Freescale Semiconductor
Application Note

Document Number:AN4665
Rev. 0, 01/2013

How to Use Freescale USB Stack
to Implement Audio Class Device

by: Wang Hao

1 Introduction

The USB interface is very well suited for transport of audio
ranging from low-fidelity voice connections to high-quality,
multichannel audio streams. Many applications from
communications, to entertainment, to music recording and
playback, can take advantage of audio features of the USB.

The Audio Device Class specification standardizes audio
transport mechanisms to keep software drivers as generic as
possible. It specifies the standard and class-specific
descriptors that must be present in each USB audio function
and explains the use of class-specific requests that allow for
full audio function control. It also defines addressable entities
like Units and Terminals which are used to describe the audio
function topology and gives an interface to manipulate the
physical properties of an audio function.

To develop audio class device applications from scratch is a
big task; however Freescale has provided a bare-metal USB
stack which supports many common USB device classes such
as personal healthcare device class (PHDC), human interface
device (HID), mass storage device (MSD), communications
device class (CDC), and audio class. The source code is
complimentary, portable, and easy to use and can be
downloaded from freescale.com/medicalUSB.

© 2013 Freescale Semiconductor, Inc.

[©) NNV, VS I S

Contents
INtroduCtion..........coueevieiiieiiiiee e 1
Audio class device requirements............cceecuveeeeennnee. 2
Freescale USB Stack.........ccoooieiiiiiiiniiniiieee 9
Audio class demos.........c.eevueeeriienieiiie e, 11
CONCIUSION.iiieieiieieee e 12
References.coeveeviieiieiieiieee e 12

e,

Z“freescale

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MEDICALUSB

Auuio class device requirements

2 Audio class device requirements

In many cases, audio functionality does not exist as a standalone device. It is one capability that, together with other
functions, constitutes a “composite” device. Audio function is located at the interface level in the device class hierarchy.

2.1 Audio function overview

Each audio function must have a single AudioControl interface and can have zero or more AudioStreaming and zero or more
MIDIStreaming interfaces. The AudioControl interface is used to access the Audio Controls of the function such as volume
control whereas the AudioStreaming interfaces are used to transport audio streams into and out of the function. The
MIDIStreaming interfaces can be used to transport MIDI data streams into and out of the audio function. See the following
figure for the global overview of audio function as seen from the USB bus interface.

USB

Audio interface

- collection
Audio control
Audio interface Audio
streaming streaming
inteface IN inteface OUT :>
— — —
Audio Audio
C [mmmmpy Stemne N Audio function streaming (I
% inteface IN [V inteface QUT 5
m

Audio Audio

streaming A streaming
:> inteface IN ; :> inteface OUT :>

Figure 1. Audio function global overview

The collection of the single AudioControl interface and the AudioStreaming and MIDIStreaming interfaces that belong to the
same audio function is called the Audio Interface Collection (AIC). A device can have multiple AICs active at the same time.
These collections are used to control multiple independent audio functions located in the same composite device.

2.2 Audio function topology

To easily represent the topology and manipulate the physical properties of an audio function, two types of generic entities are
defined and are called Units and Terminals. Also introduced is the audio channel cluster concept where a group of audio
channels are put together. The following subsections briefly explain each of these entities.

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

2 Freescale Semiconductor, Inc.

Audio class device requirements

2.2.1 Units

Units provide the basic building blocks to fully describe most audio functions. Audio functions are built by connecting
together several of these Units. A Unit has one or more input pins and a single output pin, where each pin represents a cluster
of logical audio channels inside the audio function. Units are wired together by connecting their I/O pins according to the
required topology.

Feature Unit is a commonly used multi-channel processing unit that provides the basic manipulation of multiple single-
parameter Audio Controls on the incoming logical channels such as mute, volume control, and so on.

The Feature Unit Descriptor reports what controls are present for every channel in the Feature Unit and for the ‘master’
channel.

2.2.2 Terminals

Two types of Terminals are introduced.
 Input Terminal: This is an entity that represents a starting point for audio channels inside the audio function. The
function of the Input Terminal is to represent a source of incoming audio data after this data has been properly
extracted from the original audio stream into the separate logical channels that are embedded in this stream.
* Output Terminal: This entity represents an end point for the audio channels. USB endpoint is a typical example of an
Input or Output Terminal. The function of the Output Terminal is to represent a sink of outgoing audio data before this
data is properly packed from the original separate logical channels into the outgoing audio stream.

2.2.3 Audio channel cluster

An audio channel cluster is a grouping of audio channels that carry tightly related synchronous audio information.

An audio channel cluster is characterized by only two attributes:
* The number of audio channels in the cluster
* The spatial location of each audio channel in the cluster, for example, left and right channel

There are two types of audio channel cluster:
* A logical cluster describes audio data within the audio function where the audio channels are treated as logical
concepts.
* A physical cluster describes audio data within an AudioStream interface that handles the actual physical audio channels
in the audio stream.

2.3 Descriptors

For a USB device, its descriptors fully describe its capabilities and functions to the host. Since device descriptor and
configuration descriptor are similar for any kind of device, only some other descriptors are described in this section.

Following discussion is based on the audio_speaker demo provided with the USB stack; the descriptors are defined in
usb_descriptor.c and comply with the USB Audio Device Class Specification 2.0.

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 3

Auuio class device requirements

2.3.1 Standard Interface Association Descriptor (IAD)

The standard USB Interface Association mechanism is used to describe the Audio Interface Collection, that is, to bind those
interfaces together. The following codelines show that there are two interfaces, one AudioControl and one AudioStream
interface.

/* Standard Interface Association Descriptor */

0x08, /* bLength (0x08) */

USB_INTERFACE ASSOCIATION DESCRIPTOR, /* bDescriptorType (0x0B) */

0x00, /* bFirstInterface (0x00) */

0x02, /* bInterfaceCount (0x02) */

0x01, /* bFunctionClass (0x01) : AUDIO */
0x00, /* bFunctionSubClass (0x00) */

0x20, /* bFunctionProtocol (0x2000): 2.0 AF_VERSION 02 00 */
0x00, /* iFunction (0x00) */

2.3.2 Standard AudioControl (AC) Interface Descriptor

The Standard AC Interface Descriptor is identical to the standard interface descriptor defined in Chapter 9 in USB 2.0
Specification which can be downloaded from usb.org. In the following code, bNumEndpoints field is 0 which means that
there is only default control pipe and no optional interrupt endpoint for the AudioControl interface.

/* AUDIO CONTROL Interface */
/* Standard AC Interface Descriptor(4.7.1) */

0x09, /* bLength (0x09) */

0x04, /* bDescriptorType (0x04): INTERFACE */

0x00, /* bInterfaceNumber (0x00) */

0x00, /* bAlternateSetting (0x00) */

0x00, /* bNumEndpoints (0x00) */

0x01, /* bInterfaceClass (0x01): AUDIO */

0x01, /* bInterfaceSubClass (0x01): AUDIOCONTROL */

0x20, /* bInterfaceProtocol (0x20): IP 2.0 IP_VERSION 02 00 */
0x07, /* iInterface(0x07): Not Requested */

2.3.3 Class-specific AC descriptors

The Class-Specific AudioControl Interface Descriptor is a concatenation of all the descriptors that are used to fully describe
the audio function, that is, all the Unit and Terminal descriptors.

The total length of the Class-Specific AC Interface Descriptor depends on the number of Units and Terminals in the audio
function. Therefore, the descriptor starts with a header that reflects the total length in bytes of the entire class-specific AC
interface descriptor in the wTotalLength field. See the code given in the following section.

The header descriptor is followed by one or more Unit and/or Terminal descriptors. Each Unit and Terminal within the audio
function is assigned a unique identification number, the Unit ID or Terminal ID. Besides uniquely identifying all addressable
entities in an audio function, the IDs also serve to describe the topology of the audio function; that is, the bSourcelD field of
a Unit or Terminal descriptor indicates to which other Unit or Terminal this Unit or Terminal is connected.

2.3.3.1 Class-Specific AC Interface Header Descriptor

/* Class-Specific AC Interface Header Descriptor(4.7.2) */

0x09, /* bLength (0x09) */

0x24, /* bDescriptorType (0x24): CS_INTERFACE */

0x01, /* bDescriptorSubType (0x01) : HEADER */

0x00, 0x02, /* bcdADC (0x0200): 2.0 */

0x01, /* bCategory (0x01) : DESKTOP_SPEAKER */

//0x40, 0x00, /* wTotalLength(64): 9 + 8 + 17 + 18 + 12 (2 channels)
0x3C, 0x00, /* wTotalLength(60): 9 + 8 + 17 + 14 + 12 (1 channel)

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

4 Freescale Semiconductor, Inc.

http://www.usb.org

g |

Audio class device requirements

Audio Control Interface size */
0x00, /* bmControls (0b00000000) */

2.3.3.2 Clock Source Descriptor

In the following code bmAttributes field is 0x01, which means that clock type is internal fixed clock.

/* Clock Source Descriptor(4.7.2.1) */

0x08, /* bLength (0x08) */

0x24, /* bDescriptorType (0x24): CS_INTERFACE */
0x0A, /* bDescriptorSubType (0x0A) : CLOCK SOURCE */
0x10, /* bClockID (0x10) : CLOCK_SOURCE_ID */

0x01, /* bmAttributes (0x01): internal fixed clock */
0x07, /* bmControls (0x07) :

clock frequency control: 0bll - host programmable;
clock validity control: 0bOl - host read only */
0x00, /* bAssocTerminal (0x00) */
0x01, /* iClockSource (0x01) : Not requested */

2.3.3.3 Input Terminal Descriptor

The Input Terminal Descriptor (ITD) provides information to the host that is related to the functional aspects of the Input
Terminal.

In the following code, wTerminalType field is 0x0101, which means that the Input Terminal is dealing with signal carried
over an endpoint in an AudioStreaming interface; bCSourcelD field identifies the clock source for this Input Terminal.

The bNrChannels, bmChannelConfig and iChannelNames fields together constitute the cluster descriptor where the audio
channel cluster being a group of audio channels that carry tightly related synchronous audio information.

/* Input Terminal Descriptor(4.7.2.4) */

0x11, /* bLength(0x11): 17 */

0x24, /* bDescriptorType (0x24): CS_INTERFACE */
0x02, /* bDescriptorSubType (0x02) : INPUT TERMINAL */
0x20, /* bTerminalID (0x20) : INPUT TERMINAL ID */
0x01, 0x01, /* wTerminalType (0x0101) : USB streaming */
0x00, /* bAssocTerminal (0x00) */

0x10, /* bCSourceID(0x10) : CLOCK_SOURCE_1ID */
NB_CHANNELS, /* bNrChannels (0x01) */

0x00, 0x00, 0x00, 0x00, /* bmChannelConfig(0x00): Mono, no spatial location */
0x00, /* iChannelNames */

0x00, 0x00, /* bmControls (0x0000) */

0x02, /* iTerminal (0x02) : not requested */

2.3.3.4 Feature Unit Descriptor

In following code, bSourcelD field is 0x20 , which means that the Feature Unit has the Input Terminal as its source;
bmaControls field is 0x0000_000F which signifies that the user can change or mute the volume for this audio device with its
AudioControl requests.

/* Feature Unit Descriptor(4.7.2.8) */

0x0E, /* bLength(0x0E): 6 + (ch + 1) * 4, 1 channel */
0x24, /* bDescriptorType (0x24): CS_INTERFACE */

0x06, /* bDescriptorSubType (0x06) : FEATURE UNIT */
0x30, /* bUnitID(0x30) : FEATURE UNIT ID */

0x20, /* bSourceID (0x20) : INPUT TERMINAL ID */

0x0F, 0x00, 0x00, 0x00, /* bmaControls(0) (0x0000000F): Master Channel 0
Obll: Mute read/write
Obll: Volume read/write */
0x00, 0x00, 0x00, 0x00, /* bmaControls(1l) (0x00000000): Logical Channel 1
*/
0x00, /* iFeature (0x00) */

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 5

3
4

4
A

Auuio class device requirements

2.3.3.5 Output Terminal Descriptor
In the following code, wTerminalType field is set to 0x0101 for USB Stream Terminal type and bSourcelD is set to ID of the
Feature Unit, which means that this Output Terminal is connected after the Feature Unit.

/* Output Terminal Descriptor(4.7.2.5) */

0x0C, /* bLength (12) */

0x24, /* bDescriptorType (0x24): CS_INTERFACE */

0x03, /* bDescriptorSubType (0x03) : OUTPUT_ TERMINAL */
0x40, /* bTerminalID(0x40) */

0x01, 0x01, /* wTerminalType (0x0101) : USB_STREAMING */
0x00, /* bAssocTerminal (0x00) : no association */
0x30, /* bSourcelID (0x30) : FEATURE_UNIT ID */

0x10, /* bCSourceID(0x10) : CLOCK_SOURCE_1ID */

0x00, 0x00, /* bmControls (0x0000) */

0x00, /* iTerminal (0x00): Not Requested */

So based on above descriptors, the internal topology of audio speaker is shown in the figure below.

Input Terminal Feature Terminal Output Terminal

USBE OUT endpoint [: Mute or volume confrol E Speaker

Figure 2. Audio speaker internal topology

2.3.4 Standard AudioStream (AS) Interface Descriptor

In the following code, two alternate settings are defined for this interface.
e Zero-bandwidth setting with its bNumEndpoints field set to 0: This setting is used to relinquish the claimed bandwidth
on the bus when audio function is not used.
* bNumEndpoints field is set to 2: It implies that this interface has both a data endpoint and an explicit feedback endpoint
used for synchronization.

/* AUDIO STREAMING Interface */

/* Standard AS Interface Descriptor(4.9.1) */

/* Interface 1, Alternate 0 */

/* default alternate setting with 0 bandwidth */

0x09, /* bLength(9) */

0x04, /* bDescriptorType (0x04): INTERFACE */

0x01, /* bInterfaceNumber (0x01) */

0x00, /* bAlternateSetting (0x00) */

0x00, /* bNumEndpoints (0x00) */

0x01, /* bInterfaceClass (0x01) : AUDIO */

0x02, /* bInterfaceSubClass (0x02): AUDIOSTREAMING */
0x20, /* bInterfaceProtocol (0x20): IP 2.0 */

0x08, /* iInterface */

/* Standard AS Interface Descriptor(4.9.1) */
/* INterface 1, Alternate 1 */
/* alternate interface for data streaming */

0x09, /* bLength(9) */

0x04, /* bDescriptorType (0x04) : INTERFACE */

0x01, /* bInterfaceNumber (0x01) */

0x01, /* bAlternateSetting(0x01) */

0x02, /* bNumEndpoints (0x02) */

0x01, /* bInterfaceClass (0x01): AUDIO */

0x02, /* bInterfaceSubClass (0x02): AUDIO STREAMING */

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

6 Freescale Semiconductor, Inc.

Audio class device requirements

0x20, /* bInterfaceProtocol (0x20): IP 2.0 */
0x09, /* iInterface */

2.3.5 Class-Specific AS Interface Descriptor

In the following code, bTerminalLink field is set to ID for the Input Terminal, meaning the AudioStreaming interface is
connected to the Input Terminal. bFormatType and bmFormats field together define that the audio data format going through
the AudioStreaming interface is commonly used PCM data. The fields bNrChannels and bmChannelConfig define the
physical audio channel cluster in the AS interface, with both left and the right channels.

/* Class-Specific AS Interface Descriptor(4.9.2) *x/

0x10, /* bLength(16) */

0x24, /* bDescriptorType (0x024) : CS_INTERFACE */
0x01, /* bDescriptorSubType (0x01) : AS_ GENERAL */
0x20, /* bTerminallLink (0x20) : INPUT TERMINAL_ ID */
0x00, /* bmControls (0x00) */

0x01, /* bFormatType (0x01) : FORMAT TYPE I */

0x01, 0x00, 0x00, 0x00, /* bmFormats (0x00000001): PCM */
0x02, /* bNrChannels (0x02) : NB CHANNELS */

0x03, 0x00, 0x00, 0x00, /* bmChannelConfig(0x00000003) */
0x00, /* iChannelNames (0x00) : None */

2.3.6 Type | Format Type Descriptor

In following code, it can be seen that the audio samples are in 24 bits, and the sampling rate is 8§ kHz.

/* Type I Format Type Descriptor(2.3.1.6 - Audio Formats) */

0x06, /* bLength(6) */

0x24, /* bDescriptorType (0x24): CS_INTERFACE */

0x02, /* bDescriptorSubtype (0x02) : FORMAT TYPE */

0x01, /* bFormatType (0x01) : FORMAT TYPE I */

0x04, /* bSubSlotSize (0x01) */

0x18, /* bBitResolution (0x18): 24 bits per sample */
0x01, /* One frequency supported */
0x40,0x1F, 0x00, /* 8 kHz */

2.3.7 Standard AS Isochronous Data EP Descriptor

For the audio speaker demo, it needs an OUT endpoint which receives the audio stream data from the host. In the code,
bmAttributes is 0x05, which implies that this is an isochronous endpoint, and the synchronization type is asynchronous.

/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */

0x07, /* bLength(7) */

0x05, /* bDescriptorType (0x05) : ENDPOINT DESCRIPTOR */
EP01_OUT, /* bEndpointAddress (0x01) */

0x05, /* bmAttributes (0x05): iso+asynch+data */

0x08, 0x00, /* wMaxPacketSize (0x0008): 8(8 samples * 1 bytes * 1 channel) */
#if HIGH SPEED DEVICE

0x04, /* bInterval (0x04): 2*x ms */
#else
0x01, /* bInterval (0x01): 2%x ms */
#endif

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 7

Auuio class device requirements

2.3.8 Class-Specific AS Isochronous Data EP Descriptor

In the followng code, the bLockDelayUnits and wLockDelay fields are used to indicate to the host how long it takes for the
clock recovery circuitry of this endpoint to lock and reliably produce or consume the audio data stream.

/* Class-Specific AS IsochronousAudio Data Endpoint Descriptor(4.10.1.2) */

0x08, /* bLength(8) */

0x25, /* bDescriptorType (0x25) : CS_ENDPOINT */

0x01, /* bDescriptorSubtype (0x01) : EP_GENERAL */

0x00, /* bmAttributes (0x00): MaxPacketsOnly = FALSE */
0x00, /* bmControls (0x00) */

0x00, /* bLockDelayUnits (0x00) */

0x00, 0x00, /* wLockDelay (0x0000) */

2.3.9 Standard AS Isochronous Feedback EP Descriptor

In the following code, the feedback endpoint is an IN endpoint, the bmAttributes field is set to Ox11, which means that the
transfer type is isochronous and usage type is feedback endpoint.

/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */

0x07, /* bLength(7) */

0x05, /* bDescriptorType (0x05) : ENDPOINT DESCRIPTOR */
EP02_ IN, /* bEndpointAddress (0x82) */

0x11, /* bmAttributes (0x11): iso+feedback */

0x04, 0x00, /* wMaxPacketSize (0x0004) */

#if HIGH SPEED_DEVICE

0x04, /* bInterval (0x04): 2"x ms */

#telse

0x01, /* bInterval (0x01): 2*x ms */

#endif

2.4 Class-specific requests

Class-specific requests are used to set and get audio-related controls. These controls fall into two main groups: those that
manipulate the audio function controls such as volume, tone, selector position, etc., and those that influence data transfer over
an isochronous endpoint, such as the current sampling frequency.

* AudioControl Requests: Control of an audio function is performed through the manipulation of the attributes of
individual controls that are embedded in the entities of the audio function, such as Feature Unit.

* AudioStreaming Requests: Control of the class-specific behavior of an AudioStreaming interface is performed through
manipulation of either interface controls or endpoint controls.

2.4.1 Control attributes

Following are the currently defined control attributes for an entity.
» Current setting attribute, to manipulate the current actual setting of a control
* Range attribute, which actually consists of an array of attributes including Minimum, Maximum, and Resolution.

2.4.2 Control request layout

The request layout follows the standard request layout as defined in the USB 2.0 Specification, which can be downloaded
from usb.org. See the following table.

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

8 Freescale Semiconductor, Inc.

http://www.usb.org

g |

Freescale USB Stack

Table 1. Control request layout

bmRequestType bRequest wValue windex wLength
0010_0001B CUR RANGE Control Selector and | Entity ID and interface | Length of parameter
1010_0001B Channel Number block
0010_0010B Endpoint
1010_0010B

From Table 1, it can be seen that the request can be directed to either an interface (AudioControl or AudioStreaming) of the
audio function, or the isochronous endpoint of an AudioStreaming interface.

The wValue field specifies the Control Selector (CS) in the high byte and the Channel Number (CN) in the low byte. The
Control Selector indicates which type of control this request is manipulating. The Channel Number (CN) indicates which
logical channel of the cluster is to be influenced.

Each different type of Entity or Unit exhibits different type of control requests, for example, for Feature Unit, the user can
have the mute control and volume control to the underlying audio stream.

3 Freescale USB Stack

The Freescale USB Stack is divided into several layers to help application developers to concentrate on developing the
application instead of being concerned with communications related to low-level USB controller as well as the common
framework defined in the USB 2.0 Specification, which can be downloaded from usb.org.

Figure 3 is the layered architecture for Freescale USB stack from the point of view of audio class device.
* Application layer: Apart from providing code to implement specific USB function such as audio speaker, the
application layer also needs to provide the usb_descriptor.c file to inform the host of its capabilities in terms of its
descriptors.

* Class layer includes two sublayers, one sublayer for each specific USB device class (such as audio class, CDC class)
and includes implementation of class-specific requests; the other sublayer includes what’s common among different
classes such as registering callback functions for USB events like USB reset, suspend, and resume event.

* The framework layer implements services for the default control pipe and those services comply with Chapter 9 in the
USB 2.0 Specification which can be downloaded from usb.org.

* The device layer includes code for programming the underlying USB controller for USB communication.

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

Freescale Semiconductor, Inc.

http://www.usb.org
http://www.usb.org

g |

rreescale USB Stack

Application

1l

Class Driver

1l

LUSE framework

I

Device layer

Application layer code
usb_descriptor.c, usb_descriptor.h

usb_audio.c, usb_audio.h
usb class.c, usb class.h

usb_framework.c,usb_framework.h

usb_dci_kinetis.c, usb_dci_kinetis_h

Figure 3. Freescale USB stack architecture

The following table lists the APIs in Freescale USB stack for class layer and USB framework layer.

Table 2. APIs for class layer and framework layer

File name

APls

Description

usb_audio.c

USB_Class_Audio_Init

e Initialize device layer with
_usb_device_init

* Initialize generic class function
with USB_Class_Init and register
class callback and other request
callback function

USB_Class_Audio_Send_Data

Calls USB_Class_Send_Data internally

USB_Class_Audio_Recv_Data

Calls _usb_device_recv_data internally

USB_Class_Audio_Event

This is the class callback which
initializes the audio endpoints when
event of completed enumeration is
received, then register services for
Interrupt pipe and Isochronous pipe.

USB_Other_Requests

This is the other request callback which
handles audio class specific requests
such as get and set requests for
interface and endpoint.

USB_Get_Request_Interface
USB_Set_Request_Interface

These APIs handle the interface-level
request based on the Entity ID and route
the request to the appropriate entity.
Then, it extracts control selector from the
setup packet and call appropriate set or
get control function.

USB_Get_Request_Endpoint
USB_Set_Request_Endpoint

These APIs handle end-point level
request, extract control selector from the
setup packet and call appropriate set or
get control function.

Table continues on the next page...

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

10

Freescale Semiconductor, Inc.

g |

Audio class demos

Table 2. APIs for class layer and framework layer (continued)

File name APls Description

usb_class.c USB_Class_Init Calls USB_Framework_Init internally,
register services for USB events such as
Bus Reset, SOF, Suspend, Resume and

Stall.
USB_Class_Send_Data Calls _usb_device_send_data internally
usb_framework.c USB_Framework_Init Register service for default control pipe.
USB_Control_Service Handles standard USB requests or class

specific requests.

4 Audio class demos

There are existing demos for audio device class in Freescale USB Stack version 4.0.3, which can be downloaded from
freescale.com. Those demos can be found under Freescale USB Stack v4.0.3\Source\Device\app, after installing the package.
Two demos are provided: audio generator and audio speaker.

4.1 Audio speaker

USB descriptor for audio speaker is already discussed in Audio class device requirements. The main flow for the audio
speaker demo is shown in the code below, where FTM0_CHO is set to output audio data. The user needs to connect a low-
pass filter and a microphone externally to hear the audio sent from PC. To setup the demo, follow instruction from Appendix
G: USB Audio Demo in the Freescale USB Device Stack Users Guide, available on freescale.com.

Then, it calls USB_Class_Audio_Init API which initializes the USB controller through device layer API and register callback
functions for the application layer; the exact callback is USB_App_Callback. This is where the user writes code to respond to
different events such as USB_APP_ENUM_COMPLETE, USB_APP_DATA_RECEIVED, or USB_APP_SEND_COMPLETE
received from lower layer.

void TestApp Init (void)

{

sci init(); //initialize default console for output
pitl init(); //initialize PIT timer for 0.1lms timeout
pwm_init (); //initialize FTMO_CHO (PTC1l) to output the audio signal
error = USB_Class Audio Init (CONTROLLER ID,USB_App_ Callback,
NULL, NULL) ;

}

USB_App_Callback uses the event_type parameter to determine which event occurred and react accordingly. When it gets a
USB_APP_DATA_RECEIVED event, it will copy the audio data to a local buffer audio_data_recv where those data will
finally be used to update the PWM duty cycle for FTMO_CHO in the PIT timer ISR. See the following code.

static void USB_App Callback (
uint 8 controller ID, /* [IN] Controller ID */
uint 8 event type, /* [IN] value of the event */
void* val /* [IN] gives the configuration value */

if (event_type == USB_APP_BUS_RESET)
{

start_app=FALSE;

else if (event type == USB_APP ENUM COMPLETE)

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

Freescale Semiconductor, Inc. 11

http://www.freescale.com
http://www.freescale.com

g |

vounclusion

{
start_app=TRUE;
#ifdef USE FEEDBACK ENDPOINT
// Send initial rate control feedback (48Khz)
USB_Class_Audio_Send Data(controller ID, AUDIO FEEDBACK ENDPOINT,
(uint_8_ptr) &feedback_data,
AUDIO FEEDBACK ENDPOINT PACKET SIZE) ;
#endif // USE_FEEDBACK ENDPOINT

else if ((event type == USB_APP DATA RECEIVED) && (TRUE == start app))

(void)USB_Class_Audio_Recv_Data (controller ID, AUDIO ENDPOINT,
(uint_8_ptr)g curr_recv_buf,
AUDIO ENDPOINT PACKET SIZE) ;
audio_event = USB_APP_DATA RECEIVED;
data_receive = (APP_DATA STRUCT*)val;
(void) memcpy (audio_data recv, data receive->data ptr, data_receive->data_size);

#ifdef USE FEEDBACK ENDPOINT
else if ((event type == USB_APP_SEND COMPLETE) && (TRUE == start_app))

feedback_data <<= 14; // 10.14 format
(void)USB_Class_ Audio_ Send Data (controller ID,
AUDIO_FEEDBACK ENDPOINT,
(uint_8_ptr) &feedback_data,
AUDIO FEEDBACK ENDPOINT PACKET SIZE) ;

#endif

5 Conclusion

Freescale USB Stack provides a good framework to develop the USB applications. It provides several layers to hide the low
level details of USB data communication and many existing demos for common USB device classes where the user can adapt
for his own use.

To develop an Audio Class Device, the user needs to know the internal topology of this device, the number of Terminals and
Units it has, their interconnection, the number of interfaces the device has, and whether it's a standalone or a composite
device. Then the user can write down the USB descriptors for the device following the examples in Freescale USB stack.

Another thing the user needs to do is to write the application callback where it responds to events sent by the lower layer and
implement the unique functionality of the audio device.

6 References

The following reference documents are available on usb.org.

» USB 2.0 Specification

¢ USB Device Class Definition for Audio Devices

» USB Device Class Definition for Terminal Types

¢ USB device Class Definition for Audio Data Formats

The following reference documents are available on freescale.com.
e USBUG: USB Stack Users Guide
¢ USBAPIRM: Freescale USB Stack with PHDC Device API—Reference Manual

How to Use Freescale USB Stack to Implement Audio Class Device, Rev. 0, 01/2013

12 Freescale Semiconductor, Inc.

http://www.usb.org
http://www.freescale.com

g |

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, EL516

2100 East Elliot Road

Tempe, Arizona 85284

+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

Document Number: AN4665
Rev. 0, 01/2013

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of

the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www .freescale.com or contact your Freescale

sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

2/

Z“ freescale

	Introduction
	Audio class device requirements
	Audio function overview
	Audio function topology
	Units
	Terminals
	Audio channel cluster

	Descriptors
	Standard Interface Association Descriptor (IAD)
	Standard AudioControl (AC) Interface Descriptor
	Class-specific AC descriptors
	Class-Specific AC Interface Header Descriptor
	Clock Source Descriptor
	Input Terminal Descriptor
	Feature Unit Descriptor
	Output Terminal Descriptor

	Standard AudioStream (AS) Interface Descriptor
	Class-Specific AS Interface Descriptor
	Type I Format Type Descriptor
	Standard AS Isochronous Data EP Descriptor
	Class-Specific AS Isochronous Data EP Descriptor
	Standard AS Isochronous Feedback EP Descriptor

	Class-specific requests
	Control attributes
	Control request layout

	Freescale USB Stack
	Audio class demos
	Audio speaker

	Conclusion
	References

