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In an effort to enable the design of highly reliable systems, 
the PowerQUICC™ III family provides error correction and 
checking mechanism on internal memories as well as the 
external DDR SDRAM data bus. This application note 
provides an introduction to the error correcting code (ECC) 
technology as well as an aid to initialization and error 
recovery on Freescale's PowerQUICC III family of 
processors. 

1 Introduction
As embedded memory density increases and memory cell 
voltage decreases on microprocessors, it becomes possible 
that the state of a memory cell is subject to change by soft 
errors, such as changes in a memory state due to external 
factors like package decay, external system noise, and 
cosmic radiation. 

The common sources of soft errors are low-energy alpha 
particles, high-energy cosmic particles, and thermal 
neutrons. From these common sources, neutrons are the most 
troublesome because they can penetrate most of the 
manmade material. The soft errors are random and not 
repeatable, and do not cause permanent damage to a device. 
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To overcome the problems from soft errors, memory vendors are introducing new technologies to make 
the devices less susceptible to the soft errors. In addition, soft errors are being though of at the system-level 
and board-level design. The PowerQUICC™ III processor includes ECC, which is capable of correcting 
single-bit errors and detecting two-bit errors. The proper implementation of ECC with attention to 
susceptibility of soft errors ensures more robust embedded design.

2 Error Correcting Code (ECC) Theory

2.1 Parity
The parity memory helps protect data, but the protection is minimal. The intent of parity memory is to 
provide single-bit error detection capability. The parity checking works through the generation of a parity 
bit for the data to be written into memory. In the parity checking scheme, odd or even parity is generated 
through applying the XOR function to all bits of a data-word. The parity bit is then stored in memory along 
with the original data-word. When the data-word is read from the memory, the parity bit is re-computed 
and compared to the retrieved parity bit. If the re-computed parity bit differs from the retrieved parity bit, 
a parity error is generated and reported to the system.

The parity checking is relatively simple and inexpensive to implement. However, parity checking can only 
detect odd-bit errors and does not have the ability to correct errors once detected. Due to the speed and 
ease of implementation, parity checking is still used on L1 cache memories as well as L2 cache tags within 
the PowerQUICC™ III family of processors.

2.2 Error Correcting Codes
ECC is implemented in a system by adding additional the error correction bits that are known as syndrome 
bits. These bits are added to the user data bits. The bits are calculated in a systematic way, and contain 
additional information about the data-word that allows detection of dual bit errors or correction of 
single-bit errors.

ECC algorithms that are also known as Hamming codes are mathematically determined. All valid single 
error correction, double bit error detection (SECDED) ECC codewords differ from each other by at least 
4 bits (known as a Hamming distance of 4). The distance of 4 bits ensures that a single-bit error and a 
two-bit error can be distinguished from each other and that any given valid ECC codeword can sustain a 
one-bit error and can unambiguously recover the original valid ECC codeword. However, two-bit errors 
cannot be corrected because multiple valid SECDED codewords can result in the same error vector with 
different two-bit errors.

Figure 1 shows the process of encoding an 8-bit data vector into an SECDED ECC codeword. 

Figure 1. Encoding an 8-bit Data Vector into an SECDED ECC Codeword

 D1

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

 D2  D3  D4  D5  D6  D7  D8
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In Figure 1, D[1 : 8] represents an 8-bit data-word, and R[1 : 12] is the combined data and ECC codeword. 
R1, R2, R4, and R8 together are considered as the ECC syndrome bits.

The basic idea is the use of recursive applications of an XOR function in order to generate parity protection 
via multiple check bits spread out throughout the error check bits. In this example, the encoding phase of 
the SECDED algorithm is implemented by distributing the input data vector throughout the ECC 
codeword. The bits in the input data vector are labeled as Dj, where the index j goes from 1 to N. Later, 
the data vector is distributed into the SECDED ECC word, Rm, where the index m goes from 1 to 
N + (log2N) + 1, and m is not an integer power of 2. 

In the bit vector R, all bit positions Rm for which m is a power of two are reserved for the check bits. In 
this example, each data bit in bit position, Rm, where m is not a power of 2 is protected by multiple check 
bits. The idea is that the data bit is protected by the check bits for which indices sum up to the index of the 
data bit. In the example, R7 is protected by R1, R2, and R4 while R10 is protected by R2 and R8.

In this example, check bit R1 protects R3, R5, R7, R9, and R11 through the use of the exclusive-or function. 
Therefore, R1 is created by the exclusive-or function for R3, R5, R7, R9, and R11. If any one bit in the 
protected set changes value, the stored value of R1 differs from the re-computation of the check bit, R1. 

Figure 2 shows a method to aid in the generation of check bits. 

Figure 2. Method to Aid in the Generation of the Check Bits

If all bit indices in binary format are rewritten, and the check bit, R1 (R0001 in binary) along with its 
protected set of R3, R5, R7, R9 is examined, it is observed that both the check bit and all protected bits 
contain a '1' in the least significant bit positions (bit 0) of their respective indices. This observation holds 
true for all check bits and can aid in generating the remaining bits. R2 (R0010 in binary) contains a '1' in the 
bit 1 position of its index. R2 can therefore be generated using the exclusive-or operation on all the data 
bits Rk with a '1' in bit position 1 of their respective indices.

R0 is used as a parity check for the entire input data vector. The purpose of R0 is to provide a quick sanity 
check to ensure that the error that had occurred was not a double-bit error. In the case of a single-bit error, 
both the ECC syndrome as well as R0 reports that an error had occurred. In the case of a two-bit error, R0 
returns the same parity as the original codeword, whereas the ECC syndrome bits return a bit position that 
is non-zero. The difference between these redundant error reporting mechanisms enables to distinguish 
between a single-bit error and a two-bit error. In the examples, even parity scheme is used for the 
generation of R0, and odd parity scheme can also be implemented. 

Figure 3 shows the complete encoding process for an SECDED codeword, which includes the original 
8-bits of data interspersed with the syndrome bits. 

R1 = R3 R5 R7 R9 R11

R0001 = R0011 R0101 R0111 R1001 R1011

+ + + +

+ + + +

R2 = R3 R6 R7 R10 R11

R0010 = R0011 R0110 R0111 R1010 R1011

+ + + +

+ + + +



Error Correction and Error Handling on PowerQUICC™ III Processors, Rev. 0

4 Freescale Semiconductor
 

Error Correcting Code (ECC) Theory

Figure 3. Encoding Process for an SECDED Codeword

The following steps describe the encoding process for an SECDED codeword:

1. Distribute the data vector into the ECC word.

2. Calculate the individual check bits.

3. Calculate R0 as a parity check over the original data vector, resulting in an eventual ECC word of 
R={ 1 0 1 0 0 }. For example data vector of D = { 1 1 0 1 1 1 0 0 }.

 D1

R1

1

R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

 D2  D3  D4  D5  D6  D7  D8

1 0 1 1 1 0 0 }{

R1 = R3 R5 R7 R9 R11 = 0

R8 = R9 R10 R11 R12 = 0

R4 = R5 R6 R7 R12 = 0

R2 = R3 R6 R7 R10 R11 = 1

+ + + +

+ + + +

+ + + +

+ + + +

R0 = D1 D2 D4 D5 D8 = 1+ + + + D6 + D7 +D3+

1 1 0R = { }0 0
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Figure 4 shows the verification process for an example codeword that includes a single-bit error at index 
R7. 

Figure 4. Verification Process for an Example Codeword

For the purposes of this example, an assumption is made that a soft error caused R7 to flip from a '1' to a 
'0'. After recalculating R0, it is observed that the result does not match the R0 read into the memory 
controller. On further recalculation of the check bits R1, R2, R4, and R8, it is observed that three of the four 
check bits have changed. As both check bits and parity check, R0, have changed, it is concluded that it is 
a single-bit error. If check bits are different but the parity bit remained same, it can be concluded that a 
two-bit error has occurred.

Finally, if the newly computed check bits are compared with the check bits read through an exclusive OR 
function, the exact bit position of the offending bit can be found.

The strength of SECDEC ECC is that is it able to detect and correct single-bit errors with minimal 
overhead in additional memory. The data bus (width = 64 bits, N = 64) of PowerQUICC™ III processor, 
the SECDED ECC algorithm requires 8 check bits that is the same amount of additional bits as using an 
8 : 1 parity checking scheme when applied to a 64 bit wide data vector. The delay logic of SECDED is 
proportional to log2N, and in the case of the PowerQUICC III processor, an additional cycle of read latency 
is incurred. 

3 Error Detection and Handling on Internal Memories
To address the issue of soft errors, Freescale provides multiple levels of error detection and correction on 
the PowerQUICC™ III family of processors. The smaller L1 caches, L2 address tag arrays, and local bus 
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are parity protected. The L2 cache data array as well as the external DDR memory bus is SECDED ECC 
protected. In the following sections, each form of error detection and correction is addressed in details.

The chances of a soft error in the L1 caches or L2 tag array are small (less than 1 % probability per year). 
With parity checking enabled, this rare error can be detected in the parity-protected memory when the 
erroneous cache line is accessed, triggering a machine check exception. Depending on the operating 
system, the machine check handler responds by halting the application, alerting the kernel, or even 
resetting the hardware. To avoid the need for such a catastrophic system fault or interruption in service, a 
detected parity error can be managed by intelligent parity detection handlers that can also be useful in 
handling a higher soft error rate caused by a higher amount of cosmic radiation. 

Although soft errors cannot be eliminated, the chances that an error causes a system fault can be reduced. 
A soft error detected by parity can be mitigated by invalidating the erroneous cache line and refetching the 
correct instruction or data from memory. The memory areas considered are as follows:

• L1 instruction cache parity error handling

• L1 data cache parity error handling

• L2 tag parity error or multi-bit ECC error handling

• L2 data cache

Invalidating and refetching generally works for reads. However, writes to the L1 data cache or L2 cache 
that result in modified data and a parity error are problematic and may cause a system fault that must be 
handled by the operating system or even a system reboot to avoid data corruption.

3.1 L1 Instruction Cache Parity
The e500 core supports L1 instruction cache parity. As the L1 instruction cache does not contain modified 
data, an instruction cache parity error can be recoverable. Parity generation is always performed, but parity 
checking can be enabled or disabled using the L1CSR1[ICPE] bit. By default, this bit is disabled at 
power-up. If ICPE is set, parity is checked per instruction read. There is a single parity bit per 4-byte 
instruction. If a parity error is detected, the device generates a machine check interrupt. If MSR[ME] is 
set, the machine check interrupt handler is invoked, and if MSR[ME] is cleared, the device enters the 
checkstop state. 

If both MSR[ME] and L1CSR1[ICPE] are set, the detection of the L1 instruction cache parity error 
generates a machine check interrupt and the device places the physical address of the erroneous instruction 
in the MCSRR0 register. The recovery mechanism for this error is to invalidate the cache line of the 
erroneous instruction in the L1 instruction cache and resume operation by executing the rfmci instruction. 
However, the recovery code must be guaranteed not to generate an L1 cache parity error. When a machine 
check interrupt is taken, the device clears the MSR[ME] bit. In this state, any subsequent machine check 
interrupts cause the device to enter the checkstop state. Therefore, if the machine check handler recovery 
code generates an L1 cache parity error, the device enters the checkstop state. 

To recover from the L1 instruction cache parity error (ICPERR) the following requirements must be met:

• The machine check parity recovery code and stack are in a cache-inhibited region

• The cache-inhibited region is guaranteed not to take an exception for DSO, ISI, Alignment, or a 
TLB miss. One of the sixteen Level 2 TLB1 entries is dedicated for this space.
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When a machine check exception occurs, perform the following steps:

1. Save a general purpose register (GPR) to a software use special purpose register (SPRG) dedicated 
to the machine check handler.

2. In the GPR, load a pointer to the machine check stack in a cache inhibited region.

3. Save any necessary scratch GPRs to the stack.

Now, perform the following steps using only the scratch GPRs:

1. If MCSRR0[0 : 15] != IVPR[0 : 15], go to step 2. Otherwise, go to step 6.

2. Execute the icbi instruction to the address in MCSRR0. 

3. Restore the scratch GPRs from the stack.

4. Restore the GPR from the dedicated machine and check the SPRG.

5. Execute the rfmci instruction to resume operation.

6. For each IVORn, if MCSRR0[16 : 27] == IVORn[16 : 27] go to step 7; otherwise go to step 8.

7. This is a CPU30 errata error condition. Perform the following steps to attempt a recover:

a) Execute the icbi instruction to an address in SRR0.

b) Restore the scratch GPRs from the stack.

c) Restore the GPR from the dedicated machine and check the SPRG.

d) Execute the rfi instruction. 

NOTE

If the registers are corrupted because of a CPU30 error, the recovery method 
explained in step 7 is not applicable. For more information, see 
Section 3.1.1, “CPU30 Erratum.”

8. If this is not a CPU30 errata error condition, go to step 2.

3.1.1 CPU30 Erratum

On the e500 core (revision 1.0 and revision 2.0), the L1 instruction cache parity errors can be reported 
incorrectly when an instruction that is corrupted by a parity error appears to cause an interrupt or to write 
the SPEFSCR. This erratum not only can report an incorrect value in MSRR0, but also can affect other 
architectural registers, such as the SPEFSCR and ESR. When this problem occurs, MSRR0 points to the 
first instruction of an interrupt handler (instead of pointing to the instruction that caused the interrupt) and 
SRR0 points to the corrupted instruction. To correct this problem, perform the following steps:

1. Place the first instruction of all the exception handlers in a cache-inhibited region.

2. When an instruction cache parity error is detected (MCSR[ICPERR] is set when a machine check 
exception occurs), check to see whether the MCSRR0 is pointing to the first instruction of any 
exception handler.

3. If the MCSRR0 is not pointing to the first instruction of an exception handler, invalidate the 
instruction cache entry to which the MCSRR0 is pointing and execute the rfmci instruction.

4. If the MCSRR0 is pointing to the first instruction of an exception handler and SRR0 is pointing to 
the application code, terminate the application.
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5. If the MCSRR0 is pointing to the first instruction of an exception handler and SRR0 is pointing to 
the kernel code, initiate a reset sequence.

The ICPERR recovery workaround discussed in this application note assumes that an unrecoverable 
CPU30 error is highly unlikely. As the erratum states, architectural registers can be updated because of a 
CPU30 error, making the error unrecoverable. The following sequence must occur for a CPU30 error to 
be detected and be unrecoverable. Note that each step in this scenario is less likely to occur than its 
previous step:

1. An ICPERR must be detected. The parity error must be on the 4-byte instruction and not on the 
parity bit itself.

2. The opcode that is corrupted with a parity error causes an interrupt other than the machine check 
interrupt due to ICPERR. For example, the resulting opcode can be in illegal instruction that 
generates a program interrupt.

3. The opcode that is corrupted with a parity error causes an interrupt, and the resulting opcode is 
one that updates architectural registers that cannot be restored.

Therefore, the recovery for the CPU30 error used in this application note is the simplest approach, which 
is to invalidate the instruction cache line pointed to by SRR0 and then execute the rfi instruction.

3.2 L1 Data Cache Parity
The e500 core supports L1 data cache parity. As the L1 data cache can contain modified data, recovery 
from a data cache parity error may or may not be possible, depending on whether the data has been 
modified. Parity generation is always performed on a data store, but parity checking can be enabled or 
disabled using the L1CSR0[CPE] bit. By default, this bit is disabled at power-up. If CPE is enabled, parity 
is checked on a per byte basis. There is a single parity bit for every one byte of data. If a parity error is 
detected on a load, the device generates a machine check interrupt. If MSR[ME] is set, the machine check 
interrupt handler is invoked; if MSR[ME] is cleared, the device enters the checkstop state.

When both MSR[ME] and L1CSR0[CPE] are set, the detection of an L1 data cache parity error generates 
a machine check interrupt. If the machine check interrupt is due to a data cache parity error (DCPERR), 
the address of the failing load instruction is placed in the MCSRR0 register (the MCAR register is not 
meaningful for this error). If the machine check interrupt is due to a data cache push parity error 
(DCP_PERR), the address on the cache line with the error is placed in the MCAR register (the MCSRR0 
register is not meaningful for this error). The recoverability for this error is determined depending on if the 
parity error is on modified data. If it is determined that the data was not modified, the recovery mechanism 
for this error is to invalidate the data cache line and resume operation by executing the rfmci instruction. 
However, the recovery code must be guaranteed not to generate an L1 cache parity error. When a machine 
check interrupt is taken, the device clears the MSR[ME] bit. In this state, any subsequent machine check 
interrupts cause the device to enter the checkstop state. Therefore, if the machine check handler recovery 
code generates an L1cache parity error, the device enters the checkstop state.

Recovery from an L1 data cache parity error (DCPERR) is possible only when the parity error is on a 
non-modified line. To determine whether a line has been modified, first verify that all the following 
requirements are met:

• The machine check parity recovery code and stack are in a cache-inhibited region.
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• The cache-inhibited region is guaranteed not to take an exception for DSI, ISI, Alignment, and a 
TLB miss. One of the sixteen Level 2 TLB1 entries is dedicated for this space.

• The machine check handler is re-entrant to a 2-deep level. The handler can take a second machine 
check while it is in the machine check and save enough state to recover.

When a machine check exception is generated, perform the following steps:

1. Save a GPR to an SPRG dedicated to the machine check handler.

2. In the GPR, load a pointer to the machine check stack in a cache inhibited region.

3. Save any necessary scratch GPRs and the dedicated SPRG to the stack.

4. Save a re-entrant flag to the stack to indicate how deep the handler is nested.

5. Set the MSR[ME] bit to re-enable the machine check interrupt handler.

6. Using only the scratch GPRs, flush the L1 data cache based on the following conditions:

a) If a DCP_PERR occurs during the flush, the system cannot recover from the loss of data. The 
machine check handler may halt the application, alert the kernel, or cause a reset of the 
hardware. If desired, the handler can use the re-entrant flag to determine the registers that are 
required to restore from the stack to recover the previous machine check state.

b) If no DCP_PERR occurs, the original DCPERR is for an unmodified line and is invalidated by 
the flush. Continue to step 7.

7. Restore scratch GPRs from the stack.

8. Restore GPR from dedicated machine and check the SPRG.

9. Execute the rfmci instruction to resume operation.

The notion of acceptable levels of data loss versus performance loss is a system application-dependent 
decision. Implementation of the techniques outlined in the current section is left up to the user. In this 
application note, the workaround method shown is L1 data cache disabled.

3.2.1 Early Write Back Technique

The amount of modified data in the L1 data cache should be minimized to minimize the potential for 
unrecoverable loss of data because of an L1 data parity error. The minimization can be done by 
periodically flushing the contents of the L1 data cache to memory. During each flush, a portion of the L1 
data cache can be flushed, for example, one set at a time.

3.2.2 L1 Data Cache Push Parity Error

A cache parity error can be detected when modified data is cast out or pushed back to main memory. It is 
not possible to recover from a L1 data cache push parity error (DCP_PERR). Only modified L1 data cache 
lines are pushed because of a snoop or cache line victimization due to reallocation. A DCP_PERR causes 
a loss of data, which is unrecoverable. In Linux, the user process must be halted or, if it is a kernel process, 
a kernel alert must be initiated.
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3.2.3 Write-Through Mode
L1 data cache push parity errors can be avoided altogether by putting all cacheable data space in 
write-through mode. In write-through mode, data is never in the modified state in the cache. All data 
written to the cache is simultaneously written to memory to maintain coherency. If a data cache parity error 
(DCPERR) occurs, it is always recoverable by simply invalidating the cache line. Write-through mode is 
enabled on a per page basis through TLBs. If a system moves from write-back mode to write-through 
mode, system software must account for the fact that the lwarx, stwcx, dcba, and dcbz instructions 
generate exceptions if they are executed to a write-through space.

3.3 L2 Cache Errors
The L2 cache provides ECC protection on its data array and parity protection on its tag array. The ECC 
protection automatically detects and corrects single-bit errors. The single-bit error threshold feature should 
be used to detect when a threshold of single-bit errors is reached. When the threshold is reached, software 
should invalidate the L2 tags to clear out all single-bit errors. This section discusses the recovery from L2 
tag parity errors and L2 multi-bit ECC errors that can be signaled in two ways:

• With the machine check interrupt by setting MSR[ME] = 1 and HID1[RFXE] = 1

• With MPIC

The better practice is to signal both errors using one of the two methods, but not both. In this application 
note, the machine check interrupt is required. When L2 returns a cache line for a hit and an L2 error is 
detected, the L2 also asserts the core_fault_in signal to the e500 core. If HID1[RFXE] = 1, the core 
responds either by generating a machine check if MSR[ME] = 1 or by entering the checkstop state if 
MSR[ME] = 0. 

3.3.1 L2 Tag Parity Error
The L2 tag parity protection is guaranteed to detect an odd number of bit flips in the L2 tag array. An L2 
tag parity error can be detected only on a valid L2 tag. An L2 tag parity error is signaled only when there 
is an L2 hit into a valid way of a set that also has another valid way with a tag parity error. 

3.3.2 L2 Multi-Bit ECC
The L2 ECC protection is guaranteed to detect a double-bit error in the L2 data array, although double-bit 
errors are unlikely to occur. Detection of errors with more than two bits is not guaranteed, but these errors 
are even less likely to occur. An L2 multi-bit ECC error can be detected in a cacheline only when there is 
a hit to a valid L2 tag for that cacheline. 

3.3.3 L2 Tag Parity and Multi-Bit ECC Error Recovery
An L2 error can be an L2 tag parity error or an L2 multi-bit ECC error. When L2 hits in a set and detects 
an error, it forwards the hit data to the core, along with the assertion of the core_fault_in signal. The core 
generates the machine check exception as soon as it detects the assertion of core_fault_in. 

If the L1 instruction cache requested the hit data with which core_fault_in was asserted, the device takes 
a machine check interrupt and the cacheline updates the L1 instruction cache. As the L1 cache can be 



Error Correction and Error Handling on PowerQUICC™ III Processors, Rev. 0

Freescale Semiconductor 11
 

External DDR SDRAM ECC

corrupted by an L2 error, flash invalidate both the L1 instruction cache and the L2 cache to recover from 
an L2 error. The L1 instruction cache cannot contain modified data and the L2 cache is write-through by 
design, so the flash invalidate of either cache affects performance but no modified data is lost.

If the L1 data cache requested the hit data with which core_fault_in was asserted, the device takes a 
machine check interrupt, the cacheline is removed, and the L1 data cache is not updated. When an L2 error 
is signaled when the L1 data cache requests the hit data, it is not clear whether the L1 data cache request 
is due to a load or store operation.

A store operation that misses in the L1 data cache and hits in the L2 cache merges with the hit data when 
the L2 returns the cacheline to the core. If an L2 error is detected and core_fault_in is asserted, the merged 
cacheline is removed and the L1D cache is not updated. When the data space is marked cacheable and 
write-back, a data loss occurs if there is an L1D miss and an L2 hit with core_fault_in assertion due to L2 
error. This data loss scenario can also occur if the L1D is disabled. As it cannot be determined whether the 
operation is due to a load or store, an assumption is made that every occurrence of this scenario is a 
possible loss of data. The workarounds for this loss of data scenario are as follows:

• L2 instruction-only mode guarantees that no stores hit in the L2, so the loss of data scenario never 
occurs. L2IO mode incurs a performance penalty because no data is cached in the L2.

• Write-through mode on the cacheable data space guarantees that all modified data is stored to 
external memory. The error scenario occurs and is detected, but there is no loss of data. 
Write-through mode incurs a performance penalty because all stores must propagate to external 
memory.

3.4 Unprotected Memory
The L1 tag/status array, the MMU arrays, the branch target cache, and various compiled SRAMs around 
the microprocessor are not protected by ECC or parity because they are small in relation to the cache 
arrays. Also, they are often larger cells with more stored charge and therefore less vulnerable to soft errors. 
Nevertheless, the results of a soft error are unpredictable. For example, an error in the MMU could result 
in some kind of TLB fault. An error in the branch target cache could result in a program error.

The existence of unprotected memory and the difficulties of dealing with parity detection on modified data 
lead us to wonder why all memory is not protected by ECC or better protected by parity. One reason is that 
the delays associated with ECC or parity generation and detection affect the performance of some of the 
most time-critical functions in a microprocessor. Also, storing parity or ECC bits increases the size and 
cost of the die. In each successive process and each architecture generation, there are trade-offs between 
the amount of soft error protection required by customer applications and the cost in price and 
performance. Today, the largest arrays, which are more likely to experience soft errors, are the only arrays 
that are judged to require error correction or detection.

4 External DDR SDRAM ECC
The PowerQUICC™ III DDR utilizes a 64 bit data word, with 8 ECC syndrome bits, for a total of 72 bits 
of data. The examples used in Section 2.2, “Error Correcting Codes” are simplified cases of SECDED 
ECC logic applied to 8-bit data words.
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The syndrome bits for the DDR ECC are assigned to data bits as listed in Table 1.

Table 1. DDR SDRAM ECC Syndrome Encoding

Data
Bit

Syndrome Bit Data
Bit

Syndrome Bit

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 • • • 32 • • •

1 • • • 33 • • •

2 • • • 34 • • •

3 • • • 35 • • •

4 • • • 36 • • •

5 • • • 37 • • •

6 • • • 38 • • • • •

7 • • • 39 • • • • •

8 • • • 40 • • •

9 • • • 41 • • •

10 • • • 42 • • • • •

11 • • • 43 • • • • •

12 • • • • • 44 • • • • •

13 • • • • • 45 • • • • •

14 • • • • • 46 • • • • •

15 • • • • • 47 • • • • •

16 • • • 48 • • •

17 • • • 49 • • •

18 • • • 50 • • •

19 • • • 51 • • •

20 • • • 52 • • •

21 • • • 53 • • •

22 • • • 54 • • •

23 • • • • • 55 • • •

24 • • • 56 • • •

25 • • • 57 • • •

26 • • • 58 • • •

27 • • • • • 59 • • •

28 • • • • • 60 • • •

29 • • • • • 61 • • • • •
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As listed in Table 1, syndrome bits are not assigned exactly as per the example shown in Section 2.2, 
“Error Correcting Codes.” Instead, the parity bit, R0, is spread out amongst the syndrome bits for different 
16-bit words (that is, R1 is parity for D[16 : 31]). Therefore, from Table 1, it can be seen that R3, for 
example, is equal to the XOR of D2, D6, D10, D14, D17, D21, D25, D29, D32, D36, D40, D44, D50, D54, 
D58, D60, D61, D62, and D63. Using Table 1, it is possible to generate, by hand, ECC syndrome bits for 
a given data-word. For example, for the 64-bit data-word, 0x0123_4567_0123_4567, the syndrome bits 
are 0x4B.

5 Initializing ECC on PowerQUICC™ III Processor
DDR SDRAM ECC is activated on PowerQUICC III processor by setting 
DDR_SDRAM_CFG[ECC_EN] = 1. Once this bit is set, single error detection, correction, and multiple 
bit error detection is active, though errors are reported to software. At this time, one clock cycle is added 
to the read path by the memory controller in order to check ECC and correct single-bit errors. (ECC 
generation does not add a cycle to the write path).

Before enabling ECC error reporting one must first program the entire DDR RAM with an initial value. 
The initial value need not be 0x0, and need not be the same value for the entire memory array. If the cache 
is enabled at this time, then one must do a cache flush so as to ensure that the initialization data makes it 
to the external memory. This initial value programming is necessary so that the data in the ECC RAM 
corresponds to the data in the SDRAM word and the ECC does not detect errors due to an initial mismatch. 
Note that ECC error reporting is enabled by default, so it must be disabled before the first write to DDR 
space, or else all write generate errors.

The PowerQUICC III Hip7 and PowerQUICC III lite (MPC8560, MPC8540, MPC8555, and MPC8541) 
processor that supports DDR1 memory, the writing of an initial value to DDR space can be facilitated 
through the use of the DMA engine on the PowerQUICC III processor. This minimizes the load on the 
CPU, and speed up a potentially long process.

The following is an example of DMA initialization using code taken from U-boot initialization:

void dma_init(void) {
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ccsr_dma_t *dma = &immap->im_dma;

dma->satr0 = 0x02c40000;
dma->datr0 = 0x02c40000;
asm("sync; isync; msync");
return;
}
uint dma_check(void) {
volatile immap_t *immap = (immap_t *)CFG_IMMR;

30 • • • • • 62 • • • • •

31 • • • • • 63 • • • • •

Table 1. DDR SDRAM ECC Syndrome Encoding (continued)

Data
Bit

Syndrome Bit Data
Bit

Syndrome Bit

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
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volatile ccsr_dma_t *dma = &immap->im_dma;
volatile uint status = dma->sr0;

/* While the channel is busy, spin */
while((status & 4) == 4) {
status = dma->sr0;
}

if (status != 0) {
printf ("DMA Error: status = %x\n", status);
}
return status;
}

int dma_xfer(void *dest, uint count, void *src) {
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ccsr_dma_t *dma = &immap->im_dma;

dma->dar0 = (uint) dest;
dma->sar0 = (uint) src;
dma->bcr0 = count;
dma->mr0 = 0xf000004;
asm("sync;isync;msync");
dma->mr0 = 0xf000005;
asm("sync;isync;msync");
return dma_check();
}

Later, the PowerQUICC III processors, including the MPC8548, support automatic initialization of DDR 
memory. To utilize this feature, software must provide a value to be loaded into DDR in the 
DDR_DATA_INIT register, and then initialize DDR by setting DDR_SDRAM_CFG_2[DINT].

Finally, after setting all memory to an initial value error reporting is then initialized through the 
ERR_DISABLE register. ERR_DISABLE[MBED] = 0 reports multiple bit errors and 
ERR_DISABLE[SBED] = 0 reports single-bit error reporting. Once reporting is turned on, the processor 
can be setup to generate interrupts based upon errors through the ERR_INT_ER register.

To summarize, the entire sequence for initialization of DDR ECC is as follows:

1. Enable ECC by setting DDR_SDRAM_CFG[ECC_EN] = 1.

2. Disable ECC error reporting (MBED = 1 and SBED = 1) in the ERR_DISABLE register. 

3. Write dummy data to the entire DDR memory to initialize the ECC syndrome bits.

4. Enable ECC error reporting via ERR_DISABLE[MBED,SBED] = 00.

5.1 Debugging DDR ECC
In debugging DDR memory issues, it may be desirable to read back syndrome bits that are stored into 
memory. This is not a straightforward process, though it is possible through the following steps:

1. Enable ECC by following the procedure as described in Section 5, “Initializing ECC on 
PowerQUICC™ III Processor.”

2. Store data to memory.
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A word to memory is written for the desired ECC. Assuming everything is working correctly, and 
ECC is enabled properly, the memory controller writes the corresponding syndrome bits to 
memory. 

3. Disable ECC by setting DDR_SDRAM_CFG[ECC_EN] = 0.

4. Write a different word to memory at the same location.

A different word is written to the same memory location as specified in step 2. As ECC is disabled, 
the memory controller does not touch the syndrome bits already existing in memory.

5. Enable ECC again by setting DDR_SDRAM_CFG[ECC_EN] = 1 and making sure error 
reporting is turned on.

6. Read memory location.

It generates an ECC error as the word written in step 4 does not matches the syndrome bits written 
in step 2. At this point, it is possible to read back the value of the ECC syndrome bits stored in 
memory, corresponding to the data written in step 2 by reading the value of register, Capture_ECC.

5.2 Testing ECC
The PowerQUICC™ III DDR controller has the ability to inject errors into the ECC words and/or 
syndrome bits in an effort to enable testing and debugging of the ECC interface.

If errors are enabled via ECC_ERR_INJECT[EIEN], a bit in either DATA_ERR_INJECT_HI or 
DATA_ERR_INJECT_LO forces the corresponding bit in the data word to be inverted upon every 64-bit 
write to memory. Subsequent reads should then generate an ECC error. Instead of writing the correctly 
generated ECC syndrome bits, ECC_ERR_INJECT[EMB] enables the mirroring of the most significant 
byte of the data word into the ECC byte upon a write to memory. Additionally, 
ECC_ERR_INJECT[EEIM] enables the inverting of ECC syndrome bits upon writes to memory. 

These three error injection modes enable the debugging of the ECC hardware itself, in the event of a board 
level issue involving ECC.

6 Conclusion
With ever increasing densities of on and off chip memory's, combined with the ongoing decrease in 
memory cell voltages, soft errors are becoming a greater problem that must be considered in any new 
system design. 

New technologies are introduced with the PowerQUICC™ III processor, which help to make the processor 
less susceptible to soft errors than many previous generation processors. The combination of ECC and 
parity enable us to detect and correct errors on internal caches as well as external DDR SDRAM memories, 
which results in a more robust embedded design.
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