example with a real-time counter (RTC) interrupt. The
main.c file of Old Project Eclipse. main() initializes the RTC then installs the ISR, which is named RTC_ISR. S32DS
implements ISRs in flash, meaning you must compile the project with the ISR already in the vector table.

Replace the main() of S32DS with that of the CWE project. The image below shows Migrated_Project_Ecliplse’s main()
overwritten with Old Project Eclipse’s. Make sure the line “__attribute__ ((section(“.text”)))” stays. This ensures that main.c
goes to the .text section during compilation. S32DS should look as in Figure 36 after this step.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 33

Figure 36. main() copied but not yet integrated

The act of pasting over the original contents of main() will have overwritten the function call to xcptn_xmpl(), unless you
specifically took care to save the instruction beforehand. This function is needed because it initializes the S32DS INTC.
xcptn_xmpl() must be written back in. The best location for the function depends on the contents of each project, but it must
be placed before any user-written initialization sequence configures an interrupt—you cannot write to an INTC that is not
configured. Then comment out the function calls for INTC_InstallINTCInterruptHandler, as it does not exist in S32DS.
Figure 37 shows what Migrated Project Eclipse looks like after this step.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

34 NXP Semiconductors

Figure 37. main.c, xcptn_xmpl() is back and INTC_InstallINTCInterruptHandler gone

Now that INTC_InstallINTCInterruptHandler has been removed, you need to register your interrupts the S32DS way. Go to
the file INTCISRVEC_table.c. In it is an array of function pointers called IntcIsrVectorTable. S32DS by default populates the
array with “&dummy”, which is defined within INTCISRVEC_table.c as an infinite loop, shown in the figure below.

Figure 38. Default INTC Vector table.

This function, dummy(), serves as a default handler: any interrupt that does not have a defined, user-written ISR will branch
to dummy() and loop there forever (Figure 39).

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 35

Figure 39. dummy(), the default handler, an infinite loop

The prototype for dummy() is located at the top of the file. For each interrupt, include the header files that contain your ISRs,
extern the ISR prototype, and, at the array position of the interrupt’s vector offset value, write “(unsigned int)&” followed by
the name of the relevant ISR. In the case of Old Project Eclipse, the RTC interrupt is implemented. The RTC offset is 38 and
the RTC ISR is named RTC_ISR, which is located in the main source file. Therefore, “extern void RTC_ISR(void);” is
written below the dummy() prototype and “&RTC_ISR” replaces “&dummy” at IntcIsrVectorTable[38], as shown below.
Since RTC_ISR is located in the main source file, there is no need to include another file. Had RTC_ISR existed in another
source file, say an RTC.c, then its companion header, RTC.h, would have needed to have been included. So you would have
seen a ‘#include “RTC.h”’ below line 20 in the figure below.

Figure 40. INTCISRVEC_table.c with RTC_ISR

INTC_InstallINTCINterruptHandler() in CWE installs an ISR into the interrupt vector table and records its interrupt priority.
The steps just described in the previous paragraphs installed the ISR into S32DS. Now we need to manually record the
priority. Return to main() and for each interrupt add the priority with the line “INTC.PSR[Vector Offset].R = Priority
number”. The PSR stands for Priority Select Register. They come in an array in Power Architecture design; the MPC5604B
comes with 512. Each PSR register corresponds to the interrupt whose offset value is the same as the PSR array index. So
Old Project Eclipse’s RTC interrupt, whose vector offset value is 38, corresponds to PSR[38]. Therefore in main(), the line

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

36 NXP Semiconductors

“INTC.PSR[38].R=15;” must be added to set a priority level for the RTC interrupt (Figure 41). This example uses 15, which
is the highest priority possible, but any value that is greater than the value of INTC.CPR.B.PRI will work. CPR stands for
Current Priority Register and the CPU will not respond to any interrupts whose priority is lower than the value of CPR.

Figure 41. main() with RTC interrupt priority set

If your CWE project did not modify the folder structure, and you only added source files and headers into Sources and
Project_Headers, respectively, this would be all that you would need to do. Just compile the project at this point and you will
have successfully migrated your CWE project to S32DS.

However, if your CWE project contains extra folders with source files for, say, organizational purposes, you would have to
copy and include them in the build. Take this second example project (Figure 42). It is exactly the same as Old Project
Eclipse, but with an extra folder of source files at the top level and a subfolder within Sources.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 37

Figure 42. CW project with extra folders

Old Project Eclipse 2 has Extra Source Folder at the top level with a source file and Extra Source Subfolder under Sources,
also with its own source file. These folders must be copied to S32DS in the same location relative to the project directory.
Your S32DS project should look like Figure 43 once they are copied over.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

38 NXP Semiconductors

Figure 43. S32DS Project with extra folders copied over

Your files are now copied to S32DS, but the lack of a blue ‘C’ in their folder icon means they are not treated as source
folders and therefore are not part of the build. For now, the folders (and the files in them) are just sitting in the workspace;
S32DS does not know what to do with them. This project is revisited in a later section to go over how to integrate Extra
Source Folder into the project.

4.3 Headers and Sources, Multi-Core

Source code migration on a multi-core project is quite similar to the single-core procedure. As discussed earlier, a multi-core
CWE project separates core-specific source files into separate folders. This example shows a dual-core MPC5644C CWE
project, called Old Project Eclipse Multicore, with one extra source file for each core, named extra_source_file_p0 and
extra_source_file_p1, respectively (Figure 44).

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 39

Figure 44. Generic MPC5644C CWE project

S32DS splits Migrated Project Eclipse Multicore into project into two standalone projects, named
Migrated_Project_Eclipse_Multicore_Z4_1 and Migrated_Project_Eclipse_Multicore_Z4_1, as shown in Figure 45.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

40 NXP Semiconductors

Figure 45. Generic MPC5644C S32DS project

From here follow the same migration steps as for a single-core project, but make sure to transfer the right files to the right
projects. Note that the CWE index starts at 0 (e.g. p0) and S32DS starts at 1. Therefore in this example, extra_source_file_p0
would belong in Migrated_Project_Eclipse_Multicore_Z4_1 and extra_source_file_p1 would go to
Migrated_Project_Eclipse_Multicore_Z0_2 (Figure 46).

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 41

Figure 46. S32DS MPC5644C project with files properly parsed

With the exception of the extra file parsing, the other difference you must be careful for is how the first core starts the
subsequent ones. In the example, Old Project Eclipse Multicore and Migrated_Project_Eclipse_Multicore are configured for
the MPC5644C, which is a dual-core device. Shown in Figure 47 are the respective functions CodeWarrior and S32DS use to
start subsequent cores.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

42 NXP Semiconductors

Figure 47. How to initialize the second core in a) CWE and b) S32DS

They are instructions, one to boot the second core and two to unlock the System Status and Configuration Module, but CWE
implements it in main() while S32DS stores the instructions in its own standalone function called hw_init(), which is called
by the startup script in startup.S. Do not carry over the CWE version; use hw_init() instead when migrating a multi-core
CWE project. It is important to remember that any file that is shared by the core-specific source files will need to be copied
over to every S32DS core project. The fact that the S32DS projects reference each other does not mean the project for Core 0
will be able to reference functions from a source file in the Core 1 project.

All other migration steps for single-core projects apply to multi-core ones too.

4.4 Include Paths

S32DS does not support recursive include directories. Therefore every subfolder that contains header files must be added to
the list of include paths. Go to project properties. In the properties window, go to C/C++ Build>Settings>Settings>Standard
S32DS C Compiler>Includes>Include paths. The directories specified in the Include Paths window are the locations that the
linker searches when the #include macro is implemented. The ewl include paths have to do with the NXP Embedded Warrior
compiler library, as shown in Figure 48.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 43

Figure 48. Include paths in S32DS

This option is where you specify your include paths. In this example, Extra Source Folder and Extra Source Subfolder need

to be included. Click on the “add” button () and add the folders one by one. The following dialog-box will appear
(Figure 49).

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

44 NXP Semiconductors

Figure 49. Adding include paths

Click on Workspace and another window will appear (Figure 50). Select Extra Source Folder and hit OK in the window
displayed below.

Figure 50. Folder Selector

Repeat this step for all other folders that were copied over, in the case of this example, Extra Source Subfolder. Folders you
select with the workspace option will use relative paths. This is recommended over the File System option, since Workspace
makes your paths non-machine-specific. Thus, your project will be more portable between computers. After adding Extra
Source Folder and Extra Source Subfolder to Migrated_Project_Eclipse_2’s set of include paths, the Properties window
should look as shown in Figure 51 :

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 45

Figure 51. Include paths with folders added

S32DS will now know where to look when you call functions from source files that reside in those folders. However, there
remains one last problem: S32DS does not know it needs to build the folders even though it has been made aware of them.

4.5 Build Configurations

To tell S32DS to actually use the folders that have been included, right-click and select Build Configurations Explorer. The
menu option is shown in Figure 52.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

46 NXP Semiconductors

Figure 52. Build Configurations

The window as shown in the figure below will be displayed, which shows what is included in the build when you compile the
project.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 47

Figure 53. Build Configuration Window

The () icon means the corresponding folder/file is included in the build for the corresponding build mode (Debug,

Release, or Debug_RAM). In this example, Extra Source Folder has a () in all three build modes so it is currently never

included during compilation. Clicking on () the will turn it into a () to include the folder for all three build modes.
Then hit OK. Figure 54 shows the Build Configurations explorer after the change.

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

48 NXP Semiconductors

Figure 54. Build config window with extra folders included

Extra Source Folder now has a blue ‘C’ in its folder icon, which means S32DS now sees it as a source folder and will
incorporate it into the build. Subfolders do not get the blue ‘C’ icon so even though Extra Source Subfolder has been
included, as a subfolder under src, no blue ‘C’ appears (Figure 55).

Figure 55. S32DS Workspace with extra folder fully integrated

4.6 Libraries

If your CodeWarrior project has an application library, such as the NXP Math and Motor Control Library, you can link it to
S32DS. Open project properties and go to C/C++ Build>Settings>Settings>Standard S32DS C
Linker>Miscellaneous>Other Objects. Standard S32DS C Linker>Libraries is for linker libraries, not application

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 49

libraries.Make sure, also, that the library you wish to include is GCC-compliant. Add the library’s path in the same way the
folders were included. If the .a file is not in your workspace, find it through the file system. Figure 56 shows a project that
includes the NXP Automotive Math and Motor Control Library.

Figure 56. Where to link your application library

NOTE
If you export your project to another computer, that computer will need to have the
library in the same location

4.7 Symbols

Project Migration from CodeWarrior Eclipse for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

50 NXP Semiconductors

Be sure to add any predefined symbols you have in your CodeWarrior project to S32DS. Go to project properties and

navigate to C/C++ Build>Settings>Settings>Standard S32DS C Compiler>Symbols>Defined Symbols. Click on the
button and add the symbols. The two that are populated by default specify the device name and where to load the code from
(flash or RAM). Figure 57 shows the symbols window of the S32DS project settings.

Figure 57. Symbol table in S32DS

5 Project Migration from CodeWarrior Classic for Power
Architecture

Project Migration from CodeWarrior Classic for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 51

Migration from CodeWarrior Classic is similar to the process for CWE, because even though it is built on a different
framework, the source files are the same. The following example migrates an MPC5604B CCW project called Old Project
Classic to a blank S32DS MPC5604B project called Migrated_Project_Classic. The modifications done to Old Project
Classic are the same as those done for Old Project Eclipse: there is an additional header and source file called
extra_source_file.h/.c, as shown in Figure 58.

Figure 58. Old Project Classic

The difference you must be aware of is that CCW does not support copying and pasting source files from the workspace. You
have to go to the file directory, copy the file, and then paste it into the S32DS project. The organization in a CCW workspace
does not reflect how the files are actually arranged in the hard drive. All header and source files, by default, live in the src
folder, which is located in the project root directory (Figure 59).

Figure 59. Where to find files in CCW project

Migrated_Project_Classic ultimately looks the same as Migrated_Project_Eclipse, shown in Figure 60.

Project Migration from CodeWarrior Classic for Power Architecture

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

52 NXP Semiconductors

Figure 60. Migrated Project Classic

A multi-core project is much the same, except you have more files to move and need to make sure you switch to the S32DS
implementation second-core-initialization.

6 Assembly Translation
S32DS for Power v1.1 and newer supports BookE to VLE translation. S32DS builds in the VLE instruction set and S32DS
for Power initially could not recognize BookE instructions. Attempting to compile a project with BookE instructions then
would cause build errors. However starting with S32DS for Power v1.1, S32DS can translate BookE to VLE during
compilation, once certain steps are taken. The following example uses a MPC5604B project called Test_with_ASM. It is an
empty project with the addition of an assembly file called booke.S, as shown in the following figure.

Figure 61. Project with BookE file

Assembly Translation

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 53

The file booke.S is a set of BookE instructions. Right-click on booke.S and select Properties. A dialog-box will appear
showing file-specific properties, displayed below.

Figure 62. Project with BookE file

Go to C/C++ Build>Settings>Tool Settings>Standard S32DS Assembler>Command line pattern. A new assembly file will
have the command line pattern:

“${COMMAND} ${FLAGS} -c ${OUTPUT_FLAG} ${OUTPUT_PREFIX}${OUTPUT} ${INPUTS}”

This does not support translation. To enable BookE-to-VLE assembly language translation, replace the command line pattern
with:

“${COMMAND} ${FLAGS} -c -Wa,-ppc_asm_to_vle ${OUTPUT_FLAG} ${OUTPUT_PREFIX}${OUTPUT} $
{INPUTS}”

The extra “-Wa,-pcc_asm_to_vle” command activates the assembly translation feature. The new command line pattern is
shown in the figure below.

Figure 63. File properties with translation enabled

Assembly Translation

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

54 NXP Semiconductors

Hit OK. Now BookE-to-VLE translation is now be enabled for booke.S. Building the project Test_with_ASM will no longer
generate compile errors even with the BookE instructions of booke.S. Perform these steps for your BookE assembly files to
migrate your CodeWarrior assembly code to S32DS.

7 Debug Configurations
Code is only useful if you can run it. You would therefore likely want to carry over debug configurations from CodeWarrior
to S32DS as well. S32DS cannot import debug configurations from CodeWarrior. When you create a new project in S32DS,
debug configurations are automatically generated based on the connection options you select in the New Project wizard.
Make sure the connection type you choose in the S32DS project is the same as the one you have in your CodeWarrior
project. Debug configurations are not automatically generated if the S32DS project is copied from another S32DS project. In
that case you will have to create your own debug configurations. For steps on how to do that, visit the KEA software
integration guide that is part of the KEA Quick Start Package. To obtain the package visit FRDM-KEAZ128. But because the
KEA is a single-core device, the KEA software integration guide only covers single-core project debug configurations. There
are a few more considerations for multi-core project debug configurations.

7.1 Multi-Core Debug Configurations

Multi-core debug is different in S32DS than in CodeWarrior. S32DS produces a separate project, and therefore a separate
debug configuration, for each core of a device. The MPC5644C is dual core, so Migrated Project Eclipse Multicore is split
into two debug configurations, shown below.

Figure 64. Dual core device, two projects, two debug configurations

Multi-core debug configurations linked to each other by the configuration of the main core, in this case Migrated Project
Eclipse Multicore_Z4_1_Debug. Recall that the main core is the one whose project main.c contains hw_init(). The main core
debug configuration specifies the locations of the secondary core ELF files to be launched along with said main core debug
configuration. The following figure shows the settings of Migrated Project Eclipse Multicore_Z4_1. It specifies one
additional ELF file to program and points to the ELF file of the second core project, Migrated Project Eclipse
Multicore_Z0_2.elf.

Debug Configurations

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 55

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m-mcus/ea-series/NXP-freedom-development-platform-for-ultra-reliable-kinetis-ea-series-mcus:FRDM-KEAZ128?tab=In-Depth_Tab

Figure 65. Main core debug config specifying additional ELF file for secondary core

Secondary core debug configurations specify no additional ELF files, shown below.

Figure 66. Main core debug config specifying additional ELF file for secondary core

You can launch both projects at once by selecting a launch group instead of a specific debug configuration. The launch group
is also located under both the debug menu. In the figure below, the launch group in question is called Migrated Project
Eclipse Multicore_LaunchGroup.

Debug Configurations

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

56 NXP Semiconductors

Figure 67. Multicore launch group

Each core possesses its own debug thread. Switch between the threads by clicking on the project you want within the Debug
perspective, as displayed in the figure below. The debug controls (e.g. run, pause, step through) are associated with
whichever thread is currently selected.

Figure 68. Multicore launch group

You can terminate a debug session one thread at a time, or stop them all at once by selecting the launch group. To do so, click
on the launch group in the Debug perspective, in this case Migrated Project Eclipse Multicore_LaunchGroup [Launch
Group] and hit the stop icon, shown below. This will terminate all threads at once.

Figure 69. Multicore launch group

Debug Configurations

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

NXP Semiconductors 57

8 Building the Converted Project
To build the converted project:

1. Select the project in the Project Explorer.
2.

Select Project > Build Project or click on the hammer icon ().

9 Conclusion
This application note has covered the steps that you need to take in order to successfully migrate your CodeWarrior project to
S32DS. Future automotive/industrial devices from NXP will have tools enablement through S32DS. CodeWarrior will
continue to exist to support legacy devices. Once the tool transition is complete, we encourage customers to develop new
projects on S32DS. We plan to continually release updates to enhance and expand your S32DS experience. For more
information on S32DS, visit S32DS.

10 Revision History
The following table summarizes the changes done to this document since the initial release.

Table 8. Revision history

Revision Date Substantive changes

0 04/2016 Initial release.

1 06/2016 Adjusted the project descriptions to accommodate the changes made in
the S32 Design Studio for Power Architecture v1.2.

2 08/2016 Added topic "Assembly Translation" and updated topic "Project
properties".

3 09/2016 Added topic "Multi-Core Debug Configurations" and updated topic
"Headers and Sources, Multi-C" and "Debug Configurations".

Building the Converted Project

CodeWarrior to S32 Design Studio (S32DS) Migration Guide, Rev. 3, 09/2016

58 NXP Semiconductors

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/s32-processors-and-microcontrollers/s32-design-studio-ide:S32DS?amp%3bnodeId=012FC830D4%2522%2520format=%2522html%2522%2520scope=%2522external%2522%253Ehttp://www.NXP.com/products/arm-processors/s32-processors-and-microcontrollers/s32-design-studio-ide:S32DS%3fcode=S32DS&%3bnodeId=012FC830D4

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer’s technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: http://www.nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, Freescale, the Freescale logo, and CodeWarrior are trademarks of
NXP B.V. ARM, the ARM powered logo, and Cortex are the trademarks of ARM
Limited (orits subsidiaries) in the EU and/or elsewhere. All other product or
service names are the property of their respective owners. All rights reserved.

The Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© 2016 NXP B.V.

Document Number AN5282
Revision 3, 09/2016

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Introduction
	What is S32DS?
	Why migrate?

	How to Migrate an ARM project from CodeWarrior to S32DS
	CodeWarrior Eclipse and S32DS Comparison for Power Architecture
	Workspace Structure of CWE and S32DS
	Workspace Structure for Single-Core Projects
	FLASH/Debug
	Binaries
	Project_Headers/include
	Project_Settings

	Sources/src
	Includes (S32DS Only)

	Prefix (CWE Only)
	MPC5604B_readme.txt
	Workspace Structure for Multi-Core Projects
	Project_Headers
	Project_Settings\Debugger
	Sources
	PRCx_Sources
	Project Options
	Project Properties
	Compiler and Debugger
	New Projects
	Workspace structure of CCW and S32DS
	Classic CodeWarrior Differences From S32DS
	Classic CodeWarrior Differences From S32DS, Single-Core
	Classic CodeWarrior differences from S32DS, Multi-Core
	Project Properties
	Compiler and Debugger

	Project Migration from CodeWarrior Eclipse for Power Architecture
	Headers and Sources
	Headers and Sources, Single-Core
	Headers and Sources, Multi-Core
	Include Paths
	Build Configurations
	Libraries
	Symbols

	Project Migration from CodeWarrior Classic for Power Architecture
	Assembly Translation
	Debug Configurations
	Multi-Core Debug Configurations

	Building the Converted Project
	Conclusion
	Revision History

