
Freescale Semiconductor
Application Note

AN3053
Rev. 1, 03/2008

Table of Contents

Introduction . 1
Infrared Remote Control Modulation
and Encoding Theory . 2

2.1 Amplitude Modulation, On-Off Keying, OOK . 2
2.2 FSK, Frequency Shift Keying,

Frequency Modulation 4
2.3 Flash, ‘Pulse’ Modulation, Base Band 4

MC9S08RC/RD/RE/RG Family Overview. 5
3.1 Features. 5

MC9S08RC/RD/RE/RG Family Infrared
CMT Module . 7

4.1 Carrier Generator. 8
4.2 Modulator. 9
Example Protocols . 10

5.1 Pulse Distance Protocol. 10
5.2 Macros and Common Functions

Description. 14
5.3 Pulse Width Protocol 16
5.4 Manchester Protocol (RC5) 18
5.5 Flash Protocol . 20
5.6 CMT Interrupts. 23

Infrared Remote Control
Techniques on
MC9S08RC/RD/RE/RG Family
by: Pavel Lajšner

Freescale Rožnov p. R., Czech Republic, Europe
1 Introduction
Ever wondered how infrared remotes work? What are the
different modulations and data formats? This simple,
low-cost, yet powerful technology is very often used in
today’s homes.

This application note provides an insight into several of
the most frequently used infrared protocols and
especially their implementation using the Freescale 8-bit
MC9S08RC/RD/RE/RG Family of microcontrollers.

Freescale’s MC9S08RC/RD/RE/RG Family is primarily
targeted at those remote control applications equipped
with a powerful CMT (Carrier Modulator Timer). The
CMT module is a dedicated peripheral that allows the
generation of infrared waveforms for transmitting
infrared signals with minimal software overheads.

See Figure 1.

1
2

3

4

5

© Freescale Semiconductor, Inc., 2005, 2008. All rights reserved.

Infrared Remote Control Modulation and Encoding Theory
Figure 1. Infrared Modulation and Demodulation

2 Infrared Remote Control Modulation
and Encoding Theory

The infrared light used in remote control applications is modulated in order for the receiver to distinguish
between wanted signals and all other sources of infrared noise. There are several different modulation and
encoding techniques used to distinguish between unwanted noise and useful infrared signals.

Basically, three modulation techniques are used:
1. Amplitude Modulation, On-Off Keying, OOK
2. FSK, Frequency Shift Keying, Frequency Modulation
3. Flash, ‘Pulse’ Modulation, Base Band

2.1 Amplitude Modulation, On-Off Keying, OOK
Using amplitude modulation is one of the oldest and simplest techniques, where infrared signals form a
group of pulses with a certain frequency (typically 30–60 kHz), delimited by space where no signals are
generated.

The receiver is tuned to a specific frequency and all other noise won’t go through the receiver band pass
filter. Fully integrated receivers from various manufacturer are available (for example Infineon, Vishay,
Sharp and others). Simple three pin devices provide demodulated signals at logic levels that are very easy
to interface with a receiver’s microprocessor. They are usually tuned at a specific frequency (like 30, 33,
36, 38, 40, or 56 kHz).

Amplitude modulation systems use several encoding methods as described in the following subsections.

RC/RD/RE/RG
MCU

RECEIVER’S
MCU
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor2

Infrared Remote Control Modulation and Encoding Theory
2.1.1 Pulse Distance Encoding
The distance between pulses defines log. ‘1’ or log. ‘0’ respectively, the pulse width is constant

Figure 2. Pulse Distance Encoding

2.1.2 Pulse Width Encoding
The pulse width defines log. ‘1’ or log. ‘0’ respectively, the pulse distance is constant

Figure 3. Pulse Width Encoding

2.1.3 Pulse Position Encoding (NRZ)
Here, the timescale is divided into the constant length intervals, the presence of the a pulse denotes log. ‘1’,
and the absence denotes log. ‘0’, for example.

Figure 4. Pulse Position Encoding

2.1.4 Manchester (Biphase) Encoding
Each bit consists of two half-bits that always have a different level, i.e., there’s a transition from
mark-to-space or space-to-mark. The polarity of the transition defines the logical level, for example
mark-to-space denotes log. ‘1’, space-to-mark denotes log. ‘0’. See Figure 5.

LOG. ‘1’ LOG. ‘0’

LOG. ‘1’ LOG. ‘0’ LOG. ‘1’

LOG. ‘1’ LOG. ‘1’ LOG. ‘1’ LOG. ‘0’ LOG. ‘1’LOG. ‘0’
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 3

Infrared Remote Control Modulation and Encoding Theory
Figure 5. Manchester (Biphase) Encoding

Yet other encodings are possible, with the ones most commonly used mentioned here.

2.2 FSK, Frequency Shift Keying, Frequency Modulation
A frequency modulation uses different modulation frequencies for data logic levels. There’s usually no
space between pulses. Frequency modulation is not widely used mainly because of demodulation
complexity and a not very high efficiency in terms of power consumption on the transmitter side. Typical
waveforms are shown in Figure 6.

Figure 6. Frequency Modulation

2.3 Flash, ‘Pulse’ Modulation, Base Band
In fact, ‘pulse’ modulation doesn’t use any form of modulation but rather short pulses (in CMT
terminology, base-band mode). This sort of ‘modulation’ is very effective in terms of power consumption
(the pulses are typically in the range of tens of microseconds). A disadvantage could be the complexity of
decoding and the fact that the PC-based infrared systems (IrDA) may cause false receiver triggering.

Typically, the distance between pulses defines log. ‘1’ or log. ‘0’ respectively (pulse distance encoding).

Typical waveforms are shown in Figure 7.

Figure 7. Flash Modulation (‘Pulse’ Modulation)

LOG. ‘1’ LOG. ‘0’ LOG. ‘0’ LOG. ‘1’

LOG. ‘1’ LOG. ‘1’ LOG. ‘1’LOG. ‘0’LOG. ‘0’

LOG. ‘1’ LOG. ‘1’ LOG. ‘0’
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor4

MC9S08RC/RD/RE/RG Family Overview
3 MC9S08RC/RD/RE/RG Family Overview
The MC9S08RC/RD/RE/RG are members of the low-cost, high-performance HCS08 Family of 8-bit
microcontroller units (MCUs). All MCUs in this family use the enhanced HCS08 core and are available
with a variety of modules, memory sizes, memory types, and package types.

3.1 Features
Features of the MC9S08RC/RD/RE/RG Family of devices are listed here. Please see the data sheet for the
features available on the different family members.

3.1.1 HCS08 CPU (Central Processor Unit)
• Object code fully upward-compatible with M68HC05 and M68HC08 Families
• HC08 instruction set with added BGND instruction
• Support for up to 32 interrupt/reset sources
• Power-saving modes: wait plus three stops

3.1.2 On-Chip Memory
• On-chip in-circuit programmable Flash memory with block protection and security option
• On-chip random-access memory (RAM)

3.1.3 Oscillator (OSC)
• Low power oscillator capable of operating from crystal or resonator from 1 to 16 MHz
• 8 MHz internal bus frequency

3.1.4 Analog Comparator (ACMP1)
• On-chip analog comparator with internal reference (ACMP1)
• Full rail-to-rail supply operation
• Option to compare to a fixed internal bandgap reference voltage

3.1.5 Serial Communications Interface Module (SCI1)
• Full-duplex, standard non-return-to-zero (NRZ) format
• Double-buffered transmitter and receiver with separate enables
• Programmable 8-bit or 9-bit character length
• Programmable baud rates (13-bit modulo divider)
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 5

MC9S08RC/RD/RE/RG Family Overview
3.1.6 Serial Peripheral Interface Module (SPI1)
• Master or slave mode operation
• Full-duplex or single-wire bidirectional option
• Programmable transmit bit rate
• Double-buffered transmit and receive
• Serial clock phase and polarity options
• Slave select output
• Selectable MSB-first or LSB-first shifting

3.1.7 Timer/Pulse-Width Modulator (TPM1)
• 2-channel, 16-bit timer/pulse-width modulator (TPM1) module that can operate as a free-running

counter, a modulo counter, or an up-/down-counter when the TPM is configured for
center-aligned PWM

• Selectable input capture, output compare, and edge-aligned or center-aligned PWM capability on
each channel

3.1.8 Keyboard Interrupt Ports (KBI1, KBI2)
• Providing 12 keyboard interrupts
• Eight with falling-edge/low-level plus four with selectable polarity
• KBI1 inputs can be configured for edge-only sensitivity or edge-and-level sensitivity

3.1.9 Carrier Modulator Timer (CMT)
• Configurable carrier generator module
• Modulator for generation of the waveforms
• Various modes available for generation of different infrared modes
• CMT module can generate interrupts
• Dedicated infrared output (IRO) pin
• Drives IRO pin for remote control communications
• Can be disconnected from IRO pin and used as an output compare timer
• IRO output pin has high-current sink capability

3.1.10 Development Support
• Background debugging system
• Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two

more breakpoints in on-chip debug module)
• Debug module containing two comparators and nine trigger modes. Eight deep FIFO for storing

change-of-flow addresses and event-only data. Debug module supports both tag and force
breakpoints.
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor6

MC9S08RC/RD/RE/RG Family Infrared CMT Module
3.1.11 Port Pins
• Eight high-current pins (limited by maximum package dissipation)
• Software selectable pullups on ports when used as input. Selection is on an individual port bit

basis. During output mode, pullups are disengaged.
• 39 general-purpose input/output (I/O) pins, depending on package selection

3.1.12 Package Options
• 28-pin plastic dual in-line package (PDIP)
• 28-pin small outline integrated circuit (SOIC)
• 32-pin low-profile quad flat package (LQFP)
• 44-pin low-profile quad flat package (LQFP)
• 48-pin quad flat package (QFN)

3.1.13 System Protection
• Optional computer operating properly (COP) reset
• Low-voltage detection with reset or interrupt
• Illegal opcode detection with reset
• Illegal address detection with reset (some devices don’t have illegal addresses)

4 MC9S08RC/RD/RE/RG Family Infrared CMT
Module

The basic simplified structure of the carrier modulator timer is shown in Figure 8. There are two main
blocks of this module:

• Carrier generator
• Modulator

Figure 8. Simple CMT Module Structure

CARRIER
GENERATOR

MODULATOR

TRANSMITTER
OUTPUT

IRO PIN

fCG
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 7

MC9S08RC/RD/RE/RG Family Infrared CMT Module
Carrier generator creates the carrier (base) frequency, typically in the range 30-60 kHz with selected
duty cycle. The Modulator ‘gates’ this signal, i.e., generates mark and space periods respectively. The
Transmitter output controls the behavior of the IRO pin, polarity, etc.

This is a simplified overview of the CMT module, the detailed structure is shown in Figure 9.

Figure 9. Detailed CMT Module Structure

Further explanation refers to the mostly used Time Mode, other modes are described in the
MC9S08RC/RD/RE/RG data sheet. The time mode has been selected because it’s the most popular
infrared mode used.

4.1 Carrier Generator
Generates the carrier frequency (fCG typically 30–60 kHz). A pair of two 8-bit registers is used to
determine the frequency and duty cycle. The fCG frequency is given by the sum of both high (CMTCGH1)
and low (CMTCGL1) registers:

A duty cycle (typically selected between 30% and 50%) is given as the ratio:

CLOCK
CONTROL

CMTCLK CARRIER
GENERATOR

CARRIER
OUT (fCG) MODULATOR

MODULATOR
OUT

TRANSMITTER
OUTPUT

IRO
PIN

CMTDIV

BUS

C
M

T
C

G
 R

E
G

S

F
S

K

B
A

S
E

E
X

S
P

C

E
O

C
 F

LA
G

E
O

C
 IN

T
 E

N

M
R

E
Q

C
M

T
 C

M
D

 R
E

G
S

M
C

G
E

N

C
M

T
P

O
L

IR
O

P
E

N

IR
O

L

CMT REGISTERS
AND BUS INTERFACE

CLOCK

IIREQINTERNAL BUS

PRIMARY/SECONDARY SELECT

fCG
fCMTCLK

CMTCGH1 CMTCGL1+()
--=

DutyCycle CMTCGH1
CMTCGH1 CMTCGL1+()

--=
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor8

MC9S08RC/RD/RE/RG Family Infrared CMT Module
To calculate CMTCG registers values, the following equations can be used:

Where:
fCMTCLK = 8,000,000 Hz
Duty Cycle = 0.3 for 30% duty cycle
fCG = 38,000 Hz (required carrier frequency)

Using this example, the CMTCG registers should be loaded with the following values:
CMTCGH1 = 63;
CMTCGL1 = 147;

The real fCG would be 38.095 kHz, the duty cycle is exactly 30%.

4.2 Modulator
Modulator is another block that generates the waveform envelopes, i.e., it controls (gates) carrier
frequency generator output. Two 16-bit registers (CMTCMD12 and CMTCMD34) control the timing of
waveform envelopes:

CMTCMD12 (called ‘mark’ period register)
CMTCMD34 (called ‘space’ period register)

The main clock base of the modulator is fCMTCLK/8, in the case of fCMTCLK = 8 MHz, the minimum period
is 1μs. Mark and space periods are as follows:

To calculate CMTCMD register values, the following equations can be used:

Where:
fCMTCLK = 8,000,000 Hz
tMARK and tSPACE are required mark and space times (in seconds)

CMTCGH1
fCMTCLK

fCG
--------------------------- DutyCycle⋅=

CMTCGL1
fCMTCLK

fCG
--------------------------- 1 DutyCycle–()⋅=

tMARK
CMTCMD12 1+
fCMTCLK 8÷

---=

tSPACE
CMTCMD34
fCMTCLK 8÷
------------------------------------=

CMTCMD12 tMARK
fCMTCLK

8
---------------------------⋅ 1–=

CMTCMD34 tSPACE
fCMTCLK

8
---------------------------⋅=
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 9

Example Protocols
For generation of one cycle with a 560 μs mark period followed by a 1690 μs space period, the
CMTCMD12 and CMTCMD34 registers should be loaded with the following values:

CMTCMD12 = 559;
CMTCMD34 = 1690;

Using these example values, the following waveform will be generated. This waveform is just one pulse
distance encoded bit, as described later in this document:

Figure 10. Example Waveform of Pulse Distance Encoded Bit

NOTE
CMTCLK value (8 MHz) used in this example is derived from the
widely-used 16-MHz clock (crystal), whose frequency is divided by two to
get the bus clock. The bus clock is then divided by 1 in the CMT clock
control module. Such a setting allows the most precise timing while longer
periods (lower frequencies) are possible using a different divider ratio in
clock control module.

5 Example Protocols
There are hundreds of infrared protocols existing world wide, but most of them are just frequency or
format variants of a few. Some of the most popular ones were picked up and implemented using the
Freescale MC9S08RC/RD/RE/RG microprocessor fully utilizing the CMT module. The example C source
codes are also available.

5.1 Pulse Distance Protocol
Pulse distance protocol is often used by Japanese companies (NEC and others). It uses pulse distance
encoding and amplitude modulation. The data payload consists of 8 bits address and 8 bits command, both
are sent twice for reliability. The second transmission of address and command are complementary, thus
the total length of the frame is constant. The data is preceded by a train pulse, 9 ms mark, and a 4.5 ms
space in order to settle automatic gain control (AGC) of the receiver. The data is finalized by a 560 μs mark
tail pulse, to finish the last bit data gap (distance).

560 μs 1690 μs

26.28 μs

38.095 kHz, DUTY CYCLE 30%, 21 PULSES
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor10

Example Protocols
Log. ‘1’ is denoted as a 560 μs mark period followed by a 1690 μs space period

Log. ‘0’ is denoted as a 560 μs mark period followed by a 560 μs space period

Carrier frequency is 38 kHz.

Figure 11. Pulse Distance Protocol, Bit Encoding

Overall data frame structure is shown in Figure 12.

Figure 12. Pulse Distance Protocol, Data Frame Structure

Autorepeat function for this protocol is handled by repeat frames that do not carry any address or command
data but are rather train pulses followed by a tail pulse. The repeat frame is repeated every 110 ms till the
same key is pressed on the remote control. The format of the repeat frame is shown in Figure 13.

Figure 13. Pulse Distance Protocol, Repeat Frame Structure

The full sequence is shown in Figure 14.

Figure 14. Pulse Distance Protocol, Full Sequence Structure

560 μs 560 μs 560 μs1690 μs

LOG. ‘0’LOG. ‘1’

9 ms ADDRESS4.5 ms COMMANDADDRESS COMMAND

‘0’ ‘0’‘0’ ‘0’ ‘0’ ‘0’ ‘0’ ‘0’‘0’‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’‘1’ ‘1’ ‘1’ ‘1’ ‘0’ ‘1’ ‘0’ ‘0’ ‘1’ ‘0’‘0’ ‘1’ ‘0’ ‘0’ ‘1’ TAILTRAIN
LSB LSBLSB LSBMSB MSBMSB MSB

9000 μs 560 μs2250 μs

110 ms 110 ms 110 ms

DATA FRAME REPEAT FRAME REPEAT FRAME REPEAT FRAME

KEY PRESS
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 11

Example Protocols
5.1.1 Pulse Distance Driver Flowchart
The overall structure the pulse distance driver is shown in Figure 15 (other protocols are not shown here
but are very similar).

Figure 15. Pulse Distance Protocol, Driver Flowchart

ENTRY

TimerResAndGo()

SET-UP CARRIER GENERATOR

SET-UP TRAIN PULSE TIMING

CMTEnable()

SEND ALL DATA BITS

WaitEOC()

SET-UP TAIL PULSE TIMING

CMTDisable()

-

+

WaitTmrFlag()
-

+

EXIT

CheckButton()
Pressed

Released

TimerResAndGo()

SET-UP CARRIER GENERATOR

SET-UP TRAIN PULSE TIMING

CMTEnable()

SET-UP TAIL PULSE TIMING

CMTDisable()

WaitTmrFlag()
-

+

REPEAT FRAME

WaitEOC()
-

+

WaitEOC()
-

+

WaitEOC()
-

+

DATA FRAME
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor12

Example Protocols
5.1.2 Pulse Distance Protocol Source Code

#define PDP_REPEAT_PERIOD TPMCLK_MS(110.0)
#define PDP_CARRIER_FREQUENCY 38000 // [Hz]
#define PDP_IR_RATIO 30 // [%]
#define PDP_PULSETRAIN_ON 9000.0 // usec
#define PDP_PULSETRAIN_OFF 4500.0 // usec

#define PDP_DATA_ON 560.0 // usec
#define PDP_DATA_1_OFF 2250.0-560.0 // usec
#define PDP_DATA_0_OFF 1120.0-560.0 // usec

void PDP_byte(unsigned char data)
{
unsigned char bits = 8;

 do {
if (data & 0x01)

ModClockOff(PDP_DATA_1_OFF); // log. '1' space
else

ModClockOff(PDP_DATA_0_OFF); // log. '0' space

 WaitEOC(); // wait for CMT to load values
data >>= 1;

} while (--bits);
}

void PDP_protocol(unsigned char address, unsigned char data)
{
unsigned int cmdCnt;

cmdCnt = 0; /* command counter */

TimerResAndGo(PDP_REPEAT_PERIOD);

// set up Carrier generator
CGClockOn(PDP_CARRIER_FREQUENCY, PDP_IR_RATIO);
CGClockOff(PDP_CARRIER_FREQUENCY, PDP_IR_RATIO);

// train pulse
ModClockOn(PDP_PULSETRAIN_ON); // on-time train pulse
ModClockOff(PDP_PULSETRAIN_OFF); // off-time train pulse

CMTEnable(CMTMSC_MCGEN_MASK); // enable & start CMT
WaitEOC(); // wait for CMT to load values

ModClockOn(PDP_DATA_ON); // on-time always the same

// send adress and data
PDP_byte(address);
PDP_byte(~address);
PDP_byte(data);
PDP_byte(~data);

// tail pulse
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 13

Example Protocols
ModClockOff(0); // tail pulse is zero
WaitEOC(); // wait for CMT to load values

CMTDisable(); // disable CMT entirely

WaitTmrFlag();

 while (CheckButton(cmdCnt++)) // see whether the key is still pressed
 (to send repeats)
 {
 TimerResAndGo(PDP_REPEAT_PERIOD);

 // set up Carrier generator
 CGClockOn(PDP_CARRIER_FREQUENCY, PDP_IR_RATIO);
 CGClockOff(PDP_CARRIER_FREQUENCY, PDP_IR_RATIO);

 // train pulse
 ModClockOn(PDP_PULSETRAIN_ON); // on-time train pulse
 ModClockOff(PDP_PULSETRAIN_OFF); // off-time train pulse

 CMTEnable(CMTMSC_MCGEN_MASK); // enable & start CMT
 WaitEOC(); // wait for CMT to load values

 // tail pulse
 ModClockOn(PDP_DATA_ON); // on-time always the same
 ModClockOff(0); // tail pulse is zero
 WaitEOC(); // wait for CMT to load values

 CMTDisable(); // disable CMT entirely

 WaitTmrFlag();
 };
}

5.2 Macros and Common Functions Description
In the source code examples several C macros and common functions are used in order to improve
readability and simplicity of the code. The macros are found in ircommon.h:

#define ModClockOn(usec) CMTCMD12 = ((usec)*CMTCLOCK/(8*1000000.0)-1)
// useconds on-time macro for carrier generator

#define ModClockOff(usec) CMTCMD34 = ((usec)*CMTCLOCK/(8*1000000.0))
// useconds off-time macro for carrier generator

#define CGClockOn(freq,ratio) CMTCGH1 = ((CMTCLOCK)/(freq)*(ratio)/100.0)
// mark time macro

#define CGClockOff(freq,ratio) CMTCGL1 = ((CMTCLOCK)/(freq)*(100.0-ratio)/100.0)
// space time macro

where CMTCLOCK defines the CMT module clock in Hz (here 8,000,000). Using these macros, the proper
values are calculated at compile time, just as shown in the example source code.
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor14

Example Protocols
Similarly CMTEnable() and CMTDisable()macros are defined:
#define CMTEnable(config) { CMTOC = CMTOC_IROPEN_MASK; CMTMSC = (config);}
#define CMTDisable() { CMTMSC = 0; }

In addition, several common functions are defined in ircommon.c:

TimerResAndGo() and WaitEOC()functions are used to handle the inter-frame timing (i.e., the
timing between data frames and repeat frames (where applicable)).
void TimerResAndGo(unsigned int repeattime)
{

TPM1SC = (0x07&TPM1SC_PS_MASK) | TPM1SC_CLKSA_MASK; // for clock/128, BUS clock as source
TPM1C0SC = TPM1C0SC_MS0A_MASK;// software timer, no port ctrl, clear CH0F flag
TPM1C0V = TPM1CNT + repeattime;// set up timer period for repeat frame
TPM1C0SC_CH0F = 0;// clear the flag

}

TimerResAndGo() function sets up the 16-bit TPM timer that will generate a software output compare
event at specified interval from the current time. For example, calling
TimerResAndGo(TPMCLK_MS(110.0)); will ensure that after 110 ms the software output compare
occurs and can be detected using the next function:
void WaitTmrFlag(void)
{

while(!TPM1C0SC_CH0F)// wait for Timer Flag
__RESET_WATCHDOG(); /* kicks the dog */

TPM1C0SC_CH0F = 0;// clear the flag
}

WaitTmrFlag() will wait till the software output compare (set up using TimerResAndGo()) event
occurs. Then the function is terminated and the software control is returned back to the main flow.

The next function is related to synchronization of writes to the modulator block registers. The mark and
space timing registers can only by updated after the EOC flag is set in the CMTMSC register.
void WaitEOC(void)
{

while (!CMTMSC_EOCF)
__RESET_WATCHDOG(); /* kicks the dog */

}

WaitEOC()function is used to wait till the modulator block takes over the values for the next cycle (as
shown in Figure 10) so that the next values can be written.

Finally, the last function CheckButton() is used by the infrared driver to check the status of the remote
control keyboard. This callback function should return a non-zero value if the same key is pressed, zero if
released.
unsigned char CheckButton(unsigned int cmdCnt)
{
 __RESET_WATCHDOG(); /* kicks the dog */

// scan buttons here and return non-zero if the same key is still pressed

 return (cmdCnt < 2); // here just two presses **DEMO ONLY**
}

Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 15

Example Protocols
5.3 Pulse Width Protocol
Pulse width protocol, known also as SIRC, this protocol was developed by Sony. It uses pulse width
encoding and amplitude modulation. The data payload consists of 7 bits command and 5 bits address. The
data is preceded by a train pulse, 2.4 ms mark, and a 0.6 ms space in order to settle automatic gain control
(AGC) of the receiver.

Log. ‘1’ is denoted as a 1200 μs mark period followed by a 600 μs space period

Log. ‘0’ is denoted as a 600 μs mark period followed by a 600 μs space period

Carrier frequency is 40 kHz.

Figure 16. Pulse Width Protocol, Bit Encoding

Overall data frame structure is shown in Figure 17.

Figure 17. Pulse Width Protocol, Data Frame Structure

Autorepeat function for this protocol is handled by repeating the data frames The frames are repeated every
45 ms until the same key is pressed on the remote control. The full sequence is shown in Figure 18.

Figure 18. Pulse Width Protocol, Full Sequence Structure

600 μs 600 μs1200 μs

LOG. ‘0’LOG. ‘1’

600 μs

2.4 ms

COMMAND0.6 ms ADDRESS

‘0’‘0’‘0’ ‘0’‘0’‘1’ ‘1’‘1’ ‘1’ ‘1’ ‘1’TRAIN
LSB LSBMSB MSB

‘0’

45 ms

DATA FRAME

KEY PRESS

45 ms

DATA FRAME

45 ms

DATA FRAME

45 ms

DATA FRAME
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor16

Example Protocols
5.3.1 Pulse Width Protocol Source Code

#define SIRC_REPEAT_PERIOD TPMCLK_MS(45.0)
#define SIRC_CARRIER_FREQUENCY 40000 // [Hz]
#define SIRC_IR_RATIO 33 // [%]
#define SIRC_PULSETRAIN_ON 2400.0 // usec
#define SIRC_PULSETRAIN_OFF 600.0 // usec

#define SIRC_DATA_OFF 600.0 // usec
#define SIRC_DATA_1_ON 1200.0 // usec
#define SIRC_DATA_0_ON 600.0 // usec

void SIRC_bits(unsigned char data, unsigned char bits)
{

do {
if (data & 0x01)

ModClockOn(SIRC_DATA_1_ON); // log. '1' mark
else

ModClockOn(SIRC_DATA_0_ON); // log. '0' mark

WaitEOC(); // wait for CMT to load values
data >>= 1;

} while (--bits);
}

void SIRC_protocol(unsigned char address, unsigned char command)
{
unsigned int cmdCnt;

cmdCnt = 0; /* command counter */

 // set up Carrier generator
CGClockOn(SIRC_CARRIER_FREQUENCY, SIRC_IR_RATIO);
CGClockOff(SIRC_CARRIER_FREQUENCY, SIRC_IR_RATIO);

do {
 TimerResAndGo(SIRC_REPEAT_PERIOD);

 // train pulse
 ModClockOn(SIRC_PULSETRAIN_ON); // on-time train pulse
 ModClockOff(SIRC_PULSETRAIN_OFF); // off-time train pulse

 CMTEnable(CMTMSC_MCGEN_MASK); // enable & start CMT
 WaitEOC(); // wait for CMT to load values

 ModClockOff(SIRC_DATA_OFF); // off-time always the same

 // send adress and data
 SIRC_bits(command, 7);
 SIRC_bits(address, 5);

 CMTDisable(); // disable CMT entirely
WaitTmrFlag();

} while (CheckButton(++cmdCnt));// see whether the key is still pressed (to send repeats)
}

Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 17

Example Protocols
5.4 Manchester Protocol (RC5)
RC5 protocol has been developed by Philips and is one of the most popular among hobbyists. It uses the
Manchester (Biphase) encoding and amplitude modulation. The data payload consists of 5 bits address and
6 bits command.

The data is preceded by two start log. ‘1’ bits (S1 and S2) and one toggle bit (T). The toggle bit changes
between ‘1’ and ‘0’ between separate key presses in order for the receiver to distinguish a long key press
from several short key presses.

Log. ‘1’ is denoted as a 889 μs space period followed by a 889 μs mark period.

Log. ‘0’ is denoted as a 889 μs mark period followed by a 889 μs space period.

Each bit is 1778 μs long. Carrier frequency is 36 kHz.

Figure 19. RC5 Protocol, Bit Encoding

Overall data frame structure is shown in Figure 20.

Figure 20. RC5 Protocol, Data Frame Structure

Autorepeat function for this protocol is handled by repeat data frames with the same toggle bit. If ever the
key is pressed again, the next transmission holds the same data but the toggle bit is changed from ‘1’ to
‘0’ or vice versa.

There is also an extended version of this protocol, where the S2 start bit is no longer fixed but is interpreted
rather as an inverted 6th address bit. The full sequence is shown in Figure 21.

Figure 21. RC5 Protocol, Full Sequence Structure

889 μs

LOG. ‘1’LOG. ‘0’

889 μs 889 μs 889 μs

LOG. ‘0’ LOG. ‘1’ LOG. ‘1’

ADDRESS COMMAND

‘0’
LSBMSB MSB

‘1’ ‘1’ ‘1’ ‘1’ ‘1’‘0’ ‘0’
LSB

‘1’‘1’‘1’‘0’ ‘0’ ‘0’

S1 S2 T

114 ms

DATA FRAME

KEY PRESS

114 ms 114 ms

DATA FRAME DATA FRAME DATA FRAME
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor18

Example Protocols
5.4.1 Manchester Encoding Implementation
Since the CMT module allows generating one full cycle (see Figure 10) that is composed from a mark
period followed by a space period, an extended space feature of the CMT module needs to be used to
generate a Manchester log. ‘1’ (space followed by mark). The EXSPC bit in the CMTMSC register must
be set to use this feature. The extended space cycle is the same as the regular cycle but no carrier is
generated during the mark period. Thus, to generate a Manchester log. ‘1’, two cycles are required:

• First cycle has the extended space bit set, mark period equal to half-bit time, space period of zero.
• Second cycle has the extended space bit cleared, mark period equal to half-bit time, space period

of zero too.

Figure 22. Manchester Encoding, Generation Space Followed by Mark

Log. ‘0’ is generated as a regular time-mode cycle with both mark and space periods equal to a half-bit
time,

5.4.2 RC5 Protocol Source Code

#define RC5_REPEAT_PERIOD TPMCLK_MS(114.0)
#define RC5_CARRIER_FREQUENCY 36000 // [Hz]
#define RC5_IR_RATIO 33 // [%]

#define RC5_HALF_BIT 889.0 // usec
#define RC5_MODE 0 // no enable until first bit

void RC5_bits(unsigned char data, unsigned char bits)
{

do {
if (data & 0x80)
{ /* Manchester bit 0 - ie. 01 '_M', extended space + second mark */

 ModClockOn(RC5_HALF_BIT);
 ModClockOff(0);

CMTMSC_EXSPC = 1; // extended space for half bit
CMTMSC_MCGEN = 1; // start CMT if needed
WaitEOC();

CMTMSC_EXSPC = 0; // no extended space for half bit
 ModClockOff(0);

}
else

 { /* Manchester bit 1 - ie. 10 'M_', normal mark/space */

MARK PERIOD,

ONE MANCHESTER BIT

MARK PERIOD,
EXTENDED SPACE SET,
SPACE PERIOD ZERO EXTENDED SPACE CLEARED
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 19

Example Protocols
 ModClockOn(RC5_HALF_BIT);
 ModClockOff(RC5_HALF_BIT);

CMTMSC_MCGEN = 1; // start CMT if needed
 }

data <<= 1; // MSB first
WaitEOC();

} while (--bits);
}

void RC5_protocol(unsigned char address, unsigned char command)
{
unsigned int cmdCnt;
static unsigned char toggle;

cmdCnt = 0; /* command counter */
toggle ^= 0xFF; /* toggle byte for this session */

 // set up Carrier generator
CGClockOn(RC5_CARRIER_FREQUENCY, RC5_IR_RATIO);
CGClockOff(RC5_CARRIER_FREQUENCY, RC5_IR_RATIO);

do {
 TimerResAndGo(RC5_REPEAT_PERIOD);

 CMTEnable(RC5_MODE); // no-enable & just start CMT

// send start bits & toggle
 RC5_bits(0xC0 | (toggle & 0x20), 3);

// b7, b6 are constant 1 startbits, b5 is toggle bit
 // send adress and data
 RC5_bits(address<<3, 5);
 RC5_bits(command<<2, 6);

 CMTDisable(); // disable CMT entirely

 WaitTmrFlag();
} while (CheckButton(++cmdCnt)); // see whether the key is still pressed

 (to send repeats)
}

5.5 Flash Protocol
Flash protocol was developed by ITT. It uses Flash (‘Pulse’) modulation. The data payload consists of
4 bits address and 6 bits command. The data is preceded by a lead-in pulse and a start pulse (log. ‘0’), and
finalized by a lead-out pulse. All pulses are 10 μs long, the distance between pulses are 100 μs for log. ‘0’,
200 μs for log. ‘1’, and 300 μs for lead-in and lead-out pulses.

Figure 23. Flash Protocol, Bit Encoding

200 μs
LOG. ‘0’LOG. ‘1’

100 μs

10 μs
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor20

Example Protocols
Overall data frame structure is shown in Figure 24.

Figure 24. Flash Protocol, Data Frame Structure

Autorepeat function for this protocol is handled by repeating the data frames The frames are repeated every
130 ms until the same key is pressed on the remote control. The full sequence is shown in Figure 25

Figure 25. Flash Protocol, Full Sequence Structure

5.5.1 Flash Modulation Implementation
The CMT module also allows generating also Flash modulation. In CMT terminology this is called a
baseband mode and the configuration is very similar to the time mode. The carried generator is not used,
so its registers are not configured. To use baseband mode, the BASE bit in the CMTMSC register must be
set.

5.5.2 Flash Protocol Source Code

#define FLASH_REPEAT_PERIOD TPMCLK_MS(130.0)
#define FLASH_LEAD_IN_ON 10.0 // usec
#define FLASH_LEAD_IN_OFF 300.0 // usec
#define FLASH_LEAD_OUT_ON 10.0 // usec
#define FLASH_LEAD_OUT_OFF 300.0 // usec

#define FLASH_DATA_ON 10.0 // usec
#define FLASH_DATA_1_OFF 200.0 // usec
#define FLASH_DATA_0_OFF 100.0 // usec

COMMANDADDRESS

‘0’ ‘0’‘0’ ‘0’‘1’ ‘1’‘1’ ‘1’ ‘1’LEAD-IN LSB LSBMSB MSB
‘0’ LEAD-OUTS

T
A

R
T

130 ms

DATA FRAME

KEY PRESS

130 ms 130 ms

DATA FRAME DATA FRAME DATA FRAME
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 21

Example Protocols
void FLASH_bits(unsigned char data, unsigned char bits)
{
 do
 {

if (data & 0x01)
ModClockOff(FLASH_DATA_1_OFF); // log. '1' space

else
ModClockOff(FLASH_DATA_0_OFF); // log. '0' space

 WaitEOC(); // wait for CMT to load values
data >>= 1;

} while (--bits);
}

void FLASH_protocol(unsigned char address, unsigned char command)
{
unsigned int cmdCnt;

cmdCnt = 0; /* command counter */

do {
 TimerResAndGo(FLASH_REPEAT_PERIOD);

 // lead-in pulse
 ModClockOn(FLASH_LEAD_IN_ON);// on-time lead-in pulse
 ModClockOff(FLASH_LEAD_IN_OFF);// off-time lead-in pulse

 CMTEnable(CMTMSC_BASE_MASK | CMTMSC_MCGEN_MASK); // enable base mode & start CMT
 WaitEOC(); // wait for CMT to load values

 ModClockOn(FLASH_DATA_ON); // on-time always the same

 // send adress and data
 FLASH_bits(0, 1); // start bit, zero
 FLASH_bits(address, 4);
 FLASH_bits(command, 6);

 // lead-out pulse
 ModClockOn(FLASH_LEAD_OUT_ON);// on-time lead-out pulse
 ModClockOff(FLASH_LEAD_OUT_OFF);// off-time lead-out pulse
 WaitEOC(); // wait for CMT to load values

 // tail pulse
 ModClockOn(FLASH_LEAD_OUT_ON);// on-time tail pulse
 ModClockOff(0); // off-time tail pulse, zero
 WaitEOC(); // wait for CMT to load values

 CMTDisable(); // disable CMT entirely

 WaitTmrFlag();
} while (CheckButton(++cmdCnt));// see whether the key is still pressed (to send repeats)

}

Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor22

Example Protocols
5.6 CMT Interrupts
The examples above are based on a polling method (the software polls the various flags until another write
to the registers is possible). Such a method is more descriptive so it was selected for the purpose of the
application note. Often, this method is sufficient for most implementations.

Anyway, a CMT module allows generating interrupts at the end of each cycle and creating software that
is completely interrupt driven. The interrupt is generated whenever the end of cycle flag (EOCF) is set. A
description of interrupt driven software is out with the scope of this document. The full description of the
CMT interrupts can be found in the MC9S08RC/RD/RE/RG data sheet.
Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family, Rev. 1

Freescale Semiconductor 23

AN3053
Rev. 1, 03/2008

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005, 2008. All rights reserved.

	1 Introduction
	2 Infrared Remote Control Modulation and Encoding Theory
	2.1 Amplitude Modulation, On-Off Keying, OOK
	2.1.1 Pulse Distance Encoding
	2.1.2 Pulse Width Encoding
	2.1.3 Pulse Position Encoding (NRZ)
	2.1.4 Manchester (Biphase) Encoding

	2.2 FSK, Frequency Shift Keying, Frequency Modulation
	2.3 Flash, ‘Pulse’ Modulation, Base Band

	3 MC9S08RC/RD/RE/RG Family Overview
	3.1 Features
	3.1.1 HCS08 CPU (Central Processor Unit)
	3.1.2 On-Chip Memory
	3.1.3 Oscillator (OSC)
	3.1.4 Analog Comparator (ACMP1)
	3.1.5 Serial Communications Interface Module (SCI1)
	3.1.6 Serial Peripheral Interface Module (SPI1)
	3.1.7 Timer/Pulse-Width Modulator (TPM1)
	3.1.8 Keyboard Interrupt Ports (KBI1, KBI2)
	3.1.9 Carrier Modulator Timer (CMT)
	3.1.10 Development Support
	3.1.11 Port Pins
	3.1.12 Package Options
	3.1.13 System Protection

	4 MC9S08RC/RD/RE/RG Family Infrared CMT Module
	4.1 Carrier Generator
	4.2 Modulator

	5 Example Protocols
	5.1 Pulse Distance Protocol
	5.1.1 Pulse Distance Driver Flowchart
	5.1.2 Pulse Distance Protocol Source Code

	5.2 Macros and Common Functions Description
	5.3 Pulse Width Protocol
	5.3.1 Pulse Width Protocol Source Code

	5.4 Manchester Protocol (RC5)
	5.4.1 Manchester Encoding Implementation
	5.4.2 RC5 Protocol Source Code

	5.5 Flash Protocol
	5.5.1 Flash Modulation Implementation
	5.5.2 Flash Protocol Source Code

	5.6 CMT Interrupts

	Infrared Remote Control Techniques on MC9S08RC/RD/RE/RG Family

