

Freescale Semiconductor Document Number: AN4220
Application Note Rev. 0, 01/2011

© 2011 Freescale Semiconductor, Inc.

Asymmetric C++ Multicore
Application for StarCore DSPs
by Devtech Customer Engineering

Freescale Semiconductor, Inc.

Austin, TX

This document is an addition to application note

AN4063 “Configuring an Asymmetric

Multicore Application for StarCore DSPs” and

discusses the special CodeWarrior project

configuration required for DSP applications that

use the C++ programming language. The

material focuses specifically on C++ DSP

applications that utilize the Freescale SmartDSP

OS (SDOS) kernel.

Readers of this document should be familiar the

concepts described in the application note,

AN4063. They should also be familiar with the

location of the settings panels in the

CodeWarrior for StarCore DSPs IDE.

The use of C++ as the programming language in

an asymmetric SDOS project requires

CodeWarrior for StarCore V10.1.8 or later.

Contents

1 Configuring an SDOS application for C++.................. 2
2 Asymmetric Application Considerations 5
3 The Example Project .. 9
4 Guidelines .. 15

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

2 Freescale Semiconductor

1 Configuring an SDOS Application for C++

With the release of CodeWarrior for StarCore V10.1.8, those projects created with the CodeWarrior

Wizard and that use the C++ programming language in combination with SDOS are set up

appropriately. However, the following adjustments must be made for the C++ code to link properly if

you have initially created your project for C language.

1.1 Enable Exceptions

Exceptions need to be enabled for the compiler and the linker. This is described in the sections that

follow.

1.1.1 Enable Exceptions in the Compiler

Add the option -Cpp_exceptions on to the To Shell edit box within the StarCore C/C++ Compiler„s

Additional Arguments properties page (Figure 1).

Figure 1. Setting -Cpp_exceptions Option

Once this option is enabled, the compiler recognizes C++ try, catch, and throw keywords. The

compiler then generates additional code and data that implements the C++ exception handling.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

Freescale Semiconductor 3

1.1.2 Enable Exceptions in the Linker File

The symbol ENABLE_EXCEPTION must be set to 1. This symbol is used inside of the .l3k file to

determine whether local symbols must be created for the exception table‟s start and end addresses. See

section 1.3 below for more information.

The symbol can be defined directly in the .l3k files using following notation:

ENABLE_EXCEPTION=0x1;

Alternatively, the symbol can be defined on the linker command line by adding the following option to

the Addition Options edit box within the StarCore C/C++ Linker„s Linker Settings properties page:

-DENABLE_EXCEPTION=0x1

1.2 Add an Exception Sections to MMU Segment

When exceptions are enabled in a C++ application, the compiler generates two sections to handle

exceptions appropriately (Table 1).

Table 1. Exception Sections

Section name Description

.exception Holds the exception tables. This section needs to be placed in a private data

descriptor.

.exception_index Holds the exception table index. This section needs to be placed in a private

data descriptor.

Both sections are placed in symmetrical memory using the file local_map_link.l3k:

unit private (*) {

 MEMORY {

 local_data_descriptor ("rw"): org = _VirtLocalDataM2_b;

 (...)

 }

 SECTIONS {

 descriptor_local_data {

 (...)

 .exception

 .exception_index

 (...)

 } > local_data_descriptor;

 (...)

 }

}

1.3 Define Local Symbols Used by C++ Startup Code

1.3.1 Static Initializers

A C++ application might include definitions for some global or static class objects. These objects need

to be created at startup. This is done in the function __exec_staticinit, which is implemented in file

staticinit__common_.c.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

4 Freescale Semiconductor

This function uses the symbols cpp_staticinit_start and cpp_staticinit_end to cycle through the

list of class constructors that need to be invoked. These symbols are defined in the file

local_map_link.l3k as follows (the listing itself is just a collection of fragments extracted from the

.l3k file):

unit private (*) {

 MEMORY {

 local_data_descriptor ("rw"): org = _VirtLocalDataM2_b;

 (...)

 }

 SECTIONS {

 descriptor_local_data {

 .(...)

 .staticinit

 .(...)

 } > local_data_descriptor;

 (...)

 }

}

// Enable CPP symbols

_cpp_staticinit_start = originof(".staticinit");

_cpp_staticinit_end = endof(".staticinit");

1.3.2 Exception Table

When an exception is triggered in a C++ application, the function FindExceptionRecord, which is

implemented in the ExceptionHandler.cpp module, is responsible for retrieving the exception table

that corresponds to the function where the exception was thrown.

This function uses the symbols __exception_table_start__ and __exception_table_end__ to

retrieve the appropriate exception table. These symbols are defined in the file local_map_link.l3k as

follows (the listing is just a collection of fragments extracted from the .l3kfile):

unit private (*) {

 MEMORY {

 local_data_descriptor ("rw"): org = _VirtLocalDataM2_b;

 (...)

 }

 SECTIONS {

 descriptor_local_data {

 (...)

 .exception

 .exception_index

 (...)

 } > local_data_descriptor;

 (...)

 }

}

__exception_table_start = (ENABLE_EXCEPTION) ? originof(".exception_index"):0;

__exception_table_end__ = (ENABLE_EXCEPTION) ? endof(".exception_index"):0;

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

Freescale Semiconductor 5

1.4 Enable Usage of RTLib Heap

All instances of a class, which are created dynamically at run-time, are allocated in the Run-time library

heap (RTLib Heap). So when programming in C++, the usage of the RTLib Heap needs to be enabled

and a heap with the appropriate size must be defined.

The use of RTLib Heap is enabled in file os_msc815x_link.l3k through following command:

#define USING_RTLIB 1

The size associated with this heap can be adjusted in the file local_map_link_l3k. This is done

through following definition:

__rtlibHeapSize = 0x4000;

In the associated example project, the RTLib Heap is allocated into private DDR0 memory.

2 Asymmetric Application Considerations

This section describes how to adjust the linker file to support C++ in an asymmetrical SDOS

application. Special care must be taken as to how to manage the exception handling sections and static

initialization sections.

2.1 Dealing with the Asymmetrical Memory Map

Inside of an asymmetric SDOS application implemented in C++, chances are the .exception_index,

and .static_init sections have different sizes, and are allocated at different addresses on each core.

CodeWarrior for StarCore V10.1.8 and later releases do support this layout.

2.2 Exception Handling

2.2.1 Section .exception_index

The run time libraries perform a binary search on the .exception_index section to retrieve the

exception record associated with the current function.

So there should be only one .exception_index section for each core image, and the section needs to

be allocated in core private memory. This is described in the sections that follow.

2.2.1.1 Handling Core Private .exception_index Section

When a core specific program section is associated to a source file in an .appli file, the compiler

creates a section c?`.exception_index (where c? stands for the core number) to store exception table

index data for this module. This breaks the run-time behavior of the system. In order to ensure

exceptions are processed correctly, the core specific exception table index data must be moved to the

.exception_index section. Therefore, add the following code to the core private unit:

unit private (task0_c0) {

// Entries in section .exception_index need to be sorted.

//So all records need to be stored in the same section .exception_index.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

6 Freescale Semiconductor

 RENAME "*","c0`.exception_index",".exception_index"

}

The code snippet above is specific to core 0, but a similar approach can be used for code that executes

on the other cores.

2.2.1.2 Allocating Section and Defining Symbols for Startup Code

The section .exception_index needs to be allocated in a private data MMU segment.

As the exception index table might be allocated at different address and might have different size, the

symbols __exception_table_start__ and __exception_table_end__ need to be core specific.

This is implemented as follows in the core private unit (the listing is just a collection of fragments

extracted from the .l3k file):

unit private (task0_c0) {

 RENAME "*","c0`.exception_index",".exception_index"

 memory {

 m2_private_data_0 ("rw"): org = _VirtPrivate_M2_b;

 }

 sections{

 privateData{

 . = align(4) ;

 __exception_table_start__ = .;

 ".exception_index"

 __exception_table_end__ = .;

 }

 }

}

At this point, remove the original definition of the symbols __exception_table_start__ and

__exception_table_end__ in file local_map_link.l3k.

2.2.2 Section .exception

The .exception_index section contains pointers to the .exception sections. As the symbols defined

in this section are only referenced from private constants, it is possible to keep a clean layout composed

of a separate system-wide .exception section, a subsystem-wide section, and finally a core-specific

section.

When a core-specific program section is associated to a source file in an .appli file, the compiler

creates a section c?`.exception (where c? stands for the core number) to store exception table data for

this module. In order to get a clean layout, the subsystem specific .exception section needs to be

created. This is done using the RENAME command (see section 2.2.2.2 below).

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

Freescale Semiconductor 7

2.2.2.1 System-Wide .exception Section

The system-wide .exception section is placed in a system symmetrical unit. The following are code

fragments from the local_map.l3k file where this placement is done:

unit private (*) {

 memory {

 local_data_descriptor ("rw"): org = _VirtLocalDataM2_b;

 }

 sections {

 descriptor_local_data {

 .exception

 } > local_data_descriptor;

 }

}

2.2.2.2 Subsystem-wide .exception Section

The subsystem-wide section is placed in subsystem symmetrical unit. The following are code fragments

of the system0.l3k file show how this is done for subsystem 0:

unit private (task0_c0,task0_c1) {

 RENAME "*sys0_*.eln",".exception",".sys0_exception"

 memory {

 m2_SYS0_data ("rw"): AFTER(local_data_descriptor);

 }

 sections{

 sys0_data{

 ".sys0_exception"

 } > m2_SYS0_data;

 }

}

2.2.2.3 Core-Specific .exception Section

The core-specific section is placed in the core private unit. The following are code fragments from the

system0.l3k file where this is done for core 0:

unit private (task0_c0) {

 RENAME "*","c0`.exception_index",".exception_index"

 memory {

 m2_private_data_0 ("rw"): org = _VirtPrivate_M2_b;

 }

 sections{

 privateData{

 . = align(4) ;

 __exception_table_start__ = .;

 ".exception_index"

 __exception_table_end__ = .;

 "c0`.exception"

 }> ddr0_priv_text_0;

 }

}

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

8 Freescale Semiconductor

2.3 Handling Static Initializers

The run time libraries handle one single table of static initializers.

When a core-specific program section is associated to a source file in an .appli file, the compiler will

create a section c?`.staticinit (where c? stands for the core number) to store static initializer data for

this module.

In order for the startup code to invoke the constructor function for the global class defined in a core

specific module, the c?`.staticinit section need to be allocated next to the .staticinit section.

The variable static_init_end_ptr needs to point at the end of the core-specific constructor table.

The following are code fragments from the system0.l3k file where this allocation is done for core 0.

unit private (task0_c0) {

 RENAME "*sys0_*.eln",".staticinit",".sys0_staticinit"

 memory {

 m2_private_data_0 ("rw"): org = _VirtPrivate_M2_b;

 }

 sections{

 privateData{

 . = align(4) ;

 __cpp_staticinit_start__ = .;

 ".staticinit"

 “.sys0_staticinit”

 "c0`.staticinit"

 __cpp_staticinit_end__ = .;

 } > m2_private_data_0;

 }

 (...)

}

At this point make sure to remove the original definition of the symbols _cpp_staticinit_start and

_cpp_staticinit_end in file local_map_link.l3k.

NOTE

In order to get a clean layout, a subsystem specific .staticinit section is

created in the code snippet above (See the RENAME command). This is not

mandatory; one can decide to keep subsystem-wide exception data with the

system-wide ones.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

Freescale Semiconductor 9

3 The Example Project

3.1 Project Architecture

This section describes the configuration of an example C++ multicore DSP application. The application

is a system comprised of three subsystems, as shown in Figure 2. Each of the subsystems executes its

own C++ SDOS application.

Figure 2. The Architecture of the Asymmetric DSP Application

The three subsystems are implemented as follows:

 Subsystem 0—Uses processor cores 0 and 1. This subsystem creates three tasks that execute at

the same priority level and a timer handler. The timer handler calls the SDOS function

osTaskYield to force preemption of the tasks in round-robin fashion at each tick. When the third

task has been awakened 30 times, the subsystem stops.

Cores running subsystem 0 define a subsystem-wide global class, sys0_list, which is filled

with elements from the function sys0_CreateTaskAndTimer.

Core 0 defines a private global class, c0_list, which is filled with elements from the function

c0_TaskCreate.

 Subsystem 1—Uses cores 2, 3, and 4. This subsystem creates two tasks that use osTaskDelay to

wait for a specific interval and then perform some processing. The first task waits for ten ticks

and second task waits for five ticks. When second task has awakened from osTaskDelay 40

times, the subsystem stops.

 Subsystem 2—Uses core 5. This subsystem creates two tasks and an EventQueue. The first task

sends data into the queue while second one reads data from this queue. When second task has

read five messages from the EventQueue, the subsystem stops.

When each subsystem halts, it writes a status message to the console.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

10 Freescale Semiconductor

3.2 Naming Conventions and Memory Map

For the example application that accompanies this note, Table 2 shows the naming conventions used in

the source code to identify whether the resources (either code functions or variables) are shared

throughout the system, a particular subsystem, or are private to a specific core.

Table 2. Conventions for the Functions and Variables

Prefix Description

sys0_ Used on module names which contain objects used on subsystem 0. Also used

for global objects that belong to the subsystem 0 image.

sys1_ Used on module names which contain objects used on subsystem 1. Also used

for global objects that belong to the subsystem 1 image.

sys2_ Used on module names which contain objects used on subsystem 2. Also used

for global objects that belong to the subsystem 2 image.

c0_ Used on all modules that contain objects used only on core 0.

c1_ Used on all modules that contain objects used only on core 1.

c2_ Used on all modules that contain objects used only on core 2.

c3_ Used on all modules that contain objects used only on core 3.

c4_ Used on all modules that contain objects used only on core 4.

c5_ Used on all modules that contain objects used only on core 5.

Figure 3 shows the physical memory map of the example asymmetric application. The symbolic names

to the right of the diagram define specific addresses.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

Freescale Semiconductor 11

Figure 3. The Memory Map for the Example Multicore Application Described in this Article. Mx Stands for
M2, M3, DDR1, and DDR2 Memories (M2 memory does not include any shared memory area)

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

12 Freescale Semiconductor

3.3 Running the Example Program

The software archive contains an example programs that demonstrate how to implement a multicore

DSP C++ application on the MSC8156. This application consists of three subsystems as described in

section 3.1. To recap, subsystem zero executes on cores 0 and 1, subsystem one executes on cores 2, 3,

and 4, and subsystem two runs on core 5.

The next section describes how to add and run this application with CodeWarrior for StarCore DSPs.

3.3.1 Add the Project and Build It

First, extract the desired example application from the archive to obtain a folder that contains the project

files. Launch the CodeWarrior IDE. In the C/C++ Perspective, drag the project folder into the

CodeWarrior view. The folder appears as a project in this view.

When importing the project in CodeWarrior V10.1.8, following message windows show up (Figure 4):

Figure 4. Remote System Missing Messages

At that point there are two choices:

a. Use the Remote connection defined in the project.

 Click on Yes. The specified Remote System is added to the workspace. It is now

available for any project added to the workspace or created in it.

b. A Remote System is already defined in the workspace and it is to be used with the C++

project as well.

 Click on No.

 Now it is necessary to associate the appropriate Remote System to the launch

configurations. This can be done as follows:

 Open the Remote Systems view. This can be done selecting the menu entry

Windows > Show View > Remote Systems.

 Right-click on the Remote System to associate to the ADS Launch Configuration.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

Freescale Semiconductor 13

 In the drop down menu select Apply to Project > {ProjectName} and select each

ADS related launch configuration (Figure 5).

Figure 5. Apply Existing Remote System to Launch Configuration

 Apply the ISS Remote System to the ISS launch configuration in the same way.

Choose Project > Clean and then Project > Build Project to build the project.

The default project is implemented to generate an exception in case the RT Heap is fully used. (That is,

if there is not enough heap space to allocate the C++ classes).

If the macro _DO_TEST_EXCEPTION_ is added to the Preprocessor > Macros project Properties panel,

the application throws some system-wide, subsystem-wide, and core private exceptions.

3.3.2 Check the Launch Configurations

To access the launch configurations, choose Run > Debug Configurations. This displays the Debug

Configuration dialog. Since this is a multicore project, there are multiple launch configurations. The

example project has twelve launch configurations: six for the instruction set simulator (they have the

string ISS in the name) and six for an ADS hardware target (they have the string ADS in the name).

Each launch configuration targets one of the six processor cores. See Figure 6. There are also two launch

groups, one for the hardware target, and one for the simulator. The launch groups are used to start the

application on all six cores.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

14 Freescale Semiconductor

Figure 6. The Launch Configurations and Launch Groups for the C++ Project

Open each launch configuration, and use the Debugger tab to display the current settings. Make sure all

ADS launch configuration are referring to the same Remote System.

In the same way all the ISS launch configuration must refer to the same ISS Remote System.

3.4 Launch the Application

To start the asymmetric application, click on the appropriate launch group, then Debug. The Debug

Perspective appears, and all six launch configurations are started in succession. When the launch process

completes, the code on all six cores is suspended at its main() function (Figure 7).

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

Freescale Semiconductor 15

Figure 7. The Asymmetric Application’s State After the Launch Group Has Started All Six Cores

Click on Multicore Resume to start all of the cores at once. As each subsystem completes, it writes a

System x Test: Passed message to the console. Clicking on each core thread in the Debug view

displays the console associated with the subsystem that uses that core.

4 Guidelines

When changing the application memory map, make sure to follow the guidelines below.

4.1 General Purpose Guidelines

1. Application entry code and startup code must be allocated in a memory area with 1:1 mapping

between virtual and physical address.

This is a hardware requirement and applications that do not follow that scheme will not execute.

2. To generate bootable code, the application‟s entry point should be located at the same physical

address on all cores.

This is a hardware requirement and applications that do not follow this scheme will not work when

attempting to boot the application over Ethernet, I
2
C, SPI, or any other interface.

 Asymmetric C++ Multicore Application for StarCore DSPs, Rev. 0

16 Freescale Semiconductor

4.2 Guidelines for SDOS Applications
1. The section that contains _g_heap_nocache must be allocated in the same MMU segment as the

startup stack (StackStart). That means the section .oskernel_local_data must also be allocated in

same MMU segment as .att_mmu and .oskernel_local_bss.

If this rule cannot be followed, the SDOS function __target_setting must be rewritten.

2. Section .os_shared_data and .os_shared_data_bss must be allocated in M3 shared memory.

These sections contain spinlocks variables used within the OS code.

If this rule cannot be followed, multicore synchronization will not run correctly.

3. Due to the current startup code implementation, _VBAddr must be located at the same virtual address

for all the cores running SDOS application.

If this rule cannot be followed, revise the library module startup__startup_msc8156_.asm.

If this rule cannot be followed, revise the library module startup__startup_msc8156_.asm.

4. SDOS heaps must have the same size on all cores running SDOS.

This is an OS requirement.

Document Number: AN4220

Rev. 0

01/2011

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution
Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, and StarCore are trademarks of Freescale Semiconductor,
Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective
owners.

© 2011 Freescale Semiconductor, Inc.

	Asymmetric C++ Multicore Application for StarCore DSPs
	1 Configuring an SDOS Application for C++
	1.1 Enable Exceptions
	1.1.1 Enable Exceptions in the Compiler
	1.1.2 Enable Exceptions in the Linker File

	1.2 Add an Exception Sections to MMU Segment
	1.3 Define Local Symbols Used by C++ Startup Code
	1.3.1 Static Initializers
	1.3.2 Exception Table

	1.4 Enable Usage of RTLib Heap

	2 Asymmetric Application Considerations
	2.1 Dealing with the Asymmetrical Memory Map
	2.2 Exception Handling
	2.2.1 Section .exception_index
	2.2.1.1 Handling Core Private .exception_index Section
	2.2.1.2 Allocating Section and Defining Symbols for Startup Code

	2.2.2 Section .exception
	2.2.2.1 System-Wide .exception Section
	2.2.2.2 Subsystem-wide .exception Section
	2.2.2.3 Core-Specific .exception Section

	2.3 Handling Static Initializers

	3 The Example Project
	3.1 Project Architecture
	3.2 Naming Conventions and Memory Map
	3.3 Running the Example Program
	3.3.1 Add the Project and Build It
	3.3.2 Check the Launch Configurations

	3.4 Launch the Application

	4 Guidelines
	4.1 General Purpose Guidelines
	4.2 Guidelines for SDOS Applications

