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Introduction

The intent of this application note is to introduce a standard method for implementing HCS12 FLASH 
erase and programming functions for devices with single FLASH array implementations. The example 
presented here enables the HCS12 user to program / erase FLASH locations conveniently from user 
code.

In the HCS12 Family, there are different implementations of the various FLASH memories in several 
devices. For example, the MC9S12DP256 device has four 64K array blocks implementing the 256K total 
FLASH space. (For more detailed information on FLASH array block(s), see Freescale application note 
AN1837.) On the MC9S12DP256 device, the user could code program and erase routines to reside in 
one of the four array block(s) and call this code to perform functions on the other three blocks. This 
solution becomes limited when the application demands that the fourth array block(s) be 
re-program-mable, or if the application is based on smaller FLASH devices such as the single array 
MC9S12C32.
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Flash.c
Overcoming these limitations is the focus of this application note. The described method is based on a 
concept presented in Freescale application note AN2548 entitled HCS12 Serial Monitor but elaborated 
here such that it has a callable C wrapper and supports a more powerful implementation. The idea behind 
this concept is to create a small assembly routine that can be copied to the device’s software stack, 
executed from there, and then removed. This concept of programming and erasing from the stack is 
important in the embedded controller environment because memory resources are directly related to 
device cost. Alternative methods involve holding a routine in FLASH memory and copying it to RAM space 
for execution. In order for this to work, a 

portion of the user RAM must be reserved to hold this routine. This buffer space will never be available 
for system use. This is a waste of a precious resource for a function that might be performed once or twice 
in an products’ lifetime.

The FLASH software is contained in two files:

• The Flash.c routines are C callable functions interfacing to the Do_On_Stack.asm routine. 

• The DoOnStack routine handles the movement of the SpSub routine to the system stack and then 
the SpSub handles the actual programming and erasing.

Limitations:

Assuming that the interrupt service routines are stored in the preserved upper bank. Interrupts will be 
disabled for ~20 ms during the erase function and ~46 μs for the programming (code execution time 
ignored and assuming a 200 kHz FLASH clock).

Flash.c

The following functions are contained the flash.c file to facilitate FLASH programming of the HCS12 
FLASH:

• Flash_Init

• Flash_Write_Word

• Flash_Erase_Sector

• Flash_Write_Block

• Flash_Erase_Block

Details of the calling and return values are shown below.

Flash_Init()

The function Flash_Init must be called prior to utilizing any of the FLASH programming or erase functions. 
This function initializes the clock speed of the HCS12 FLASH state machine. Its prototype is:

void Flash_Init(unsigned long oscclk);

It is called, as shown below, where 8000 kHz (8 MHz) is the oscillator frequency of the system.
(void) Flash_Init(8000);

The Flash_Init function does not require any assembly level calls, and only needs to be called once during 
application setup. Additional calls of the function will not affect system operation as the register affected 
is write once. The initialization will remain valid until the next system reset.
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Flash_Erase_Sector()

The Flash_Erase_Sector function erases the entire sector pointed to by the passed address. Care must 
be taken to ensure that there is no data or code of value remaining in this sector. Currently HCS12 devices 
either have a sector size of 512 or 1024 bytes. All of these sector locations will be erased to the 
un-programmed state by this function. 

For code updating it is not usually necessary to save any part of a sector, but for data storage areas this 
might be important. The application software has two choices:

1. Buffer the sector in RAM either on the stack or in a buffer, or 

2. Use the Flash_Write_Block function (described below) to move any valid data to an unused FLASH 
sector while the current sector is erased. 

In an embedded environment the second option is most often the best choice.

In the first example, the absolute address must be type cast with the *far type so that the compiler 
recognizes to treat this as a far pointer. (24 bit)

The address passed to the Flash_Erase_Sector function is checked to make sure that it is the first 
address of the sector. This is done as a safety precaution. This check may be removed from the code 
without issue if the programmer does not wish this restriction.

The prototype for the Flash_Erase_Sector function is:

signed char Flash_Erase_Sector(unsigned int *far far_address);

Returned values are:

Successful (1)

Errors:

Flash_Odd_Access (–1)
Access_Error (–3)
Protection_Error (–4)
Not_StartofSector_Error (–5)

It may be called in several ways:

(void) Flash_Erase_Sector ((unsigned int *far) 0x3FF400);
Or:

(void) Flash_Erase_Sector (Start_of_Sector);
Or:

(void) Flash_Erase_Sector (&Flash_Parameter1);
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Flash_Write_Word()

The Flash_Write_Word function writes a single 16-bit word of data, passed to the function, to the address 
passed to the function.

In the first example, the absolute address again must be type cast with the *far type so that the compiler 
recognizes to treat this as a far pointer. (24 bit)

The second example moves a storage word in RAM to a word in FLASH. This function is restricted to word 
values only. To move byte data, the application must build the desired word from two desired bytes. This 
must be done as the HCS12 FLASH only supports word writes. Additionally, long operands (32 bit) must 
be split by the application into two separate function calls.

The prototype for the Flash_Write_Word function is:

signed char Flash_Write_Word (unsigned int *far address, \
unsigned int data);

Returned values are:

Successful (1)

Errors:

Flash_Odd_Access  (–1)
Flash_Not_Erased  (–2)
Access_Error       (–3)
Protection_Error  (–4)

It may be called as above in several ways:

(void) Flash_Write_Word ((unsigned int *far) 
0x3FF400),0xABCD);
Or:
 (void) Flash_Write_Word (&Flash_Parameter1,&Ram_data1);
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Flash_Erase_Block()

The Flash_Erase_Block function is an extension of the Flash_Erase_Sector function it erases multiple 
sectors starting at the passed address on the first sector, to the end of the sector of the ending address 
passed to the function. Care must be taken with this function as noted above with the Flash_Erase_Sector 
function as it erases a location from the start address to the end address + the sector size. (512 or 1024 
bytes).

Assuming in the second example that the Start_of_Sector1 and Start_of_Sector3 pointers are initialized 
correctly, the above call will erase all sectors from Start_of_Sector1 to the end of the sector containing 
Start_of_Sector3.

This function only supports a 16K bank per call. Addresses should never cross a page boundary. 
(0x7FFF–0x8000 or 0xBFFF–0xC000) Doing so will cause unexpected erasures of memory.

The prototype is:

signed char Flash_Erase_Block (unsigned int *far start_address,\
                                                   unsigned int *far end_address);

Returned values are:

Successful (1)

Errors:

Flash_Odd_Access (–1)
Access_Error (–3)
Protection_Error (–4)
Not_StartofSector_Error (–5)

It may be called as above in several ways:

(void) Flash_Erase_Block ((unsigned int *far) 0x3CB400, \
(unsigned int *far) 0x3CBC00);

Or:
(void) Flash_Erase_Block(Start_of_Sector1,Start_of_Sector3);
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Flash_Write_Block()

The Flash_Write_Block function will move a number of words from a source address to a destination 
address in FLASH memory. 

This will move 4 hex words from RAM at 0x2000 to FLASH at 0x3FF400. Although not the most useful of 
functions, it demonstrates the format of the call with banked parameters.

A more representative call of the function might be something like:

(void) Flash_Write_Block ( (unsigned int *far) &Ram_Storage_Area, \

                                        (unsigned int *far) &Flash_ Storage_Area, \

                                         sizeof (Ram_Storage_Area)/2);

The prototype for the Flash_Write_Block function is:

signed char Flash_Write_Block(unsigned int *far address_source,\

                                       unsigned int *far far_address_destination,\
                                       unsigned int count);

Returned values are:

Successful (1)

Errors:

Flash_Odd_Access  (–1)
Flash_Not_Erased  (–2)
Access_Error       (–3)
Protection_Error  (–4)

An example of a simple absolute call of the function:

(void) Flash_Write_Block ((unsigned int *far) 0x2000, (unsigned int *far) 
0x3FF400,4);
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The software source code for these FLASH functions is shown below.
 

/*******************************************************************
 *                   Freescale 
 *
 *    DESCRIPTION:   S12 single array Flash routines
 *    SOURCE:        flash.c
 *    COPYRIGHT:     © 04/2004  Made in the USA
 *    AUTHOR:        rat579 
 *    REV. HISTORY:  (none)  
 *
 *******************************************************************/
#include "projectglobals.h"
#include "flash.h"

extern DoOnStack(unsigned int *far address);

//*****************************************************************************
//* Function Name: Flash_Init
//* Description : Initialize Flash NVM for programming
//*               FCLKDIV based on passed sys/2 (FlashClk) frequency, then
//*               uprotect the array, and finally ensure PVIOL and 
//*               ACCERR are cleared by writing to them.
//*
//*****************************************************************************
volatile int flash_init(unsigned long FlashClk)
{
unsigned char fclk_val;

if ((MCF_CFM_CFMCLKD && MCF_CFM_CFMCLKD_DIVLD) != 1)
{
/* Next, initialize FCLKDIV register to ensure we can program/erase */

if (FlashClk >= 12000) {
fclk_val = (unsigned char) (FlashClk/8/200 + 1);
/* PRDIV8 set since above 12 MHz clock */
MCF_CFM_CFMCLKD |= fclk_val | MCF_CFM_CFMDLKD_PRDIV8;

}
else
{

fclk_val = (unsigned char) (FlashClk/200 + 1);
MCF_CFM_CFMCLKD |= fclk_val;

}
}

MCF_CFM_CFMPROT = 0x00; /*Disable all protection (if LOCK not set) */
MCF_CFM_CFMUSTAT |= (PVIOL|ACCERR) ; /* Clear any errors */
return(0);

}

//*****************************************************************************
//* Function Name: Flash_Write_Word
//* Description : Program a given Flash location using address and data
//*               passed from calling function. 
//*
//*****************************************************************************
signed char Flash_Write_Word(unsigned int *far far_address,unsigned int data)
{
unsigned int* address;

address = (unsigned int*)far_address;                        // strip page off
Flash.fstat.byte = (ACCERR | PVIOL);                         //   clear errors
if((unsigned int)address & 0x0001) {return Flash_Odd_Access;} // Aligned word?
if(*far_address != 0xFFFF) {return Flash_Not_Erased;}         // Is it erased?
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(*address) = data;        // Store desired data to address being programmed 

Flash.fcmd.byte = PROG;                 // Store programming command in FCMD
(void)DoOnStack(far_address);            // just passed for PPAGE
if (Flash.fstat.bit.accerr) {return Access_Error;}
if (Flash.fstat.bit.pviol) {return Protection_Error;}
return 1;

}
//*****************************************************************************
//* Function Name: Flash_Write_Block
//* Description : Program a range of Flash location using address and data
//*               pointers passed from calling function. 
//*
//*****************************************************************************
signed char Flash_Write_Block(unsigned int *far address_source,\
                        unsigned int *far far_address_destination,\
                        unsigned int count)
{
unsigned long i; // long supports > 64K words
signed char ret_val;

for (i = 0;i<count;i++)
{

ret_val = Flash_Write_Word(far_address_destination++, *address_source++);
if (ret_val == Access_Error) {return Access_Error;}
if (ret_val == Protection_Error) {return Protection_Error;}

}
return 1;

}
//*****************************************************************************
//* Function Name: Flash_Erase_Sector
//* Description : Erases a given Flash sector using address
//*               passed from calling function. 
//*
//*****************************************************************************
signed char Flash_Erase_Sector(unsigned int *far far_address)
{
unsigned int* address;

address = (unsigned int*)far_address;                        // strip page off
if((unsigned int)address & 0x0001) {return Flash_Odd_Access;} // Aligned word?
if((unsigned int)address % Flash_Sector_Size !=0) {return Not_StartofSector_Error;}
Flash.fstat.byte = (ACCERR | PVIOL);                         //   clear errors
(*address) = 0xFFFF;/* Dummy store to page to be erased */

Flash.fcmd.byte=ERASE;
(void)DoOnStack(far_address);
if (Flash.fstat.bit.accerr) {return Access_Error;}
if (Flash.fstat.bit.pviol) {return Protection_Error;}
return 1;

}
//*****************************************************************************
//* Function Name: Flash_Erase_Block
//* Description : Erases a range of Flash sectors using address
//*               pointers passed from calling function. 
//*
//*  S12 have max 64 page and max of 32 sectors per page (800 total sectors)
//*****************************************************************************
signed char Flash_Erase_Block(unsigned int *far start_address,\
                              unsigned int *far end_address)
{
unsigned int i; 
unsigned int count; 
unsigned long address;
A Utility for Programming Single FLASH Array HCS12 MCUs, with Minimum RAM Overhead, Rev. 2
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signed char ret_val;

count = ((((unsigned int)end_address)-((unsigned int)start_address))/Flash_Sector_Size)+1;

address = (unsigned long)start_address;

for (i = 0;i < count;i++)
{

ret_val = Flash_Erase_Sector((unsigned int *far)address);
if (ret_val == Access_Error) {return Access_Error;}
if (ret_val == Protection_Error) {return Protection_Error;}
address = address+Flash_Sector_Size;

}
return 1;

}

/*******************************************************************
 *                   Freescale 
 *
 *    DESCRIPTION:   Header file for S12 single array Flash routines
 *    SOURCE:        flash.h
 *    COPYRIGHT:     © 04/2004  Made in the USA
 *    AUTHOR:        rat579 
 *    REV. HISTORY:  (none)  
 *
 *******************************************************************/
#ifndef FLASH_H        /* Prevent duplicated includes */
#define FLASH_H

/* Functions from flash.c */
void Flash_Init(unsigned long oscclk);
signed char Flash_Write_Word(unsigned int *far address, unsigned int data);
signed char Flash_Erase_Sector(unsigned int *far far_address);
signed char Flash_Write_Block(unsigned int *far address_source,\
                        unsigned int *far far_address_destination,\
                        unsigned int count);
signed char Flash_Erase_Block(unsigned int *far start_address,\
                              unsigned int *far end_address);

/* Error codes */
#define Flash_Odd_Access         -1
#define Flash_Not_Erased         -2
#define Access_Error             -3
#define Protection_Error         -4
#define Not_StartofSector_Error  -5

#endif   /*FLASH_H*/
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Do_On_Stack.asm 

The DoOnStack: subroutine (which is located in the FLASH), copies a small routine (SpSub:) onto the 
stack (in RAM) and then passes control to that subroutine on the stack. When the operation is finished, 
an RTS returns control from the DoOnStack: routine. This de-allocates the space used by the small stack 
routine and then returns to the program from which it was called.

The first line in DoOnStack: saves the B register on the stack. (This register contains the PPAGE value 
and must be saved.) The SpMoveLoop copies the SpSub: routine onto the stack (with a series of PSHD 
instructions) starting with the last word of SpSub: and ending with the push of the first word of SpSub: 
onto the stack. At this point, the stack pointer points to the location of the first word of the stacked SpSub: 
routine. 

The TFR in the next line copies the SP into the IX register so IX points to the start of the copy of SpSub: 
on the stack. The next line pre-loads A with a mask corresponding to the CBEIF bit (command buffer 
empty interrupt flag [0x80]) which will be used to start the FLASH command. (Setting the CBEIF causes 
the command loaded into the FCMD register to start execution.)

The CALL 0,x,00 instruction jumps to the copy of SpSub: that is now located on the stack. Due to this use 
of SP relative addressing, the DoOnStack: routine may be located in banked or non-banked memory. This 
is because the CALL instruction stores the return PPAGE address needed for a return from banked or 
non-banked memory on the stack, allowing program execution to continue. 

The SpSub: subroutine is written in a position-independent manner so it can be copied to a new location 
(on the stack) and will still execute as expected. SpSub: is such a short subroutine that it is easy to make 
it position independent.

The first task of the SpSub: routine is to get the current PPAGE register value, which will be required for 
the return of calling functions and save it in the unused IY register. This must be accomplished via the 
SEX (signed extended transfer) instruction as the high byte of the IY register must be cleared for future 
restoration.

Next, the PPAGE address is passed from the calling C function and pushed onto the stack, recovered, 
and stored into the PPAGE register, selecting the desire page to be programmed / erased.

At this point the I bit in the CCR may or may not be set to mask interrupts. At this time interrupts must be 
disabled, as the FLASH and hence the interrupt vector table, will go off-line during programming / erase 
operations. The next line saves the CCR (and the I bit) in the B register for restoration after the FLASH 
command is completed. This is the absolute minimum that interrupts can be disabled. (About 50 μs for a 
word program and 20 ms for a sector erase function.)

SpSub: completes the FLASH command by setting the CBEIF bit in FSTAT (via the mask saved in the A 
register above). The series of NOPs in the routine is used to ensure that the FLASH state machine has 
registered the command before polling begins. This delay is required so the internal FLASH command 
sequencer can properly update the CBEIF and CCIF flags in FSTAT. Execution stays in the ChkDone 
loop until the command finishes (CCIF becomes set). 

At this point, the calling function PPAGE value is restored from the IY register and the CCR is restored 
from to B register. As the FLASH is back in the memory map and we can return to DoOnStack: (which is 
in FLASH), the RTC in the SpSub: returns to the DoOnStack: routine.
A Utility for Programming Single FLASH Array HCS12 MCUs, with Minimum RAM Overhead, Rev. 2
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Upon return, the DoOnStack: de-allocates the space used by the small stack routine and then returns to 
the program from which it was called.

Refer to the following code listing.

;*******************************************************************
;*                   Freescale 
;*
;*    DESCRIPTION:   S12 single array Flash routines
;*    SOURCE:        flash.c
;*    COPYRIGHT:     © 04/2004  Made in the USA
;*    AUTHOR:        rat579 
;*    REV. HISTORY:  060304 - fixed CCR return value and optimized 
;                             in SpSub routine
;*
;*******************************************************************/
;*****************************************************************************
; Local defines
;*****************************************************************************

CBEIF         EQU     $80
FSTAT         EQU     $105
FCMD          EQU     $106
CCIF          EQU     $40
PAGE_ADDR     EQU     $30

  xdef DoOnStack
;*********************************************************************
;* DoOnStack - copy SpSub onto stack and call it (see also SpSub)
;*  De-allocates the stack space used by SpSub after returning from it.
;*  Allows final steps in a flash prog/erase command to execute out
;*  of RAM (on stack) while flash is out of the memory map
;*  This routine can be used for flash word-program or erase commands
;*
;* Calling Convention:
;*           jsr    DoOnStack
;*
;* Uses 32 bytes on stack + 3 bytes if Call instruction used
;********************************************************************
DoOnStack:  
            pshb                      ;save B - PPAGE
            ldx   #SpSubEnd-2         ;point at last word to move to stack
SpmoveLoop: ldd    2,x-               ;read from flash
            pshd                      ;move onto stack
            cpx   #SpSub-2            ;past end?
            bne    SpmoveLoop         ;loop till whole sub on stack
            tfr    sp,x               ;point to sub on stack
            ldaa  #CBEIF              ;preload mask to register command
            call    0,x,00            ;execute the sub on the stack
            leas   SpSubEnd-SpSub,sp  ;de-allocate space used by sub
            pulb                      ;restore B
            rtc                       ;to flash where DoOnStack was called
                                      ; assume banked calling function
                                 
;*********************************************************************
;* SpSub - register flash command and wait for Flash CCIF
;*  this subroutine is copied onto the stack before executing
;*  because you can't execute out of flash while a flash command is
;*  in progress (see DoOnStack to see how this is used)
;*
;* Note: must be even # of bytes!
;*
;* Uses 32 bytes on stack + 2 bytes for JSR above
;*********************************************************************
A Utility for Programming Single FLASH Array HCS12 MCUs, with Minimum RAM Overhead, Rev. 2
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            EVEN                      ;Make code start word aliened
SpSub:       

ldab   SpSubEnd-SpSub+2,sp  ;get PPAGE back
stab   PAGE_ADDR            ;Store the PPAGE address
tfr    ccr,b                ;get copy of ccr
orcc   #$10                 ;disable interrupts
staa   FSTAT                ;[PwO] register command
nop                         ;[O] wait min 4~ from w cycle to r
nop                         ;[O]
nop                         ;[O]
brclr  FSTAT,CCIF,*         ;[rfPPP] wait for queued commands to finish
tfr    b,ccr                ;restore ccr and int condition
rtc                         ;back into DoOnStack in flash

SpSubEnd:

Implementation

Pseudo code for upper level implementation could be as shown below. It assumes that a sign char 
Return_val is defined to save the status from the FLASH programming, and a word Buffer_size is defined 
to save a number of bytes in the buffer. Optimally the Buffer_size should equal the FLASH sector size 
(512 or 1024). All must be defined prior to starting the procedure. If this software will be ported to different 
HCS12 devices, it is suggested a global define Flash_Sector_Size as 0x200 or 0x400 be defined. This is 
done in order to identify the sector size of the device, as this information can not be read from the device.

Word Buffer_size;
Signed Char Return_val;

1. Set the Destination location:

Destination = 0x3E8000;          // Page 0x3E address 0x8000

2. Load a RAM buffer from the receiving device — serial port for instance:

Buffer_size = Get_SCI_data (Buffer);          //  <- User Software

3. Erase target sector:

Flash_Erase_Sector (&Destination);

4. Make sure there is an even number of bytes:

if (Buffer_size & 0x0001)
         Buffer_size ++;

5. Program the buffer to FLASH:

Return_val = Flash_Write_Block((unsigned int *far)Buffer, \
                                          Destination, (Buffer_size /2));

6. If flashing was completed, increment FLASH destination for next buffer:

if (Return_val > 0)
      Destination += Buffer_size /2;

Return to step one as many times as are needed to complete data loading, or until the complete flash 
page has been programmed. 
A Utility for Programming Single FLASH Array HCS12 MCUs, with Minimum RAM Overhead, Rev. 2
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Conclusion
Conclusion

This code was designed and tested utilizing the Codewarrior development tools for the HC(S)12 with the 
HCS12 register stationery (header definitions) described in application note entitled HCS12 Software 
Stationery (Freescale document order number, AN2485). As only a single parameter is passed to the 
assembly routines, porting to other compilers should only require modifications to match target compilers’ 
register stationery format.
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