Freescale Semiconductor
Application Note

Document Number: AN4561
Rev. 1, 11/2015

3-Phase PMSM Motor Control Kit

with the MPC5604P

by: Roman Filka and Marek Stulrajter

1 Introduction

This application note describes the design of a 3-phase
Permanent Magnet Synchronous Motor (PMSM) vector
control drive with 3-shunt current sensing with a position
sensor. The design is targeted for automotive applications.
This cost-effective solution benefits from a MPC5604P
device dedicated for motor control.

The system is designed to drive a 3-phase PM synchronous
motor. Application features:

* 3-phase PMSM speed Field Oriented Control.

* Current sensing with three shunt resistors.

* Support for encoder and resolver position transducers.

* Application control user interface using FreeMASTER
debugging tool.

* Motor Control Application Tuning (MCAT) tool

2 System concept

The system is designed to drive a 3-phase PM synchronous
motor. The application meets the following performance
specifications:

» Targeted at the MPC5604P Controller (refer to
dedicated user manual for MPC5604P found at
www.freescale.com), see References for more
information

© 2015 Freescale Semiconductor, Inc.

(o I e Y " I S

Contents
INtroduction..........cocccoerieiienieiiinieecceeeeeeee 1
SYSEM CONCEPL....vevreurieireiieiieniiereere e seenens 1
PMSM field oriented control............. coceeceenuieienncnne. 2
MPC5604P- CB configuration.......... ...ceeceerueerennenn. 7
Software desigh........coceeevevveriieieeievinieierereeeene 13
Application control user interface.......cccoecuennee. 23
References........cooevveeievieniinct e 26
Revision hiStory........ccceecenieies ceviinieniciienceeee 26

2/

Z“freescale

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc56xx-mcus/ultra-reliable-mpc560xp-mcu-for-automotive-industrial-safety-applications:MPC560xP?utm_medium=AN-2021

rwvioM field oriented control

* Running on the MPC5604P Control Drive board (refer to dedicated user manual for MPC5604P Controller Board), see
References for more information
 Control technique incorporating:
* Vector control of 3-phase PM synchronous motor with position sensor
* Closed-loop speed control
* Bi-directional rotation
* Both motor and generator modes
* Close-loop current control
¢ Flux and torque independent control
* Start up with alignment
* Reconstruction of three-phase motor currents from two shunt resistors
¢ 100 ps sampling period with FreeMASTER recorder
* FreeMASTER software control interface (motor start/stop, speed setup), see References for more information
* FreeMASTER software monitor
* FreeMASTER software graphical control page (required speed, actual motor speed, start/stop status, DC-Bus
voltage level, motor current, system status)
* FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and motor current)
* FreeMASTER software high-speed recorder (reconstructed motor currents, vector control algorithm quantities)
* DC-Bus over-voltage and under-voltage, over-current, overload and start-up fail protection
* Motor Control Application Tuning (MCAT) tool (see References)
e The MCAT tool is a user-friendly graphical FreeMASTER’s plug-in tool for debugging and tuning of motor-
control applications

3 PMSM field oriented control

3.1 Fundamental principle of PMSM FOC

High-performance motor control is characterized by smooth rotation over the entire speed range of the motor, full torque
control at zero speed, and fast acceleration/deceleration. To achieve such control, vector control techniques are used for PM
synchronous motors. The vector control techniques are usually also referred to as field-oriented control (FOC).

The FOC concept is based on an efficient torque control requirement, which is essential for achieving a high control
dynamic. Analogous to standard DC machines, AC machines develop maximal torque when the armature current vector is
perpendicular to the flux linkage vector. Thus, if only the fundamental harmonic of stator-mmf is considered, the torque 7,
developed by an AC machine, in vector notation, is given by:

Te=3pp:ip, % iy
Equation 1. Electric motor torque

where pp is the number of motor pole-pairs, i, is stator current vector and Y represents vector of the stator flux. Constant 3/2
indicates a non-power invariant form of transformation used.

In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator current vector is
satisfied by the mechanical commutator. Because there is no such mechanical commutator in AC Permanent Magnet
Synchronous Machines (PMSM), the functionality of the commutator has to be substituted electrically, by enhanced current
control. This suggests orientating the stator current vector in so that the component of stator current magnetizing the machine
(flux component) is isolated from the torque producing component.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

2 Freescale Semiconductor, Inc.

PMSM field oriented control

This can be accomplished by decomposing the current vector into two components projected in the reference frame, often
called the dq frame, that rotates synchronously with the rotor. It has become standard to position the dq reference frame such
that the d-axis is aligned with the position of the rotor flux vector, so that the current in the d-axis will alter the amplitude of
the rotor flux linkage vector. The reference frame position must be updated so that the d-axis will be always aligned with the
rotor flux axis.

Because the rotor flux axis is locked to the rotor position, when using PMSM machines, a mechanical position transducer can
be utilized to measure the rotor position and the position of the rotor flux axis. When the reference frame phase is set such
that the d-axis is aligned with the rotor flux axis, the current in the g-axis represents solely the torque producing current
component.

What further results from setting the reference frame speed to be synchronous with the rotor flux axis speed is that both d and
q axis current components are DC values. This implies utilization of simple current controllers to control the demanded
torque and magnetizing flux of the machine, thus simplifying the control structure design.

Figure 1 shows the basic structure of the vector control algorithm for the PM synchronous motor. To perform vector control,
it is necessary to perform these steps:

¢ Measure the motor quantities (phase voltages and currents, rotor speed and position).

* Transform them into the two-phase system (a, 3) using a Clarke transformation.

* Transform stator currents into the d, q reference frame using a Park transformation.

Also keep these points in mind:
* The stator current torque (i,,) and flux (isz) producing components are separately controlled.
» The output stator voltage space vector is calculated using the decoupling block.
» The stator voltage space vector is transformed by an inverse Park transformation back from the d, q reference frame
into the two-phase system fixed with the stator.
* The output three-phase voltage is generated using a space vector modulation.

To be able to decompose currents into torque and flux producing components (igg, iy,), position of the motor-magnetizing
flux has to be known. This requires accurate sensing of the rotor position and velocity. Incremental encoders or resolvers
attached to the rotor are naturally used as position transducers for vector control drives.

%%EE%%

Chasel, 3-Phase — Statlonary d - controller |- Rotating — —Fhase A,
Phase B to to to SVM Phase B
PhaseC ~ 2-Phase _P, Rotating _9,| q-controller -4+ Stationary B, Phase C |

Figure 1. Field oriented control transformations

3.2 PMSM model in quadrature phase synchronous reference
frame

Quadrature phase model in synchronous reference frame is very popular for field oriented control structures, because both
controllable quantities, current and voltage, are DC values. This allows to employ only simple controllers to force the

machine currents into the defined states. Furthermore full decoupling of the machine flux and torque can be achieved, which
allows dynamic torque, speed and position control.

The equations describing voltages in the three phase windings of a permanent magnet synchronous machine can be written in
matrix form as follows:

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015
Freescale Semiconductor, Inc. 3

rwioM field oriented control

Uy iy Yy
ug|=R{ig|l+LVp
uC lC WC

Equation 2. Three phase voltage model of AC motor

where the total linkage flux in each phase is given as:

l//A Laa Lab Lac iA COS(@e)
Ve|=|Lva Lvb Loc|is|+w,,[cosl0.—(2x) / 3)
Vel e Loy Leclic cos(0,+(2z) / 3)

Equation 3. PMSM total linkage flux matrix

where L,,, Lyp, L., are stator phase self inductances and L,,=Ly,, Ly.=L.p, Loq=L,. are
mutual inductance between respective stator phases. The term Wpy, represents the magnetic
flux generated by the rotor permanent magnets, and 6, is electrical rotor angle.

p

torque
producing

flux
producing

stator
coordinates

Figure 2. Orientation of stator(stationary) and rotor(rotational) reference frames, with
current components transformed into both frames.

The voltage equation of the quadrature phase synchronous reference frame model can be obtained by transforming the three
phase voltage equations (Equation 1 on page 2, Equation 2 on page 3) into a two phase rotational frame which is aligned and
rotates synchronously with the rotor as shown in Figure 2. Such transformation, after some mathematical corrections, yields

the following set of equations:
Lq Iy
0 Lq lq wel//P

Equation 4. DQ voltage model of PMSM

It can be seen that Equation 4 on page 4 represents a non-linear cross dependent system, with cross-coupling terms in both d
and q axis and back-EMF voltage component in the g-axis. When FOC concept is employed, both cross-coupling terms shall
be compensated in order to allow independent control of current d and q components. Design of the controllers is then
governed by following pair of equations, derived from Equation 4 on page 4 after compensation:

diy
uy= Ryt Lygr

Equation 5. D axis voltage

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

4 Freescale Semiconductor, Inc.

g |

PMSM field oriented control
. dig
ug=Rgig+ Loy
Equation 6. Q axis voltage

which describes the model of the plant for d and q current loop. It is obvious that both Equation 5 on page 4 and Equation 6
on page 4 are structurally identical, therefore the same approach of controller design can be adopted for both d and q
controllers. The only difference is in values of d and q axis inductances, which results in different gains of the controllers.
Considering closed loop feedback control of a plant model as in Equation 5 on page 4 or Equation 6 on page 4, using
standard PI controllers, then the controller proportional and integral gains can be derived, using a pole-placement method, as
follows:

Kp=2GwyL—R
Equation 7. Proportional gain equation
K;= oL
Equation 8. Integral gain equation

where wy represents the system natural frequency [rad/sec] and is the Damping factor [-]
of the current control loop.

3.3 Phase current measurement

The 3-phase voltage source inverter depicted in Figure 3 uses three shunt resistors (R32, R31 and R32) placed in each of the
inverter leg as phase current sensors. Stator phase current which flows through the shunt resistor produces a voltage drop
which is interfaced to the AD converter of microcontroller through conditional circuitry (refer to “3-Phase BLDC/PMSM
Low Voltage Power Stage - User Manual”).

DC bus positive

) : -
D4 D5 D6
MBR120VLSFT1G MBR120VLSFT1G MBR120VLSFT1G
1 [2
=
R16 R17 R18 R19 | R20 R21 |
PA_HSG)>—4 ANN 8 ? 1 @ PB_HSG))—+ ANAN 5 AN 1 Qs PC_HSG)) ANAN PNAN 1 (9
IRFR540Z IRFR540Z

4

kgl

20 20 20 20 20 20 IRFR540Z

3

PA_HSS((PB_HSS(: PC_HSS(K

D7 D8 D9
MBR120VLSFT1G MBR120VLSFT1G MBR120VLSFT1G

1 e 2 » 1
) | °) | 1
R22 R23 @ R26 R27 '
NN > NN
PA_LSG))>—4 5 PB_LSG)! (. PC_LSG))—4 ar
PALSS 20 20 IRFRS40Z PB_LSS 20 20 IRFR540Z PC_LSSK 20 20 IRFR540Z
1_sense_AP{(: 1 I_sense_BP{ 1 I_sense_CP{: 1
R30 R31 R32
0.004 0.004 0.004
I_sense_AN({: I_sense_BN((- I_sense_CN ¢
R33
| 1 AN

DC bus negative

Figure 3. 3-phase DC/AC inverter with shunt resistors for current measurement

Figure 4 shows an operational amplifier and input signal filtering circuit which provides the conditional circuitry and adjusts
voltages to fit into the ADC input voltage range.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 5

\
Y

4
A

rwioM field oriented control

= [|
AN el
R45 i 12PF
e VAVA
33k C48
b * O+3.3VA
R47 R
= 0.1UF TP3
I_sense_BN»> 2NN B 1B

C50
1.2k al + USA

ATPF 2 |_

AGND: | " : [>i8
Cc52 T
— - AD8656
R49 ATPF
|_sense_BP> AN Decoupling capacitor C48
R51 Place as close as possible to V+ pin
1.2k L
———AAA—OH. =
1.65Vref AGND

33k
Figure 4. Phase current measurement conditional circuitry

The phase current sampling technique is a critical issue for detection of phase current differences and for acquiring full three
phase information of stator current by its reconstruction. Phase current flowing through shunt resistors produces a voltage
drop which needs to be appropriately sampled by the AD converter when low-side transistors are switched on. The current
cannot be measured by the current shunt resistors at an arbitrary moment. This is because that the current only flows through
the shunt resistor when the bottom transistor of the respective inverter leg is switched on. Therefore considering the diagram
depicted in Figure 3, phase A current is measured using the R30 shunt resistor and can only be sampled when the transistor
Q5 is switched on. Correspondingly, the current in phase B can only be measured if the transistor Q6 is switched on, and the
current in phase C can only be measured if the transistor Q7 is switched on. In order to get an actual instant of current
sensing, voltage waveform analysis has to be performed.

Generated duty cycles (phase A, phase B, phase C) of two different PWM periods are depicted in Figure 5. These phase
voltage waveforms correspond to a center-aligned PWM with sinewave modulation. As shown in the following figure,
(PWM period 1), the best sampling instant of phase current is in the middle of the PWM period, where all bottom transistors
are switched on. However, not all three currents can be measured at an arbitrary voltage shape. PWM period Il in the
following figure shows a case when the bottom transistor of phase A is on for a very short time. If the on time is shorter than
a certain critical time (depends on h/w design), the current cannot be correctly measured.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

6 Freescale Semiconductor, Inc.

g |

MPC5604P- CB configuration

. Il.
PWM reload PWM reload PWM reload

|

|

Phase A I
|

Phase B

| |
| |
| |
l l
Phase C i —| i |_
| |
. PWM DeriﬁRVZ Minimal pulse width

A/D sampling

Duty cycles

Figure 5. Generated phase duty cycles in different PWM periods.

In case of standard motor operation where the supplied voltage is generated using the space vector modulation, the sampling
instant of phase current takes place in the middle of the PWM period in which all bottom transistors are switched on. If the
modulation index of applied SVM technique increases there is an instant when one of the bottom transistors is switched on
for a very short time period. Therefore, only two currents are measured and the third one is calculated from equation:

ig+ig+ic=0
Equation 9. Currents in three phase balanced system

Therefore, a minimum on time of the low-side switch is required for three phase current reconstruction.

4 MPC5604P- CB configuration

The PMSM Speed Field Oriented Control framework application software and hardware is designed to meet the following
technical specifications:
¢ MPC5604P Controller Board is used (refer to dedicated user manual for MPC5604P Controller Board)
* 3-phase low voltage power stage with MC33937 pre-driver is used
* refer to dedicated user manual for 3-phase low voltage power-stage with MC33937 pre-driver. See References for
more information.
* refer to dedicated user manual for MC33937 pre-driver on www.freescale.com
* refer to dedicated document describing communication with and configuration of MC33937 pre-driver using
DSPI communication bus
* PWM output frequency = 20 kHz
e current loop sampling period = 100 ps
* speed loop sampling period = 2 ms
* 3-phase current measurement using three shunt resistors on bottom side of each inverter leg. Phase current
measurement feedback is routed to ADCO and ADCI as follows:
 phase A current: ADCO/1 - CH12
* phase B current: ADC0/1 - CH13
* phase C current: ADC0/1 - CH14
* DC bus voltage measurement routed to ADCI1 as follows:
* DC bus voltage: ADC1 - CHO
* encoder position feedback routed to eTimerl module as follows:
* phase A: eTimerl - CH1 input
* phase B: eTimerl - CH2 input

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 7

mrv5604P- CB configuration

* resolver excitation signal routed from eTimerQ - CH5

* resolver position feedback routed to ADCO and ADCI as follows:
* resolver sin: ADCO - CH1
* resolver cos: ADCI1 - CH1

4.1 FlexPWM

The MPC5604P Clock Generation Module is configured to generate a clock signal of 120 MHz on the MC_PLL_CLK bus.
The FlexPWM module is clocked from the MC_PLL_CLK, therefore it is placed behind the IPS Bus Clock Sync Bridge.

The FlexPWM sub-module #0 is configured to run as a master and to generate Master Reload Signal (MRS) and counter
synchronization signal (master sync) for other sub-modules. The MRS signal is generated every second opportunity of sub-
module #0, VALI1 compare, i.e. full cycle reload. All double buffered registers, including compare registers VAL2, VAL3,
VALA4, VALS are updated on occurrence of MRS, therefore update of new PWM duty cycles is done every two PWM
periods.

FlexPWM modulo counting, for generation of centrr-aligned PWM signals, is achieved by setting VALO register to zero and
INIT register to negative value of VALI. Considering PWM clock of 120 MHz, required PWM output 20 kHz and PWM
reload period 100 ps, then INIT, VALO and VALI registers of sub-modules 0,1,2 are set as follows:

e INIT =-120000000/20000/2 = -3000 DEC = 0xF448

¢ VALO=0DEC

¢ VALI =- INIT = 3000 DEC = 0xOBB8

Reload frequency of sub-modules 0,1,2 is set to "Every two opportunities”" and "Full cycle reload" is enabled in all sub-
modules. Because sub-module #0 is a master that generates MRS signal, reload of double buffered registers of sub-module #0
is done on "Local Reload". Sub-modules 1 and 2 are slaves, so reload of their double buffered registers is done on "Master
Reload", broadcast from sub-module #0. Similarly, the sub-module #0 counter is initialized on "Local Sync" event, while
sub-modules 1 and 2 on "Master Sync" event, which is also broadcast from sub-module #0.

Because some registers are double buffered on occurrence of FORCE OUT signal, all sub-modules have "Local Reload"
event selected as force source.

All PWM channels are used to drive a 3-phase DC/AC inverter, so each PWM pair is driven in complementary mode, with
dead-time automatically added on each rising edge of respective PWM signal. Used power stage with MC33937 pre-driver
inverts the polarity of PWM signals for top transistors (active low logic), so PWM A output polarity in all sub-modules is set
as "Inverted". Therefore, during fault state, the output of PWM A of each sub-module is set to logic one.

The FlexPWM module includes a Fault Protection logic, which can control any combination of PWM output pins and
automatically disable PWM outputs during a fault state. Faults are generated by a logic one on any of the FAULTX pins. In
order to enable mapping of all fault pins, fault disable mapping registers (DISMAP) of all sub-modules must be enabled
(logic one).

42 CTU

The MRS signal generated from the FlexPWM module is internally routed to the CTU module, where it is selected using the
input selection register Trigger Generator Subunit Input Selection Register (TGSISR) as source of master reload signal for
CTU. This signal is used for reload trigger compare registers, and reloads the TGS counter with the value stored in TGS
counter reload register. The TGS counter register is used to compare the current counter value with the values of trigger
compare registers, when the two values are the same an event is generated. TGS is configured in triggered mode.

Because the MRS signal is generated every two PWM periods, the CTU counter can count up to value of 12000DEC when
the initial value is set to zero.

The following TGS trigger compare registers are used for trigger events:
* TOCR = 0x0 (=0 DEC)

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

8 Freescale Semiconductor, Inc.

MPC5604P- CB configuration

« I'TICR = 0x099C (=2460 DEC)
« IT2CR = 0x210C (= 8460 DEC)
« IT3CR = 0x2DFO0 (=11760)

The CTU Scheduler subUnit (SU) generates the trigger event output according to the trigger event that occurred. The
following trigger event outputs are generated:

* ADC command output: TOCR generates ADC command event output, with command offset initially set to one. It is
used as synchronization signal to ADC (ADC commands #1 - #12 for phase current and DC bus voltage measurement).

+ 2eTimerO output: TICR generates eTimer0 event output, which toggles its output to generate rising edge of resolver
exciting signal. T1CR is phase shifted to account for delay caused by the MPC5604P resolver hardware circuitry and to
allow ADC sampling of resolver signals just before PWM reload.

+ ZeTimer0 output: T2CR generates eTimer0 event output, which toggles its output to generate falling edge of the
resolver exciting signal; frequency of resolver exciting signal is: resolverSignalFreq = MC_PLL_CLK/(2*(T2CR-
T1CR)) = 120000000/(2*(8460-2460))=10kHz

+ 2ADC command output: T3CR generates ADC command event output, with command offset set to zero. It is used as
synchronization signal to ADC (ADC command #0 for resolver signals sampling)

The SU uses a Commands List in order to select the command to send to the ADC when a trigger event occurs. Each ADC
command sent by the CTU into the ADC specifies:

» whether the actual command is a first command of a new stream of consecutive commands or not

* whether an End Of Conversion (EOC) interrupt is issued when conversion specified by the command is finished

* which channels are to be converted for both ADC modules

* the target FIFO register for storing the conversion results

Because the trigger compare register for trigger TOCR is set to zero, it generates the ADC start of conversion request at the
beginning of each PWM reload cycle. When a TOCR trigger event occurs, the ADC command selected by the index value
TO_INDEX in command list control registers CLCR1 is sent to the ADC.

At each TOCR trigger event, two ADC commands are executed in a stream. The first command in a stream specifies two
phase currents to be sampled simultaneously (all phase current signals are routed to pins shared between both ADC modules).
The second command specifies the third phase current and DC bus voltage to be sampled.

The index pointer to the ADC command list TO_INDEX is updated according to the sector in which resides the actual output
voltage vector, calculated by the space vector modulation of the FOC algorithm. There are six sectors within the output
voltage hexagon of the inverter, therefore six different ADC command sequences are selected for one full revolution of the
voltage vector. This technique is necessary when the phase current measurement is done using three shunt resistors placed in
the bottom side of each inverter leg.

Because the shunt resistor is placed at the bottom side of the inverter leg, the phase current can be measured only when
bottom transistor is switched on. Because the sum of the three currents in the motor windings is zero, only two currents are
measured and the third one is calculated. Which phases are measured and which are calculated changes according to the
voltage vector angle, i.e. the phases with the largest PWM on-pulse on the bottom transistors are selected to get the best
current information.

Configuration of CTU ADC commands is shown in Figure 6.

1. These triggers are only necessary when using resolver position sensor.
2. These trigger event outputs are only necessary when using resolver position sensor.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 9

mrv5604P- CB configuration

ADC Command List

First Command ADC ADC ADC A ADCH
command Interrupt Conversion Mode Module Channel Channel. Channel FIFO
ADC Command 0 [+ [||:|ual ':"_',' _| ':;‘f._,-' _| ':;‘f._,-' _| 1 ':,‘i;' _| 1 ':,‘i;' _l 3 ':i;'_
ADC Command 1 w | dual D O] @[t ®[s® &
ADC Command 2 I 2 ||:Iua| 'rl‘ | "_'} | "_'} |11 'Z,n' |III 'Z,n' 1 'Z,l
ADC Command 3 ~ = | dual [= u=s s =
ADC Command 4 I W ||:|ual ':"_',' | ':;‘f._,-' | ':;‘f._,-' | 12 ':.‘.f_.i' ||:| ':.‘.f_.i' | 1 ':.‘.f_.i'
ADC Command w i | dual D O] @[u®s® &
ADC Command & I 2 ||:Iua| ':r_.l' | "_'} | '\‘_'_:? | 12 'I,.' |III ';f_,.' | 1 ":Y_,'
ADC Command 7 M = | dual [= mume=s =
ADC Command 3 i W ||:|ual ':"_',' | L:‘_V._J' | ':;‘f._,-' | 13 ':.‘.f_.i' ||:| 'Q.f_.i' | 1 ':.‘.f_.i'
ADC Command w i | dual D O] @[u®e®0 &
ADC Command 10 7 2 ||:Iua| ':r_.l' | "_'} | '\h_:? | 13 'Z,n' |III 'Z,n' | i 'Z,l
ADC Command 11 ~ = | dual [= Bt s= =
ADC Command 12 I W ||:|ua| ':“_',' | ':;‘f._,' | ':;‘f._,-' |11 ':.‘.f_.i' ||:| ':.‘.f_.i' 1 ':‘.f.i'
ADC Command 13 w i | dual T @O @ & & &
ADC Command 14 [[||:Iua| ':r_.l' | "_'} | '\‘:_:? |III 'Z,n' |III (>) |III gl
ADC Command 15 = = | dual [=] = = = =
ADC Command 18 I [||:|ua| ':“_',' | ':;‘f._,-' | ':;‘f._,-' ||:| ':.‘.f_.i' ||:| ':.‘.f_.i' ||:| ':.‘.f.g'
ADC Command 17 > i | dual [& & = & =
ADC Command 12 [[||:Iua| ':r_.l' | "_'} | '\‘:_:? |III 'Z,n' |III 'I,n' |III ":Y_,'
ADC Command 19 = = | dual [=] = = = =
ADC Command 20 I [||:|ua| ':“_',' | ':;‘f._,-' | ':;‘f._,-' ||:| ':.‘.f_.i' ||:| 'J‘.f_.) ||:| ':‘.f.i'
ADC Command 21 > i | dual [& & & & =
ADC Command 22 [A ||:Iua| ':r_.l' | "_'} | '\h_:? |III 'Z,n' |III 'Z,n' |III 'Z,n'
ADC Command 22 = = | dual [=] = = = =

Figure 6. Configuration of CTU ADC commands for the PMSM FOC application

4.3 eTimer0

This eTimer module is only used for generation of an excitation signal for resolver. Because of hardware design, channel #5
of this eTimer module is selected. The purpose is to generate a square wave signal with a frequency of 10 kHz, which is then
processed by a hardware low pass filter designed on used controller board. Because of the low pass filter, the resulting
harmonic signal is phase shifted.

In order to generate a square wave signal synchronized with the MRS signal, timer channel #5 of module eTimer0O (eTimer1-
ETCJ5]) is configured as follows:

* counting mode - "Edge of secondary source triggers primary count until compare"

 count direction - "Count up"

* primary source - "[PBus clock"

* secondary source - "AUX #0", which is an output signal from CTU ETIMER #0 trigger event output

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

10 Freescale Semiconductor, Inc.

MPC5604P- CB configuration

 count stop mode - "Count repeatedly”

 count length - "Count until compare then reinitialize"

¢ compare mode - "Use COMP1 when counting up and COMP2 when counting up"
 output mode - "Toggle OFLAG on successful compare with COMP1 and/or COMP2"
* COMP1 =0x0

* COMP2 =0x0

* LOAD =0x0

* direction of the channel pin - "Output - OFLAG"

4.4 eTimeril

This eTimer module is only used for decoding two square-wave signals from an encoder. Because of hardware design,
channel #0 of this eTimer module is selected. The purpose is to decode the two 90°-shifted square wave signals and count up
or down all rising/falling edges based on their sequences. The software routine then reads the associated counter value to get
the information about rotor position. Reading of the counter value is performed from within POSPE_GetPositionElEnc ()
function, periodically within CTU-ADC interrupt service routine. See the data flow diagram shown in Figure 10.

In order to decode the encoder signals, timer channel #0 of module eTimer1 (eTimer1-ETC[0]) is configured as follows:
* counting mode - "Quadrature count mode, uses primary and secondary sources"
 count direction - "Count up"
 primary source - "Counter #1 input"

* secondary source - "Counter #2 input"
* count stop mode - "Count repeatedly”
 count length - "Count until compare then reinitialize"
* preload control for CNTR
* "Load CNTR with CMPLDI1 upon successful compare with COMP2"
* "Load CNTR with CMPLD2 upon successful compare with COMP1"
* compare mode - "Use COMP1 when counting up and COMP2 when counting down"
* output mode - "Toggle OFLAG on successful compare with COMP1 and/or COMP2"
* COMPI1 = 0x07FF (2047 DEC)
* COMP2 = 0xF800 (-2048 DEC)
¢« CMPLDI1 = 0x07FF (2047 DEC)
¢« CMPLD2 = 0xF800 (-2048 DEC)
* LOAD = 0x0, this value is updated by a software routine during ALIGN phase

The compare registers of eTimer0O channel #0 are set according to the number of encoder pulses per one mechanical
revolution. In this case, an encoder sensor with 1024 pulses is used. Considering quadrature mode, the encoder has a
capability of position recognition with a precision that is four times higher than the number of pulses in the application, for a
maximum number of edges of 4096. The compare registers are calculated as follows:

* COMPI =4096/2 - 1 = 0x07FF (2047 DEC)

* COMP2 = -4096/2 = 0xF800 (-2048 DEC)

4.5 On-chip motor control peripherals interconnection

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 11

PR 4

wmrv5604P- CB configuration

EXTEFNAL PINS

LGHLLE

:

I

Figure 7. MPC5604P motor control peripherals connection

4.6 ADC conversion and interrupt timing

Configuration of FlexPWM, CTU and eTimer0 peripheral modules, as described in FlexPWM, CTU, and eTimer0, results in
a sequence of trigger/events that are shown in the following figure. The application state machine functions are called from
an interrupt service routine, which is associated with CTU-ADC command interrupt request. As can be seen from ADC
command list configuration, shown in Figure 6, the ADC command interrupts are linked with CTU trigger TOCR, in other
words, when measurement of phase currents and DC bus voltage is finished.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015
12 Freescale Semiconductor, Inc.

h o
g |

4
Software design

Full Cycle Reload, Every Second Opportunity

VAL
VALS

FlexPWM sub0 counter VALO

VAL2
INIT

FlexPWH pha out Atop L I I I

A bot I I I I

PWM
reload

PWM

FlexPWM MRS reload

.0 Trig.1
CTU triggers

eTimer) compare

eTimerd CFLAG

Resolver sin/cos

ADC conversion cmmd @ @

I
ISR service routing | FOC calculation ‘ ‘ FOC calculation ‘

Figure 8. FlexPWM-CTU-ADC conversion timing

5 Software design

5.1 Introduction

This section describes the software design of the PMSM Field Oriented Control framework application. First, the application
overview and description of software implementation are provided. Then the numerical scaling in fixed-point fractional
arithmetic of the controller is discussed, followed by a detailed description of speed and current sensing. The aim of this
chapter is to help in understanding of the designed software.

5.2 Application data flow overview

The application software is interrupt driven running in real time. There is one periodic interrupt service routine associated
with the CTU-ADC command interrupt request, executing all motor control tasks. These include both fast, current, and slow
speed loop control. All tasks are performed in an order described by the application state machine shown in Figure 11, and
application flowcharts shown in Figure 9 and Figure 10.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 13

A\ 4
N
sunware design

C wan)
v

state = reset;
event = e_reset;

v

state_table()

M

FMSTR_Poll()

false
C e)

Figure 9. Flow chart diagram of main function with background loop.

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor control calculations,
the state machine functions are called within a periodic interrupt service routine. Hence in order to actually call state machine
functions the periphery causing this periodic interrupt must be properly configured and the interrupt enabled. As is described
later, all peripherals are initially configured and all interrupts are enabled within a state RESET of the state machine.
Therefore state machine is called once in main function before the background loop to enter RESET state and to enable
interrupts. As soon as interrupts are enabled and all peripheries are correctly configured (see MPC5604P- CB configuration
for configuration of peripherals), the state machine functions are called from the CTU-ADC interrupt service routine. The
background loop handles non-critical timing tasks, such as the FreeMASTER communication polling.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

14 Freescale Semiconductor, Inc.

g |

Software design

ADC_Measure2Ph()

v

POSPE_GetPositionEIRes()

v

DCBus resistor braking

rising edge

& app on

falling edge
e_app_off]

switchAppOnOff

faultDetection()

faultiDp=0x0

e fault false
.‘—

switchAppReset fru
false

state_table()

RTFI

Figure 10. Flow chart diagram of periodic interrupt service routine.

& reset

5.3 State machine

The application state machine is implemented using a two-dimensional array of pointers to the functions variable called
state table[] [] (). The first parameter describes the current application event, and the second parameter describes the
actual application state. These two parameters select a particular pointer to state machine function, which causes a function
call whenever state_table[] [] () is called.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 15

h -

4
A

sunware design

reset

ISR disabled

executed in ISR

Figure 11. Application state machine

The application state machine consists of following seven states, which are selected using variable state defined as
AppStates:

¢ RESET - state = 0
e INIT - state = 1

e FAULT - state = 2
* READY - state = 3

e CALIB - state = 4
e ALIGN - state = 5
¢ RUN-state = 6

To signalize/initiate a change of state, thirteen events are defined, and are selected using variable event defined as
AppEvents:
* ¢ reset-event = 0
e ¢ reset_done - event = 1
e ¢ fault- event = 2
e ¢ fault_clear - event = 3
e ¢_init_done - event = 4
e e_ready - event = 5
* € _app_on-event = 6
e e_app_off - event = 12
e ¢ calib-event = 7
e ¢ _calib_done - event = 8
e e¢_align-event = 9
e e_align_done - event = 10
® ¢ run-event = 11

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

16 Freescale Semiconductor, Inc.

Software design

5.4 State — RESET

State RESET is the first state the state machine enters after power on or reset, in other words, when the application enters
main() function. In RESET state, all used peripherals are reset and configured as required by the application (see MPC5604P-
CB configuration). Before configuring peripheral modules, all interrupts are disabled. Interrupts are enabled at the end of
RESET state. Therefore, the periodic CTU-ADC interrupt is not requested, and the state machine functions cannot be
executed until all interrupts are enabled and all peripherals set.

State RESET is a "one pass" function/state. It is entered and executed only once, and the next state is called after RESET is
finished. If there is no error/fault during RESET execution, the application event is set to event=e_reset done and all
interrupts are enabled at the end of the function. From this point, the CTU-ADC interrupts are enabled, and if the peripherals
are correctly configured, the next call of state machine function will be from within the CTU-ADC interrupt service routine.

According to the data flow diagram of the CTU-ADC interrupt service routine, shown in Figure 10, the routine for three
phase current reconstruction ADC Measure2Ph () is executed first, followed by the rotor position measurement routine. The
fault detection function is always called before the state machine function call, ensuring correct transition to FAULT state in
case a fault is detected. If there is no fault detected, the application event remains set to event=e_reset_done, hence INIT
state will be selected as the next state to execute.

The user can initiate a jump to RESET state from any state of the state machine by setting the event to event=e_reset.
This is done by setting switchAppReset variable to true using FreeMASTER. The entire RESET procedure as described
above is then repeated. The following sequence is performed in this order:

* interrupts disable

* all peripherals reset and configure

* user control and fault variables reset

switchAppOnOff = false;
switchAppOnOffState = false;
switchFaultClear = false;
switchAppReset = false;
faultID.R = 0x0;
faultIDp.R = 0x0;

¢ cvent set to event=e _reset done
e interrupts enable

5.5 State - FAULT

The application goes immediately to this state when a fault is detected. The system allows all states to pass into the FAULT
state by seting event = e fault. State FAULT is a state that allows transition back to itself if a fault is present in the
system and the user does not request clearing of fault flags.

There are two different variables to signal fault occurrence in the application. The actual fault register faultID represents
the current state of the fault pin/variable etc., and the pending fault register fault IDp represents a fault flag, which is set
once actual fault is/was true. Even if the actual fault is reset (fault source disappears), the pending fault remains set until
manually cleared by the user. Such mechanisms allow for stopping the application and analyzing the cause of failure, even if
the fault was caused by a short glitch on monitored pins/variables.

State FAULT can only be left when application variable switchFaultClear is manually set to true (using FreeMASTER).
That is, the user has acknowledged that the fault source has been removed and the application can be restarted. When the user
sets switchFaultClear = true; the following sequence is automatically executed:

faultID.R = 0x0; // Clear Fault register
faultIDp.R = 0x0; // Clear Pending Fault register
switchFaultClear = false; // Reset fault clearing switch
event = e _fault clear; // new application event

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 17

g |

sunware design

Seting event to event = e fault clear while in FAULT state represents a new request to proceed to INIT state. This
request is purely user action and does not depend on actual fault status. In other words, it is up to the user to decide when to
set switchFaultClear true). However, according to the interrupt data flow diagram shown in Figure 10, function
faultDetection () is called before state machine function state table[event] [state] (). Therefore, all faults will
be checked again and if there is any fault condition remaining in the system, the respective bits in faultID and faultIDp
variables will be set. As a consequence of faultID and faultIDp not equal to zero, function faultDetection () will
modify the application event from e _fault clear back to e fault, which means jump to fall state when state machine
function state table[event] [state] () is called. Hence, INIT state will not be entered even though the user tried to
clear the fault flags using switchFaultClear.

When the next state (INIT) is entered, all fault bits are cleared, which means no fault is detected (faultIDp.R = 0x0) and
application variable switchFaultClear is manually set to true.

5.5.1 Application faults

Both faultID and faultIDp are defined as AppFaultStatus, which is a 32 bit long data type. Application faults are bit
mapped in AppFaultStatus type as follows:

Table 1. AppFaultStatus type

31 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 20 19 18 17 16

FLT | FLT | FLT RESERVED FLT | FLT | FLT | FLT | RESERVED | FLT | FLT | FLT
31 30 29 24 23 22 21 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLT | FLT | FLT | FLT | FLT | FLT | FLTO | FLT8 | FLT7 | FLT6 | FLT5 | FLT4 | FLT3 | FLT2 | FLT1 | FLTO
15 | 14 | 13 | 12 | 11 | 10

* FLTO - OverDCBusVoltage (Over-voltage on DC bus)

e FLT1 - UnderDCBusVoltage (Under-voltage on DC bus)

¢ FLT2 - OverDCBusCurrent (Over-current on DC bus)

e FLT3 - OverLoad (Overload Flag)

e FLT4 - MainsFault (Mains out of range)

e FLTS5 - WrongHardware (Wrong hardware fault flag)

* FLT6 - OverHeating (Overheating fault flag)

e FLT7 - OverPhaseACurrent (Over-current on phase A)

* FLT8 - OverPhaseBCurrent (Over-current on phase B)

e FLT9 - OverPhaseCCurrent (Over-current on phase C)

¢ FLT10 - OffCancError (Offset cancellation error)

e FLT11 - MC33937_TLIM (over temperature) - not used in current software version

e FLTI12 - MC33937_DESAT (desaturation detected) - not used in current software version
e FLT13 - MC33937_VLS (low VLS detected) - not used in current software version

e FLTI14 - MC33937_OC (over current detected) - not used in current software version

e FLT15 - MC33937_PhaseE (phase error) - not used in current software version

e FLTI16 - MC33937_FrameE (SPI communication frame error) - not used in current software version
e FLT17 - MC33937_WriteE (SPI communication write error) - not used in current software version
e FLTI18 - MC33937_RST (reset event) - not used in current software version

e FLT21 - FOCError (error in FOC calculation function)

e FLT22 - AlignError (error during alignment)

* FLT23 - CalibError (error during ADC calibration)

e FLT24 - InitError (error during app initialization)

e FLT29 - FLEXPWM_Error (error in FlexPWM hardware initialization)

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

18 Freescale Semiconductor, Inc.

Software design

e FLT30 - ADC_Error (error in ADC hardware initialization)
e FLT31 - CTU_Error (error in CTU hardware initialization)

5.6 State —INIT

State INIT is similar to state RESET "one pass" state/function, and can be entered from all states except for READY state,
provided there are no faults detected. All application variables and parameters are initialized in state INIT.

After the execution of INIT state, the application event is automatically set to event=e_init done, and state READY is
selected as the next state to enter.

5.7 State — CALIB

In this state, ADC DC offset calibration is performed. Once the state machine enters CALIB state, all PWM output are
enabled.

Calibration of the DC offset is achieved by generating 50% duty-cycle on the PWM outputs, and taking several
measurements of all configured ADC channels. These measurements are then averaged, and the average value for each
channel is stored. This value will be subtracted from the measured value when in normal operation. This way the half range
DC offset, caused by voltage shift of 1.65V in conditional circuitry (see Figure 4), is removed in all three phases.

State CALIB is a state that allows transition back to itself, provided no faults are present, the user does not request RESET
(by switchAppReset=true) or stop of the application (by switchAppOnOff=true), and the calibration process has not finished.

The number of samples for averaging is set by default to 2*8=256, and can be modified in the state INIT.

After all 256 samples have been taken and the averaged values successfully saved, the application event is automatically set
to event=e _calib done and state machine can proceed to state ALIGN.

A transition to RESET state is performed by setting the event to event=e_reset, which is done automatically when the
user sets switchAppReset to true using FreeMASTER.

A transition to FAULT state is performed automatically when a fault occurs.

A transition to INIT state is performed by setting the event to event=e_app_ of £, which is done automatically on falling
edge of switchAppOnOff=false using FreeMASTER.

5.8 State — ALIGN

This state shows alignment of the rotor and stator flux vectors to mark zero position (only necessary for relative position
sensors such as encoders, etc.). When using a relative position sensor such as an encoder, the zero position is not known and
therefore, counting of encoder edges has to be correctly reset at the start of operation. This is done in ALIGN state, where a
DC voltage is applied in phase A for a certain period. This will cause the rotor to rotate to "align" position, where stator and
rotor fluxes are aligned. The rotor position in which the rotor stabilizes after applying this DC voltage is set as zero position,
therefore the timer eTimer1-CHO is reset to zero.

In order to wait for rotor to stabilize in an aligned position, a certain time period is selected during which the DC voltage is
constantly applied. The period of time and the amplitude of DC voltage can be modified in INIT state. Timing is
implemented using a software counter that counts from a pre-defined value down to zero. During this time, the event remains
setto event=e_align. When the counter reaches zero, the counter is reset back to the pre-defined value, timer eTimerl-
CHO is reset, and event is automatically set to event=e _align done. This enables a transition to RUN state.

A transition to RESET state is performed by setting the event to event=e_reset, which is done automatically when the
user sets switchAppReset to true using FreeMASTER.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 19

g |

sunware design
A transition to FAULT state is performed automatically when a fault occurs.

Transition to INIT state is performed by setting the event to event=e_app_ off, which is done automatically on falling edge
of switchAppOnOff=false using FreeMASTER.

5.9 State - RUN

In this state, all calculations for FOC algorithm as described in PMSM field oriented control are performed. Calculation of
fast current loop is executed every CTU-ADC interrupt when in RUN state while calculation of slow speed loop is executed
every Nth CTU-ADC interrupt.

Arbitration is done using a counter that counts from value N down to zero. When zero is reached, the counter is reset back to
N and slow speed loop calculation is performed. This way, only one interrupt is needed for both loops and timing of both
loops is synchronized. Slow loop calculations are finished before entering fast loop calculations.

Figure 12 shows implementation of FOC algorithm and the functions and variables used. As can be seen from the diagram,
position/speed measurement is prepared for Encoder as well as for Resolver sensor. Encoder sensor feedback is selected as
default.

A transition to RESET state is performed by setting the event to event=e reset, which is done automatically when the
user sets switchAppReset to true using FreeMASTER.

A transition to FAULT state is performed automatically when a fault occurs.

A transition to INIT state is performed by setting the event to event=e_app_ of £, which is done automatically on falling
edge of switchAppOnOff=false using FreeMASTER.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

20 Freescale Semiconductor, Inc.

g |

Software design

MPC5604P - PMSM FOC izstees s2anest
uAlBeRegDCB. 532Arg2
‘\ pwn32 . s32Argl
iDQReq.s32Argl iDQReqZC.s32Argl iDQErr . s32Argl uDQReq.s32Argl uRlBeReq.s32Argl \ pwm32 . s328rgl
iDQReq.s32Arg2 iDQReqgZC.s32Arg2 iDQErr.s32Rrg2 uDQReq.s32Arg2 ulAlBeReq.s32Arg2 3 pwm32 . s32Argl
oy ---x r——- - —— v B

y \ i]
\ ’ [

Y [y

'

AN GDFLIB_FilterlR1

’ .

®_. GFLIB_ControllerPIrAw |-

[

=] GMCLIB_SvmStd|

’
I3 \
v, - LY,
V| emxisze |! %! anxis?I A! d ! =
1 1 1 1 | 1 | ;
I 1 1 I 1 I v
sl ’,'5 otBLExY : i i i | emouB_park |1 | GwcUB_EimboBusip | ! e =
] 1 1 1 1 1 I 1
/ / Ny & ¥ N5 ¥ ¥ v I
%! GFLB_Ramp _>®_‘*. GFLIB_ControllerPIrAW _.GDFUBantenm_.@ GFLIB_ControllerPIrAW |—f) |) A L
speedRamp ;‘ -4 speedPT P GRXisZC -4 gRxisPT V elimDcbRip
.
.

g iRbeFbek . s32Rrgl
iBlBeFbck.s328rgl iAbcFbek.s32Rrg2
EECERIRe SR Pl iR1BeFbek.532Arg2 iRbcFbek . s32Arg3

r

iDQFbek . s32Axgl

3-phase [—

1 .
current reconstruction

GMCLIB_Parklrnv GMCLIB_Clarkiny ADC_Measure2Ph() — [—

1

1

1

1

1

1

1

v
iDQFbek . $32Arg2
) g:

adc

Ts-
e e

T
ADG 14 1B

e GFLIB_Sin
— thRotElEnc | POSPE_GetPositionEIEnc) |,
Fast Gurrent Loop hRotELSyst. s32Arg2 ‘_
100us GFLIB_Cos ")
E
=
WROLELEne <
POSPE_GetSpeedEIEnc() l—
pospeEnc
thRotE1Res |POSPE_GetPositionEIRes() [[ea]
+*k
<t
+
l Q
RotELRe
bl wRomee | POSPE GetSpssdERss) k| <DE
2ms
pospeRes

Figure 12. Variables and functions as implemented in FOC calculation

5.9.1 Current measurement

Three phase currents are obtained by calling ADC Measure2Ph () function. As described in Phase current measurement,
only two currents are measured at a time, and third current is calculated. Which currents are measured and which calculated
depends on a sector in which lies the actual output voltage vector. The sector is calculated by GMCLIB SvmsStd () function,
which generates three phase duty-cycles for the inverter by employing Space Vector Modulation technique.

The 3-phase inverter can switch six active voltage vectors and two zero vectors. These are given by combinations of the
corresponding power switches. Plotting all six active vectors in a complex plane results in a hexagon with six sectors.

5.9.2 Position/speed measurement

Information about rotor position is obtained by calling function POSPE_GetPosElEnc () if an encoder is used, or
POSPE_GetPosElRes () if a resolver is used as position sensor. Both functions calculate the angle tracking observer, which
is implemented using PI controller and an integrator.

Output of the integrator represents the estimated (tracked) position, which is subtracted from the measured position (from the
sensor), and the resulting difference is used as an error signal for the PI controller. Because the integrator is connected to the
PI controller output, the PI controller output represents the estimated angular velocity of the rotor.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 21

g |

sunware design

To obtain information about the rotor position/speed, the parameters of the tracking observer—such as Kp and Ki gains of PI
controller, and input and output scales of the integrator—must be properly configured.

5.9.2.1 Encoder sensor

If an encoder is used as a position sensor, the information about rotor position is obtained by reading the value of the timer
eTimer1-CHO (see eTimer1 for configuration of eTimer1 module).

Because the encoder is a relative position sensor, the counter/timer used for counting the encoder edges has to be correctly
reset at the start of operation. This is done in ALIGN state, where a constant current is applied in the d-axis with position
manually set to zero. The current amplitude must be chosen large enough to cause rotor movement but must not damage the
stator winding. Usually a current amplitude of 10-20% is sufficient. This current is applied for a fixed period of time, in order
to allow motor to settle in an "align" position, where stator and rotor fluxes are aligned. This position is then set as zero
position, and counter eTimer1-CHO is set to zero.

HW | SW

Dy WROLELEnc
GDFLIB FilterMA —_—

i POSPE_GetSpeedEIEnc

phase A 6 5 <
eTimer1-CHO meas ar o By thRotElEnc
Encoder |phase B CNTR I GFLIB ControllerPIrAw +—» GFLIB IntegratorTR >
! pu

POSPE_GetPositionEIEnc

Figure 13. Angle tracking observer used for position/speed estimation using encoder.

5.9.2.2 Resolver sensor

If a resolver is used as a position sensor, the information about rotor position is obtained by reading values of the ADC #A
channel 1 and ADC #B channel 1. The timer eTimer0O-CHS is used for generation of an exciting signal for the resolver (see
eTimer0 for configuration of eTimer0 module).

The resolver is an absolute position sensor, and there is no need for a mechanical alignment. However, the resolver either has
to be mounted precisely on the rotor shaft where the aligned position of rotor and stator fluxes result in resolver sin/cos
signals representing zero, or an offset between real zero position and zero position indicated by the resolver sin/cos signals
must be a known a priory. This offset is then always subtracted from the measured position.

Initialization of the resolver offset is done at the end of an align procedure (ALIGN state), by writing the value measured
from a resolver during alignment into the offset.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015
22 Freescale Semiconductor, Inc.

g |

Application control user interface

HW | Sw

@4, wRotElRes
GDFLIB_FilterMA

POSPE_GetSpeedEIRes

sin

= - eew \ o ch thRotElRes
Resolver CoS ADG #A-CHT GFLIB_ControllerPIrAW «+—» GFLIB_IntegratorTR - L
ADC #B-CH1
]

JaVaVaN GFLIB_Sin e
L i -

LPF (4 eTimer0-CH5 | GFLIB_Cos ¢

| POSPE_GetPositionEIRes

Figure 14. Angle tracking observer used for position/speed estimation using resolver.

6 Application control user interface

To control the application and monitor variables during run time, the Freescale run-time debugging tool "FreeMASTER" is
used (see References).

An example software package of the MPC5604P Development Kit contains a related FreeMASTER project. An integral part
of the FreeMASTER project is also the Motor Control Application Tuning (MCAT) tool (see References).

Communication with the host PC is via USB. However, because FreeMASTER supports RS232 communication, there must
be a driver installed on the host PC that creates a virtual COM port from the USB. This COM port can then be used for
FreeMASTER communication.

The application configures the LINFlex module of MPC5604P for communication speed 38400 bps. Therefore,
FreeMASTER must also be set for this speed. This can be done in FreeMASTER menu \Project>Options> by selecting tag
Comm.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 23

\
Y

4
A

rnppiication control user interface

S HOFE W [= R

File Edit View Recorder Project Tools Help

Tahoma - 8 -

(=8 PMSM_SCL_ER
=™ Scalar control
s Speed
2 Tabe

-5 uDCB

™1 Voltage FOC
{55 Speed
455 Tabc
4 uDCB
= giv]
184 Id tune
-4 Iq tune
-*8 Torque/Current loop
BT Jisec)
.4 iDQ
-4 Resolver Signals
4 pwmABC
14 uDCB

£ iDQ
-5 uDCB
5% Tabe
-4 Td tune

e -

Name

switchAppOnOff

switchAppReset
switchFaultClear
switchSensor
state

event

Nreq
uDQReq.D
ubDQReq.Q
iDQReq.D
iDOReq.Q

Udch

w_e
uAlBeReq.A
uAlBeReq.B
thRotEl
thRotEIRes
thRotEIEnc

.48 Position OL vs Sensors

1 Rotor position ENC vs RES

OFF

OFF
Encoder
STATE_RUM
e_run
393.4
0.2

1.0

0.0

0.2

17.3
124.1
-0.288072
-0.561943
158.435
53.4275
92.0708

-

=" freescale-

Motor 1: PMSM ©

| »

m,

Application Faults

=
=
-
-

f— Curent Loop | Speea Loop commisme | owpure RN |

Motor Control Application Tuning Tool r

Tuning Mode: Expert |v|

PMSM Control Page

o 18 20 o5 o
Vb, 2 35

aEm ¢ S ¢

DC Busg| Voltage
ECEm ¢ G ¢ :
EE=E ¢ B ¢
EEIm o EIEI ¢

m

[}
a
\\\\\\\\\1

-1000 | 1000
el
\\\\ ////

2000 2000
o //

g
T =
fSDDD—“ [EDDD
-4000 4000

Application State Sensor Option

Speed

RUN Encoder j [rpm]

isbcFbck A

iAbcFbck B

isbcFbck.C

phase current [A]

Recorder is idle.

0.030 0.035

¥ Autoload W Autostop [Autorun

ll—s]

Done

RS5232 UART Communication; COM3; speed=38400 Recldle

Figure 15. FreeMASTER Control Page for controlling the application

View all application state machine variables on the FreeMASTER control page (as shown in Figure 15), which is a part of the
MCAT tool. The MCAT tool is a user-friendly graphical plug-in tool for FreeMASTER, which enables you to easily tune and
control motor-control applications. It supports up to three PMSM motors and is fully compliant with the FOC cascade control
structure. The added value of MCAT is the capability to calculate the parameters of the PI controller in the control structure.
All application parameters are stored and can be exported as a static configuration header file. For More details about MCAT
see AN4642 (see References). Permanent/pending faults are signaled by a highlighted red color bar with name of the fault
source. Actual faults are signaled by a round LED-like indicator, which is placed next to the bar with the name of the fault
source.

The actual presence of any fault is signaled by highlighting respective indicators. In the previous figure, for example, there
are five pending faults and one actual fault ("Udcb LO" - DC bus under-voltage). That means that low voltage on the DC bus
is still present in the system.

The other pending faults highlighted in the figure above indicate there was an error latched, but it is no longer present in the
system. In this case, the application state FAULT is selected, which is shown by a frame indicator hovering above FAULT
state in the middle of the control page.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc.

24

Application control user interface

After all actual fault sources have been removed, no fault indicators are highlighted. The pending faults can now be cleared
by pressing the "FAULT CLEAR" button. This will clear all pending faults and will enable transition of the state machine
into INIT and then READY state.

Because INIT is a one-pass state, transitions to FAULT-INIT-READY happen faster than the control page can display, which
may seem as if the state machine went from FAULT to READY directly. This is not an error, and is caused by slow
communication via RS232 and/or slow refresh rate of the control page.

After the application faults have been cleared and the application is in READY state, all variables should be set to their
default values. The application can be started by clicking the On/Off button. A successful selection is indicated by
highlighting the On/Off button in green.

If there is no fault detected in the system, after starting the application by clicking on the On/Off button, the application
should proceed to CALIB state for DC offset calibration, then to ALIGN state for marking the zero position, and finally state
RUN is entered.

When in RUN state, all control loops of FOC algorithm are active. That means, 3-phase currents are measured and used to
close the current loop, and actual rotor speed is measured for closing the speed loop. The user can now select the desired
speed of the rotor in the variable watch window, or by selecting the required speed in "Rotor speed control [rpm]" application
gauge on the FreeMaster control page. Click on the speed scale of the gauge to make the selection. The variable for
controlling the speed is called Nreq, and it is the required speed recalculated to mechanical speed in revolutions per minute.

Because of the used motor, the required speed can be selected from -4000[rpm] to 4000[rpm].

Field weakening algorithm is not implemented, therefore the required value of d-axis current is set to zero.

6.1 Application quick start

1. Install USB driver to create a virtual COM port for emulation of RS232 communication (for example, "CP210x USB to
UART Bridge VCP Drivers" available from https://www.silabs.com/Support%20Documents/Software/
CP210x_VCP_Win2K_XP_S2K3.zip)

2. Connect USB cable to MPC5604P controller board and to host PC

3. Connect power supply to the power-stage. Controller board power supply is taken from the power stage. The PMSM
motor used is designed for phase voltage = 18V.

4. Start FreeMASTER project located in MPC5604P_PMSM_Development_Kit\FreeMASTER _control

\MPC5604P_PMSM_Development_Kit MCAT.pmp

Enable communication by pressing "STOP" button in the toolbar in FreeMASTER, or by pressing "CTRL+K"

Successful communication is signaled in the status bar (see Figure 15 for example).

7. GPIOAI13 is turned ON at the beginning of the calculation step, and turned OFF at the end. The period of calculation is
100 ps, so the LED D18 on MPC5604P controller board will flash with a period of 10 kHz if the application runs
correctly.

8. Functionality of GPIO12 (LED D11 on MPC5604P controller board) is as follows:

» OFF if the application is in READY, INIT states

e ON if the application is in RUN, CALIB, ALIGN states

* flashing if the application is in FAULT state (flashing with period 1 - 2 Hz so that it is clearly visible with the
naked eye)

9. If no actual faults are present in the system, all indicators on the FreeMaster control page are dark red. If there is a fault
present, identify the source of the fault and remove it. Successful removal is signaled when the respective indicator on
the FreeMaster control page turns off.

10. Fault condition is also signaled by blinking LED diode D11 on the MPC5604P controller board. Press UP + DOWN
buttons (SW2/SW3 on MPC5604P controller board) simultaneously to clear fault status register once in a FAULT
state. The application can be restarted by positioning RUN/STOP switch (SW4 on MPC5604P controller board) to
RUN position (transition from STOP to RUN in case the switch was in RUN state when the fault event occurred).

11. If all indicators on the FreeMaster control page are off, clear pending faults by pressing the "FAULT CLEAR" button
on the FreeMaster control page, or by pressing UP+DOWN buttons (SW2/SW3 on MPC5604P controller board)
simultaneously. The RUN/STOP switch (SW4 on MPC5604P controller board) must be in position STOP.

oW

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

Freescale Semiconductor, Inc. 25

https://www.silabs.com/Support%20Documents/Software/CP210x_VCP_Win2K_XP_S2K3.zip
https://www.silabs.com/Support%20Documents/Software/CP210x_VCP_Win2K_XP_S2K3.zip

g |

rieierences

12.

13.

14.

15.

Nk Wb =

8

Start the application by clicking the On/Off button on the FreeMaster control page, or by positioning RUN/STOP
switch (SW4 on MPC5604P controller board) to RUN position (transition from STOP to RUN in case the switch was
in RUN state when the fault event occurred).

Enter required speed by assigning this value to "Nreq" variable in the variables watch window, or use the speed gauge
in the PMSM Control Page that responds to a mouse click. Value is in revolutions per minute. Alternatively, rotor
speed can be increased/decreased by pressing UP/DOWN switches on MPC5604P controller board. RUN/STOP switch
(SW4 on MPC5604P controller board) must be in START position.

Stop the application by clicking the On/Off button on the FreeMaster control page, or by positioning RUN/STOP
switch (SW4 on MPC5604P controller board) to STOP position.

RESET the application at any time by entering the value "1" to the switchAppReset variable in the Variable Watch
window.

References

MPC560xP Controller Data sheet (document MPC5604P)

MPC560xP Controller Board User's Guide (document MPC5604PMCBUG)
FreeMASTER Run-Time Debugging Tool (www.freescale.com/FREEMASTER)
Automotive Math and Motor Control Library Set (www.freescale.com/AutoMCLib)
MC33937 Three Phase Pre-driver Data Sheet (document MC33937)

Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642)
Motor Control Application Tuning (MCAT) Tool (www.freescale.com/MCAT)

Revision history

This section documents the changes done to this document.

Table 2. Revision history

Revision Date Substantive changes
0 10/2012 Initial release.
1 11/2015 Updated Figure 15. Updated Sections 1, 2, 6, and 7.

3-Phase PMSM Motor Control Kit with the MPC5604P, Rev. 1, 11/2015

26

Freescale Semiconductor, Inc.

http://www.fsls.co/doc/MPC5604P
http://www.fsls.co/doc/MPC5604PMCBUG
http://www.freescale.com/FREEMASTER
http://www.freescale.com/AutoMCLib
http://www.fsls.co/doc/MC33937
http://www.fsls.co/doc/AN4642
http://www.freescale.com/MCAT

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

BUILT ON

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

Document Number AN4561
Revision 1, 11/2015

2

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	System concept
	PMSM field oriented control
	Fundamental principle of PMSM FOC
	PMSM model in quadrature phase synchronous reference frame
	Phase current measurement

	MPC5604P- CB configuration
	FlexPWM
	CTU
	eTimer0
	eTimer1
	On-chip motor control peripherals interconnection
	ADC conversion and interrupt timing

	Software design
	Introduction
	Application data flow overview
	State machine
	State – RESET
	State – FAULT
	Application faults

	State – INIT
	State – CALIB
	State – ALIGN
	State – RUN
	Current measurement
	Position/speed measurement
	Encoder sensor
	Resolver sensor

	Application control user interface
	Application quick start

	References
	Revision history

