

Freescale Semiconductor Document Number: AN4063
Application Note Rev. 3, 06/2011

© 2011 Freescale Semiconductor, Inc.

Configuring an Asymmetric Multicore
Application for StarCore DSPs

by Devtech Customer Engineering

Freescale Semiconductor, Inc.

Austin, TX

An asymmetric multicore DSP application is

one in which the processor cores do not execute

identical code. Asymmetric applications permit

a complex software design to be broken down

into smaller, simpler tasks. Code modules

written specifically for each task implement its

key functions and execute on only the required

number of cores. Therefore, an asymmetric

multicore design can divide and conquer the

application processing requirements by

distributing portions of it across the cores and so

use the processor resources more effectively.

This paper describes how to configure the

memory resources of several example multicore

DSP applications properly so that they support

asymmetric processing on Freescale StarCore

DSPs. The technique described here is specific

to the multicore StarCore MSC8156 and its

derivatives. Example programs that demonstrate

these techniques are available in a software

archive and are specific to CodeWarrior for

StarCore DSPs v10.1.5 and earlier.

Contents

1 Designing the Application 2
2 An Example Asymmetric Program 9
3 Modifying a Wizard Created Project 14
4 Configuration Required for the Compiler 14
5 Configuration Required for the Linker 19
6 Additional Topics .. 24
7 Running the Example Programs 35
8 Guidelines ... 38

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

2 Freescale Semiconductor

1 Designing the Application

The most critical aspect of writing a multicore DSP application is to divide up the processor resources

properly among the various task modules. In particular, care must be taken in assigning the modules to

specific cores and how they use memory. For the purpose of clarity, a processor’s complete set of cores

and all of the software that executes on them is known as the system. A subset of the processor cores and

the code that they execute is termed a subsystem. Note that the system encompasses all of the

subsystems running on the processor. Subsystems exist only as a design scheme in software; there are no

physical definitions of a subsystem other than the number of cores it uses.

1.1 Define the Application Memory Map

When partitioning an application into asymmetric subsystems, be aware of the application memory map.

Check that each subsystem occupies the appropriate cores and accesses the correct amount of memory.

Complicating this process are the different types of memory required to properly share data among other

cores or tasks. Figure 1 is a conceptual diagram that depicts the relationship among the different memory

types that are available to the multicore application. The system contains six cores, with one subsystem

using four cores and the other subsystem using two cores. Private memory is not shown.

Each memory type has specific characteristics and purposes. The types of memory available are:

• System shared memory, which is shared among all of the processor cores

• Subsystem shared memory, which is shared among the cores within a subsystem

• Symmetric memory, which is private to each core, yet is where objects within it reside on the

same virtual address for all of the cores in the system

• Subsystem symmetric memory, which is private to each core, yet is where objects reside on the

same virtual address for all of the cores in the subsystem

• Private memory

NOTE

The amount of memory reserved for subsystem shared memories can vary.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 3

Figure 1. Conceptual Diagram of the Components of a Multicore System, Its Subsystems, and the

Memory That It Uses.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

4 Freescale Semiconductor

It is also important to decide where these types of memory physically reside within the system. The

choices are M2, M3, DDR1 or DDR2 memory. These decisions should be based on the allocation size

for various objects and any latency requirements. Figure 2 shows the location of on-chip memory for the

MSC8156 DSP.

Figure 2. The Location of the Internal Memories M2 and M3 on the MSC8156 DSP. DDR1 and DDR2

Memory is Located Off-chip.

NOTE

On MSC8156 based devices, M2 memory should not be used for shared

memory. Deadlocks can occur when two cores attempt to access each

other’s M2 memory simultaneously.

1.2 Allocating Memory

Begin the application design by carefully considering as to where its modules go into the memory map.

The application resources must be partitioned by first identifying those modules that must be shared

among the entire system and those modules that are used exclusively by the subsystems.

In general, code that must be shared across the entire system belongs to:

• ANSI library or runtime functions

• Startup code

• SmartDSP OS functions

• User code executed by two or more subsystems.

Therefore, locate these types of code in system shared memory.

Next, subsystem-specific code must be located into the appropriate memory types. The following

general guidelines describe how to partition such application code.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 5

1.2.1 Place Symmetric Resources in Symmetric Memory

Symmetric resources are functions or variables that have core-specific or subsystem-specific

implementations, yet are referenced from shared code. For the shared code (ANSI library functions,

SmartDSP OS functions, boot code and user code) to run correctly, symmetrical resources must be

allocated to the same virtual address on all cores. That is, locate these resources in either system

symmetric or the relevant subsystem symmetric memory.

Figure 3. Accessing Symmetrical data from shared code

In the example shown in Figure 3, Func 2 is invoked by both Core A and Core B. Func 4 is using

data from global variable Table C, which has a different definition (value) for each core.

To ensure Func 2 processes the appropriate table, Table C must be allocated at the same virtual

address on both cores and address translation must be enabled in the MMU. That is, it must be located in

symmetric memory.

1.2.2 Work Within the Linker Allocation Scheme

Keep in mind that the granularity of the linker allocation scheme is based on a file. This has an impact

on the application design in that certain parts of the code must reside in certain files.

First, do not mix objects (variables and functions) with different scope (system, subsystem, or core

scope) in a single module. Each subsystem should have dedicated modules for its code and variables. In

addition, core private functions and variables should have their own dedicated modules.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

6 Freescale Semiconductor

1.2.3 Build with ICODE Option Allconst_To_Rom=TRUE

When the application is built with this option set to TRUE, the compiler allocates all constants, string

constants, and switch tables in the application’s rom section instead of the data section.

In certain situations the compiler might generate some constants for optimization purposes. This might

occur for the following data types:

• Switch tables

• String constants used in the code

• Local array or structure variables defined with initialization values

These constants are created internally by the compiler and need to have the same scope as the code that

uses them. For example, if these constants are referenced by shared code, then they need to be visible to

all the cores. This is done by placing them in system shared memory. If they are referenced by partially

shared code, they need to be made visible to the cores running that code. Therefore, place these

constants in subsystem shared memory for the appropriate subsystem.

The ICODE option Allconst_To_Rom=TRUE can be specified:

 In the .appli file, by adding following command to the current view:

Allconst_To_Rom=TRUE

 Adding following option to the compiler command line

–Xicode “--Allconst_To_Rom=TRUE”

1.3 Making Sections Subsystem Specific

The linker basically recognizes two types of sections:

 Core-specific sections that are only part of the image of one specific core. The name of a core-

specific section is prefixed with “c?`” (where ? stands for the core number)

 General-purpose sections that are part of the image of each core. All sections whose name does

not start with “c?`” are general-purpose sections.

For subsystem-based applications, it is important to instruct the linker as to which sections should not be

linked into a specific subsystem image (.eld file).

The linker performs dead stripping when it generates the binary files for each core. If a specific function

is used only on subsystem 0, removing it from the image of the cores running other subsystems prevents

all objects referenced by this function to be linked to the image.

This technique can reduce the footprint of symmetrical and private memory used on each core.

As the linker does not include native support for partially shared sections, some commands are required

in the .l3k file to remove some objects defined in general-purpose sections from a core image.

There are two ways to do this: either use the RENAME command or EXCLUDE command, both of which are

described next.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 7

1.3.1 RENAME Command

This command works by file name and relocates objects from a specified set of sections within the

specified modules to another section. The syntax of the rename command is:

RENAME “fileName”, “srcSection”, “dstSection”

Table 1 describes the purpose of these parameters in detail.

Table 1. RENAME Command Parameters

Parameter Description

fileName_ Name of the binary file (.eln or .elb) on which to apply the RENAME command. The specified file

name can include the wildcard characters * or ?. The file name always starts with a * wildcard

character to reflect that the binary file is not located directly in the build directory. Using a * prefix

ensures that the rename can be done, no matter where the binary file is stored.

The filename can refer either directly to an object file (.eln) or to an object file inside of a library.

 Refer directly to an object file using the following notation:

"*objFileName"

For example,

"*startup_*.eln"

 Refer to an object file included in a library using the following notation:

"*libName(objFileName)".

For example,

"*rtlib_*.elb(target_asm_start.eln)"

 Refer to all object files included in a library using the following notation:

"*libName(*)".

srcSection Name of the section to be renamed. Wildcard characters can be used in the section name. For

example, one can specify either:

 The section name as it is encoded in the binary file or

 Wildcard character * to rename all sections within the specified file.

dstSection New name of the section as is appears in the executable file (.eld). The section name specified here

can be a core-specific section or a general-purpose section. No wildcard characters are allowed

here. For example

 “c0‟.data” is a core-specific section which is part of core 0 image only.

 “.data” is a general-purpose section that is part of all core images.

The command RENAME, together with a core-specific section as destination section, allows excluding

some sections from a subsystem.

For example:

unit shared (task0_c0, task0_c1) {...

 RENAME "*sys1_*.eln","*","c2`.exclude"

}

The command above tells the linker that when it generates the image for core 0 or 1, objects from all the

sections defined in a file whose name contains the string sys1_ are placed in a section called

"c2`.exclude". This section is specific to core 2 (section name starts with prefix “c2`”), so the objects

will not be linked to core 0 and core 1 images. When using this command, it is good practice to use a

prefix for the name of the files containing code specific to each subsystem.

Also, make sure to remove the section .default from the shared code section and place it in the

subsystem’s partially shared section. If not, the following linker message is displayed:

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

8 Freescale Semiconductor

Error: In .unit "c2": The section ".default" (on module "./Source/<fileName>.eln") is

not placed into space "sp0111111" c0 (and c5, c4, c3, c2, c1) <projectName> Unknown

C/C++ Problem

1.3.2 EXCLUDE Command

This command excludes a specific section from the subsystem image. For example, the code snippet

below excludes sections .sys1_text_main, .sys1_text, .sys1_rom, .sys1_data and .sys1_bss

from the core 0 and 1 images:

unit shared (task0_c0, task0_c1) {

 exclude ".sys1_text_main"

 exclude ".sys1_text"

 exclude ".sys1_rom"

 exclude ".sys1_data"

 exclude ".sys1_bss"

}

When using this command, several informative messages appear:

 [LNK,0,6999,-1]: Information: In .unit "c0": The symbol _<symName> was forced to weak

binding for module ./Source/<fileName>.eln

This is normal behavior and can be ignored.

1.4 Accessing Shared Data

1.4.1 Mutual Exclusion

In any multicore application, care must be taken to prevent two or more entities (cores, tasks, etc.) from

accessing and/or modifying a shared resource simultaneously. A shared resource might be a variable, a

buffer, or a peripheral.

1.4.1.1 Mutual Exclusion On One Core

Mutual exclusion on one core is ensured by disabling interrupts before accessing the resource and

enabling them back when the code has finished using the resource.

On SmartDSP-OS-based subsystems, this is done using OS system calls (osHwiSwiftDisable,

osHwiSwiftEnable, osHwiDisable, osHwiEnable).

NOTE

When implementing a real-time application, the amount of time that

interrupts are disabled should remain as small as possible. Disabling

interrupts for too long might break the real time behavior of the system.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 9

1.4.1.2 Mutual Exclusion Among Cores

Mutual exclusion among cores can be implemented using spinlocks or software semaphores.

In applications where all cores are running SmartDSP OS, spinlocks OS calls (such as osSpinLockGet,

osSpinLockTryGet, osSpinLockRelease, and others) can implement mutual exclusion while accessing

shared resources.

NOTE

On MS8156 cores, atomic operations are only possible on M3 memory.

Thus all variables used as spinlocks must be allocated in M3.

1.4.2 Data Exchange Among Cores

The application note AN3855 “Multicore Support in SmartDSP OS” provides some information on the

exchange of information among tasks or among cores. The section “6 Information Passing” provides

more information on the matter. The application note can be downloaded from Freescale web page

(www.freescale.com).

2 An Example Asymmetric Program

To move the discussion from theory to the practice, this note describes the configuration of an example

multicore application. The application is a system comprised of three subsystems. Each of the

subsystems executes a SmartDSP OS application. The three subsystems are implemented as follows:

• Subsystem 0—Uses processor cores 0 and 1. This subsystem creates three tasks that execute at

the same priority level and a timer handler. The timer handler calls the SmartDSP OS function

osTaskYield to force preemption of the tasks in round-robin fashion at each tick. When the third

task has been awakened 30 times, the subsystem stops.

• Subsystem 1—Uses cores 2, 3, and 4. This subsystem creates two tasks that use osTaskDelay to

wait for a specific interval and then perform some processing. The first task waits for 10 ticks

and second task waits for five ticks. When second task has awakened from osTaskDelay 40

times, the subsystem stops.

• Subsystem 2—Uses core 5. This subsystem creates two tasks and an EventQueue. The first task

sends data into the queue while second one reads data from this queue. When second task has

read five messages from the EventQueue, the subsystem stops.

When each subsystem halts, it writes a status message to the console.

http://www.freescale.com/

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

10 Freescale Semiconductor

2.1 Naming Conventions and Memory Map

For the example application that accompanies this note, Table 2 shows the naming conventions used in

the source code to identify whether the resources (either code functions or variables) are shared

throughout the system, a particular subsystem, or are private to a specific core.

Table 2: Naming Conventions for the Functions and Variables

Prefix Description

sys0_ Used on module names which contain objects used on subsystem 0. Also used

for global objects that belongs to the subsystem 0 image.

sys1_ Used on module names which contain objects used on subsystem 1. Also used

for global objects that belongs to the subsystem 1 image.

sys2_ Used on module names which contain objects used on subsystem 2. Also used

for global objects that belongs to the subsystem 2 image.

c0_ Used on all modules that contains objects used only on core 0.

c1_ Used on all modules that contains objects used only on core 1.

c2_ Used on all modules that contains objects used only on core 2.

c3_ Used on all modules that contains objects used only on core 3.

c4_ Used on all modules that contains objects used only on core 4.

c5_ Used on all modules that contains objects used only on core 5.

NOTE

The naming conventions not only help make the code self-documenting, it

also makes it easier to exclude code and data from a particular subsystem

in the linker file (see section 1.3).

Figure 4 shows the physical memory map of the example asymmetric application. The symbolic names

at the right define specific addresses.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 11

Figure 4. The Memory Map for the Example Multicore Application Described in this Article. Mx Stands for

M2, M3, DDR1, and DDR2 Memories (M2 Memory Does Not Include Any Shared Memory Area).

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

12 Freescale Semiconductor

2.2 Configure the OS Objects for Each Subsystem

Now that the structure of the asymmetric application has been determined, the best method of starting

the OS objects in each subsystem must be selected. There are two possible configuration options:

• Use a private main() function and a subsystem-specific appInit() function.

• Use a shared main() and appInit() function.

The choice of which option is used is a design decision, based on programming usage or guidelines.

2.2.1 Use a Subsystem-Specific appInit() Function

The CodeWarrior example projects Asym_SDOS_code and Asym_SDOS_code_private demonstrate this

technique. The code is structured as follows:

• There is a private main() function and a dedicated module for each core (cx_main.c, where x

represents the core number).

• The main() function must be located at the same virtual address for each core. So it is allocated

first at _VirtPrivate_M2_b, VirtLocalDataM3_b, VirtLocalDataDDR0_b or

VirtLocalDataDDR1_b, depending where code is allocated. The sample projects specified above

place the main functions in M2 memory. The start addresses mentioned above are all defined in

file memory_map_link.l3k.

• Each main() function next calls a subsystem-specific appInit() function. For the example

code, these functions are sys0_appInit(), sys1_appInit(), and sys2_appInit(), for

subsystem 0, subsystem 1, and subsystem 2, respectively.

• The creation of subsystem-specific OS objects is statically coded into each appInit() function.

Figure 5 shows conceptually this initialization sequence.

Figure 5. Conceptual Diagram of How the main() Functions Invoke the Subsystem-specific appInit()

Function in the Example Asymmetric Application.

2.2.2 Use Shared main() and appInit() Functions

This initialization scheme is implemented in the CodeWarrior example project

AsymCodeSDOS_SharedMain. The initialization code is organized as follows:

• The main() and appInit() functions are shared by all cores. They are implemented in the

module msc8156_main.c.

• Information about the tasks that need to be created for a specific core is stored in a data structure

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 13

termed the TaskTable. This table is private for each core, and contains information relevant to

the creation of the various tasks.

• The TaskTable must be located at the same virtual address on each core. So it needs to be placed

first at _VirtPrivate_M2_b, VirtLocalDataM3_b, VirtLocalDataDDR0_b or

VirtLocalDataDDR1_b, depending where the data is allocated

• The appInit() function uses information encoded in the TaskTable to create the required

objects. For the example program, the TaskTable data is defined as follows:

typedef struct _TaskEntryStruct{

 /* Task Handle returned by the osTaskCreate call.. */

 os_task_handle taskHandle;

 / This function runs when the task is activated. */

 os_task_function taskFunction;

 /*Function used to init. the task and related os object. */

 TaskCreateFunc taskCreateFunction;

 /* Top of task's stack. */

 uint32_t top_of_stack;

 /* The size of the above space. */

 uint32_t stack_size;

 /* Task priority */

 os_task_priority task_priority;

 /* Task name- to identify the task in the Kernel Awareness window */

 char *task_name;

}TaskEntryStruct;

• A loop creates the required OS objects by cycling through the contents of TaskTable. It parses

the TaskTable’s structure and for each table element retrieved, it invokes the corresponding

SmartDSP OS taskCreatFunction. An element with a stackSize of zero marks the end of the

table. The logic in appInit() is implemented as follows:

 status = OS_SUCCESS;

 taskCnt = 0;

 while ((TaskTable[taskCnt].stack_size != 0) &&

 (status == OS_SUCCESS)) {

 status = TaskTable[taskCnt].taskCreateFunction

 (&TaskTable[taskCnt]);

 taskCnt++;

 }

• The shared CreateTask function found in msc8156_main.c is responsible for creating most of

the tasks. However, a subsystem-specific taskCreateFunction handles the creation of each

core’s last task, where the subsystem requires additional resources. For instance, in subsystem

0’s example code, there is a sys0_CreateTaskandTimer function. It appears in the file

sys0_code.c, and it creates the osTimer that subsystem 0 requires to operate properly.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

14 Freescale Semiconductor

3 Modifying a Wizard Created Project

When the project was created by the CodeWarrior wizard, the following steps are required to adjust the

project to support an asymmetric SmartDSP OS application.

1. Define unique sections for the application (section 4.1 below).

2. Place the objects into sections (section 4.2 below).

3. Define the system task for each core (see section 5.1).

4. Define the application layout (section 5.2 to 5.4).

5. Combine sections into MMU table descriptors (See sections 5.5 to 5.7),

6. Exclude items that must be present on some cores but not others. (See sections 5.5 to 5.7).

Each of the steps above is described below.

4 Configuration Required for the Compiler

Before the code and data objects can be distributed according to the application requirements, it is

necessary to define all of the memory sections. The functions, variables, and constants are then placed

into the appropriate sections. One of the purposes of the application configuration file (.appli) is to

specify these definitions and the distribution of objects within them. The sections that follow describe

how this is done. An alternate method, using pragma and __attribute__ modifiers, can also be used to

perform this setup. See section 6.5 below for more information on this technique.

4.1 Defining Sections

To arrange the program data and code so that the linker can place these resources into the proper areas of

memory, sections must be specified. A section is a definition that binds logical names to the physical

memory segments that the linker uses. This makes it easier to redefine the mapping of the program

elements. The information that follows explains the section definitions that the linker uses to map the

application elements to specific memory addresses.

4.1.1 Define the Application’s Code Sections

Sections should first be defined for:

• Shared code

• Partially shared code on each subsystem

• Private code for each core

If the application is implemented with a subsystem-specific appInit() function (see section 2.2.1

above), there must be a dedicated private code section for every main() function. Since main() is called

from startup code, it must be located on the same virtual address for all of the cores. That is, main()

should be placed in symmetric memory.

In the .appli file, these definitions appear as follows:

section

 program = [

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 15

 /* Core specific private code sections */

 Entry_c0_text : ".entry_m2_private_text" core="c0",

 Entry_c1_text : ".entry_m2_private_text" core="c1",

 Entry_c2_text : ".entry_m2_private_text" core="c2",

 Entry_c3_text : ".entry_m2_private_text" core="c3",

 Entry_c4_text : ".entry_m2_private_text" core="c4",

 Entry_c5_text : ".entry_m2_private_text" core="c5",

 Text0 : ".text" core="c0",

 Text1 : ".text" core="c1",

 Text2 : ".text" core="c2",

 Text3 : ".text" core="c3",

 Text4 : ".text" core="c4",

 Text5 : ".text" core="c5",

 /* Sub-system specific shared code sections */

 PgmSYS0 : “.sys0_text",

 PgmSYS1 : “.sys1_text",

 PgmSYS2 : “.sys2_text",

 SYS0_DDR0_shared_text : ".sys0_ddr0_cacheable_shared_text",

 SYS1_DDR0_shared_text : ".sys1_ddr0_cacheable_shared_text",

 SYS2_DDR0_shared_text : ".sys2_ddr0_cacheable_shared_text",

 SYS0_DDR1_shared_text : ".sys0_ddr1_cacheable_shared_text",

 SYS1_DDR1_shared_text : ".sys1_ddr1_cacheable_shared_text",

 SYS2_DDR1_shared_text : ".sys2_ddr1_cacheable_shared_text",

 /* Shared code sections */

 M3_shared_text : ".m3_cacheable_shared_text",

 DDR0_shared_text : ".ddr0_cacheable_shared_text",

 DDR1_shared_text : ".ddr1_cacheable_shared_text",

 DefaultPgm : ".text"

4.1.2 Define the Application Initialized Data Sections

Next, define the initialized data sections for:

• Shared data between all cores

• Partially shared data on each subsystem

• Symmetric data for all cores

• Symmetric data for each subsystem

• Private data for each core

If the application is implemented with shared appInit() function (see section 2.2.2), there must be a

dedicated private data section for the task table array. Since TaskTable is referenced from shared

appInit() function, it must be located on the same virtual address for all of the cores. That is,

TaskTable should be placed in symmetric memory.

These declarations appear in the .appli file as:

section

...

 data = [

 /* Shared data sections */

 /* Core-specific private data sections */

 Data0 : ".data" core="c0",

 Data1 : ".data" core="c1",

 Data2 : ".data" core="c2",

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

16 Freescale Semiconductor

 Data3 : ".data" core="c3",

 Data4 : ".data" core="c4",

 Data5 : ".data" core="c5",

 c0_task_table : ".task_table" core="c0",

 c1_task_table : ".task_table" core="c1",

 c2_task_table : ".task_table" core="c2",

 c3_task_table : ".task_table" core="c3",

 c4_task_table : ".task_table" core="c4",

 c5_task_table : ".task_table" core="c5",

 SharedData : ".sharedData", /* Shared data for all cores */

 /* Subsystem specific shared data sections */

 SDataSYS0 : ".sys0_sharedData", /*shared data sub-system 1*/

 SDataSYS1 : ".sys1_sharedData", /*shared data sub-system 2*/

 SDataSYS2 : ".sys2_SharedData", /*shared data sub-system 3*/

 /* Symmetrical data sections */

 DefaultData : ".data" /* symmetric data for all cores */

 /* Sub-system specific symmetrical data sections */

 DataSYS0 : ".sys0_data", /* symmetric data sub-system 0 */

 DataSYS1 : ".sys1_data", /* symmetric data sub-system 1 */

 DataSYS2 : ".sys2_data", /* symmetric data sub-system 2 */

]

4.1.3 Define the Application Uninitialized Data Sections

For uninitialized data, data sections must be defined for:

• Shared data among all cores

• Partially shared data among each subsystem

• Symmetric data for all cores

• Symmetric data for each subsystem

• Private data for each core

This is accomplished by placing the following declarations in the .appli file:

section

...

 bss = [

 /* Shared bss sections */

 SharedBss : ".sharedBss", /* Shared bss for all cores */

 /* Core-specific private bss sections */

 Bss0 : ".bss" core="c0",

 Bss1 : ".bss" core="c1",

 Bss2 : ".bss" core="c2",

 Bss3 : ".bss" core="c3",

 Bss4 : ".bss" core="c4",

 Bss5 : ".bss" core="c5",

 /* Subsystem-specific shared bss sections */

 SBssSYS0 : ".sys0_sharedBss", /* shared bss sub-system 0*/

 SBssSYS1 : ".sys1_sharedBss", /*shared bss sub-system 1 */

 SBssSYS2 : ".sys2_sharedBss", /*shared bss sub-system 2 */

 /* Symmetrical bss sections */

 DefaultBss : ".bss" /* symmetric bss for all cores */

 /* Sub-system specific symmetrical bss sections */

 BssSYS0 : ".sys0_bss", /* symmetric bss sub-system 0 */

 BssSYS1 : ".sys1_bss", /* symmetric bss sub-system 1 */

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 17

 BssSYS2 : ".sys2_bss", /* symmetric bss sub-system 2 */

]

4.1.4 Define the Application Constants Sections

For this type of data, sections should be defined for:

• Shared constants among all cores

• Partially shared constants on each subsystem

• Private constants for each core

The following definitions in the .appli file specify this constant data:

section

...

 rom = [

 /* Core-specific private rom sections */

 Rom0 : ".rom" core="c0",

 Rom1 : ".rom" core="c1",

 Rom2 : ".rom" core="c2",

 Rom3 : ".rom" core="c3",

 Rom4 : ".rom" core="c4",

 Rom5 : ".rom" core="c5",

 /* Subsystem-specific shared rom sections */

 RomSYS0 : ".sys0_rom", /* Shared const on sub-system 0 */

 RomSYS1 : ".sys1_rom", /* Shared const on sub-system 1 */

 RomSYS2 : ".sys2_rom", /* Shared const on sub-system 2 */

 /* Shared rom sections */

 DefaultRom : ".rom" /* const shared by all cores */

]

4.2 Place Functions/Variables Into the Appropriate Sections

Now that the sections have been defined, .appli file commands populate them with variables and

constants, based on the module where these resources were defined or implemented. The procedure for

doing this, starting with general cases and then narrowing to more specific situations, is described in

further detail in the following sections.

4.2.1 Define the Default Allocation Scheme

First, define the default allocation scheme. To do this, place all functions in the .text section, all

variables into .data, all uninitialized variables into .bss, and all constants into .rom using the

following definitions in the .appli file:

 program = DefaultPgm

 data = DefaultData

 rom = DefaultRom

 bss = DefaultBss

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

18 Freescale Semiconductor

4.2.2 Allocate Functions/Variables for Each Subsystem

Next, allocate the code and variables for each subsystem, again using commands in the .appli file.

For each module that contains functions running on subsystem 0 or data used by subsystem 0 code,

define a module-specific allocation scheme as follows:

module "sys0_code" [

 rom = RomSYS0

 program = PgmSYS0

 bss = BssSYS0

 data = DataSYS0

]

For functions and variables used by subsystem 1, the module-specific declarations are:

module "sys1_code" [

 rom = RomSYS1

 bss = BssSYS1

 data = DataSYS1

 program = PgmSYS1

]

For functions and variables used by subsystem 2, the module-specific declarations in the .appli file

become:

module "sys2_code" [

 rom = RomSYS2

 bss = BssSYS2

 data = DataSYS2

 program = PgmSYS2

]

4.2.3 Allocate Each Core Private Functions/Variables

For each module that contains core private functions or core private data, define a module-specific

allocation scheme as follows. The example commands presented here are for core 0. However, similar

notation can specify any core within the system:

module "c0_code" [

 rom = Rom0

 bss = Bss0

 data = Data0

 program = Text0

]

If the application is implemented with subsystem-specific appInit() function (see section 2.2.1 above),

only the module containing the implementation of the main() function has a special allocation scheme:

module "c0_main" [

 rom = Rom0

 bss = Bss0

 data = Data0

 program = Entry_c0_text

]

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 19

NOTE

To prevent linker problems, observe the following guidelines:

• Specify a program section for each module. Even if the module does

not include any code, a program section must be present. If a program

section in not assigned to a module, following linker messages appear:

Error: In .unit "c2": symbol "TextEnd_<fileName>"

undefined in ./Source/<fileName>.eln

Error: In .unit "c2": The section ".text" (on module

"./Source/<fileName>.eln") is not placed into space

"sp0111111" c0 (and c5, c4, c3, c2, c1

• Make sure the specified rom, bss, data, and program sections have

similar scope. If the module includes core-specific code, make sure

that the associated bss, data, and rom sections also have core scope. If

the module includes subsystem-specific code, make sure that the

associated bss, data, and rom sections have subsystem scope.

4.2.4 Placing a Resource in a Dedicated Section

There will be situations where some specific variable/constants and functions must be allocated in a

section that is different from the default section associated with the module. This can be done using the

place command in the .appli file. For example:

place (_sys0_tab) in SDataSYS0

Provided that the variable sys0_tab is defined in module sys0_code.c, the above command allocates

the variable sys0_tab in section .sys0_sharedData instead of .sys0_data. That is, the variable

sys0_tab appears in subsystem 0’s shared memory instead of its symmetric memory.

This command works fine as long as the default section for the module and the new section planned to

contain the resource have the same scope (either system, subsystem, or core private).

5 Configuration Required for the Linker

With the application’s configuration described in detail to the compiler, now it is time to consider what

information must be supplied to the linker so it can locate all of the application’s elements into the

appropriate memory areas. These descriptions are provided to the linker via linker command (.l3k)

files.

To recap, the example application consists of three subsystems. The design calls for subsystem 0 to

execute on cores 0 and 1, subsystem 1 executes on cores 2, 3, and 4, while subsystem 2 executes on core

5. For each subsystem, memory must be reserved on M2, M3, DDR1, and DDR2. The sections that

follow describe how this is done.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

20 Freescale Semiconductor

5.1 Define the System Tasks for Each Core

Now the basic system tasks for each core must be defined to the linker. To this end, add the following

commands to the file named os_msc815x_link.l3k:

tasks {

 c0: task0_c0, 0, 0,0;

 c1: task0_c1, 0, 0,0;

 c2: task0_c2, 0, 0,0;

 c3: task0_c3, 0, 0,0;

 c4: task0_c4, 0, 0,0;

 c5: task0_c5, 0, 0,0;

}

NOTE

When the linker file does not contain any tasks block, the default name of

the system tasks created by linker per each core is task0_cX , is where X

stands for the core number (0, 1...).

5.2 Define the Symbols that Map to M2

Note that the amount of symmetric data might vary for each subsystem, according to its needs.

The symbols that specify the start address, end address, and size for core private data must be defined.

This is done in the linker file memory_map_link.l3k, using the following commands::

// Virtual local memory definitions (the same for all cores)

// This is where we load system and subsystem symmetric sections

 _VirtLocalDataM2_b = _M2Global_b;

 _VirtLocalDataM2_e = (_VirtLocalDataM2_b+ LocalDataM2_size -1);

// Virtual private memory definitions (the same for all cores)

// This is where we load core specific sections

 _VirtPrivate_M2_b = _VirtLocalDataM2_e + 1;

 _VirtPrivate_M2_e= _VirtPrivate_M2_b + _PrivateM2_size -1;

5.3 Define the Symbols for Memory Blocks

In the linker file memory_map_link.l3k, define the symbols that describe each subsystem’s partially

shared memory block. These symbols should define the block’s start address, end address, and its size.

Because the memory is shared, these blocks should reside in M3. The same approach can be used to

specify blocks that occupy DDR1 and DDR2 memory.

This configuration is specified in the file memory_map_link.l3k:

_M3_SHARED_SYS0_SIZE = 0x1000;

_M3_SHARED_SYS1_SIZE = 0x10000;

_M3_SHARED_SYS2_SIZE = 0x10000;

_M3_SHARED_SYS0_Start = _M3_SHARED_end + 1;

_M3_SHARED_SYS0_End = _M3_SHARED_SYS0_Start + _M3_SHARED_SYS0_SIZE -1;

_M3_SHARED_SYS1_Start = _M3_SHARED_SYS0_End + 1;

_M3_SHARED_SYS1_End = _M3_SHARED_SYS1_Start + _M3_SHARED_SYS1_SIZE -1;

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 21

_M3_SHARED_SYS2_Start = _M3_SHARED_SYS1_End + 1;

_M3_SHARED_SYS2_End = _M3_SHARED_SYS2_Start + _M3_SHARED_SYS2_SIZE -1;

Notice how some of these definitions correspond to the memory locations depicted in Figure 4. Once

these definitions are complete, the symbol _M3_SHARED_end must be adjusted to avoid any overlap:

_M3_SHARED_end = _M3_SHARED_start+_M3_size - _M3_SHARED_SYS0_SIZE -

_M3_SHARED_SYS1_SIZE- M3_SHARED_SYS2_SIZE-(_NUMBER_OF_CORES * _PRIVATE_M3_DATA_size)-1;

NOTE

For this example application, the decision was made at the start as to how

much shared memory must be dedicated to each subsystem. This can

usually be determined roughly after application design, according to the

complexity of each subsystem. Also, determining the amount of shared

memory allowed for each subsystem in advance makes system integration

easier when different teams are implementing each subsystem.

If a clear separation between the various subsystem memories is not

required, the partially shared memory sections can be allocated along with

the system shared sections. Refer to section 6.6 for more information on

this technique.

5.4 Define the Physical Memory Range for Partially Shared Memory

The CodeWarrior StarCore Project wizard generates a file named os_msc815x_link.l3k that defines

physical memory blocks available as shared memory and located in M3, DDR1, and DDR2. The

definitions of these memory blocks are based upon the value in Sharedxxx-size. The definitions of

partially shared memory blocks must be added as follows:

physical_memory shared (*) {

 SHARED_M3 : org = _SharedM3_b, len = _SharedM3_size;

 SHARED_DDR0: org = _SharedDDR0_b, len = _SharedDDR0_size;

 SHARED_DDR1: org = _SharedDDR1_b, len = _SharedDDR1_size;

 SHARED_M3_SYS0: org = _M3_SHARED_SYS0_Start, len = _M3_SHARED_SYS0_SIZE;

 SHARED_M3_SYS1: org = _M3_SHARED_SYS1_Start, len = _M3_SHARED_SYS1_SIZE;

 SHARED_M3_SYS2: org = _M3_SHARED_SYS2_Start, len = _M3_SHARED_SYS2_SIZE;

}

5.5 Define the Memory Map for Partially Shared Memory

Now a memory section that is to be shared among a subset of the cores must be defined. This is the

subsystem shared memory, and the subsystem partially shared code and constants are placed in it.

Furthermore, this section must exclude the partially shared resources that belong to the other two

subsystems. The following commands are used for these definitions:

unit shared (task0_c0, task0_c1) {

 memory {

 m3_shared_text_SYS0 ("rx"): org = _M3_SHARED_SYS0_Start;

 m3_shared_const_SYS0 ("rw"): AFTER(m3_shared_text_SYS0);

 }

 sections{

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

22 Freescale Semiconductor

 shared_code_SYS0{

 ".sys0_text"

 .default

 } > m3_shared_text_SYS0;

 shared_rom_SYS0 {

 ".sys0_rom"

 .=align (4);

 _endOfSYS0Shared =.;

 } >m3_shared_const_SYS0;

 }

 // exclude all sections which contains sub-system 2 code and data

 // All modules containing code or data specific to sub-system 2 have

 // name starting with sys2_

 RENAME "*sys2_*.eln","*","c5`.exclude"

 // exclude all sections which contains sub-system 1 code and data

 // All modules containing code or data specific to sub-system 1 have

 // name starting with sys1_

 RENAME "*sys1_*.eln","*","c2`.exclude"

}

Finally, the physical-to-virtual mapping for the partially shared sections must be defined:

address_translation (task0_c0, task0_c1) {

 m3_sh_text_SYS0 (SYSTEM_PROG_MMU_DEF): SHARED_M3_SYS0, org = _M3_SHARED_SYS0_Start;

 m3_sh_const_SYS0 (SYSTEM_DATA_MMU_DEF): SHARED_M3_SYS0;

}

5.6 Define the Memory Map for Partially Symmetric Memory

A section of memory that must be symmetric on all cores running a particular subsystem must be

defined. That is, subsystem’s symmetric memory is defined in this step. The commands that follow

define the symmetric memory for subsystem 0. These commands appear in the link file system0.l3k:

unit private (task0_c0, task0_c1) {

 memory {

 m2_SYS0_data ("rw"): AFTER(local_data_descriptor);

 }

 sections{

 sys0data{

 ".sys0_data"

 ".sys0_bss"

 } > m2_SYS0_data;

 }

}

address_translation (task0_c0, task0_c1) {

 m2_SYS0_data (SYSTEM_DATA_MMU_DEF): LOCAL_M2;

}

Equivalent commands can be used to configure symmetric memory for the other subsystems.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 23

5.7 Define the Memory Map for Core Private Data

Now the sections that are private to each core must be defined. Allocation sequences within the block

depend whether or not the application uses a task table to initialize the OS objects. If the application is

implemented with subsystem-specific appInit() function (see section 2.2.1 above), make sure that the

main() function is allocated first in private memory (M2. M3, DDR1 or DDR2). In that case, the core

private unit is defined as described below.

The following code is an example definition for core 0. Similar definitions are required for the other

cores.

unit private (task0_c0) {

 memory {

 private_text_0 ("rx"): org = _VirtPrivate_M2_b;

 private_data_0 ("rw"): AFTER(m2_private_text_0);

 }

 sections{

 privateCode{

 "c0`.text_main"

 "c0`.text"

 } > private_text_0;

 privateData{

 "c0`.data"

 "c0`.bss”

 "c0`.rom"

 } > private_data_0;

 }

}

address_translation (task0_c0) {

 private_text_0 (SYSTEM_PROG_MMU_DEF): PRIVATE_M2;

 private_data_0 (SYSTEM_DATA_MMU_DEF): PRIVATE_M2;

}

If the application is implemented with shared main() and appInit() functions (see section 2.2.2

above), make sure the task table is allocated first in private memory. In that case, the core private unit is

defined as described below.

The following is an example for core 0. Similar definitions are required for the other cores.

unit private (task0_c0) {

 memory {

 private_data_0 ("rw"): org = _VirtPrivate_M2_b;

 private_text_0 ("rx"): AFTER(m2_private_data_0);

 }

 sections{

 privateData{

 "c0`.task_table"

 "c0`.data"

 "c0`.bss"

 "c0`.rom"

 } > private_data_0;

 privateCode{

 "c0`.text"

 } > private_text_0;

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

24 Freescale Semiconductor

 }

}

address_translation (task0_c0) {

 private_data_0 (SYSTEM_DATA_MMU_DEF): PRIVATE_M2;

 private_text_0 (SYSTEM_PROG_MMU_DEF): PRIVATE_M2;

 }

6 Additional Topics

This section covers items that do not quite fit into a specific category related to the compiler or linker.

However, they must be dealt with to properly configure various elements of the application.

6.1 .unlikely Sections

The StarCore C/C++ compiler supports the keyword unlikely, which provides the compiler with

branch prediction information. Inside of a switch/case construct, or in an if / else block, code block

that are rarely executed can be marked as unlikely. When the the unlikely keyword is specified for a

block of code in the application, the compiler moves it to the .unlikely section. The unlikely section

can then be placed in slow access memory, leaving more fast access memory available for critical code.

The .unlikely section is a general purpose section (that is, it is part of each core image). If there is

unlikely code present in any partially shared functions, an .unlikely section with subsystem scope

must be specified for each subsystem where such code is defined.

For instance, suppose that there is an unlikely code bock present in subsystem 0, which is shared

between core 0 and core 1. To prevent the .unlikely sections from modules sys0_*.c from being

linked with the other cores, the following line must be added to the .l3k file:

unit private (task0_c0, task0_c1){

 RENAME "*sys0_*.eln", ".unlikely", ".sys0_unlikely"

...

}

The section .sys0_unlikely needs to be placed accordingly in the subsystem shared unit.

If there is unlikely code present in the program's private functions, an .unlikely section with core

scope must be defined for each core where the unlikely code resides. For example, suppose that the core

0 private code has an unlikely code block. To specify that the .unlikely section from module c0_*.c

should not be linked to the other cores, add following line to the appropriate .l3k file:

unit private (task0_c0){

 RENAME "*c0_*.eln", ".unlikely", "c0`.unlikely"

...

}

The section c0'.unlikely needs to be placed accordingly in the core private unit.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 25

6.2 Add Tasks Common to all Subsystems

Use the following procedures to add tasks that need to execute on all cores, or a subset of them

(subsystems);

• For each task, add its modules to the application where the tasks and any related global variables

are defined.

• Be sure to allocate the code in the new modules to the shared code section (.text) and that the

variables are allocated to the symmetric .data or .bss sections. No special allocation commands

are required in the .appli file. The default allocation scheme is sufficient.

• If the application uses a subsystem-specific appInit() function as described in section 2.2.1,

first write a function that creates the OS objects that the task(s) require. The function is called by

every appInit()and therefore needs to be in shared memory.

• If the application uses a shared appInit() function as described in section 2.2.2, just add the

tasks to all of the core’s TaskTables and associate the corresponding taskCreateFunction for

each core.

For further information, inspect the code in the module commontask.c in the CodeWarrior projects

Asym_SDOS_priv_code or Asym_SDOS_SharedMain.

6.3 Add Core-Specific Tasks

For those tasks that execute on one core only, proceed as follows:

• For each task, add its modules to the application where the tasks and any related global variables

are defined.

• Allocate the code from these modules to the core private code section (c0‟.text), and allocate

any variables it has to the private data or bss sections (c0‟.data or c0‟.bss respectively). In

the .appli file, the allocation scheme should be as follows:

 module "c0_code" [

 program = Text0

 data = Data0

 rom = Rom0

 bss = Bss0

]

• If the application uses a subsystem-specific appInit() function as described in section 2.2.1,

first write a function that creates the OS objects that the task(s) require. This function should be

called from the appInit() function for the subsystem running on that core. An empty

implementation of that function must be present on the other cores that run the same subsystem

code.

• If the application uses a shared appInit() function as described in section 2.2.2, just add the

tasks the core’s TaskTable and associate the corresponding taskCreateFunction.

For further information, inspect the code in the module c0_code.c in the CodeWarrior projects

Asym_SDOS_priv_code or Asym_SDOS_SharedMain.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

26 Freescale Semiconductor

6.4 Handling a Different Number of .bss Sections

Occasionally when adding core-specific tasks to an asymmetric application, there is the possibility of not

having the same number of .bss sections for all of the cores. The linker message „„Inconsistent

address for _bss_count‟‟ appears when this occurs.

The workaround for this problem is to add the following command to the privateData section within

the private unit that is associated with the cores reporting the problem:

LNK_SECTION(bss, "rw", 0x10, 4, ".dummy_bbs1");

This issue is fixed in linker V3.0.43 (Compiler build 23.11.1.12) and higher. No LNK_SECTION command

is required after that release.

6.5 Alternate Allocation Scheme

In section 4.2 it was explained how to place variables or functions inside of different sections using an

application configuration (.appli) file. As an alternative, this can also be accomplished using pragmas

and __attribute__ modifiers.

NOTE

There is one limitation when using this method. In order to define a core

private allocation scheme, or to place a variable in a specific core private

section, an .appli file must be used. The pragma or __attribute__

modifiers do not support this capability.

6.5.1 Defining a Default Allocation Scheme for a Module

The default allocation scheme for a module can be defined using the pragmas pgm_seg_name,

data_seg_name, bss_seg_name and rom_seg_name.

For example, placing the following pragmas at the beginning of the file sys1_code.c:

#pragma pgm_seg_name ".sys1_text"

#pragma data_seg_name ".sys1_data"

#pragma bss_seg_name ".sys1_bss"

#pragma rom_seg_name ".sys1_rom"

This is equivalent to the following notation in the .appli file (the following are just a collection of

fragments extracted from the .appli file):

 section

 program = [

 PgmSYS1 : ".sys1_text",

]

 data = [

 DataSYS1 : ".sys1_data",

]

 rom = [

 RomSYS1 : ".sys1_rom",

]

 bss = [

 BssSYS1 : ".sys1_bss",

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 27

]

 module "sys1_code" [

 rom = RomSYS1

 bss = BssSYS1

 data = DataSYS1

 program = PgmSYS1

]

Keep in mind that there can be only one pragma pgm_seg_name, data_seg_name, bss_seg_name and

rom_seg_name per source file.

NOTE

Even if the module contains only data or constant definitions with

subsystem scope, make sure to define a pragma pgm_seg_name for a

section with same scope to avoid any linker issues. If a pgm_seg_name is

not associated to a module, the following linker messages appear:

Error: In .unit "c2": symbol "TextEnd_<fileName>" undefined

in ./Source/<fileName>.eln

Error: In .unit "c2": The section ".text" (on module

"./Source/<fileName>.eln") is not placed into space

"sp0111111" c0 (and c5, c4, c3, c2, c1

6.5.2 Placing a Variable into a Dedicated Section

If a specific variable or constant must be allocated in a section that is different from the default section

in the module where the object is defined, use the __attribute__ modifier. For example, to specify that

the variable sys1_tab should be allocated in section .sys1_sharedData, define it as follows:

int sys1_tab[SIZE] __attribute__((section(".sys1_sharedData")));

This is equivalent to the following command in an .appli file (the following code is just a collection of

pieces extracted from the .appli file):

 section

 data = [

 SDataSYS1 : ".sys1_sharedData",

]

place (_sys1_tab) in SDataSYS1

Here again this technique works as long as the default section for the module and the new section where

the object is to go have the same scope (system, subsystem, or private).

6.6 Partially Shared Areas

In the supplied example application, the decision was made to define a well-separated memory area for

each of the subsystem's partially shared code and data sections (Figure 6). This technique can be used

when the designer has a clear picture of how to partition the memory between the different subsystems.

This technique is also recommended when there are different teams working on each subsystem. A well

defined memory partitioning minimizes linking issues when all the pieces are integrated together.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

28 Freescale Semiconductor

If the amount of memory required for each subsystem's partially shared code and data cannot be known

in advance, alternatively one block of physical memory can be allocated for shared memory. The

partially shared code and data can then be allocated along with the system shared code and data.

Figure 6. The Memory Map for Multi-core Application with Partially Shared Memory Allocated Together

with System Shared Memory. Mx Stands for M3, DDR1 and DDR2.

To use this technique, proceed as follows:

• Keep the definition of symbols for shared memory as they were created by the wizard in

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 29

memory_map_link.l3k file

// Shared memory definitions.

// (The same for all cores - no need for shared virtual)

 SharedM3_b = _LocalDataM3_b + (_LocalDataM3_size * num_core());

 SharedM3_size = (_M3_e - _SharedM3_b);

 SharedM3_e = _SharedM3_b + _SharedM3_size - 1;

• Keep the physical memory definition as they are created by the wizard in

os_msc815x_link.l3k:

physical_memory shared (*) {

 SHARED_M3 : org = _SharedM3_b, len = _SharedM3_size;

 SHARED_DDR0 : org = _SharedDDR0_b, len = _SharedDDR0_size;

 SHARED_DDR1 : org = _SharedDDR1_b, len = _SharedDDR1_size;

}

• Change the unit definition in the subsystem-specific linker file. Do not specify an absolute virtual

address for the memory blocks. Place them after the system shared memory blocks. The

following code snippet handles the definition for subsystem 0, and a similar approach can be

used for the other subsystems:

unit shared (task0_c0, task0_c1) {

 memory {

 m3_shared_text_SYS0 ("rx"): AFTER(shared_data_m3_descriptor;

 m3_shared_const_SYS0 ("rw"): AFTER(m3_shared_text_SYS0);

}

• Finally, adjust the address translation block to place the memory block in the appropriate SHARED

physical area:

address_translation (task0_c0, task0_c1) {

 m3_shared_text_SYS0 (SYSTEM_PROG_MMU_DEF): SHARED_M3;

 m3_shared_const_SYS0 (SYSTEM_DATA_MMU_DEF): SHARED_M3;

}

6.7 Inter-core Communication and Synchronization

Often when an application is split into subsystems there should be a way to synchronize the different

cores and exchange information between them. For instance there is a master core, which provides input

data and delegates some tasks to a set of cores and waits for a result.

Inside of an asymmetric application, where all the cores are running SmartDSP OS, inter-core

messaging can be used in this purpose.

The example project Asym_SDOS_msg demonstrates how this can be achieved.

Refer to the SDOS sample projects, intercore_messages and intercore_queues, to learn more on

how to use inter-core communication within SmartDSP OS. These sample project are available in the

CodeWarrior installation layout in

{Install}\SC\StarCore_Support\SmartDSP\demos\starcore\msc815x.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

30 Freescale Semiconductor

6.7.1 Project Description

Core 0 is defined as being the master core for the inter-core synchronization. So a task

(c0_masterTask), defined on core 0 only, sends inter-core messages to all cores part of subsystem 1,

asking them to perform some computation.

On each core running the subsystem 1 application, a sys1_slaveTask is created, which basically does

the following:

 Waits for message from c0_masterTask. The message comes with an input parameter for the

computation.

 Perform the computation.

 Send message back to c0_masterTask, letting it know that computation is over.

On both core 0 and subsystem 1, the message handler posts a message in an event queue.

The destination task (c0_masterTask or sys1_slaveTasks) reads the data from the event queue. This is

done in order to ensure the computation, which might be long, is performed in a task (in user mode) and

not in a HWI (in supervisor mode).

Figure 7. Available Tasks On Each Subsystem.

Figure 7 shows how the system is built up.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 31

6.7.2 Configuration

To enable inter-core messaging, a specific configuration is needed on core 0 private code as well as on

subsystem 1 partially shared code.

6.7.2.1 OS Configuration

One message only is used for the synchronization process, thus macro

OS_TOTAL_NUM_OF_INTERCORE_MESSAGES has been set to 1 in os_config.h.

#define OS_TOTAL_NUM_OF_INTERCORE_MESSAGES 1 /* Intercore Messages Number */

6.7.2.2 Application Configuration

On core 0, the following OS elements are created (see function CoreSpecTaskCreate in module

c0_code.c):

 The c0_masterTask

 The required structure to enable inter-core messages

 The event queue used to transmit the message to the destination task

On each core running subsystem 1 code, the following OS elements need to be created (see function

sys1_appInit in module sys1_code.c):

 The sys1_slaveTask

 The required structure to enable inter core messages

 The event queue used to transmit the message to the destination task

6.7.3 Runtime

Figure 8 below shows how inter-core messaging is used in the example project Asym_SDOS_msg.

Note that run time code must be written for c0_masterTask and sys1_slaveTask.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

32 Freescale Semiconductor

Figure 8. Inter-core Message Exchange Between Core 0 and Core 2 in Asym_SDOS_msg. The Same

Mechanism Exists Between Core 0 and 3 and Between Core 0 and 4.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 33

6.7.3.1 Implementation of c0_masterTask

The c0_masterTask first posts an inter-core message to each of the cores running subsystem 1 code

(cores 2, 3 and 4). This is done through a call to osMessagePost.

/* Post a message to core 2 to start processing in sys1_slaveTask. */

 status = osMessagePost(c0_message_num, TO_CORE_2, 0x10);

 OS_ASSERT_COND(status == OS_SUCCESS);

/* Post a message to core 3 to start processing in sys1_slaveTask. */

 status = osMessagePost(c0_message_num, TO_CORE_3, 0x20);

 OS_ASSERT_COND(status == OS_SUCCESS);

/* Post a message to core 4 to start processing in sys1_slaveTask. */

 status = osMessagePost(c0_message_num, TO_CORE_4, 0x40);

 OS_ASSERT_COND(status == OS_SUCCESS);

It then waits for a message from each of these cores. The message signals that the job is finished. This is

done through a call to osEventQueuePend.

 /* Wait for either core to finish computation */

 osEventQueuePend(c0_queue, &data, 500);

6.7.3.2 Implementation of sys1_slaveTask

The sys1_slaveTask first waits for a message from c0_masterTask. This is done through a call to

osEventQueuePend.

 osEventQueuePend(sys1_queue, &data, 500);

When the event is triggered, it performs some computations. Then it sends back a message to

c0_masterTask, letting it know the computation has finished. This is done through a call to

osMessagePost.

As there are three cores, each sending a message to Core 0, it might be necessary to repeat the call to

osMessagePost until core 0 is free for posting. This is the reason why the call is done as follows:

do {

 // In case core 0 is locked for posting, repeat the message posting.

 status = osMessagePost(sys1_message_num, TO_CORE_0, osGetCoreID());

 sys1_repeat_cnt++;

} while (status == OS_ERR_MSG_BUSY);

6.7.3.3 Implementation of Message Handler

The message handler is invoked by the OS scheduler when the inter-core message is received. It just

reads the inter-core message and posts an event in the event queue. The message handler on core 0

(c0_MsgHandler) and on subsystem 1 (sys1_MsgHandler) are pretty similar. They are just posting to a

different event queue.

The code appears as follows on subsystem 1:

void sys1_MsgHandler(os_hwi_arg message_id)

{

 os_status status;

 int data;

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

34 Freescale Semiconductor

 /* Get data associated with the message. */

 data = osMessageGet(message_id);

 /* Notify sys1_slaveTask that calculation is finished on one of the

 slave cores.

 */

 status = osEventQueuePost(sys1_queue, data, NULL);

}

NOTE

The parameter message_id that is passed to the message handler transfers

the source core id as well as the actual message number.

message_id is encoded as scrCore << 8 || msg_num.

6.8 Using different L2/M2 Mapping on the Various Cores

As the amount of memory required in M2 memory might be different for cores running different

subsystems, it might be necessary to define a different L2/M2 mapping, depending on the subsystem.

This can be done easily in memory_map.l3k as follows:

////// Local partition sizes //////////

// on subsystem 0, we are using 0x4000 bytes of M2 as L2 cache.

// on subsystem 1 and 2, we are using 0x2000 bytes of M2 as L2 cache.

_ _M2_Setting = (core_id() == 0) ? 0x1f :

 (core_id() == 1) ? 0x1f :

 0x3f;

// M2 size

 _M2_size =

 (_M2_Setting == 0x01) ? 0x10000 :

 (_M2_Setting == 0x03) ? 0x20000 :

 (_M2_Setting == 0x07) ? 0x30000 :

 (_M2_Setting == 0x0f) ? 0x40000 :

 (_M2_Setting == 0x1f) ? 0x50000 :

 (_M2_Setting == 0x3f) ? 0x60000 :

 (_M2_Setting == 0x7f) ? 0x70000 :

 (_M2_Setting == 0xff) ? 0x80000 :

 0x0.

//512KB minus the area dedicated to the L2 cache

 __L2_cache_size = (_M2_L2_Size - _M2_size);

NOTE

Using different L2/M2 mapping between cores running SmartDSP OS

applications is possible when using SmartDSP OS V3.6.1 or higher.

NOTE 2

In subsystems running SmartDSP OS, the entire M2 memory cannot be

used as L2 cache. A portion of M2 memory is required to store the heap,

stack and .att_mmu sections.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 35

7 Running the Example Programs

The software archive AN4063WSW.zip contains several example programs that demonstrate how to

implement multicore DSP applications on the MSC8156. All four of these applications follow the design

described in section 2. Each example application consists of three subsystems, where subsystem zero

executes on core 0 and 1, subsystem one executes on cores 2, 3, and 4, and subsystem two runs on core

5. All of the example applications used SmartDSP OS.

The purposes of the four variations of the DSP applications are:

• AsymSDOS_code—Demonstrates the use of a private main() and a private appInit() function.

The application does not execute common tasks or core-specific tasks.

• AsymSDOS_priv_code—Demonstrates the use of a private main() and a private appInit()

function. A task, CommonTask, is defined that executes on all of the subsystems. In addition, it

defines a private task the runs only on core 0.

• AsymCodeSDOS_SharedMain—This example application is similar to AsymSDOS_priv_code

except that it uses a shared main() function to invoke private appInit() functions.

• AsymSDOS_Msg—This example application is similar to AsymSDOS_priv_code, except that it

uses inter-core messaging to synchronize subsystem 0 and subsystem 2.

The next section describes how to add and run these applications in CodeWarrior for StarCore.

7.1 Add the Project and Build It

First, extract the desired example application from the archive to obtain a folder that contains the project

files. Launch CodeWarrior for StarCore v10.1.3 or later. In the C/C++ Perspective, drag the project

folder into the CodeWarrior view. The folder appears as a project in this view.

Choose Project > Clean and then Project > Build Project to build the project.

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

36 Freescale Semiconductor

7.2 Check the Launch Configurations

To access the launch configurations, choose Run > Debug Configurations. This displays the Debug

Configuration dialog. Since this is a multicore project, there are multiple launch configurations. The

example project has twelve launch configurations: six for an ADS hardware target (they have the string

ADS in the name) and six for the instruction set simulator (they have the string ISS in the name). Each

launch configuration targets one of the six processor cores. See Figure 9. There are also two launch

groups, one for the hardware target, and one for the simulator. The launch groups are used to start the

application on all six cores.

Figure 9. The Launch Configurations and Groups for the Asymmetric Project.

Open each launch configuration, and then use the Debugger tab to display the current settings. In

particular, click on the Connection tab in this view to inspect the connection settings. They should

match the hardware setup being used to run the project. If they do not, the connection settings must be

modified in all six of the launch configurations.

NOTE

The screenshots and location of the connection settings described here are

for CodeWarrior for StarCore DSPs v10.1.5 or earlier. For the location of

the connections settings in CodeWarrior v10.1.8 or later, consult the

Targeting StarCore DSPs manual.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 37

7.3 Launch the Application

To start the asymmetric application, click on the appropriate launch group, then Debug. The Debug

Perspective appears, and all six launch configurations are started in succession. When the launch process

completes, the code on all six cores is suspended at its main() function (Figure 10).

Figure 10. The Asymmetric Application’s State after the Launch Group Has Started All Six Cores.

Click on Multicore Resume to start all of the cores at once. As each subsystem completes, it writes a

System x Test: Passed message to the console. Clicking on each core thread in the Debug view

displays the console associated with the subsystem that uses that core.

The other two example programs can be run by following the steps described above

 Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

38 Freescale Semiconductor

8 Guidelines

Whenever the application memory map must be changed, make sure to follow guidelines below:

8.1 General Purpose Guidelines

1. The section .att_mmu and startup stack (label _StackStart) must be located in the same MMU

segment.

This is a runtime library requirement and applications that do not follow that scheme will not

pass startup code. If this rule cannot be followed, the function ___target_asm_start must be

rewritten.

a) For cores running bare board applications, this means sections .att_mmu and .stack

must be allocated in the same MMU segment.

b) For cores running SmartDSP OS applications, this means sections .att_mmu and

.oskernel_local_data_bss must be allocated in the same MMU segment.

2. Application entry code and startup code must be allocated in a memory area with 1:1 mapping

between virtual and physical address.

This is a hardware requirement and applications that do not follow that scheme will not start.

3. Due to a current library implementation, the run time library heap needs to be allocated at the

same virtual address on all cores.

If this rule is not followed, the source code of alloc.c library module needs to be modified.

4. To generate bootable code, the application entry point should be located at the same physical

address on all cores.

This is a hardware requirement and applications that do not follow this scheme will not work

when attempting to boot the application over Ethernet, I2C, SPI, or any other interface.

8.2 Guidelines for SmartDSP OS Applications
1. The entire M2 memory cannot be used as L2 cache.

If this rule cannot be followed, the SmartDSP OS function ___target_asm_start must be

rewritten.

2. Sections .att_mmu and .oskernel_local_data_bss must be allocated in M2 memory.

If this rule cannot be followed, the SmartDSP OS function ___target_asm_start must be

rewritten.

3. The section that contains _g_heap_nocache must be allocated in the same MMU segment as

.att_mmu and the startup stack. That means the section .oskernel_local_data must also be

allocated in same MMU segment as .att_mmu and .oskernel_local_bss.

If this rule cannot be followed, the SmartDSP OS function __target_setting must be

rewritten.

4. Section .os_shared_data must be allocated in M3 shared memory. This section contains

spinlocks variables used within the OS code.

5. Due to the current startup code implementation, _StackStart and _VBAddr must be located at

the same virtual address for all the cores running SmartDSP OS application.

If this rule cannot be followed, revise the library module startup__startup_msc8156_.asm.

Configuring an Asymmetric Multicore Application for StarCore DSPs, Rev. 3

Freescale Semiconductor 39

6. For the provided .l3k file, the size of KA buffer and VTB must be identical on all 6 cores.

If this rule cannot be followed, the file local_map_link.l3k must be modified to move the KA

buffer and VTB respectively to the end of DDR0 and DDR1 local memory.

.

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Error! No text of specified style in document.
Rev. 3
22 June 2011

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and StarCore are trademarks of Freescale Semiconductor,
Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective
owners.

© 2011 Freescale Semiconductor, Inc.

	Configuring an Asymmetric Multicore Application for StarCore DSPs
	1 Designing the Application
	1.1 Define the Application Memory Map
	1.2 Allocating Memory
	1.2.1 Place Symmetric Resources in Symmetric Memory
	1.2.2 Work Within the Linker Allocation Scheme
	1.2.3 Build with ICODE Option Allconst_To_Rom=TRUE

	1.3 Making Sections Subsystem Specific
	1.3.1 RENAME Command
	1.3.2 EXCLUDE Command

	1.4 Accessing Shared Data
	1.4.1 Mutual Exclusion
	1.4.1.1 Mutual Exclusion On One Core
	1.4.1.2 Mutual Exclusion Among Cores

	1.4.2 Data Exchange Among Cores

	2 An Example Asymmetric Program
	2.1 Naming Conventions and Memory Map
	2.2 Configure the OS Objects for Each Subsystem
	2.2.1 Use a Subsystem-Specific appInit() Function
	2.2.2 Use Shared main() and appInit() Functions

	3 Modifying a Wizard Created Project
	4 Configuration Required for the Compiler
	4.1 Defining Sections
	4.1.1 Define the Application’s Code Sections
	4.1.2 Define the Application Initialized Data Sections
	4.1.3 Define the Application Uninitialized Data Sections
	4.1.4 Define the Application Constants Sections

	4.2 Place Functions/Variables Into the Appropriate Sections
	4.2.1 Define the Default Allocation Scheme
	4.2.2 Allocate Functions/Variables for Each Subsystem
	4.2.3 Allocate Each Core Private Functions/Variables
	4.2.4 Placing a Resource in a Dedicated Section

	5 Configuration Required for the Linker
	5.1 Define the System Tasks for Each Core
	5.2 Define the Symbols that Map to M2
	5.3 Define the Symbols for Memory Blocks
	5.4 Define the Physical Memory Range for Partially Shared Memory
	5.5 Define the Memory Map for Partially Shared Memory
	5.6 Define the Memory Map for Partially Symmetric Memory
	5.7 Define the Memory Map for Core Private Data

	6 Additional Topics
	6.1 .unlikely Sections
	6.2 Add Tasks Common to all Subsystems
	6.3 Add Core-Specific Tasks
	6.4 Handling a Different Number of .bss Sections
	6.5 Alternate Allocation Scheme
	6.5.1 Defining a Default Allocation Scheme for a Module
	6.5.2 Placing a Variable into a Dedicated Section

	6.6 Partially Shared Areas
	6.7 Inter-core Communication and Synchronization
	6.7.1 Project Description
	6.7.2 Configuration
	6.7.2.1 OS Configuration
	6.7.2.2 Application Configuration

	6.7.3 Runtime
	6.7.3.1 Implementation of c0_masterTask
	6.7.3.2 Implementation of sys1_slaveTask
	6.7.3.3 Implementation of Message Handler

	6.8 Using different L2/M2 Mapping on the Various Cores

	7 Running the Example Programs
	7.1 Add the Project and Build It
	7.2 Check the Launch Configurations
	7.3 Launch the Application

	8 Guidelines
	8.1 General Purpose Guidelines
	8.2 Guidelines for SmartDSP OS Applications

