
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 1999, 2006. All rights reserved.

This document describes the instruction and data cache
locking features on the e300 processor core, an
MPC603E-based core used in the MPC8349E integrated
microprocessor. Table 1 shows the cache characteristics of
the e300 processor core.

1 Cache Locking Terminology
In this document, a cache is either an instruction or data
cache unless otherwise specified. Cache locking is the ability
to prevent overwriting of some or all of a microprocessor
instruction or data cache. Cache locking can occur for either
an entire cache or for individual ways within the cache.

When an entire cache is locked, hits within the cache are
supplied in the same manner as hits to an unlocked cache.
Any access that misses in the cache is treated as a
cache-inhibited access. Cache entries that are invalid at the
time of locking remain invalid and inaccessible until the

Table 1. e300 Processor Core Cache Organization

Instruction
Cache Size

Data Cache
Size

Associativity Block Size Way Size

32 Kbytes 32 Kbytes 8 ways 8 words 4 Kbytes

Document Number: AN2129
Rev. 1, 07/2006

Contents
1 Cache Locking Terminology .1
2 Overview of Cache Locking on the e300 Processor . . .2
3 Set Up Memory .3
4 Disable Interrupts. 4
5 Invalidate the Caches .4

5.1 Instruction Cache .4
5.2 Data Cache .5

6 Load the Caches .5
6.1 Preload Instructions into the Instruction Cache . . .6
6.2 Load Data into the Data Cache7

7 Lock the Cache .7
7.1 Lock the Entire Instruction Cache 7
7.2 Instruction Cache Way Locking 7
7.3 Lock the Entire Data Cache 8
7.4 Data Cache Way Locking .8
7.5 Invalidate a Locked Cache. 9
7.6 Cache Locking Register Summary9

8 Revision History .10

Instruction and Data Cache Locking
on the e300 Processor Core
by Jim Robertson and Kalpesh Gala

NCSG Applications
Freescale Semiconductor, Inc.

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

2 Freescale Semiconductor

Overview of Cache Locking on the e300 Processor

cache is unlocked. When a cache is unlocked, all entries (including invalid entries) are available. Entire
cache locking is inefficient if the number of instructions or the size of data to be locked is small compared
to the cache size.

Way locking locks only a portion of the cache by locking ways within the cache. Locking always begins
with the first way (way0) and is sequential; that is, you can lock ways 0, 1, and 2 but not ways 0 and 2. At
least one way must be left unlocked. The maximum number of lockable ways is seven on the e300
processor (way0–way6).

Unlike entire cache locking, invalid entries in a locked way are accessible and available for data
placement. As hits to the cache fill invalid entries within a locked way, the entries become valid and
locked. This behavior differs from entire cache locking in which nothing is placed into the locked cache,
even if there are invalid entries in the cache. Unlocked ways of the cache behave normally.

2 Overview of Cache Locking on the e300 Processor
To lock the instruction cache, set the instruction cache enable bit HID0[ICE], bit 16. To lock the data cache,
set the data cache enable bit HID0[DCE], bit 17. The following assembly code enables the instruction and
data caches:

Enable the instruction and data caches. This corresponds
to setting the ICE and DCE bits in HID0 (bits 16 and 17)

mfspr r1, HID0
ori r1, r1, 0xc000
sync
mtspr HID0, r1

Two distinct memory areas must be set up to enable cache locking:

• The first area is where the locking code resides and is executed.

• The second area contains the data to be locked.

Both areas of memory must be in locations that are translated by the memory management unit (MMU).
This translation can be performed either with the page table1 or the block address translation (BAT)
registers. This document describes the use of BAT register translations.

The instruction cache locking procedure is as follows; the remainder of this document discusses each of
these steps in detail:

1. Set up memory.

2. Disable interrupts.

3. Invalidate the entire cache to ensure known state and force placement to way0.

4. Load the cache with the data to be locked.

5. Lock the cache, either way or entire cache.

1. Issues arising from using page table address translation are beyond the scope of this document.

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

Freescale Semiconductor 3

Set Up Memory

3 Set Up Memory
For the cache locking example in this document, two areas of memory are defined through the BAT
registers:

• A 1 Mbyte area in the upper region of memory that contains the code for cache locking. It must be
cache-inhibited for instruction cache locking.

• A 256 Mbyte block of memory that contains the data to lock (not all of the 256 Mbyte of memory
is locked in the cache; this area is set up as an example).

Both memory areas use identity translation (the logical memory address equals the physical memory
address). Table 2 summarizes the BAT settings for this example.

General block address translation (BAT) programming is beyond the scope of this document. For a full
discussion of BAT register programming, see the Programming Environments Manual for 32-Bit
Implementations of the PowerPC™ Architecture (MPCFPE32B), which is available at the web site listed
on the back cover of this document.

The block address translation upper (BATU) and block address translation lower (BATL) settings in
Table 2 are for both instruction block address translation (IBAT) and data block address translation
(DBAT) registers. After the BAT registers are set up, the MMU must be enabled. The following assembly
code enables both instruction and data memory address translation:

Enable the instruction and data caches. This corresponds
to setting the ICE and DCE bits in HID0 (bits 16 and 17)

mfspr r1, HID0
ori r1, r1, 0xc000
sync
mtspr HID0, r1

Enable instruction and data memory address translation. This
corresponds to setting IR and DR in the MSR (bits 26 & 27)

mfmsr r1
ori r1, r1, 0x0030
mtmsr r1
sync

Table 2. Example BAT Settings for Cache Locking

 Area Base Address Memory Size WIMG Bits BATU Setting BATL Setting

First 0xFFF0_0000 1 Mbyte 0b0100 1 0xFFF0_001F 0xFFF0_0022 1

1 0xFFF0_0022 defines a cache-inhibited memory area for instruction cache locking and corresponds to a WIMG of 0b0100.
Cache-inhibited memory is not a requirement for data cache locking. A value of 0xFFF0_0002 with a corresponding WIMG of
0b0000 marks the memory area as cacheable.

Second 0x0000_0000 256 Mbyte 0b0000 0x0000_1FFF 0x0000_0002

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

4 Freescale Semiconductor

Disable Interrupts

4 Disable Interrupts
To ensure that interrupt service routines do not execute while the cache is loaded, which can pollute the
cache with undesired contents, all interrupts should be disabled by clearing the appropriate bits in the
machine state register (MSR) register. Table 3 lists the MSR bits that must be cleared to ensure that
interrupts are disabled.

The following assembly code disables all interrupts:

Clear the following bits from the MSR:
EE (16) ME (19)
FE0 (20) FE1 (23)

mfmsr r1
lis r2, 0xffff
ori r2, r2, 0x66ff
and r1, r1, r2
mtmsr r1
sync

5 Invalidate the Caches
This section describes the invalidation of the instruction and data caches.

5.1 Instruction Cache
The entire instruction cache for the e300 microprocessor is invalidated through the instruction cache flash
invalidate bit HID0[ICFI], bit 20. Setting HID0[ICFI] and then immediately clearing it causes the entire
instruction cache to be invalidated. The following assembly code invalidates the entire instruction cache:

Set and then clear the HIDO[ICFI] bit, bit 20

mfspr r1, HID0
mr r2, r1
ori r1, r1, 0x0800
mtspr HID0, r1
mtspr HID0, r2
sync

Table 3. MSR Bits for Disabling Interrupts

Bit Name Description

16 EE External interrupt enable

19 ME Machine check enable

20 FE0 1

1 The floating-point exception does not need to be disabled because the code that performs
cache locking does not execute floating -point operations.

Floating-point exception mode 0

23 FE11 Floating-point exception mode 1

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

Freescale Semiconductor 5

Load the Caches

5.2 Data Cache
If a non-empty data cache contains modified data that cannot be discarded, the data cache must be flushed
before it can be invalidated. To flush the data cache, fill the data cache with known data and then flush this
data with a series of dcbf1 instructions. The following code sequence shows how to flush the data cache:

r6 contains a block-aligned address in memory with which to fill
the data cache. For this example, address 0x0 is used

li r6, 0x0

CTR = number of data blocks to load
Number of blocks = (32K) / (32 Bytes/block)
= 2^15 / 2^5 = 2^10 = 0x400

li r1, 0x400
mtctr r1

Save the total number of blocks in cache to r8

mr r8, r1

Load the entire cache with known data

loop: lwz r2, 0(r6)
addi r6, r6, 32 # Find the next block
bdnz loop # Decrement the counter, and

branch if CTR != 0

Now, flush the cache with dcbf instructions

li r6, 0x0 # Address of first block
mtctr r8 # Number of blocks

loop2: dcbf r0, r6
addi r6, r6, 32 # Find the next block
bdnz loop2 # Decrement the counter, and

branch if CTR != 0

If the contents of the data cache do not need to be flushed to memory, the cache can be directly invalidated.
The entire data cache is invalidated through the data cache invalidate bit HIDO[DCFI], bit 21. Setting
HID0[DCFI] and then immediately clearing it causes the entire instruction cache to be invalidated. The
following assembly code invalidates the entire data cache (does not flush modified entries):

Set and then clear the HID0[DCFI] bit, bit 21

mfspr r1, HID0
mr r2, r1
ori r1, r1, 0x0400
mtspr HID0, r1
mtspr HID0, r2
sync

6 Load the Caches
This section discusses preloading and loading instructions and data into the instruction and data cache,
respectively.

1. The dcbf instruction forces a flush and invalidation of a data cache block.

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

6 Freescale Semiconductor

Load the Caches

6.1 Preload Instructions into the Instruction Cache
Instructions are preloaded into the instruction cache by speculatively fetching the instructions to be loaded.
These instructions are speculatively fetched for execution when it is known that they are to be canceled.
Although the execution of instructions is canceled, the instructions remain valid in the instruction cache.

Because instructions are intentionally executed speculatively, care must be taken to ensure that all I/O
memory is marked guarded. Otherwise, speculative loads and stores to I/O space can cause data loss. (For
a full discussion of guarded memory, see PowerPC Microprocessor Family: The Programming
Environments for 32-Bit Microprocessors). The code that prefetches must be in cache-inhibited memory
as shown in the following example:

Assuming interrupts are turned off, cache is flushed,
the MMU is on, and we are executing in a cache-inhibited
location in memory

LR and r6 = Starting address of code to lock
CTR = Number of cache blocks to lock
r2 = nonzero numerator and denominator

‘loop’ must begin on an 8-byte boundary to ensure that
the divw and beqlr+ are fetched on the same cycle.

.orig 0xFFF04000

loop: divw. r2, r2, r2 # LONG divide w/ nonzero result
beqlr+ # Cause the prefetch to happen

 addi r6, r6, 32 # Find next block to prefetch
mtlr r6 # set the next block

 bdnz- loop # Decrement the counter and
branch if CTR != 0

In this example, both the divw. and beqlr+ instructions are fetched at the same time because of their
placement on a (double-word) boundary. A 64-bit coherent system bus (CSB) data bus is assumed. The
preloading code does not work for a 32-bit data bus. The divide instruction is chosen because it takes many
cycles to execute. During the divide execution, the processor starts fetching instructions speculatively at
the target destination of the branch instruction. The speculation occurs because the branch is statically
predicted as taken. This speculative fetching causes the cache block to which the link register (LR) points
to be loaded into the cache. Because the divw. instruction always produces a non-zero result, the beqlr+
is not taken, and all speculatively fetched instructions that begin execution are canceled. However, the
instructions remain valid in the cache.

If the destination instruction stream contains an unconditional branch to another memory location, the
destination of the unconditional branch instruction can also be prefetched. This does not cause a problem
if the destination of the unconditional branch is also inside the area of memory to be preloaded. However,
if the destination of the unconditional branch is not in the area of memory to be loaded, care must be taken
to ensure that the branch destination is to an area of memory that is cache inhibited. Otherwise,
unintentional instructions may be locked in the cache and the desired instructions may not be in their
expected way within the cache.

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

Freescale Semiconductor 7

Lock the Cache

6.2 Load Data into the Data Cache
The data cache can be loaded in several ways. The example in this document loads the data from memory.
The following assembly code loads the data cache:

Assuming interrupts are turned off, cache has been flushed,
MMU on, and loading from contiguous cacheable memory.
r6 = Starting address of code to lock
r20 = Temporary register for loading into
CTR = Number of cache blocks to lock

loop: lwz r20, 0(r6) # Load data into d-cache
addi r6, r6, 32 # Find next block to load
bdnz loop # CTR = CTR-1, branch if CTR != 0

7 Lock the Cache
This section describes the methods for locking the entire instruction and data caches, instruction and data
cache way locking, and invalidation of a locked cache. It concludes with a cache locking register summary.

7.1 Lock the Entire Instruction Cache
Locking the entire instruction cache is controlled by the instruction cache lock bit, HID0[ILOCK],bit 18.
Setting HID0[ILOCK] locks the entire instruction cache, and clearing HID0[ILOCK]allows the
instruction cache to operate normally. Setting of HID0[ILOCK] should be preceded by an isync instruction
to prevent the instruction cache from being locked during an instruction access. The following assembly
code locks the entire instruction cache.

Set the ILOCK bit in HID0 (bit 18)

mfspr r1, HID0
ori r1, r1, 0x2000
isync
mtspr HID0, r1

7.2 Instruction Cache Way Locking
Way locking is controlled by HID2[IWLCK], (bits 16–18). Table 4 shows the HID2[IWLCK](0–2)
settings for the e300 processor code. Setting HID0[ILOCK] locks all ways.

v

Table 4. e300 Processor Core IWLCK0–IWLCK2 Encoding

IWLCK0–IWLCK2 Ways Locked

0b000 No ways locked

0b001 Way 0 locked

0b010 Ways 0 through way 1 locked

0b011 Ways 0 through way 2 locked

0b100 Ways 0 through way 3 locked

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

8 Freescale Semiconductor

Lock the Cache

The following assembly code locks way0 through way3 of the e300 processor instruction cache:

Lock way0 of the e300 processor instruction cache
This corresponds to setting IWLCK0–IWLCK2 to 0b0100 (bits 16-18)

mfspr r1, HID2
lis r2, 0xffff
ori r2, r2, 0x1fff
and r1, r1, r2
ori r1, r1, 0x8000
isync
mtspr HID2, r1

7.3 Lock the Entire Data Cache
Locking the entire data cache is controlled by the data cache lock bit HID0[DLOCK], bit 19. Setting the
HID0[DLOCK] bit locks the entire data cache. To unlock the data, clear the HID0[DLOCK] bit. Setting
the DLOCK bit should be preceded by a sync instruction to prevent the data cache from being locked
during a data access. The following assembly code locks the entire data cache:

 # Set the DLOCK bit in HID0 (bit 19)

mfspr r1, HID0
ori r1, r1, 0x1000
sync
mtspr HID0, r1

7.4 Data Cache Way Locking
Way locking is controlled by the HID2[DWLCK], (bits 24–26). Table 5 shows the DWLCK0–DWLCK2
settings for the e300 processor.

0b101 Ways 0 through way 4 locked

0b110 Ways 0 through way 5 locked

0b0111 Ways 0 through way 6 locked

Table 5. e300 Processor Core DWLCK0–DWLCK2 Encoding

DWLCK0–DWLCK2 Ways locked

0b000 No ways locked

0b001 Way 0 locked

0b010 Ways 0 through way 1 locked

0b011 Ways 0 through way 2 locked

0b100 Ways 0 through way 3 locked

0b101 Ways 0 through way 4 locked

Table 4. e300 Processor Core IWLCK0–IWLCK2 Encoding (continued)

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

Freescale Semiconductor 9

Lock the Cache

The following assembly code locks way0 through way3 of the e300 processor data cache:

Lock way0 of the e300 processor data cache
This corresponds to setting DWLCK0–DWLCK2 to 0b0100 (bits 24-26)

mfspr r1, HID2
lis r2, 0xffff
ori r2, r2, 0xff1f
and r1, r1, r2
ori r1, r1, 0x0080
sync
mtspr HID2, r1

7.5 Invalidate a Locked Cache
There are two methods to invalidate a locked cache:

• Invalidate the entire cache by setting and then immediately clearing either the instruction cache
flash invalidate bit HID0[ICFI], bit 20, or data cache flash invalidate bit HIDO[DCFI], bit 21. Even
when a cache is locked, toggling either the ICFI or DCFI bit invalidates all of the instruction or
data cache, respectively.

• Use either the instruction cache block invalidate icbi or data cache block invalidate dcbi instruction
to invalidate individual cache blocks. The dcbi instruction invalidates blocks locked (either entire
or way locked) within the data cache. Similarly, the icbi instruction invalidates blocks in an entirely
locked instruction cache for both microprocessors. On the e300 processor, the icbi instruction
invalidates way locked blocks within the instruction cache.

7.6 Cache Locking Register Summary
Table 6 through Table 8 outline the registers and bits to perform cache locking on the e300 processor.

0b110 Ways 0 through way 5 locked

0b0111 Ways 0 through way 6 locked

Table 6. HID0 Bits to Perform Cache Locking

Name Bit Description

ICE 16 Instruction cache enable. Must be set for instruction cache locking.

DCE 17 Data cache enable. Must be set for data cache locking.

ILOCK 18 Instruction cache LOCK. Set this bit to lock the entire instruction cache.

DLOCK 19 Data cache LOCK. Set this bit to lock the entire data cache.

Table 5. e300 Processor Core DWLCK0–DWLCK2 Encoding (continued)

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

10 Freescale Semiconductor

Revision History

8 Revision History
Table 9 provides a revision history for this application note.

ICFI 20 Instruction cache flash invalidate. Setting and then clearing this bit invalidates the entire instruction
cache.

DCFI 21 Data cache flash invalidate. Setting and then clearing this bit invalidates the entire data cache.

Table 7. HID2 Bits to Perform Cache Locking

Name Bit Description

IWLCK 16–18 Instruction cache way lock. Use these bits to lock individual ways in the instruction cache.

DWLCK 24–26 Data cache way lock. Use these bits to lock individual ways in the data cache.

Table 8. MSR Bits to Perform Cache Locking

Name Bits Description

EE 16 External interrupt enable. This bit must be cleared during instruction and data cache loading.

ME 19 Machine check enable. This bit must be cleared during instruction and data cache loading.

IR 26 Instruction address translation. This bit must be set to enable instruction address translation by the
MMU.

DR 27 Data address translation. This bit must be set to enable data address translation by the MMU.

Table 9. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 4/1999 Initial release.

1 7/2006 Updated the document to discuss the use of the icbt instruction, which makes locking the
cache much more straightforward. Also, this document now references the e300 core
instead of the G2 core.

Table 6. HID0 Bits to Perform Cache Locking (continued)

Name Bit Description

Instruction and Data Cache Locking on the e300 Processor Core, Rev. 1

Freescale Semiconductor 11

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN2129
Rev. 1
07/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The PowerPC name is a trademark of IBM Corp. and is used under license. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 1999, 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	1 Cache Locking Terminology
	2 Overview of Cache Locking on the e300 Processor
	3 Set Up Memory
	4 Disable Interrupts
	5 Invalidate the Caches
	5.1 Instruction Cache
	5.2 Data Cache

	6 Load the Caches
	6.1 Preload Instructions into the Instruction Cache
	6.2 Load Data into the Data Cache

	7 Lock the Cache
	7.1 Lock the Entire Instruction Cache
	7.2 Instruction Cache Way Locking
	7.3 Lock the Entire Data Cache
	7.4 Data Cache Way Locking
	7.5 Invalidate a Locked Cache
	7.6 Cache Locking Register Summary

	8 Revision History

