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Most processor based communication designs have a central 
processor core as well as other master devices, possibly 
within the same chip. The master devices typically provide a 
“low touch” method for the actual data transfer into or out of 
the communication system (DMA controller, MAC, etc.). 
However, if a system has multiple master devices, the 
designer must consider how cache coherency is maintained.

This application note provides an overview and specific 
strategies for cache coherency and potential performance 
impacts in the Freescale PowerQUICC II Pro and 
PowerQUICC III families. It focuses on data coherency and 
potential system issues, as well as some concerns associated 
with having multiple DMA devices. It also discusses the 
specific steps and interdependencies required to implement 
hardware enforced cache coherency.
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1 Cache Modes
Every cache implementation varies, but there are common modes and structures used by all designs.

A cache is a very fast memory located directly on the core processor’s bus that is designed to provide data 
or instructions to the processor in significantly less time than main memory. When the core requests data, 
the cache first checks to see if it has such data. If it does, the cache provides the data back to the core with 
minimal clock cycles, which is called a cache hit. If the data is not in the cache, it fetches the data from 
main memory, provides it to the core, and saves it in the cache, which is called a cache miss.

Entries in the cache are marked as either “invalid” or “valid,” indicating whether or not they hold usable 
data. At reset, boot software must ensure the entire cache is marked as invalid. As the core requests data, 
the cache fills. When all entries are full, the cache uses a replacement algorithm to decide what data to 
remove when new requests are made. The type of replacement algorithm can have a small performance 
impact, but is beyond the scope of this document.

When fetching data to fill a cache miss, the cache logic fetches more than the requested data. The block of 
data fetched is referred to as a cache line, which may be 32 to 128 bytes, depending on the system. The 
primary reason for fetching more than the requested data is due to the high probability that subsequent 
accesses are to nearby address locations. This behavior, know as “locality of reference,” is the underlying 
principle that drives the performance enhancements provided by caches, but is beyond the scope of this 
document.

Another reason is to optimize the memory bus. DRAM, which is most often used for main memory, allows 
subsequent access to the same row to occur with much less latency than the first access. By reading an 
entire row from DRAM, the cache is able reduce the average latency used to access the DRAM, improving 
system performance. Most modern DRAMs take four or eight accesses, or beats, to read or write an entire 
row. This is called a burst read or write. When a burst access is performed, the amount of data transferred 
is a function of the bus width and number of beats. For example, a 64-bit wide data bus with a four beat 
burst transfers 32 bytes.

To reduce the complexity of address comparisons, cache memories are organized into small blocks called 
lines. Cache data is managed one line at a time. When selecting the line size, cache designers take the 
memory burst size into account. The cache line is a multiple of the basic burst size used by the memory 
system. Some caches have a line size equal to the burst size, while others may issue two, four, or eight 
bursts per line. When debugging cache issues, it is important to know the line size because any problems 
related to memory offsets that equal the line size are a strong indicator of a cache coherency problem.

When the processor writes data, caches respond in one of two ways. The first and simpler approach is 
called “write-through.” When a cache operates in write-through mode, any data written by the processor 
is immediately written to main memory using the size of the operand. If the data also hits in a line in the 
cache, the cache may respond by either invalidating the entire cache line or updating the cache memory. 
Data written by the core (but not necessarily by other devices) matches in cache and main memory.

The other approach is called “copy-back” (sometimes called write-back). When a write hits in the cache, 
the cache line is updated with the new data. However, main memory is not updated, which means the cache 
and main memory will mismatch by design. The cache line is marked as “dirty” to indicate this condition. 
Data is written only from the cache when a read or write miss occurs. The cache selects a line to replace 
with the newly read data, and if the selected line is marked as dirty, it is written to memory. Because the 
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entire line is written, a burst write is used. Both burst reads and burst writes improve DRAM bus 
utilization. Note this is called a “cast-out.”

Copy-back mode should be used for the highest performance because it minimizes the external bus traffic 
(to the core). By design, copy-back creates mismatches between main memory and cache, and the system 
must take this into account.

2 Cache Coherency
Figure 1 shows a block diagram of a typical system with a PowerQUICC device with PCI connections. 

Figure 1. Typical System with Multiple Masters

To implement a system capable of efficient data transfer, networking designs typically comprise a system 
with multiple devices that can access main memory (referred to as direct memory access, or DMA capable 
devices). This ensures that the processor does not need to be involved in every data transfer within the 
system. Additionally, most modern processors also leverage caching schemes to reduce the access latency 
for information (data and instructions) required for execution. Depending on how the caches are managed, 
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the information physically stored in the cache may or may not match the information physically residing 
at the same address in main memory.

If the information in the cache matches the information in main memory when it is accessed by any master, 
it is said to be coherent. Typically instructions are only accessed by the core processor; the other DMA 
devices usually do not access instruction space other than to initially transfer the code into main memory.

An example of a potential cache coherency issue is the reception and subsequent processing of a block of 
data traffic. Typically this is handled by a DMA-capable media access controller device (MAC) that acts 
somewhat independently within the system. The MAC device may be within the communications 
processor (for example, Ethernet controller) or externally attached through a master capable bus interface, 
such as PCI or PCI-Express. The MAC device transfers the incoming data directly into main memory 
starting at a preprogrammed address location. After reception is complete, the core is tasked to access the 
data for processing. However, it is possible the core has previously accessed the memory location where 
the incoming data resides, and the information at that address resides (as far as the core is concerned) in 
cache. The core incorrectly fetches the data from cache (referred to as stale data), not the intended “fresh” 
data that resides in memory. Other scenarios exist where the more current or valid data resides in the data 
cache instead of main memory. Whenever the condition exists where the core and any of the DMA devices 
can access the same physical address, there is a potential for the memory to become incoherent. When a 
device processes invalid data, any number of issues can occur, often in a random and unpredictable way. 
Therefore, it is very important that data coherency be considered and a robust strategy is implemented to 
maintain coherency.

3 Avoiding Data Coherency Issues
This section describes how to best avoid various data coherency issues.

3.1 Non-Cached Data
The simplest way to avoid coherency issues is to not use data caching at all. However, this can cause a 
significant reduction in performance; some networking applications have been measured to run ten times 
faster with the data cache enabled versus disabled.

One strategy to avoid a coherency issue is to configure the system so that memory areas that can be 
accessed by multiple masters are not cacheable.

Another approach is defining specific memory areas as cache enabled just for the processor core with other 
shared memory areas with caching disabled. This requires appropriate configuration of the memory 
management unit (MMU) and a rigid definition of where the “core only” and “shared” memory spaces are 
located. Typically, data structures, such as the stack and OS heap, reside in the “core only” cacheable areas 
and data structures, just as the buffer descriptors and data buffers reside in non-cacheable memory. 
Coherency is maintained because the area that is accessible by multiple masters (core and DMA engines) 
is not cached and that memory area never resides in cache. Because the “core only” area is accessed only 
by a single master, there is no coherency concern for that area. This approach provides the cache 
performance boost for non-shared data, but does nothing for shared data. In systems that do significant 
processing on the shared data, not using the cache has a very negative impact on system performance.
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3.2 Software Enforced Coherency
Using non-cached data structures is a very easy approach to guarantee coherency, but it significantly 
minimizes the performance advantages of a data cache. Managing coherency issues in software requires 
the software architect to have a clear understanding of how potential coherency issues can occur and how 
to implement additional cache management software to avoid them.

Some of the most common conditions that create potential coherency problems are as follows:

• A data buffer is created for transmission by the core and copy-back mode is used. In this case, dirty 
data in the cache may cause the DMA MAC device to see stale data in main memory.

• A data buffer is received (written by a DMA MAC) into a portion of main memory that is also 
cached. In this case the cache has stale data.

• Adjacent data buffers happen to share a cache line. In this case it is possible for software updating 
the “end” of one buffer to introduce a coherency issue with the next buffer. 

With software enforced coherency, the device driver for the peripheral has to include specific instructions 
to manage the cache. Whenever the device driver prepares a buffer for transmission, it must flush the cache 
lines assigned to the buffer, which is done with specific cache management assembly instructions and must 
be done for each cache line the buffer occupies. This means an iterative loop that steps through the memory 
space used by the transmit buffer must be included in the device driver.

When the transmit buffer is flushed by the cache in response to cache management instructions, the core 
must be programmed to wait for the flush event to finish before continuing. This means the core wastes 
cycles while waiting for the flush. Because the flush is software initiated, the cache and bus logic are not 
free to use idle bus cycles to service the flush, further reducing bus utilization.

For receive, the system must guarantee the core does not read from the receive buffer space before the 
DMA MAC finishes reception. Otherwise, the memory is loaded into cache before the data received by 
the DMA MAC is written to memory.

To avoid the shared cache line problem, the software architect must carefully separate shared data 
structures to ensure cache lines are not inadvertently shared. Not only must cache line sharing be avoided 
(or carefully controlled) between transmit and receive data structures, it must also be prevented between 
general purpose memory and the peripheral memory. This means additional memory pools must be set up 
and managed, which can reduce overall memory system utilization.

Properly implemented software managed coherency requires both careful use of cache management 
instructions and memory space management by the programmer. In most cases, assembly language must 
be used to access the processor’s cache management instructions. The result is performance degradation, 
because while software managed coherency allows systems to maintain the performance advantages of 
caches, it introduces another level of complexity to the software. Over time, this complexity adds to 
development, debugging, and maintenance costs. If the system is upgraded to a processor with a different 
set of cache management instructions or a different cache line size, coherency software needs to be 
re-examined. If a new peripheral is added to the system, its coherency code and memory usage must be 
carefully integrated into the existing software architecture.

In summary, software managed coherency is a reasonable approach to obtain the performance benefits of 
caches at the expense of additional software development and maintenance costs. For systems without 
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hardware cache coherency, it is the preferred choice. However, if a system supports hardware coherency, 
it is best to avoid software managed coherency.

3.3 Hardware Enforced Coherency
An alternate method is to let the processor hardware enforce the system coherency. The processor core 
logic keeps track of the contents of its data cache and examines each transaction on the system bus. This 
is done to determine if there is a request to read from a location that resides in its cache or write to a 
location that it has in cache, and take the appropriate actions to ensure the coherency. Snooping is the 
mechanism the cache logic uses to examine transactions requiring coherency actions. There are two bus 
signals associated with snooping: the global signal (driven by the requester to indicate shared memory) 
and the retry signal (driven by the cache to indicate data to flush).

For Power Architecture™ processors, the data cache hardware implements a four state protocol (MESI) 
or three state protocol (MEI) to label each 32-byte cache line in any of the following states, each indicating 
the following:

• Modified (M)—The line is modified compared to system memory; the data is (currently) valid in 
the processor’s cache but not in main memory, which is dirty.

• Exclusive (E)—The data in the cache line in the processor matches the system memory but does 
not exist within another processor’s cache.

• Shared (S)—The data in the cache line is valid within the processor’s cache, system memory, and 
at least one other processor’s cache. This state only has meaning in systems with more than one 
processor core.

• Invalid (I)—The associated cache line does not have valid data within the cache.

Note that some processors do not implement the shared state, usually because there is no externally 
available coherent bus to enable connection of an additional processor. 

When properly configured, the cache hardware snoops all the processor bus transactions and determines 
what actions are required to ensure coherency. The types of transactions that generally occur are as 
follows:

• Processor store—When the processor stores (or writes) data to main memory, the cache logic 
checks the address to determine if it resides in a cache enabled area and matches an address within 
the cache. If the address is cacheable and is already in cache, the cache line is updated. If the 
address is cacheable and not currently in the cache, the cache line is added using the cache 
replacement algorithm specified for the processor. If the cache is configured as write-through, the 
main memory is updated with the new data as well as the cache, and the line is marked 
exclusive (E). If the cache is configured as write-back, the data is not written to the main memory, 
and the line is marked modified (M).

• Processor load—When the processor loads (or reads) data, it checks for the data in cache. If the 
address resides in cache, the data loads directly from cache. If the data is not in cache, it is loaded 
from main memory to the cache and marked exclusive (E).

• DMA engine read—Assuming the proper snooping is configured when a DMA engine reads an 
address (described in Section 3.3.1, “Hardware Enforced Coherency for PowerQUICC II Pro and 
PowerQUICC III”), the cache logic checks to determine if the address resides in the data cache. If 
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the associated cache line is marked invalid (I), the transaction completes with no additional 
interaction because the data does not reside in cache. If the line is marked exclusive (E), implying 
the location is coherent, no additional bus interaction is required and the cache line is marked 
invalid (I) for burst cases (cache enabled transaction). If the line is marked modified (M) (most 
likely updated by the core with the cache configured as write-back), this indicates that the memory 
is currently not coherent with the cache. The cache snoop logic suspends the DMA read by forcing 
a retry back to the DMA device. The snoop logic pushes the cache data to main memory and marks 
it invalid (I), indicating the cache and memory are coherent. After this update, the transaction is 
allowed to complete and the DMA controller completes the read.

• DMA engine write—Assuming the proper snooping is configured, the cache logic snoops the 
transaction and checks to determine if the address resides within the cache. If the address is not 
within cache or within a line marked invalid (I), no action is taken. If the address is within the 
cache and the associated cache line is marked modified (M), the access is retried (similar to the 
DMA read case) and the cache line is cast out to main memory, guaranteeing coherency. The line 
is marked invalid (I) in the cache as the DMA write updates memory. If the address within the 
cache is marked exclusive (E), the line is marked as invalid (I) because the memory is no longer 
coherent with the cache.

By allowing the hardware to enforce the coherency, the software does not need to perform additional 
instructions to enforce the coherency. Most transactions complete without penalty. In the worst case, the 
cache logic forces a retry cycle on the bus when a DMA controller attempts to read or write a location that 
resides in cache and is marked modified (M). The overall transaction is extended, but if the system is using 
software coherency, a previous flush transaction is required before the DMA read; therefore, typically 
there is no appreciable system latency penalty with hardware coherency. 

3.3.1 Hardware Enforced Coherency for PowerQUICC II Pro and 
PowerQUICC III

To enable hardware coherency in a PowerQUICC II Pro or PowerQUICC III system, the MMU and DMA 
controller(s) must be configured to enable the proper operation. The cache logic performs most of the 
action to enforce coherency; the DMA controller must be programmed to notify the logic when it is 
accessing memory locations that may be cached. The MMU is used to control the memory and defines the 
memory areas that are cached. The MMU mechanisms are either block address translation (BAT) or page 
table entries (PTE) through a translation lookaside buffer (TLB). In either case, there are 3 cache control 
bits:

• Caching inhibited (I)—If this bit is set, the area is not cached. There is no coherency issue, but 
performance is impacted significantly, so clear this bit.

• Write-through (W)—If this bit is set, the cache is configured as write-through; if cleared, the cache 
is configured as write-back. For most applications, write-back provides the best performance 
because the coherency hardware can selectively force the external bus traffic when necessary (MEI 
protocol). 

• Memory coherence (M)—This bit is used to allow the core to broadcast when it is accessing 
memory located within another cache. Note that in single processor systems, this bit has no effect 
and is a “don’t care” because there is no other cache coherency logic to respond to the access. 
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For the PowerQUICC II Pro (MPC83xx) products, these bits are located in either bits 25–27 in the lower 
BAT register or bits 25–27 in the second word of the page table entry in the TLB. For the PowerQUICC III 
products, these are configured in bits 59–61 in the MAS2 register when the page table entry is defined into 
the TLB.

The DMA controllers must be configured to advertise accesses to potentially cached memory. This is done 
by enabling snooping by ensuring the global signal is driven on the processor bus (which is internal to the 
part for PowerQUICC II Pro and PowerQUICC III). Refer to the section describing the DMA controller(s) 
in the applicable reference manual for information.

Examples of these control bits are as follows:

• For “generic” DMA controller—DMA snoop enable (DMSEN) bit in the DMAMRx register

• For PCI controller—Read transaction type (RTT) and write transaction type (WTT) in the PIWARx 
register

• For the Security Engine (SEC)—Global inhibit (GI) in the MCR register. Note that there is also a 
concept of snooping associated with the SEC that has to do with how the data is processed, this is 
not related to system cache coherency; the GI bit in the MCR is the only bit that controls the cache 
coherency.

• For the Triple Speed Ethernet Controller (TSEC)—Transmit data snoop enable (TDSEN) and 
transmit buffer descriptor snoop enable (TBDSEN) in the DMACTRL register, and receive data 
snoop enable (RDSEN) and receive buffer descriptor snoop enable (RBDSEN) in the ATTR 
register

• For the USB controller—SNOOP1 and SNOOP2 registers

• For QE peripherals—The global (GBL) bits in the Rx and Tx Bus Mode registers for the associated 
peripheral. The bus mode register is part of the TSTATE and RSTATE registers located in the 
peripheral’s parameter RAM.

4 Conclusion
When designing a processor based communication system, an effective cache coherency strategy must be 
implemented. Coherency issues can be avoided by defining areas accessed by multiple masters as 
non-cacheable, but this choice yields the lowest performance. Software may be written to enforce the 
coherency, but may have performance impacts due to unnecessary cast-out transactions. Writing software 
to enforce coherency tends to be cumbersome to implement and maintain, which can potentially introduce 
errors that are difficult to debug from a system level. In most cases, leveraging hardware enforced 
coherency is preferred, because the configuration is straightforward, the best performance benefit is 
realized, and special programming techniques are not required in the main stream software to maintain the 
coherency.
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