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3-Phase PM Synchronous
Motor Vector Control Using a 
56F80x, 56F8100, or 
56F8300 Device
Design of Motor Control Application

Libor Prokop, Pavel Grasblum 

Note: The PC master software referenced in this document is also
known as Free Master software.

1.   Introduction
This application note describes the design of a 3-phase Permanent
Magnet Synchronous Motor (PMSM) drive based on Freescale’s
56F80x or 56F8300 dedicated motor control device. The software
design takes advantage of Processor ExpertTM (PE) software.

PM synchronous motors are very popular in a wide application
area. The PMSM lacks a commutator and is therefore more
reliable than the DC motor. The PM synchronous motor also has
advantages when compared to an AC induction motor. Because a
PMSM achieves higher efficiency by generating the rotor
magnetic flux with rotor magnets, a PMSM is used in high-end
white goods (such as refrigerators, washing machines,
dishwashers); high-end pumps; fans; and in other appliances
which require high reliability and efficiency.

This application creates a speed closed-loop PM synchronous
drive using a vector control technique. It serves as an example of
a PMSM control design using a Freescale hybrid controller with
PE support. It also illustrates the use of the PE’s dedicated motor
control libraries.

This application note includes basic motor theory, system design
concept, hardware implementation and software design,
including the PC master software visualization tool.
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2.   Advantages and Features of Freescale’s Hybrid Controller
The Freescale 56F80x (56800 core) and 56F8300 (56800E core) families are well suited for digital motor
control, combining the DSP’s calculation capability with the MCU’s controller features on a single chip. These
hybrid controllers offer many dedicated peripherals, such as Pulse Width Modulation (PWM) unit(s), an
Analog-to-Digital Converter (ADC), Timers, communication peripherals (SCI, SPI, CAN), on-board Flash and
RAM. 

The following sectins use a specific device to describe the family’s features.

2.1   56F805, 56800 Core Family
The 56F805 provides the following peripheral blocks:

• Two Pulse Width Modulator modules (PWMA and PWMB), each with six PWM outputs, three 
Current Sense inputs, and four Fault inputs; fault-tolerant design with dead time insertion, supporting 
both center-aligned and edge-aligned modes

• Twelve-bit Analog-to-Digital Converters (ADCs), supporting two simultaneous conversions with dual 
4-pin multiplexed inputs; the ADC can be synchronized by PWM modules

• Two Quadrature Decoders (Quad Dec0 and Quad Dec1), each with four inputs, or two additional Quad 
Timers, A and B

• Two dedicated general purpose Quad Timers totaling six pins: Timer C with two pins and Timer D 
with four pins

• CAN 2.0 B-compatible module with 2-pin ports used to transmit and receive

• Two Serial Communication Interfaces (SCI0 and SCI1), each with two pins, or four additional GPIO 
lines

• Serial Peripheral Interface (SPI), with configurable 4-pin port, or four additional GPIO lines

• Computer Operating Properly (COP) / Watchdog timer

• Two dedicated external interrupt pins

• Fourteen dedicated General Purpose I/O (GPIO) pins; 18 multiplexed GPIO pins

• External reset pin for hardware reset

• JTAG / On-Chip Emulation (OnCE)

• Software-programmable, Phase Lock Loop-based frequency synthesizer for the hybrid controller core 
clock 

Table 2-1   Memory Configuration for 56F80x Devices

56F801 56F803 56F805 56F807

Program Flash 8188 x 16-bit 32252 x 16-bit 32252 x 16-bit 61436 x 16-bit

Data Flash 2K x 16-bit 4K x 16-bit 4K x 16-bit 8K x 16-bit

Program RAM 1K x 16-bit 512 x 16-bit 512 x 16-bit 2K x 16-bit

Data RAM 1K x 16-bit 2K x 16-bit 2K x 16-bit 4K x 16-bit

Boot Flash 2K x 16-bit 2K x 16-bit 2K x16-bit 2K x 16-bit
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2.2   56F8346, 56800E Core Family
The 56F8346 provides the following peripheral blocks:

• Two Pulse Width Modulator modules (PWMA and PWMB), each with six PWM outputs, three 
Current Sense inputs, and three Fault inputs for PWMA/PWMB; fault-tolerant design with dead time 
insertion, supporting both center-aligned and edge-aligned modes

• Two 12-bit Analog-to-Digital Converters (ADCs), supporting two simultaneous conversions with dual 
4-pin multiplexed inputs; the ADC can be synchronized by PWM modules

• Two Quadrature Decoders (Quad Dec0 and Quad Dec1), each with four inputs, or two additional Quad 
Timers, A and B

• Two dedicated general purpose Quad Timers totaling three pins: Timer C with one pin and Timer D 
with two pins

• CAN 2.0 B-compatible module with 2-pin ports used to transmit and receive

• Two Serial Communication Interfaces (SCI0 and SCI1), each with two pins, or four additional GPIO 
lines

• Serial Peripheral Interface (SPI), with configurable 4-pin port, or four additional GPIO lines

• Computer Operating Properly (COP) / Watchdog timer

• Two dedicated external interrupt pins

• 61 multiplexed General Purpose I/O (GPIO) pins

• External reset pin for hardware reset

• JTAG / On-Chip Emulation (OnCE)

• Software-programmable, Phase Lock Loop-based frequency synthesizer for the hybrid controller core 
clock

• Temperature Sensor system 

Table 2-2   Memory Configuration for 56F8300 Devices

56F8322 56F8323 56F8345 56F8346 56F8347

Program Flash 16K x 16-bit 16K x 16-bit 64K x 16-bit 64K x 16-bit 64 x 16-bit

Data Flash 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x 16-bit

Program RAM 2K x 16-bit 2K x 16-bit 2K x 16-bit 2K x 16-bit 2K x 16-bit

Data RAM 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x 16-bit 2K x 16-bit

Boot Flash 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x16-bit
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2.3   Peripheral Description
In addition to the fast Analog-to-Digital converter and the 16-bit Quadrature Timers, the most interesting
peripheral, for PMSM control, is the Pulse Width Modulation (PWM) unit. The PWM module offers a high
degree of freedom in its configuration, allowing efficient control of the PM synchronous motor.

The PWM has the following features:

• Three complementary PWM signal pairs, or six independent PWM signals

• Supports complementary channel operation

• Dead time insertion

• Separate top and bottom pulse width correction via current status inputs or software

• Separate top and bottom polarity control

• Edge-aligned or center-aligned PWM signals

• 15 bits of resolution

• Half-cycle reload capability

• Integral reload rates from 1 to 16

• Individual software-controlled PWM outputs

• Mask and swap of PWM outputs

• Programmable fault protection

• Polarity control

• 20mA current sink capability on PWM pins

• Write-protectable registers

PM synchronous motor control utilizes the PWM block set in the complementary PWM mode, permitting
generation of control signals for all switches of the power stage with inserted dead time. The PWM block
generates three sinewave outputs mutually shifted by 120 degrees.

Table 2-2 Memory Configuration for 56F8300 Devices (Continued)

56F8355 56F8356 56F8357 56F8365 56F8366 56F8367

Program Flash 128K x 16-bit 128K x 16-bit 128K x 16-bit 256K x 16-bit 128K x 16-bit 128K x 16-bit

Data Flash 4K x 16-bit 4K x 16-bit 4K x 16-bit 16K x 16-bit 4K x 16-bit 4K x 16-bit

Program RAM 2K x 16-bit 2K x 116-bit 2K x 16-bit 2K x 16-bit 2K x 16-bit 2K x 16-bit

Data RAM 8K x 16-bit 8K x 16-bit 8K x 16-bit 16K x 16-bit 4K x 16-bit 8K x 16-bit

Boot Flash 4K x 16-bit 8K x 16-bit 8K x 16-bit 16K x 16-bit 8K x 16-bit 8K x 16-bit
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The Analog-to-Digital Converter (ADC) consists of a digital control module and two analog Sample and Hold
(S/H) circuits. ADC features include: 

• 12-bit resolution

• Maximum ADC clock frequency is 5MHz with 200ns period

• Single conversion time of 8.5 ADC clock cycles (8.5 x 200ns = 1.7µs)

• Additional conversion time of 6 ADC clock cycles (6 x 200ns = 1.2µs)

• Eight conversions in 26.5 ADC clock cycles (26.5 x 200ns = 5.3µs) using simultaneous mode

• ADC can be synchronized to the PWM via the sync signal

• Simultaneous or sequential sampling

• Internal multiplexer to select two of eight inputs

• Ability to sequentially scan and store up to eight measurements

• Ability to simultaneously sample and hold two inputs

• Optional interrupts at end of scan, if an out-of-range limit is exceeded, or at zero crossing

• Optional sample correction by subtracting a preprogrammed offset value

• Signed or unsigned result

• Single-ended or differential inputs

The application utilizes the ADC block in simultaneous mode and sequential scan. It is synchronized with
PWM pulses. This configuration allows the simultaneous conversion within the required time of required
analog values, all phase currents, voltage and temperature.

The Quad Timer is an extremely flexible module, providing all required services relating to time events, and
offers the following features:

• Each timer module consists of four 16-bit counters / timers

• Counts up / down

• Counters are cascadable

• Programmable count modulo

• Maximum count rate equals peripheral clock / 2 when counting external events

• Maximum count rate equals peripheral clock when using internal clocks

• Counts once or repeatedly

• Counters are preloadable

• Counters can share available input pins

• Each counter has a separate prescaler

• Each counter has capture and compare capability

The PMSM vector control application utilizes four channels of the Quad Timer module for position and speed
sensing. A fifth channel of the Quad Timer module is set to generate a time base for speed sensing and a speed
controller.
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The Quadrature Decoder is a module providing decoding of position signals from a Quadrature Encoder
mounted on a motor shaft. It has the following features:

• Includes logic to decode quadrature signals

• Configurable digital filter for inputs

• 32-bit position counter

• 16-bit position difference counter

• Maximum count frequency equals the peripheral clock rate

• Position counter can be initialized by software or external events

• Preloadable 16-bit revolution counter

• Inputs can be connected to a general purpose timer to aid low speed velocity

The PM synchronous motor vector control application utilizes the Quadrature Decoder connected to Quad Timer
module B. It uses the decoder’s digital input filter to filter the encoder’s signals, but does not make use of its
decoding functions, freeing the decoder’s digital processing capabilities to be used by another application.

3.   Target Motor Theory

3.1   Permanent Magnet Synchronous Motor (PMSM)
The PMSM is a rotating electric machine with a classic 3-phase stator like that of an induction motor; the rotor
has surface-mounted permanent magnets; see Figure 3-1.

Figure 3-1  Cross Section of a PM Synchronous Motor

In this respect, the PMSM is equivalent to an induction motor, where the air gap magnetic field is produced by
a permanent magnet, so the rotor magnetic field is constant. PM synchronous motors offer a number of
advantages in designing modern motion control systems. The use of a permanent magnet to generate
substantial air gap magnetic flux makes it possible to design highly efficient PM motors.
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Shaft
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3.2   Mathematical Description of PM Synchronous Motor
The model used for vector control design can be understood by using space vector theory. The 3-phase motor
quantities (such as voltages, currents, magnetic flux, etc.) are expressed in terms of complex space vectors.
Such a model is valid for any instantaneous variation of voltage and current and adequately describes the
performance of the machine under both steady-state and transient operation. The complex space vectors can be
described using only two orthogonal axes. The motor can be considered a 2-phase machine. Using a 2-phase
motor model reduces the number of equations and simplifies the control design.

3.2.1  Space Vector Definition

Assume isa, isb, isc are the instantaneous balanced three-phase stator currents:

EQ. 3-1

It is then possible to define the stator current space vector as follows:

EQ. 3-2

Where: 

Figure 3-2 shows the stator current space vector projection:

a and a2 = The spatial operators

a = ej2π/3

a2 = ej4π/3

k = The transformation constant, chosen as k=2/3

isa isb isc 0=+ +

is k= isa aisb a
2
isc+ +( )
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Figure 3-2  Stator Current Space Vector and Its Projection

The space vector defined by EQ. 3-2 can be expressed utilizing two-axis theory. The real part of the space
vector is equal to the instantaneous value of the direct-axis stator current component, isα, and whose imaginary
part is equal to the quadrature-axis stator current component, isβ. Thus, the stator current space vector, in the
stationary reference frame attached to the stator, can be expressed as:

EQ. 3-3

In symmetrical 3-phase machines, the direct and quadrature axis stator currents isα and isβ are fictitious
quadrature-phase (2-phase) current components, which are related to the actual 3-phase stator currents as
follows:

EQ. 3-4

EQ. 3-5

Where: 

k = 2/3 is a transformation constant

β

isβ

Phase C

Phase B

Phase A

β

isβ

Phase C

Phase B

Phase A

is isα jisβ+=

isα k isa
1
2
---isb–

1
2
---isc– 

 =

isβ k
3

2
------- isb isc–( )=
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The space vectors of other motor quantities (voltages, currents, magnetic fluxes, etc.) can be defined in the
same way as the stator current space vector.

For a description of the PM synchronous motor, consider the symmetrical 3-phase smooth-air-gap machine
with sinusoidally-distributed windings. The voltage equations of stator in the instantaneous form can then be
expressed as:

EQ. 3-6

EQ. 3-7

EQ. 3-8

Where: 

Due to the large number of equations in the instantaneous form, including EQ. 3-6, EQ. 3-7 and EQ. 3-8, it is
more practical to rewrite the instantaneous equations using the two-axis theory (Clarke transformation). The
PM synchronous motor can be expressed as:

EQ. 3-9

EQ. 3-10

EQ. 3-11

EQ. 3-12

EQ. 3-13

Where: 

uSA, uSB and uSC = The instantaneous values of stator voltages in phase SA, SB and SC

iSA, iSB and iSC = The instantaneous values of stator currents in phase SA, SB and SC

ψSA, ψSB, ψSC = The instantaneous values of stator flux linkages in phase SA, SB and SC

α,β = The stator orthogonal coordinate system

uSα,β = The stator voltage

iSα,β = The stator current

ΨSα,β = The stator magnetic flux

ΨM = The rotor magnetic flux

RS = The stator phase resistance

uSA RSiSA td
d ψSA+=

uSB RSiSB td
d ψSB+=

uSC RSiSC td
d ψSC+=

uSα RSiSα td
d ΨSα+=

uSβ RSiSβ td
d ΨSβ+=

ΨSα LSiSα ΨM Θr( )cos+=

ΨSβ LSiSβ ΨM Θr( )sin+=

td
dω p

J
---

3
2
---p ΨSα iSβ ΨSβiSα–( ) TL–=
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EQ. 3-9 through EQ. 3-13 represent the model of PMSM in the stationary frame α, β fixed to the stator. 

Besides the stationary reference frame attached to the stator, motor model voltage space vector equations can
be formulated in a general reference frame which rotates at a general speed ωg. If a general reference frame is
used, with direct and quadrature axes x,y rotating at a general instantaneous speed, ωg=dθg/dt, as shown in
Figure 3-3, where θg is the angle between the direct axis of the stationary reference frame (α) attached to the
stator and the real axis (x) of the general reference frame, then EQ. 3-14 defines the stator current space vector
in general reference frame:

EQ. 3-14

Figure 3-3  Application of the General Reference Frame

The stator voltage and flux-linkage space vectors can be similarly obtained in the general reference frame.

Similar considerations hold for the space vectors of the rotor voltages, currents and flux linkages. The real axis
(rα) of the reference frame attached to the rotor is displaced from the direct axis of the stator reference frame
by the rotor angle, θr. Since it can be seen that the angle between the real axis (x) of the general reference frame
and the real axis of the reference frame rotating with the rotor (rα) is θg-θr in the general reference frame, the
space vector of the rotor currents can be expressed as:

EQ. 3-15

LS = The stator phase inductance

ω / ωF = The electrical rotor speed / fields speed

p = The number of poles per phase

J = The inertia

TL = The load torque

Θr = The rotor position in α,β coordinate system

isg ise
jθg–

isx jisy+==

β  

x

y

g

irg ire
j θg θr–( )–

irx jiry+==
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Where: 

The space vectors of the rotor voltages and rotor flux linkages in the general reference frame can be similarly
expressed.

The motor model voltage equations in the general reference frame can be expressed by utilizing introduced
transformations of the motor quantities from one reference frame to the general reference frame. The PMSM
model is often used in vector control algorithms. The aim of vector control is to implement control schemes
which produce high dynamic performance and are similar to those used to control DC machines. To achieve
this, the reference frames may be aligned with the stator flux-linkage space vector, the rotor flux-linkage space
vector or the magnetizing space vector. The most popular reference frame is the reference frame attached to the
rotor flux linkage space vector, with direct axis (d) and quadrature axis (q). 

After transformation into d-q coordinates, the motor model as follows:

EQ. 3-16

EQ. 3-17

EQ. 3-18

EQ. 3-19

EQ. 3-20

Below base speed isd=0, EQ. 3-20 can be reduced to the following form:

EQ. 3-21

From EQ. 3-21, it can be seen that the torque is dependent and can be directly controlled by the current isq
only.

3.3   Digital Control of PM Synchronous Motor 
In adjustable-speed applications, the PM synchronous motors are powered by inverters. The inverter converts
DC power to AC power at the required frequency and amplitude. A typical 3-phase inverter is illustrated in
Figure 3-4.

= The space vector of the rotor current in the rotor reference frameir

uSd RSiSd td
d ΨSd ωFΨSq–+=

uSq RSiSq td
d ΨSq ωFΨSd+ +=

ΨSd LSiSd ΨM+=

ΨSq LSiSq=

td
dω p

J
---

3
2
---p ΨSdiSq ΨSqiSd–( ) TL–=

td
dω p

J
---

3
2
---p ΨMiSq( ) TL–=
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Figure 3-4  3- Phase Inverter

The inverter consists of three half-bridge units where the upper and lower switches are controlled
complimentarily, meaning when the upper one is turned on, the lower one must be turned off, and vice versa.
Because the power device’s turn-off time is longer than its turn-on time, some dead time must be inserted
between turning off one transistor of the half-bridge, and turning on its complementary device. The output
voltage is mostly created by a Pulse Width Modulation (PWM) technique, where an isosceles triangle carrier
wave is compared with a fundamental-frequency sine modulating wave, and the natural points of intersection
determine the switching points of the power devices of a half-bridge inverter. This technique is shown in
Figure 3-5. The 3-phase voltage waves are shifted 120o to one another and, thus, a 3-phase motor can be
supplied.

Figure 3-5  Pulse Width Modulation
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The most popular power devices for motor control applications are Power MOSFETs and IGBTs.

A Power MOSFET is a voltage-controlled transistor. It is designed for high-frequency operation and has a low
voltage drop; thus, it has low power losses. However, the saturation temperature sensitivity limits the
MOSFET application in high-power applications.

An Insulated-Gate Bipolar Transistor (IGBT) is a bipolar transistor controlled by a MOSFET on its base. The
IGBT requires low drive current, has fast switching time, and is suitable for high switching frequencies. The
disadvantage is the higher voltage drop of a bipolar transistor, which causes higher conduction losses.

3.3.1  Vector Control of PM Synchronous Motor

Vector control is an elegant method to control a PMSM, where field-oriented theory is used to control space
vectors of magnetic flux, current, and voltage. It is possible to set up the coordinate system to decompose the
vectors into a magnetic field-generating part and a torque-generating part. The structure of the motor controller
(Vector Control Controller) is then almost the same as for a separately-excited DC motor, which simplifies the
control of a PMSM. This vector control technique was developed specifically to achieve a similarly dynamic
performance in PM synchronous motors.

As explained in Section 4.2, a widely used speed control with inner current closed-loop was chosen, where the
rotor flux is controlled by a field-weakening controller.

In this method, the field-generating and torque-generating parts of the stator current must be broken down in
order to be able to separately control the magnetic flux and the torque. In accomplish this, it’s necessary to set
up the rotary coordinate system connected to the rotor magnetic field; this system is generally called a “d-q
coordinate system”. Very high CPU performance is needed to perform the transformation from rotary to
stationary coordinate systems. Therefore, Freescale’s 56F80x or 56F8300 devices are very well suited for use
in a vector control algorithm. All transformations needed for Vector Control will be described in the next
section. 

3.3.2  Block Diagram of Vector Control

Figure 3-6 shows the basic structure of PMSM vector control. To perform vector control, follow these steps:

• Measure the motor quantities (phase voltages and currents)

• Transform the quantities into a 2-phase system (α,β), using Clarke transformation

• Calculate the rotor flux space vector magnitude and position angle

• Transform stator currents into the d-q coordinate system using Park transformation

• The stator current torque- (isq) and flux- (isd) producing components are separately controlled by the 
controllers

• The output stator voltage space vector is calculated using the decoupling block

• The stator voltage space vector is transformed back from the d-q coordinate system into the two-phase 
system and fixed with the stator by inverse Park transformation

• Using sinewave modulation, the output 3-phase voltage is generated
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Figure 3-6  Block Diagram of PM Synchronous Motor Vector Control

3.3.3  Vector Control Transformations

Transforming a PMSM into a DC motor is based on selection of coordinates. As shown in Section 3.3.2, a
coordinate transformation is required.

The following transformations are involved in vector control:

• Transformations from a 3-phase to a 2-phase system (Clarke transformation)

• Rotation of orthogonal system

— α,β to d-q (Park transformation)

— d-q to α,β (Inverse Park transformation)

3.3.3.1  Clarke Transformation

Figure 3-7 shows how a 3-phase system is transformed into a 2-phase system.
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Figure 3-7  Clarke Transformation

To transfer the graphical representation into mathematical language:

EQ. 3-22

In most cases, the 3-phase system is symmetrical, which means that the sum of the phase quantities is always
zero.

EQ. 3-23

The constant “K” can be freely chosen; equalizing the α-quantity and Phase A quantity is recommended. Then:

EQ. 3-24
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EQ. 3-25 fully defines the Park-Clarke transformation:

EQ. 3-25

3.3.3.2  Transformation from α, β to d-q Coordinates and Backwards

Vector control is performed entirely in the d-q coordinate system to make the control of PM synchronous
motors elegant and easy; see Section 3.3.2.

This process requires transformation in both directions and the control action must be transformed back to the
motor side.

First, establish the d-q coordinate system:

EQ. 3-26

EQ. 3-27

Then transform from α, β to d-q coordinates:

EQ. 3-28

Figure 3-8 illustrates this transformation.
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Figure 3-8  Establishing the d-q Coordinate System (Park Transformation)

The backward (Inverse Park) transformation (from d-q to α, β) is:

EQ. 3-29

3.3.4  PMSM Vector Control and Field-Weakening Controller

This section describes the control regarding the required stator current vectors isd, isq. 

There are two speed ranges (shown in Figure 3-9), which differ by controlled current vector:

• Control in Normal Operating Range, control mode used when a speed is required below nominal motor 
speed

• Control in Field-Weakening Range, control mode used when a speed is required above nominal motor 
speed

3.3.4.1  Control in Normal Operating Range

Assume an ideal PMSM with constant stator reluctance: Ls = constant. EQ. 3-17, EQ. 3-18 and EQ. 3-19 can
then be written as:

EQ. 3-30

As demonstrated from the PMSM equations, the maximum efficiency of the ideal PMSM is obtained when
maintaining the current flux-producing component, isd, at zero. Therefore, in the drive from Figure 3-6, the
Field-Weakening Controller sets isd = 0 in the normal operating range. The speed regulator controls the current
torque-producing component, isq.
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A real 3-phase power inverter has voltage and current rating limitations:

1. The absolute value of stator voltage us is physically limited according to DCBus voltage to a limit of 
u_sdq_max

2. The absolute value of the stator current is should be maintained below a limit of I_SDQ_MAX, given by the 
maximum current rating 

In the normal operating range, the current torque-producing component, isq, can be set up to I_SDQ_MAX,
since isd = 0. 

Due to the voltage limitation, the maximum speed in the normal motor operating range is limited for isd = 0, to
a nominal motor speed, as shown in Figure 3-9 and EQ. 3-30.

Figure 3-9  Normal Operation and Field-Weakening

3.3.4.2  Control in Field-Weakening Range

The field-weakening technique must be used where a higher maximum motor speed is required, which is
provided by maintaining the flux-producing current component, isd, in the field-weakening range, as shown in
Figure 3-9.

Due to the limitation of absolute current value, the current torque-producing component, isq, must be
maintained below a limited value.

EQ. 3-31

One possibility to maintain the flux-producing current component, isd, for field weakening is to use a look-up
table.

A more-progressive method uses a Field-Weakening Controller, which generates a negative current
flux-producing component, isq, whenever the absolute value of stator voltage exceeds u_S_max_FWLimit. The
field-weakening limit, u_S_max_FWLimit, is set to be close to the maximum voltage limit of the 3-phase
power inverter, u_sdq_max, with some reserve for regulation. Since the DCBus voltage determines the
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u_sdq_max limit, the u_S_max_FWLimit is set according to the DCBus. The u_S_max_FWLimit can be a
constant or it can be calculated from a measured DCBus voltage. The Field-Weakening controller is described
in Section 6.2.5.4.

4.   System Concept

4.1   System Specification
The motor control system is designed to drive a 3-phase PM Synchronous Motor (PMSM) in a speed
closed-loop. The application meets the following performance specifications:

• Vector control of PMSM using the Quadrature Encoder as a position sensor

• Targeted for a 56F80xEVM or 56F83xxEVM plus Legacy Motor Daughter Card (LMDC)

• Runs on a 3-phase PMSM control development platform at a variable line voltage, 110 - 230V AC

• Control technique incorporates: 

— Vector control with speed closed-loop and field-weakening

— Rotation in both directions

— Motoring and generator mode with brake

— Start from any motor position with rotor alignment

— Minimum speed of 50rpm

— Maximum speed of 3000rpm at input power line 230V AC

— Maximum speed of 1500rpm at input power line 115V AC

• Manual interface

— RUN / STOP switch

— UP / DOWN push button control

— LED indicator)

• PC master software control interface

— Motor start / stop

— Speed set-up

• PC master software remote monitor 

• Power stage board identification

• Fault protection against:

— Overvoltage

— Undervoltage

— Overcurrent

— Overheating 



System Concept

3-Phase PMSM Motor Vector Control, Rev. 3

20 Freescale Semiconductor 
Preliminary

The PM synchronous drive introduced here is designed to power a high-voltage PM synchronous motor with a
Quadrature Encoder. Specifications are detailed in Table 4-1. 

4.2   Vector Control Drive Concept
A standard system concept is used with this drive; see Figure 4-1. The system incorporates the following
hardware parts:

• Three-phase PMSM high-voltage development platform 

• Feedback sensors for: 

— Position (Quadrature Encoder)

— DCBus voltage

— Phase currents

— DCBus overcurrent detection

— Temperature

• Evaluation Modules:

— 56F80xEVM (56800 Core)

— 56F83xxEVM (56800E Core)

The drive can be controlled in two operating modes:

• In the Manual operating mode, the required speed is set by the RUN / STOP switch and the 
UP/DOWN push buttons

• In the PC master software operating mode, the required speed and RUN / STOP switch are set by the 
PC

Table 4-1   High Voltage Hardware Set Specifications

Motor Characteristics Motor Type Six poles, 3-phase,
star connected, BLDC motor

Speed Range  2500rpm (at 310V DCBus)

Maximum Electrical Power 150W

Phase Voltage 3*220V

Phase Current 0.55A

Drive Characteristics Speed Range < 3000rpm

Input Voltage 310V DC

Maximum DCBus Voltage 380V

Control Algorithm Speed Closed-Loop Control

Optoisolation Required
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Figure 4-1  Drive Concept

The control process follows:

When the Start command is accepted (using the RUN / STOP Switch or PC master software command), the
required speed is calculated according to the UP / DOWN push buttons or PC master software commands. The
required speed proceeds through an acceleration / deceleration ramp, and a reference command is put to the
speed controller. The actual speed is calculated from the pulses of the Quadrature Encoder. The comparison
between the required speed command and the actual measured speed generates a speed error. Based on the
error, the speed controller generates a current, Is_qReq, which corresponds to torque. A second part of stator
current Is_dReq, which corresponds to flux, is given by the Field-Weakening Controller. Simultaneously, the
stator currents Is_a, Is_b, and Is_c are measured and transformed from instantaneous values into the stationary
reference frame α, β, and consecutively into the rotary reference frame d-q (Park - Clarke transformation).
Based on the errors between required and actual currents in the rotary reference frame, the current controllers
generate output voltages Us_q and Us_d (in the rotary reference frame d-q). The voltages Us_q and Us_d are
transformed back into the stationary reference frame α, β and, after DCBus ripple elimination, are recalculated
to the 3-phase voltage system, which is applied to the motor.
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In addition to the main control loop, the DCBus voltage, DCBus current and power stage temperature are
measured during the control process. They are used to protect the drive from overvoltage, undervoltage,
overcurrent and overheating. Undervoltage and overheating protection is performed by software, while the
overcurrent and overvoltage fault signals utilize a fault input of the hybrid controller.

If any of the previously mentioned faults occur, the motor control PWM outputs are disabled in order to protect
the drive, and the fault state of the system is displayed by the on-board LED.

4.3   System Blocks Concept
This section explains the system block concept for targeting the 56F83xxEVM.

4.3.1  Position and Speed Sensing

All members of Freescale’s 56F8300 family have a Quadrature Decoder. This peripheral is commonly used for
position and speed sensing. The Quadrature Decoder position counter counts each edge of Phase A and Phase
B signals up or down according to its order. On each revolution, the position counter is cleared by an index
pulse; see Figure 4-2.

Figure 4-2  Quadrature Encoder Signals

Because the position counter is cleared on each revolution by an index pulse, the zero position is linked with
the index pulse, but vector control requires the zero position, where the rotor is aligned to the d axis; see
Section 4.3.1.3. Therefore, using a Quadrature Decoder to decode the encoder’s signal requires either the
calculation of an offset which aligns the Quadrature Decoder position counter with the aligned rotor position
(zero position), or the coupling of the zero rotor position with the index pulse of a Quadrature Encoder. To
avoid the calculation of the rotor position offset, the Quadrature Decoder is not used in this application. The
decoder’s digital processing capabilities are then free to be used by another application.

In addition to the Quadrature Decoder, the input signals (Phase A, Phase B and Index) are connected to Quad
Timer B. The Quad Timer module consists of four Quad Timers. Due to the wide variability of Quad Timer
modules, it is possible to use this module to decode Quadrature Encoder signals, sense position, and speed. A
configuration of the Quad Timer module is shown in Figure 4-3.
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Figure 4-3  Quad Timer B Configuration

4.3.1.1  Position Sensing

The position and speed sensing algorithm uses all of the timers in module B and an additional timer as a time
base. Timers B0 and B1 are used for position sensing. Timer B0 permits connection of three input signals to
the Quad Timer B1, even if Timer B1 has only two inputs (primary and secondary), accomplished by using
Timer B0 as a Quadrature Decoder only. It is set to count in the quadrature mode, count to zero, and then
reinitialize. This timer setting is used to decode quadrature signals only. Timer B1 is connected to Timer B0 in
cascade mode, in which the information about counting up or down is connected internally to Timer B1,
freeing the secondary input of Timer B1 to be used for the index pulse. Counter B1 is set to count to
+/- ((4*number of pulses per revolution) - 1) and reinitialize after compare. The value of Timer B1 corresponds
to the rotor position. 
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The position of the index pulse is sensed to avoid the loss of some pulses under the influence of noise during
extended motor operation, which can result in incorrect rotor position sensing. If some pulses are lost, a
different position of the index pulse is detected, and a position sensing error is signaled. If a check of the index
pulse is not required, Timer B1 can be removed and Timer B0 set as the position counter B1. The resulting
value of Timer B1 is scaled to range <-1; 1), which corresponds to <-π; π).

4.3.1.2  Speed Sensing

There are two common ways to measure speed. The first method measures the time between two following
edges of the Quadrature Encoder, and the second method measures a position difference (a number of pulses)
per constant period. The first method is used at low speed. When the measured period is so short that the speed
calculation is not precise, the speed calculation algorithm switches to the second method.

The proposed algorithm combines both methods. The algorithm simultaneously measures the number of
Quadrature Encoder pulses per constant period, and an accurate time interval between the first and last pulse is
counted during that constant period. The speed can then be expressed as:

EQ. 4-1

where: 

The algorithm requires two timers for counting pulses and measuring their period, and a third timer as a time
base; see Figure 4-3. Timer B2 counts the pulses of the Quadrature Encoder, and Timer B3 counts a system
clock divided by 4 (system clock / 4). The values in both timers can be captured by each edge of the Phase A
signal. The time base is provided by timer D0, which is set to call the speed processing algorithm every 900µs.
An explanation of how the speed processing algorithm works follows. 

First, the new captured values of both timers are read. The difference in the number of pulses and their accurate
time interval are calculated from actual and previous values. The new values are then saved for the next period,
and the capture register is enabled. From that moment, the first edge of Phase A signal captures the values of
both Timer B2 and Timer B3, and the capture register is disabled. This process is repeated on each call of the
speed processing algorithm; see Figure 4-4.

speed = Calculated speed

k = Scaling constant

N = Number of pulses per constant period

T = Accurate period of N pulses

speed
k N⋅

T
-----------=
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Figure 4-4  Speed Processing

4.3.1.2.1   Minimum and Maximum Speed Calculation

The minimum speed is calculated with the following equation:

EQ. 4-2

Where: 

In the application, the Quadrature Encoder has 1024 pulses per revolution and a calculation period of 900µs
was chosen on the basis of a motor mechanical constant. Thus, EQ. 4-2 calculates the minimum speed as
16.3rpm.

The maximum speed can be expressed as:

EQ. 4-3

Where: 

ωmin = Minimum obtainable speed [rpm]

N = Number of pulses per revolution [1 / rev]

Tcalc = Period of speed measurement (calculation period) [s]

ωmax = Maximum obtainable speed [rpm]

N = Number of pulses per revolution [1 / rev]

TclkT3 = Period of input clock to Timer B3 [s]
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Substitution in EQ. 4-3 for N and TclkT3 (Timer B3 input clock = system clock 30MHz / 2) yields a maximum
speed of 219726rpm. As demonstrated, the algorithm can measure speed across a wide range. Because such
high speed is not practical, the maximum speed can be reduced to a required range by the constant k in EQ.
4-1. The constant k can be calculated as:

EQ. 4-4

Where:

In this application, the maximum measurable speed is limited to 6000rpm.

Notes: To ensure an accurate speed calculation, you must choose the input clock of Timer B3 so that the 
calculation period of speed processing (in this case, 900µs) is represented in Timer B3 as a value lower 
than 0x7FFFH (900.10-6/TclkT2<=0x7FFFH).

4.3.1.3  Position Reset with Rotor Alignment

After reset, the rotor position is unknown, because a Quadrature Encoder does not give an absolute position
until the index pulse arrives. As shown in Figure 4-5, the rotor position must be aligned with the d axis of the
d-q coordinate system before a motor begins running. The alignment algorithm is shown in Figure 4-6 First,
the position is set to zero, independent of the actual rotor position. (The value of the Quadrature Encoder does
not affect this setting). Then the Id current is set to alignment current. The rotor is now aligned to the required
position. After rotor stabilization, the encoder is reset to the zero position, then the Id current is set back to zero,
and alignment is finished. The alignment is executed only once during the first transition from the Stop to the
Run state of the RUN / STOP switch.

k = Scaling constant in EQ. 4-1

ωmax = Maximum of the speed range [rpm]

N = Number of pulses per revolution [1 / rev]

TclkT3 = Period of input clock toTimer B3 [s]

k
60

4NTclkT3ωmax
-----------------------------------=
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Figure 4-5  Rotor Alignment

Figure 4-6  Rotor Alignment Flow Chart

4.3.2  Current Sensing

Phase currents are measured by a shunt resistor in each phase. A voltage drop on the shunt resistor is amplified
by an operational amplifier, and shifted up by 1.65V. The resulting voltage is converted by an A/D converter;
see Figure 4-7 and Figure 4-8.
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Figure 4-7  Current Shunt Resistors

Figure 4-8  Current Amplifier

As shown in Figure 4-7, the currents can only be measured in certain circumstances. For example, the current
flows through Phase A (and shunt resistor R1) only if transistor Q2 is switched on. Likewise, the current in
Phase B can be measured if transistor Q4 is switched on, and the current in Phase C can be measured if
transistor Q6 is switched on. A voltage shape analysis must be performed to get a moment of current sensing.

The voltage shapes of two different PWM periods are shown in Figure 4-11 The voltage shapes correspond to
center-aligned PWM sinewave modulation. As shown, the best moment of current sampling is in the middle of
the PWM period, where all bottom transistors are switched on.

To set the exact moment of sampling, the 56F8300 family offers the ability to synchronize ADC and PWM
modules via the SYNC signal. This exceptional hardware feature, patented by Freescale, is used for current
sensing. The PWM outputs a synchronization pulse, which is connected as an input to the synchronization
module TC3 (Quad Timer C, counter / timer 3). A high-true pulse occurs for each reload of the PWM,
regardless of the state of the LDOK bit. The intended purpose of TC3 is to provide a user-selectable delay
between the PWM SYNC signal and the updating of the ADC values. A conversion process can be initiated by
the SYNC input, which is an output of TC3. The time diagram of the automatic synchronization between PWM
and ADC is shown in Figure 4-9
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Figure 4-9  Time Diagram of PWM and ADC Synchronization

However, all three currents cannot be measured from one voltage shape. The PWM period II illustrated in
Figure 4-11 shows a moment when the bottom transistor of Phase A is switched on for a very short time. If the
time on is shorter than a critical time, the current can not be accurately measured. The critical time is given by
hardware configuration (transistor commutation times, response delays of the processing electronics, etc.).
Therefore, only two currents are measured and a third current is calculated from the following equation:

EQ. 4-5
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Figure 4-10  Voltage Shapes of Two Different PWM Periods

Figure 4-11  3-Phase Sinewave Voltages and Corresponding Sector Value

A decision must now be made about which phase current should be calculated. The simplest technique is to
calculate the current of the most positive voltage phase. For example, Phase A generates the most positive
voltage within section 0 to 60°, Phase B within section 60° to 120°, and so on; see Figure 4-11

In this case, the output voltages are divided into six sectors, as shown in Figure 4-11 The current calculation is
then made according to the actual sector value.

Sectors 1 and 6:

EQ. 4-6
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Sectors 2 and 3:

EQ. 4-7

Sectors 4 and 5:

EQ. 4-8

Notes: The sector value is used for current calculation only, and has no other meaning in the sinewave 
modulation. But if we use any type of space vector modulation, we can get the sector value as part of 
space vector calculation.

4.3.3  Voltage Sensing

The DCBus voltage sensor is represented by a simple voltage divider. The DCBus voltage does not change
rapidly. It is nearly constant, with the ripple given by the power supply structure. If a bridge rectifier is used for
rectification of the AC line voltage, the ripple frequency is twice the AC line frequency. If the power stage is
designed correctly, the ripple amplitude should not exceed 10% of the nominal DCBus value.

The measured DCBus voltage must be filtered to eliminate noise. One of the easiest and fastest techniques is
the first order filter, which calculates the average filtered value recursively from the last two samples and
coefficient C:

EQ. 4-9

To speed up the initialization of the voltage sensing (the filter has exponential dependency with constant of 1/N
samples), the moving average filter, which calculates the average value from the last N samples, can be used
for initialization:

EQ. 4-10

4.3.4  Power Module Temperature Sensing

The power module temperature measured is used for thermal protection The hardware realization is shown in
Figure 4-12. The circuit consists of four diodes connected in series, a bias resistor, and a noise suppression
capacitor. The four diodes have a combined temperature coefficient of 8.8mV/οC. The resulting signal,
Temp_sense, is fed back to an A/D input, where software can be used to set safe operating limits. In this
application, the temperature, in Celsius, is calculated according to the conversion equation:

EQ. 4-11

Where: 

temp = Power module temperature in centigrade

Temp_sense = Voltage drop on the diodes, which is measured by ADC [V]

a = Diodes-dependent conversion constant (a = -0.0073738)

b = Diodes-dependent conversion constant (b = 2.4596)

iB iA– iC–=

iC iB– iA–=

uDCBusFilt n 1+( ) CuDCBusFilt n 1+( ) CuDCBusFilt n( )–( ) u– DCBusFilt n( )=

uDCBusFilt uDCBus n( )
n 1=

N–
∑=

temp
Temp_sense b–

a
--------------------------------------=
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Figure 4-12  Temperature Sensing

5.   Hardware Implementation

5.1   Hardware Set-Up
This section explains the hardware set-up for targeting a 56F83xxEVM.

The application can run on Freescale’s motor control hybrid controllers using the 56F83xxEVM, Freescale’s
3-Phase AC / BLDC high voltage power stage, and the BLDC high voltage motor with a Quadrature Encoder
and integrated brake. All components are an integral part of Freescale’s embedded motion control development
tools. Application hardware set-up is shown in Figure 5-1

The system hardware set-up for a particular hybrid controller varies only by the EVM used. The application
level of the software is identical for all hybrid controllers. The EVM and chip differences are handled by the
off-chip software drivers for the particular hybrid controller EVM.

Detailed application hardware set-up can be found in the Targeting Freescale 56F83xx Platform manual for
the specific device being implemented.

C1
100nF

D1
BAV99LT1

R1
2.2k - 1%

D2
BAV99LT1

Temp_sense

+3.3V_A
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Figure 5-1  High-Voltage Hardware System Configuration

All system parts are supplied and documented in these references:

• U1 - Controller Board for 56F83xx

— Supplied as 56F83xxEVM

— Described in the 56F83xx Evaluation Module Hardware User’s Manual for the specific device 
being implemented

• U2 - Legacy Motor Daughter Card (LMDC)

— Supplies limited; please contact your Freescale representative

• U3 - 3-phase AC / BLDC High-Voltage Power Stage 

— Supplied in a kit with the In-Line Optoisolation Box, Freescale Part #ECINLHIVACBLDC

— Described in the 3-Phase AC BLDC High-Voltage Power Stage User’s Manual

• U4 - In-Line Optoisolation Box

— Supplied in a kit with the 3-Phase AC BLDC High-Voltage Power Stage, Freescale Part 
#ECINLHIVACBLDC

Or

— Supplied by itself, Freescale Part #ECOPTINL

— Described in the In-Line Optoisolation Box Manual

WARNING: To avoid potential damage to the development equipment, the use of an In-line Optoisolation
Box is strongly recommended during development.
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• MB1 Motor-Brake SM40V + SG40N 

Notes: The application software is targeted for a PM Synchronous Motor with sinewave Back-EMF shape. In 
this demonstration application, a BLDC motor is used instead, due to the availability of the BLDC 
motor (MB1). Although the Back-EMF shape of this motor is not an ideal sinewave, it can be 
controlled by the application software. The drive parameters will be ideal, with a PMSM motor with an 
exact sinewave Back-EMF shape.

A detailed description of the individual board can be found in the appropriate 56F80x Evaluation Module
User’s Manual or 56F83xx Evaluation Module User Manual, or on the Freescale web site:
www.freescale.com 

The Users Manual includes the schematic of the board, description of individual function blocks, and a bill of
materials. The individual boards can be ordered from Freescale as standard products.

6.   Software Design
This section explains the software design for targeting a 56F83xxEVM and describes the design of the drive’s
software blocks. The software description comprises these topics:

• Main software flow chart

• Data flow

• State diagram

For more information on the system blocks used, refer to Section 4.3.

6.1   Main Software Flow Chart
The main software flow chart incorporates the Main routine entered from Reset (see Figure 6-1) and Interrupt
states (see Figure 6-2, and Figure 6-3). The Main routine includes the initialization of the hybrid controller
and the main loop.

The software consist of processes: 

• The Application Control process is the highest software level and precedes settings for other software 
levels. Inputs for this level are the RUN / STOP switch, UP / DOWN buttons for manual control, and 
PC master software (via the registers shown in Section 6.2). This process is handled by Application 
Control Processing called from Main; see Figure 6-1.

• The PM Synchronous Motor (PMSM) Control process provides most of the motor control 
functionality. It is split into:

— Current Processing, which is called from ADC Complete Interrupt (see Figure 6-2) once per two 
PWM reloads, with a period 125µs. It can also be set to each PWM reload (62.5µs), but the PC 
master software recorder pcmasterdrvRecorder() must be removed from the code. 

— Speed Processing, which is called from the Quadrature Timer D0 Interrupt (see Figure 6-3) with 
the period PER_TMR_POS_SPEED_US (900µs). The advantage of splitting the current and the 
speed control processes is that current control can be executed with a high priority and frequency 
of calls, while the execution of the speed control is not that highly prioritized.

• The Analog Sensing process handles sensing, filtering and correction of analog variables (phase 
currents, temperature, DCBus voltage). It is provided by Analog Sensing Processing (see Figure 6-2) 
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and Analog Sensing ADC Phase Set, split from Analog Sensing Processing because it sets ADC 
according to the svmSector variable, calculated after PMSM Control Current Processing.

• Position and Speed Measurement processes are provided by hardware Timer modules and the 
functions giving the actual speed and position; see Section 4.3.1

• LED Indication processing is called from Quadrature Timer D0 Interrupt, which provides the time 
base for the LEDs’ flashing

• The Fault Control process is split into:

— Background (see Figure 6-1), which checks the Overheating, Undervoltage and Position Sensing 
Faults

— PWM Fault ISR (see Figure 6-2) takes care of Overvoltage and Overcurrent Faults, which cause 
a PWM B Fault interrupt

• The Brake Control process is dedicated to the brake transistor control, which maintains the DCBus 
voltage level. It is called from Main (see Figure 6-1).

• The UP / DOWN Button and Switch Control processes are subprocesses of Application Control and 
are described in Section 7.4.

The Up / Down Button processes are split into:

— Button Processing Interrupt, called from Quadrature Timer D0 Interrupt (see Figure 6-3)

— Button Processing Background, called from ApplicationControlProcessing
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Figure 6-1  Software Flow Chart - General Overview I

• The Switch process is split into:

— Switch Filter Processing, called from Quad Timer D0 Interrupt (see Figure 6-3

— Switch Get State, called from Application Control processing, which handles: 

— Manual switch control

— Switch Get State: “PC master software” (in PC master application operating mode)

Reset

Hybrid Controller Initialization

Application Control - Processing:
according to appOpMode:

{control/check switch
set omega_required_mech}

according to appState:
{trigger appState Run/Stop/Init/
set PMSM Control Run/Stop
set Fault Control status
set Brake Control Run/Stop
set LED Indication}

Fault Control - Background:
if faultCtrlStatus - AnalogFaultEnbl

{check Undervoltage, Overheating 
faults}

if Position sensing,Overvoltage, 
Overcurrent faults

{set appFaultStatus
trigger beginning of Fault State}

Brake Control - Processing:
if u_dc_bus_filt > U_DCB_ON_BRAKE_SYSU

{Brake On}
if u_dc_bus_filt < U_DCB_OFF_BRAKE_SYSU

{Brake Off}
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Figure 6-2  Software Flow Chart - General Overview II

Interrupt
ADC Complete

Return

Analog Sensing- Processing
according to anSensingCtrlStatus
sensing / initialization:

{sense Temperature
calculate Filtered Temperature
sense, correct 2 Phase Currents
calculate 3 Phase Currents
sense Voltage
correct Voltage
calculate Filtered Voltage}

sin cos generation:
get position from Position Mea-
surement
sin (theta_actual_el)
cos (theta_actual_el)

Current Control:
Currents Transformation (a,b,c to d-q)
(Field-Weakening Controller)
Current d Regulator
Current q Regulator
Voltages Transformation (d-q to α,β)
DCBus Ripple Compensation
Space Vector Module sets pwmABC

PMSM Control
-Current Processing:
proceeds according to pmsmCtrlStatus

Analog Sensing-ADC Phase Set
set ADC converter phase current
samples - two (easily measured)
phases

PWM:
set duty cycles to pwmABC

Return

Fault Control - PWM Fault ISR part:
if Overcurrent or Overvoltage:

{set appFaultStatus = Overvoltage / 
Overcurrent

triggers beginning of Fault State (disable PWM...)}

Interrupt 
PWM B Fault
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Figure 6-3  S/W Flow Chart - General Overview III

Speed Control:
Software Timer
if Timeout:

{Field-Weakening Controller
Speed Regulator
Speed Ramp}

Return

Alignment:
Software Timer
if Timeout

{PMSM Control - End Alignment}

Speed Measurement Processing
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6.2   Data Flow
The PMSM Vector Control Drive Control Algorithm is described in the data flow charts shown in Figure 6-4
and Figure 6-5. The variables and constants described should be clear from their names.

Figure 6-4  Data Flow - Part 1
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Figure 6-5  Data Flow - Part 2 

The data flows consist of the processes described in the following sections.

6.2.1  Application Control Process

The Application Control process is the highest software level, which precedes settings for other software
levels. 

The process state is determined by the variable appState.

The application can be controlled either:

• Manually

• From PC master software

The Manual or PC master application operating mode is determined by the setting of appOpMode.

For Manual control, the input of this process is the RUN / STOP switch and UP / DOWN buttons.
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The PC master software communicates via: 

• omega_reqPCM_mech, which is the required angular speed from PC master software

• appPcmCtrlStatus, which consists of the flags StartStopCtrl for START / STOP

• RequestCtrl for changing the application’s operating mode appOpMode to Manual or PC control

• appFaultStatus, which indicates faults

The other processes are controlled by setting:

• pmsmCtrlStatus

• omega_required_mech

• appPcmCtrlStatus

• brakeCtrlStatus

• faultCtrlStatus

6.2.2  LED Indication Process

This process controls the LEDs’ flashing according to appState.

6.2.3  Analog Sensing Process

The Analog Sensing process handles:

• Sensing

• Filtering

• Correction of analog variables:

— Phase currents

— Temperature

— DCBus voltage

6.2.4  Position and Speed Measurement Process

The Position and Speed Measurement process gives:

• Mechanical angular speed, omega_actual_mech

• Electrical position, theta_actual_el

6.2.5  PM Synchronous Motor (PMSM) Control Process

The PMSM Control process provides most of the motor control functionality. 

Figure 6-6 shows the data flow inside the PMSM Control process, including essential subprocesses: 

• Sine

• Cosine Transformations

• Current Control

• Speed

• Alignment Control

• Field-Weakening
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The Sine and Cosine Transformations generate sinCos_theta_el with the components sine, cosine according to
electrical position theta_actual_el. It is provided in a look-up table.

 

Figure 6-6  Data Flow - PMSM Control

6.2.5.1  Current Control Process

The data flow inside the Current Control process is detailed in Figure 6-7 The measured phase currents
i_Sabc_comp are transformed into i_SDQ_lin using sinCos_theta_el; see Section 3.3.3. Both d and q
components are regulated by independent Proportional Integrational (PI) regulators to i_SDQ_desired values.
The outputs of the regulators are u_SDQ_lin. 
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Figure 6-7  Data Flow - PMSM Control - Current Control
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The Feed Forward process provides the following calculations:

EQ. 6-1

EQ. 6-2

The u_SDQ voltages are transformed into u_SAlphaBeta (see Section 3.3.3) by the Voltage Transformation
process. The Scaling DCBus Ripple Compensation block scales u_SAlphaBeta (according u_dc_bus_filt) to
u_Salpha_RipElim, described in the svmlimDcBusRip function in the Motor Control Library. The space vector
modulation process generates duty cycle pwmABC and svmSector according to u_Salpha_RipElim.

The u_LimitF16 is a voltage limit for current controllers. The u_OverMax constant is used to increase the
limitation of u_SDQ voltages over maximum SVM_INV_INDEX / 2 * u_dc_bus_filt determined by the DCBus
voltage and space vector modulation. Although the pwmABC will be limited by the space vector modulation
process functions, the reserve is used for field-weakening controller dynamics. In the stable state, the u_SDQ
voltages vector will not exceed u_S_max_FWLimit; see Section 6.2.5.4.

6.2.5.2  Speed Ramp

This process generates angular speed omega_desired_mech from angular speed omega_required_mech with a
linear ramp. The speed ramp is implemented so as not to saturate the speed regulator during acceleration.

6.2.5.3  Speed, Alignment Control Process

The process controls the i_SDQ_desired.q_axis current according to the PMSM Control Process Status. 

For Alignment status, it sets i_SDQ_desired.d_axis to i_Sd_Alignment and i_SDQ_desired.q_axis to 0.

For Run status, it controls the omega_actual_mech speed to omega_desired_mech by calculation of the PI
regulator with i_SDQ_desired.q_axis output.

6.2.5.4  Field-Weakening Process

The Field-Weakening process provides control of i_SDQ_desired.d_axis in order to achieve higher motor
speeds by the field-weakening technique. The control algorithm is shown in Figure 6-8 The
u_S_max_FWLimit is computed from u_dc_bus_filt. To maintain voltage reserve, the u_Reserve_FW is
subtracted from the maximum SVM_INV_INDEX / 2 * u_dc_bus_filt, determined by DCBus voltage and space
vector modulation. The reserve is used for field-weakening controller dynamics; in the stable state, the u_SDQ
voltages vector will not exceed u_S_max_FWLimit.

This process also provides voltage limitation i_SDQ_desired.d_axis2 + i_SDQ_desired.q_axis2 <
(I_SDQ_MAX_F16)2 by setting:

EQ. 6-3

EQ. 6-4
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Figure 6-8  Field-Weakening Controller

6.2.6  Brake Control Process

The Brake Control process maintains DCBus voltage level via the IO_BRAKE driver, which controls the brake
switch. The voltage comparison levels are:

• u_dc_bus_on_brake, which is initialized according to mains voltage with either:

— U_DCB_ON_BRAKE_MAINS230_F16

— U_DCB_ON_BRAKE_MAINS115_F16 

• u_dc_bus_off_brake, initialized with either:

— U_DCB_OFF_BRAKE_MAINS230_F16

— U_DCB_OFF_BRAKE_MAINS115_F16

6.2.7  PWM Generation Process

The PWM Generation process controls the generation of PWM signals, driving the 3-phase inverter.

The input is pwmABC, with three PWM components scaled to the range <0,1> of type Frac16. The scaling
(according to PWM module setting) and the PWM module control (on the hybrid controller) is provided by the
PWM driver.

6.2.8  Fault Control Process

The Fault Control process checks these faults:

• Overheating

• Undervoltage

• Overvoltage

• Overcurrent

• Position Sensing 
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Overheating and Undervoltage are checked by the comparisons:

• temperature_filt < TEMPERATURE_MAX_F16

• u_dc_bus_filt < u_dc_bus_min_fault_C, where u_dc_bus_min_fault_C is initialized with 
U_DCB_MIN_FAULT_MAINS230_F16 or U_DCB_MIN_FAULT_MAINS115_F16. 

The Position Sensing fault is checked with the Check Index Position process. 

The Overvoltage and Overcurrent faults are set in the PWMA Fault interrupt.

6.3   State Diagram 
The software can be split into the processes shown in Section 6.2.

These processes are described in the following sections:

• Hybrid Controller Initialization

• Application Control State Diagram

• PMSM Control State Diagram

• Fault Control State Diagram

• Analog Sensing State Diagram

All processes start with the Hybrid Controller Initialization state after Reset.

6.3.1  Hybrid Controller Initialization

The hybrid controller Initialization state:

• Initializes:

— PWM

— Application control

— PM Synchronous Motor (PMSM) Control

— Analog sensing

— Brake control

— Fault control

— LED indication

— Button control

• Sets manual application operating mode

• Enables masked interrupts

• Sets “Application Control: Initialization Triggers”, which sets all affected processes to the Begin 
Application Initialization state

6.3.2  Application Control State Diagram

The Application Control process is detailed in Figure 6-9
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Figure 6-9  State Diagram - Application Control

After reset, the Hybrid Controller Initialization state is entered. The peripherals and variables are initialized in
this state, and the application operating mode appOpMode is set to Manual Control. 

When the state is finished, the Application Control Init state follows. As shown in Figure 6-9:

• appState = APP_INIT

• All subprocesses requiring initialization are proceeding

• PCB identification is provided

• The PWM is disabled, so no voltage is applied on motor phases 

If the appPcmCtrlStatus.RequestCtrl flag is set from PC master software, the application operating mode
appOpMode is toggled and the application operating mode can only be changed in this state. If the
switchState = Stop, Application Control enters the Stop state.

The switchState is set according to the manual switch on the EVM or PC master software register
AppPcmCtrlStatus.StartStopCtrl, depending on the application’s operating mode.
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In the Stop state:

• appState = APP_STOP 

• The PWM is disabled, so no voltage is applied on motor phases

When switchState = Run, the Begin Run state is processed. If there is a request to change application operating
mode, appPcmCtrlStatus.RequestCtrl = 1, the application Init is entered and the application operating mode
request can only be accepted in the Init or Stop state by transition to the Init state.

In the Begin Run state, all the processes provide settings to the Run state.

In the Run state:

• The PWM is enabled, so voltage is applied on motor phases

• The motor is running according to the state of all subprocesses

• If switchState = Stop, the Stop state is entered.

If a fault is detected, the Begin Fault state is entered, which is a subprocess of Fault control. 

• It sets appState = APP_FAULT

• The PWM is disabled

• The subprocess PMSM Control is set to Stop

The Fault state can only move onto the Init state when switchState = Stop, and the Fault Control subprocess
has successfully cleared all faults.

6.3.3  PMSM Control State Diagram

A state diagram of the PMSM Control process is illustrated in Figure 6-10.
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Figure 6-10  State Diagram - PMSM Control

When Application Control initializes, the PMSM Control subprocess initialization state is entered. 

• The AlignInitDoneFlag is cleared, which means that alignment can proceed. 

• The next PMSM Control state is Begin Stop or Fault. 

• RunFlag and AlignFlag are cleared and the Stop or Fault state is entered. 

• When “Application Control” equals “Begin Run”, the PMSM Control subprocess enters the Begin 
Alignment or Begin Run state, depending on whether or not the alignment initialization has already 
proceeded (flagged by AlignInitDoneFlag) 

The alignment state is necessary for setting the zero position of position sensing; see Section 4.3.1.3. In the
state Begin Alignment:

The Alignment current and duration are set

The alignment is provided by setting desired current for d_axis to i_Sd_Alignment and for q_axis to 0. 

PMSM Control:
Stop or Fault

PMSM Control:

PMSM Control:
Initialization

Application Control: Begin Running

Alignment Timeout

PMSM Control:
Begin Alignment

set Alignment  current

Application Control: Begin Stop/Fault

done

done

Application Control: Init

PMSM Control:
Run

PMSM Control:
Begin Run

done

PMSM Control:
Begin Stop or Fault

pmsmCtrlStatus.AlignInitDoneFlag = No

clear AlignInitDoneFlag

Begin Running
AlignInitDoneFlag = 1

set RunFlag PMSM Control:
End Alignment

done Set Zero Position

set Alignment  timeout

clear RunFlag
clear AlignFlag

timeout search
Current ramp

set AlignInitDoneFlag
clear AlignFlag

set AlignFlag

done

Alignment
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The alignment state provides current control and time out search. When alignment time out occurs, End
Alignment is entered. In that state, the Position Sensing Zero Position is set, so the position sensor is aligned
with the real vector of the rotor flux. When the End Alignment state ends, the PMSM Control enters a regular
Run state, where the motor is running at the required speed. If the Application Control state is set to Begin Stop
or Begin Fault, the PMSM Control enters the Begin Stop or Fault, then the Stop or Fault state.

6.3.4  Fault Control State Diagram

The state diagram of the Fault Control subprocess is illustrated in Figure 6-11 After the initialization, the fault
conditions are searched. If any fault occurs, the appFaultStatus variable is set according to detected error;
PWM is switched on (PWMEN bit = 0); the Fault state is entered. This state also causes Application Control:
Fault state. If the faults are successfully cleared, this is signaled to the Application Control process. The Fault
state is left when the Application Control Init state is entered.

Figure 6-11  State Diagram Fault Control
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Fault Control:
No Fault

searching faults

Fault Control:
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Fault Control:
Hybrid Controller Initialization

Position Sensing fault
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Reset
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PWMEN bit = 0
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6.3.5  Analog Sensing State Diagram

The state diagram of the Analog Sensing subprocess is shown in Figure 6-12 The Hybrid Controller
Initialization state initializes hardware modules such as ADC, synchronization with PWM, etc. In Begin Init,
Initialization is started, so the variables for initialization sum and the InitDoneFlag are cleared. In the Init
Proceed state, the temperature, DCBus voltage and phase current samples are sensed and summed. After
required analog sensing, Init samples are sensed, and the Init Finished state is entered. The samples’ average is
calculated from the sum divided by the number of analog sensing Init samples. According to the phase
currents’ average value, the phase current offsets are initialized.

All variable sensing is initialized and the state Init Done is entered, so the variables from analog sensing are
valid for other processes. In this state, temperature and DCBus voltage are filtered in first order filters.

Figure 6-12  State Diagram - Analog Sensing

7.   Implementation Notes
This section explains implementation notes for targeting a 56F83xxEVM.

7.1   Scaling of Quantities
The PMSM Vector Control application uses a fractional representation for all real quantities except time.

The N-bit signed fractional format is represented using 1.[N-1] format (1 sign bit, N-1 fractional bits). Signed
fractional numbers (SF) lie in the following range:

EQ. 7-1

Analog Sensing:
Begin Init

Analog Sensing
Init Done,

Analog Sensing
Init. Proceed:

Analog Sensing
Hybrid Controller Initialization

Reset

clear variables

Application Control: Begin Init

samples counter = 

Application Control: Begin Init

clear InitDoneFlag

Analog Sensing
Init Finished:

samples average

done

done

set current offsets

 
sense and sum samples

count samples

analog sensing init samples

set InitDoneFlag

normal operation:

1.0– SF +1.0 -2 N 1–[ ]–≤ ≤
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For words and long-word signed fractions, the most negative number that can be represented is -1.0, whose
internal representation is $8000 and $80000000, respectively. The most positive word is $7FFF or 1.0 - 2-15,
and the most positive long-word is $7FFFFFFF or 1.0 - 2-31.

The following equation shows the relationship between the real and fractional representations:

EQ. 7-2

Where: 

The C language standard does not have any fractional variable type defined. Therefore, fractional operations
are provided by CodeWarrior intrinsics functions (e.g. mult_r() ). As a substitution for the fractional type
variables, the application uses types Frac16 and Frac32. These are in fact defined as integer 16-bit signed
variables and integer 32-bit signed variables. The difference between Frac16 and pure integer variables is that
Frac16 and Frac32 declared variables should only be used with fractional operations (intrinsics functions).

A recalculation from real to a fractional form and Frac16, Frac32 value is made with the following equations:

EQ. 7-3

for Frac16 16-bit signed value and:

EQ. 7-4

for Frac32 32-bit signed value:

EQ. 7-5

Fractional form, a conversion from Fraction Value to Frac16 and Frac32 Value, can be provided by the C
language macro.

7.1.1  Voltage Scaling

Voltage scaling results from the sensing circuits of the hardware used; for details, see the 3-Phase AC BLDC
High-Voltage Power Stage User’s Manual.

Fractional Value = The fractional representation of the real value [Frac16]

Real Value = The real value of the quantity [V, A, RPM, etc.]

Real Quantity 
Range Max 

= The maximum of the quantity range, defined in the application [V, A, RPM, etc.]

Fractional Value
Real Value

Real Quantity Range Max
--------------------------------------------------------------=

Frac16 Value 32768
Real Value

Real Quantity Range Max
--------------------------------------------------------------⋅=

Frac32 Value 231 Real Value
Real Quantity Range Max
--------------------------------------------------------------⋅=

Fractional Value
Real Value

Real Quantity Range Max
--------------------------------------------------------------=
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Voltage quantities are scaled to the maximum measurable voltage, which is dependent on the hardware. The
relationship between real and fractional representations of voltage quantities is:

EQ. 7-6

Where: 

In the application, the VOLT_RANGE_MAX value is the maximum measurable DCBus voltage:

VOLT_RANGE_MAX = 407V

All application voltage variables (u_dc_bus; u_dc_bus_filt; u_SAlphaBeta; u_SDQ, u_SAlphaBeta; and so on)
are scaled in the same way.

7.1.2  Current Scaling

Current scaling also results from the sensing circuits of the hardware used; for details, see the 3-Phase AC
BLDC High-Voltage Power Stage User’s Manual.

The relationship between real and fractional representation of current quantities is:

EQ. 7-7

Where: 

In the application, the CURR_RANGE_MAX value is the maximum measurable current:

CURR_RANGE_MAX = 5.86A

All application current variables (components of i_Sabc_comp; i_SAlphaBeta; i_SDQ; i_SDQ_desired;
i_Sd_Alignment; and so forth) are scaled in the same way.

Notes: As shown in 3-Phase AC BLDC High-Voltage Power Stage User’s Manual, the current sensing 
circuit provides measurement of the current in the range from CURR_MIN = -2.93A to 
CURR_MAX = +2.93A, giving the voltage for the ADC input ranges from 0 to 3.3V with 1.65V offset. 
The 56F80x’s ADC converter is able to automatically cancel (subtract) the offset. The fractional 
representation of the measured current is then in the range <-0.5, 0.5), while the possible 

uFrac = Fractional representation of voltage quantities [-]

uReal = Real voltage quantities in physical units [V]

VOLT_RANGE_MAX = Defined voltage range maximum used for scaling in physical units [V]

iFrac = Fractional representation of current quantities [-]

iReal = Real current quantities in physical units [A]

CURR_RANGE_MAX = Defined current range maximum used for scaling in physical units [A]

uFrac

uReal

VOLT_RANGE_MAX
--------------------------------------------------------=

iFrac

iReal

CURR_RANGE_MAX∫
------------------------------------------------------------=
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representation of a fractional value is <-1,1), as shown in EQ. 7-3. Therefore, CURR_RANGE_MAX is 
calculated according to the following equation:

EQ. 7-8

7.1.3  Speed Scaling

Speed quantities are scaled to the defined speed range maximum, which should be set lower than all speed
variables in the application, so it was set higher than the maximum mechanical speed of the drive. The
relationship between real and fractional representation of speed quantities is:

EQ. 7-9

where: 

In the application, the OMEGA_RANGE_MAX value is defined as:

OMEGA_RANGE_MAX = 6000rpm

Other speed variables (omega_reqPCM_mech; omega_desired_mech; omega_required_mech;
omega_reqMAX_mech; omega_reqMIN_mech; omega_actual_mech) are scaled in the same way 

The relation between speed scaling and speed measurement with encoder is described in Section 4.3.1.2. In the
final software, the constant OMEGA_SCALE is identical with the scaling constant k in equations EQ. 4-1 and
EQ. 4-4, and OMEGA_RANGE_MAX is ωMax.

7.1.4  Position Scaling

Position Scaling is described in Section 4.3.1.1 

7.1.5  Temperature Scaling

As shown in Section 4.3.4, the temperature variable does not have a linear dependency.

7.2   PI Controller Tuning
The application consists of four PI controllers. Two controllers are used for the Id and Iq currents, one for speed
control and the other for field-weakening. The controller’s constants are given by simulation in Matlab and
were experimentally specified. A detailed description of controller tuning is beyond the scope of this
application note.

ωFrac = Fractional representation of speed quantities [-]

ωReal = Real speed quantities in physical units [rpm]

OMEGA_RANGE_MAX = Defined speed range maximum used for scaling in physical units [rpm]

CURR_RANGE_MAX CURR_MAX-CURR_MIN 2 CURR_MAX⋅= =

ωFrac

ωReal

OMEGA_RANGE_MAX
--------------------------------------------------------------=
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7.3   Subprocesses Relation and State Transitions
As shown in Section 6.2 and Section 6.3, the software is split into subprocesses according to functionality.
The application code is designed to be able to extract individual processes, such as Analog Sensing, and use
them for customer applications. The C language functions dedicated for each process are located in one place
in the software, so they can be easily used for other applications. Function naming usually starts with the name
of the process, for example, AnalogSensingInitProceed().

As Section 6.3 shows, the processes’ or subprocesses’ state transients have some mutual relations. For
example, “Application Control: Begin Initialization” is a condition for transient of the “Analog Sensing
process: Init Done” to Begin Init state. In the code, the interface between processes is provided via “trigger”
functions. The naming convention for these functions is: <ProcessName><State>Trig().

The functionality is explained in following example:

The “trigger” function, Process1StateTrig(), is called from process1. The transient functions of process2,
process3,etc., which must be triggered by Process1State, are put inside Process1StateTrig(). 

7.4   RUN / STOP Switch and Button Control
The RUN / STOP switch is connected to the GPIOE5 pin. The state of the RUN / STOP switch can be read
directly from the GPIO Data Register.

User buttons are also connected to GPIO pins. The state of buttons are read periodically from the GPIO Data
Register. The EVM boards do not resolve button contact bouncing, which may occur while pushing and
releasing the button, so this issue must be resolved by software. 

The reading of buttons is masked by software methods. The following algorithm is used to check the state of
the desired GPIO pins.

The level of a GPIO may be LOW or HIGH. When the button is pressed, the logical level LOW is applied on
the GPIO pin and the scanning routine detects the low level and sets the corresponding buttonStatus bit; see
Figure 7-1. Due to contact bounces, the routine disables the scanning process and sets the debounce counter to
a predefined value just after the low level is detected. The variable buttonStatus represents the interrupt flag.
Using the 56F83xx’s software timer, the ButtonProcessingInterrupt function is periodically called, as shown in
Figure 7-1. The function ButtonProcessingInterrupt decrements the debounce counter and if the counter is 0,
the reading of GPIO pins is again enabled. The button press is checked by the ButtonEdge function; see
Figure 7-2. When the variable buttonStatus is set, the ButtonEdge function returns “1” and clears buttonStatus.
When the variable buttonStatus is not set, the ButtonEdge function returns “0”.

According to the ButtonProcessing calling period, the value of the debounce counter should be set close to
180ms. This value is sufficient to prevent multiple sets of buttonStatus bits, due to contact bounces.
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Figure 7-1  Button Control - ButtonProcessingBackground and ButtonProcessingInterrupt

Figure 7-2  Button Control - ButtonEdge
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8.   Processor Expert (PE) Implementation
PE is a collection of beans; APIs; libraries; services; rules; and guidelines. This software infrastructure is
designed to let a 56F80x or 56F8300 software developer create high-level, efficient, portable code. This
chapter describes how the PMSM Vector Control application is written under PE.

8.1   Beans and Library Functions
The PMSM Vector Control application uses the following beans:

• ADC bean

• Quad Timer bean

• Quadrature Decoder bean

• PWM bean

• PC master software bean

The PMSM Vector Control application uses the following motor control functions:

• cptrfmClarke (Clarke transformation, MC_ClarkePark bean)

• cptrfmPark (Park transformation, MC_ClarkePark bean)

• cptrfmParkInv (Inverse Park transformation, MC_ClarkePark bean)

• mcElimDcBusRip (DC bus ripple elimination, MC_SpaceVectorMod bean)

• mcPwmIct (3-phase sinewave modulation, MC_SpaceVectorMod bean)

• rampGetValue (ramp generation, MC_Ramp library)

• controllerPItype1_asmSc (PI controller, MC_Controller bean)

8.2   Beans Initialization
Each peripheral on the hybrid controller or on the EVM board is accessible through a bean. This section
describes the bean initialization of all peripherals used. For a more detailed description of drivers, see the
Targeting Freescale MC56F83xx Platform manual.

To use a bean, follow these steps:

• Add the required bean:

— Right click Beans under the Processor Expert tab in the project window and select Add Beans 

— When PE’s Bean Selector window opens, select the desired bean

• Configure the added bean

• Call the bean’s init function or use PE initialization, by selecting Call init in the CPU init code

Access to individual driver functions is provided from PESL support by the ioctl or PESL function call. To
enable access to these functions, PESL support should be enabled in the CPU bean used.

8.3   Interrupts
When configuring a bean in PE, the user defines the callback functions called during interrupts.
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8.4   PC Master Software
PC master software was designed to provide a debugging, diagnostic and demonstration tool for development
of algorithms and applications. It consists of components running on PCs and components running on the
target hybrid controller, connected by an RS-232 serial port. A small program is resident in the hybrid
controller that communicates with the PC master software to parse commands, return status information to the
PC, and process control information from the PC. The PC master software executing on a PC uses Microsoft
Internet Explorer as a user interface to the PC.

To enable the PC master software operation on the hybrid controller target board application, add the
PC_Master bean to the application. The PC_Master bean is located under CPU External Devices -> Display in
PE’s Bean Selector.

The PC master bean automatically includes the SCI driver and installs all necessary services. This means there
is no need to install SCI driver because the PC_Master bean encapsulates its own SCI driver.

The default baud rate of the SCI communication is 9600 and is set automatically by the PC master software
driver.

A detailed PC master software description is provided in the PE documentation.

The 3-Phase PMSM Vector Control utilizes PC master software for remote control from a PC. It enables the
user to:

• Control the PC master software

• Control the motor’s Start / stop

• Set motor speed

Variables read by the PC master software as a default and displayed to the user are:

• Required motor speed 

• Actual motor speed 

• Application status

— Init

— Stop

— Run

— Fault

• DCBus voltage level

• Identified line voltage

• Fault Status

— No_Fault

— Overvoltage

— Overcurrent

— Undervoltage

— Overheating

The profiles of required and actual speeds, together with the desired Id and Iq currents, can be seen in the Speed
Scope window.
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The course of quickly-changing variables can be observed in the Recorder windows, displayed by the PC
master’s Speed Scope. The Recorder can only be used when the application is running from External RAM,
due to the limited on-chip memory. The length of the recorded window may be set in Recorder Properties =>
bookmark Main => Recorded Samples. The dedicated memory space is defined in the appconfig.h file of the
ExtRAM target. The recorder samples are taken every 125µsec.

The following records can be captured:

• Required speed

• Actual speed

• Desired Id current

• Desired Iq current

The PC master software Control Page is illustrated in Figure 8-1 The profiles of the required and actual speeds
can be seen in the Speed Scope window.

Figure 8-1  PC Control Window
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9.   Hybrid Controller Memory Use
Table 9-1 shows how much memory is needed to run the 3-phase PMSM Vector Control drive using the
Quadrature Encoder. A part of the hybrid controller memory is still available for other tasks.
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[1] Design of Brushless Permanent-magnet Motors, J.R. Hendershot JR and T.J.E. Miller, Magna Physics
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Table 9-1   RAM and FLASH Memory Use by PE 2.94 and CodeWarrior 6.1.2

Memory
(in 16-bit Words)

Available for 56F8300 
Hybrid Controller 

Application Used + Stack Application Used without 
PC Master Software, SCI

Program Flash 64K 9009 4546

Data Flash 4K 4373 4360

Program RAM 2K 0 0

Data RAM 4K 2580 + 512 stack  396 + 512 stack
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