
Freescale Semiconductor
Application Note

AN1931
Rev. 3, 1/2005

© Freescale Semiconductor, Inc., 2005. All rights reserved.

PRELIMINARY

3-Phase PM Synchronous
Motor Vector Control Using a
56F80x, 56F8100, or
56F8300 Device
Design of Motor Control Application

Libor Prokop, Pavel Grasblum

Note: The PC master software referenced in this document is also
known as Free Master software.

1. Introduction
This application note describes the design of a 3-phase Permanent
Magnet Synchronous Motor (PMSM) drive based on Freescale’s
56F80x or 56F8300 dedicated motor control device. The software
design takes advantage of Processor ExpertTM (PE) software.

PM synchronous motors are very popular in a wide application
area. The PMSM lacks a commutator and is therefore more
reliable than the DC motor. The PM synchronous motor also has
advantages when compared to an AC induction motor. Because a
PMSM achieves higher efficiency by generating the rotor
magnetic flux with rotor magnets, a PMSM is used in high-end
white goods (such as refrigerators, washing machines,
dishwashers); high-end pumps; fans; and in other appliances
which require high reliability and efficiency.

This application creates a speed closed-loop PM synchronous
drive using a vector control technique. It serves as an example of
a PMSM control design using a Freescale hybrid controller with
PE support. It also illustrates the use of the PE’s dedicated motor
control libraries.

This application note includes basic motor theory, system design
concept, hardware implementation and software design,
including the PC master software visualization tool.

Contents
1. Introduction ..1
2. Advantages and Features of Freescale’s

Hybrid Controller2
2.1 56F805, 56800 Core Family................... 2
2.2 56F8346, 56800E Core Family 3
2.3 Peripheral Description 4

3. Target Motor Theory6
3.1 Permanent Magnet Synchronous Motor

(PMSM)... 6
3.2 Mathematical Description of PM

Synchronous Motor................................. 7
3.3 Digital Control of PM Synchronous

Motor... 11
4. System Concept19

4.1 System Specification 19
4.2 Vector Control Drive Concept.............. 20
4.3 System Blocks Concept 22

5. Hardware Implementation32
5.1 Hardware Set-Up 32

6. Software Design34
6.1 Main Software Flow Chart 34
6.2 Data Flow ... 39
6.3 State Diagram 46

7. Implementation Notes51
7.1 Scaling of Quantities 51
7.2 PI Controller Tuning............................. 54
7.3 Subprocesses Relation and State

Transitions... 55
7.4 RUN / STOP Switch and Button

Control... 55
8. Processor Expert (PE) Implementation ..57

8.1 Beans and Library Functions 57
8.2 Beans Initialization 57
8.3 Interrupts... 57
8.4 PC Master Software.............................. 58

9. Hybrid Controller Memory Use60
10. References ..60

Advantages and Features of Freescale’s Hybrid Controller

3-Phase PMSM Motor Vector Control, Rev. 3

2 Freescale Semiconductor
Preliminary

2. Advantages and Features of Freescale’s Hybrid Controller
The Freescale 56F80x (56800 core) and 56F8300 (56800E core) families are well suited for digital motor
control, combining the DSP’s calculation capability with the MCU’s controller features on a single chip. These
hybrid controllers offer many dedicated peripherals, such as Pulse Width Modulation (PWM) unit(s), an
Analog-to-Digital Converter (ADC), Timers, communication peripherals (SCI, SPI, CAN), on-board Flash and
RAM.

The following sectins use a specific device to describe the family’s features.

2.1 56F805, 56800 Core Family
The 56F805 provides the following peripheral blocks:

• Two Pulse Width Modulator modules (PWMA and PWMB), each with six PWM outputs, three
Current Sense inputs, and four Fault inputs; fault-tolerant design with dead time insertion, supporting
both center-aligned and edge-aligned modes

• Twelve-bit Analog-to-Digital Converters (ADCs), supporting two simultaneous conversions with dual
4-pin multiplexed inputs; the ADC can be synchronized by PWM modules

• Two Quadrature Decoders (Quad Dec0 and Quad Dec1), each with four inputs, or two additional Quad
Timers, A and B

• Two dedicated general purpose Quad Timers totaling six pins: Timer C with two pins and Timer D
with four pins

• CAN 2.0 B-compatible module with 2-pin ports used to transmit and receive

• Two Serial Communication Interfaces (SCI0 and SCI1), each with two pins, or four additional GPIO
lines

• Serial Peripheral Interface (SPI), with configurable 4-pin port, or four additional GPIO lines

• Computer Operating Properly (COP) / Watchdog timer

• Two dedicated external interrupt pins

• Fourteen dedicated General Purpose I/O (GPIO) pins; 18 multiplexed GPIO pins

• External reset pin for hardware reset

• JTAG / On-Chip Emulation (OnCE)

• Software-programmable, Phase Lock Loop-based frequency synthesizer for the hybrid controller core
clock

Table 2-1 Memory Configuration for 56F80x Devices

56F801 56F803 56F805 56F807

Program Flash 8188 x 16-bit 32252 x 16-bit 32252 x 16-bit 61436 x 16-bit

Data Flash 2K x 16-bit 4K x 16-bit 4K x 16-bit 8K x 16-bit

Program RAM 1K x 16-bit 512 x 16-bit 512 x 16-bit 2K x 16-bit

Data RAM 1K x 16-bit 2K x 16-bit 2K x 16-bit 4K x 16-bit

Boot Flash 2K x 16-bit 2K x 16-bit 2K x16-bit 2K x 16-bit

56F8346, 56800E Core Family

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 3
Preliminary

2.2 56F8346, 56800E Core Family
The 56F8346 provides the following peripheral blocks:

• Two Pulse Width Modulator modules (PWMA and PWMB), each with six PWM outputs, three
Current Sense inputs, and three Fault inputs for PWMA/PWMB; fault-tolerant design with dead time
insertion, supporting both center-aligned and edge-aligned modes

• Two 12-bit Analog-to-Digital Converters (ADCs), supporting two simultaneous conversions with dual
4-pin multiplexed inputs; the ADC can be synchronized by PWM modules

• Two Quadrature Decoders (Quad Dec0 and Quad Dec1), each with four inputs, or two additional Quad
Timers, A and B

• Two dedicated general purpose Quad Timers totaling three pins: Timer C with one pin and Timer D
with two pins

• CAN 2.0 B-compatible module with 2-pin ports used to transmit and receive

• Two Serial Communication Interfaces (SCI0 and SCI1), each with two pins, or four additional GPIO
lines

• Serial Peripheral Interface (SPI), with configurable 4-pin port, or four additional GPIO lines

• Computer Operating Properly (COP) / Watchdog timer

• Two dedicated external interrupt pins

• 61 multiplexed General Purpose I/O (GPIO) pins

• External reset pin for hardware reset

• JTAG / On-Chip Emulation (OnCE)

• Software-programmable, Phase Lock Loop-based frequency synthesizer for the hybrid controller core
clock

• Temperature Sensor system

Table 2-2 Memory Configuration for 56F8300 Devices

56F8322 56F8323 56F8345 56F8346 56F8347

Program Flash 16K x 16-bit 16K x 16-bit 64K x 16-bit 64K x 16-bit 64 x 16-bit

Data Flash 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x 16-bit

Program RAM 2K x 16-bit 2K x 16-bit 2K x 16-bit 2K x 16-bit 2K x 16-bit

Data RAM 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x 16-bit 2K x 16-bit

Boot Flash 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x 16-bit 4K x16-bit

Advantages and Features of Freescale’s Hybrid Controller

3-Phase PMSM Motor Vector Control, Rev. 3

4 Freescale Semiconductor
Preliminary

2.3 Peripheral Description
In addition to the fast Analog-to-Digital converter and the 16-bit Quadrature Timers, the most interesting
peripheral, for PMSM control, is the Pulse Width Modulation (PWM) unit. The PWM module offers a high
degree of freedom in its configuration, allowing efficient control of the PM synchronous motor.

The PWM has the following features:

• Three complementary PWM signal pairs, or six independent PWM signals

• Supports complementary channel operation

• Dead time insertion

• Separate top and bottom pulse width correction via current status inputs or software

• Separate top and bottom polarity control

• Edge-aligned or center-aligned PWM signals

• 15 bits of resolution

• Half-cycle reload capability

• Integral reload rates from 1 to 16

• Individual software-controlled PWM outputs

• Mask and swap of PWM outputs

• Programmable fault protection

• Polarity control

• 20mA current sink capability on PWM pins

• Write-protectable registers

PM synchronous motor control utilizes the PWM block set in the complementary PWM mode, permitting
generation of control signals for all switches of the power stage with inserted dead time. The PWM block
generates three sinewave outputs mutually shifted by 120 degrees.

Table 2-2 Memory Configuration for 56F8300 Devices (Continued)

56F8355 56F8356 56F8357 56F8365 56F8366 56F8367

Program Flash 128K x 16-bit 128K x 16-bit 128K x 16-bit 256K x 16-bit 128K x 16-bit 128K x 16-bit

Data Flash 4K x 16-bit 4K x 16-bit 4K x 16-bit 16K x 16-bit 4K x 16-bit 4K x 16-bit

Program RAM 2K x 16-bit 2K x 116-bit 2K x 16-bit 2K x 16-bit 2K x 16-bit 2K x 16-bit

Data RAM 8K x 16-bit 8K x 16-bit 8K x 16-bit 16K x 16-bit 4K x 16-bit 8K x 16-bit

Boot Flash 4K x 16-bit 8K x 16-bit 8K x 16-bit 16K x 16-bit 8K x 16-bit 8K x 16-bit

Peripheral Description

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 5
Preliminary

The Analog-to-Digital Converter (ADC) consists of a digital control module and two analog Sample and Hold
(S/H) circuits. ADC features include:

• 12-bit resolution

• Maximum ADC clock frequency is 5MHz with 200ns period

• Single conversion time of 8.5 ADC clock cycles (8.5 x 200ns = 1.7µs)

• Additional conversion time of 6 ADC clock cycles (6 x 200ns = 1.2µs)

• Eight conversions in 26.5 ADC clock cycles (26.5 x 200ns = 5.3µs) using simultaneous mode

• ADC can be synchronized to the PWM via the sync signal

• Simultaneous or sequential sampling

• Internal multiplexer to select two of eight inputs

• Ability to sequentially scan and store up to eight measurements

• Ability to simultaneously sample and hold two inputs

• Optional interrupts at end of scan, if an out-of-range limit is exceeded, or at zero crossing

• Optional sample correction by subtracting a preprogrammed offset value

• Signed or unsigned result

• Single-ended or differential inputs

The application utilizes the ADC block in simultaneous mode and sequential scan. It is synchronized with
PWM pulses. This configuration allows the simultaneous conversion within the required time of required
analog values, all phase currents, voltage and temperature.

The Quad Timer is an extremely flexible module, providing all required services relating to time events, and
offers the following features:

• Each timer module consists of four 16-bit counters / timers

• Counts up / down

• Counters are cascadable

• Programmable count modulo

• Maximum count rate equals peripheral clock / 2 when counting external events

• Maximum count rate equals peripheral clock when using internal clocks

• Counts once or repeatedly

• Counters are preloadable

• Counters can share available input pins

• Each counter has a separate prescaler

• Each counter has capture and compare capability

The PMSM vector control application utilizes four channels of the Quad Timer module for position and speed
sensing. A fifth channel of the Quad Timer module is set to generate a time base for speed sensing and a speed
controller.

Target Motor Theory

3-Phase PMSM Motor Vector Control, Rev. 3

6 Freescale Semiconductor
Preliminary

The Quadrature Decoder is a module providing decoding of position signals from a Quadrature Encoder
mounted on a motor shaft. It has the following features:

• Includes logic to decode quadrature signals

• Configurable digital filter for inputs

• 32-bit position counter

• 16-bit position difference counter

• Maximum count frequency equals the peripheral clock rate

• Position counter can be initialized by software or external events

• Preloadable 16-bit revolution counter

• Inputs can be connected to a general purpose timer to aid low speed velocity

The PM synchronous motor vector control application utilizes the Quadrature Decoder connected to Quad Timer
module B. It uses the decoder’s digital input filter to filter the encoder’s signals, but does not make use of its
decoding functions, freeing the decoder’s digital processing capabilities to be used by another application.

3. Target Motor Theory

3.1 Permanent Magnet Synchronous Motor (PMSM)
The PMSM is a rotating electric machine with a classic 3-phase stator like that of an induction motor; the rotor
has surface-mounted permanent magnets; see Figure 3-1.

Figure 3-1 Cross Section of a PM Synchronous Motor

In this respect, the PMSM is equivalent to an induction motor, where the air gap magnetic field is produced by
a permanent magnet, so the rotor magnetic field is constant. PM synchronous motors offer a number of
advantages in designing modern motion control systems. The use of a permanent magnet to generate
substantial air gap magnetic flux makes it possible to design highly efficient PM motors.

Stator

Stator winding
(in slots)

Shaft

Rotor

Air gap

Permanent magnets

Mathematical Description of PM Synchronous Motor

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 7
Preliminary

3.2 Mathematical Description of PM Synchronous Motor
The model used for vector control design can be understood by using space vector theory. The 3-phase motor
quantities (such as voltages, currents, magnetic flux, etc.) are expressed in terms of complex space vectors.
Such a model is valid for any instantaneous variation of voltage and current and adequately describes the
performance of the machine under both steady-state and transient operation. The complex space vectors can be
described using only two orthogonal axes. The motor can be considered a 2-phase machine. Using a 2-phase
motor model reduces the number of equations and simplifies the control design.

3.2.1 Space Vector Definition

Assume isa, isb, isc are the instantaneous balanced three-phase stator currents:

EQ. 3-1

It is then possible to define the stator current space vector as follows:

EQ. 3-2

Where:

Figure 3-2 shows the stator current space vector projection:

a and a2 = The spatial operators

a = ej2π/3

a2 = ej4π/3

k = The transformation constant, chosen as k=2/3

isa isb isc 0=+ +

is k= isa aisb a
2
isc+ +()

Target Motor Theory

3-Phase PMSM Motor Vector Control, Rev. 3

8 Freescale Semiconductor
Preliminary

Figure 3-2 Stator Current Space Vector and Its Projection

The space vector defined by EQ. 3-2 can be expressed utilizing two-axis theory. The real part of the space
vector is equal to the instantaneous value of the direct-axis stator current component, isα, and whose imaginary
part is equal to the quadrature-axis stator current component, isβ. Thus, the stator current space vector, in the
stationary reference frame attached to the stator, can be expressed as:

EQ. 3-3

In symmetrical 3-phase machines, the direct and quadrature axis stator currents isα and isβ are fictitious
quadrature-phase (2-phase) current components, which are related to the actual 3-phase stator currents as
follows:

EQ. 3-4

EQ. 3-5

Where:

k = 2/3 is a transformation constant

β

isβ

Phase C

Phase B

Phase A

β

isβ

Phase C

Phase B

Phase A

is isα jisβ+=

isα k isa
1
2
---isb–

1
2
---isc– 

 =

isβ k
3

2
------- isb isc–()=

Mathematical Description of PM Synchronous Motor

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 9
Preliminary

The space vectors of other motor quantities (voltages, currents, magnetic fluxes, etc.) can be defined in the
same way as the stator current space vector.

For a description of the PM synchronous motor, consider the symmetrical 3-phase smooth-air-gap machine
with sinusoidally-distributed windings. The voltage equations of stator in the instantaneous form can then be
expressed as:

EQ. 3-6

EQ. 3-7

EQ. 3-8

Where:

Due to the large number of equations in the instantaneous form, including EQ. 3-6, EQ. 3-7 and EQ. 3-8, it is
more practical to rewrite the instantaneous equations using the two-axis theory (Clarke transformation). The
PM synchronous motor can be expressed as:

EQ. 3-9

EQ. 3-10

EQ. 3-11

EQ. 3-12

EQ. 3-13

Where:

uSA, uSB and uSC = The instantaneous values of stator voltages in phase SA, SB and SC

iSA, iSB and iSC = The instantaneous values of stator currents in phase SA, SB and SC

ψSA, ψSB, ψSC = The instantaneous values of stator flux linkages in phase SA, SB and SC

α,β = The stator orthogonal coordinate system

uSα,β = The stator voltage

iSα,β = The stator current

ΨSα,β = The stator magnetic flux

ΨM = The rotor magnetic flux

RS = The stator phase resistance

uSA RSiSA td
d ψSA+=

uSB RSiSB td
d ψSB+=

uSC RSiSC td
d ψSC+=

uSα RSiSα td
d ΨSα+=

uSβ RSiSβ td
d ΨSβ+=

ΨSα LSiSα ΨM Θr()cos+=

ΨSβ LSiSβ ΨM Θr()sin+=

td
dω p

J

3
2
---p ΨSα iSβ ΨSβiSα–() TL–=

Target Motor Theory

3-Phase PMSM Motor Vector Control, Rev. 3

10 Freescale Semiconductor
Preliminary

EQ. 3-9 through EQ. 3-13 represent the model of PMSM in the stationary frame α, β fixed to the stator.

Besides the stationary reference frame attached to the stator, motor model voltage space vector equations can
be formulated in a general reference frame which rotates at a general speed ωg. If a general reference frame is
used, with direct and quadrature axes x,y rotating at a general instantaneous speed, ωg=dθg/dt, as shown in
Figure 3-3, where θg is the angle between the direct axis of the stationary reference frame (α) attached to the
stator and the real axis (x) of the general reference frame, then EQ. 3-14 defines the stator current space vector
in general reference frame:

EQ. 3-14

Figure 3-3 Application of the General Reference Frame

The stator voltage and flux-linkage space vectors can be similarly obtained in the general reference frame.

Similar considerations hold for the space vectors of the rotor voltages, currents and flux linkages. The real axis
(rα) of the reference frame attached to the rotor is displaced from the direct axis of the stator reference frame
by the rotor angle, θr. Since it can be seen that the angle between the real axis (x) of the general reference frame
and the real axis of the reference frame rotating with the rotor (rα) is θg-θr in the general reference frame, the
space vector of the rotor currents can be expressed as:

EQ. 3-15

LS = The stator phase inductance

ω / ωF = The electrical rotor speed / fields speed

p = The number of poles per phase

J = The inertia

TL = The load torque

Θr = The rotor position in α,β coordinate system

isg ise
jθg–

isx jisy+==

β

x

y

g

irg ire
j θg θr–()–

irx jiry+==

Digital Control of PM Synchronous Motor

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 11
Preliminary

Where:

The space vectors of the rotor voltages and rotor flux linkages in the general reference frame can be similarly
expressed.

The motor model voltage equations in the general reference frame can be expressed by utilizing introduced
transformations of the motor quantities from one reference frame to the general reference frame. The PMSM
model is often used in vector control algorithms. The aim of vector control is to implement control schemes
which produce high dynamic performance and are similar to those used to control DC machines. To achieve
this, the reference frames may be aligned with the stator flux-linkage space vector, the rotor flux-linkage space
vector or the magnetizing space vector. The most popular reference frame is the reference frame attached to the
rotor flux linkage space vector, with direct axis (d) and quadrature axis (q).

After transformation into d-q coordinates, the motor model as follows:

EQ. 3-16

EQ. 3-17

EQ. 3-18

EQ. 3-19

EQ. 3-20

Below base speed isd=0, EQ. 3-20 can be reduced to the following form:

EQ. 3-21

From EQ. 3-21, it can be seen that the torque is dependent and can be directly controlled by the current isq
only.

3.3 Digital Control of PM Synchronous Motor
In adjustable-speed applications, the PM synchronous motors are powered by inverters. The inverter converts
DC power to AC power at the required frequency and amplitude. A typical 3-phase inverter is illustrated in
Figure 3-4.

= The space vector of the rotor current in the rotor reference frameir

uSd RSiSd td
d ΨSd ωFΨSq–+=

uSq RSiSq td
d ΨSq ωFΨSd+ +=

ΨSd LSiSd ΨM+=

ΨSq LSiSq=

td
dω p

J

3
2
---p ΨSdiSq ΨSqiSd–() TL–=

td
dω p

J

3
2
---p ΨMiSq() TL–=

Target Motor Theory

3-Phase PMSM Motor Vector Control, Rev. 3

12 Freescale Semiconductor
Preliminary

Figure 3-4 3- Phase Inverter

The inverter consists of three half-bridge units where the upper and lower switches are controlled
complimentarily, meaning when the upper one is turned on, the lower one must be turned off, and vice versa.
Because the power device’s turn-off time is longer than its turn-on time, some dead time must be inserted
between turning off one transistor of the half-bridge, and turning on its complementary device. The output
voltage is mostly created by a Pulse Width Modulation (PWM) technique, where an isosceles triangle carrier
wave is compared with a fundamental-frequency sine modulating wave, and the natural points of intersection
determine the switching points of the power devices of a half-bridge inverter. This technique is shown in
Figure 3-5. The 3-phase voltage waves are shifted 120o to one another and, thus, a 3-phase motor can be
supplied.

Figure 3-5 Pulse Width Modulation

Q1

PWM_Q5

Q6Q4

C1

Phase_C

PWM_Q1

PWM_Q4

PWM_Q3

Phase_B

GND

Q2

UDCB

PWM_Q2

Phase_A

Q3

PWM_Q6

Q5

PWM Carrier
Wave

Generated
Sine Wave

PWM Output T
1(Upper Switch)

0

1

0

1

PWM Output T
2(Lower Switch)

1

0

-1

ωt

ωt

ωt

Digital Control of PM Synchronous Motor

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 13
Preliminary

The most popular power devices for motor control applications are Power MOSFETs and IGBTs.

A Power MOSFET is a voltage-controlled transistor. It is designed for high-frequency operation and has a low
voltage drop; thus, it has low power losses. However, the saturation temperature sensitivity limits the
MOSFET application in high-power applications.

An Insulated-Gate Bipolar Transistor (IGBT) is a bipolar transistor controlled by a MOSFET on its base. The
IGBT requires low drive current, has fast switching time, and is suitable for high switching frequencies. The
disadvantage is the higher voltage drop of a bipolar transistor, which causes higher conduction losses.

3.3.1 Vector Control of PM Synchronous Motor

Vector control is an elegant method to control a PMSM, where field-oriented theory is used to control space
vectors of magnetic flux, current, and voltage. It is possible to set up the coordinate system to decompose the
vectors into a magnetic field-generating part and a torque-generating part. The structure of the motor controller
(Vector Control Controller) is then almost the same as for a separately-excited DC motor, which simplifies the
control of a PMSM. This vector control technique was developed specifically to achieve a similarly dynamic
performance in PM synchronous motors.

As explained in Section 4.2, a widely used speed control with inner current closed-loop was chosen, where the
rotor flux is controlled by a field-weakening controller.

In this method, the field-generating and torque-generating parts of the stator current must be broken down in
order to be able to separately control the magnetic flux and the torque. In accomplish this, it’s necessary to set
up the rotary coordinate system connected to the rotor magnetic field; this system is generally called a “d-q
coordinate system”. Very high CPU performance is needed to perform the transformation from rotary to
stationary coordinate systems. Therefore, Freescale’s 56F80x or 56F8300 devices are very well suited for use
in a vector control algorithm. All transformations needed for Vector Control will be described in the next
section.

3.3.2 Block Diagram of Vector Control

Figure 3-6 shows the basic structure of PMSM vector control. To perform vector control, follow these steps:

• Measure the motor quantities (phase voltages and currents)

• Transform the quantities into a 2-phase system (α,β), using Clarke transformation

• Calculate the rotor flux space vector magnitude and position angle

• Transform stator currents into the d-q coordinate system using Park transformation

• The stator current torque- (isq) and flux- (isd) producing components are separately controlled by the
controllers

• The output stator voltage space vector is calculated using the decoupling block

• The stator voltage space vector is transformed back from the d-q coordinate system into the two-phase
system and fixed with the stator by inverse Park transformation

• Using sinewave modulation, the output 3-phase voltage is generated

Target Motor Theory

3-Phase PMSM Motor Vector Control, Rev. 3

14 Freescale Semiconductor
Preliminary

Figure 3-6 Block Diagram of PM Synchronous Motor Vector Control

3.3.3 Vector Control Transformations

Transforming a PMSM into a DC motor is based on selection of coordinates. As shown in Section 3.3.2, a
coordinate transformation is required.

The following transformations are involved in vector control:

• Transformations from a 3-phase to a 2-phase system (Clarke transformation)

• Rotation of orthogonal system

— α,β to d-q (Park transformation)

— d-q to α,β (Inverse Park transformation)

3.3.3.1 Clarke Transformation

Figure 3-7 shows how a 3-phase system is transformed into a 2-phase system.

3-phase Power Stage

Position/Speed
 sensor

PMSM
motor

Sinewave
Generation

Forward Clarke
Transformation

Forward Park
Transformation

D
ec

ou
pl

in
g

ISβ

ISα

ISq

ISd

U

U

U

U

USd

Sd_lin

Sq_lin

Sα

Sβ
USq

I

I

I

Sa

Sb

Sc

-

-

-

Speed
 Command

Line Input

Position

pwm a

pwm b

pwm c

Speed

USd USq

Digital Control of PM Synchronous Motor

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 15
Preliminary

Figure 3-7 Clarke Transformation

To transfer the graphical representation into mathematical language:

EQ. 3-22

In most cases, the 3-phase system is symmetrical, which means that the sum of the phase quantities is always
zero.

EQ. 3-23

The constant “K” can be freely chosen; equalizing the α-quantity and Phase A quantity is recommended. Then:

EQ. 3-24

β

isβ

Phase C

Phase B

Phase A

Sb - measured

i

Sa - measuredii

Sc - calculated

β

isβ

Phase C

Phase B

Phase A

Sb - measured

i

Sa - measuredii

Sc - calculated

α
β

K
1

1
2
---–

1
2
---–

0
3

2

3
2

-------–

a

b

c

=

α K a
1
2
---b–

1
2
---c– 

  a b c+ + 0= K
3
2
--- a= = =

α a= K
2
3
---=⇒

Target Motor Theory

3-Phase PMSM Motor Vector Control, Rev. 3

16 Freescale Semiconductor
Preliminary

EQ. 3-25 fully defines the Park-Clarke transformation:

EQ. 3-25

3.3.3.2 Transformation from α, β to d-q Coordinates and Backwards

Vector control is performed entirely in the d-q coordinate system to make the control of PM synchronous
motors elegant and easy; see Section 3.3.2.

This process requires transformation in both directions and the control action must be transformed back to the
motor side.

First, establish the d-q coordinate system:

EQ. 3-26

EQ. 3-27

Then transform from α, β to d-q coordinates:

EQ. 3-28

Figure 3-8 illustrates this transformation.

α
β

2
3

1
3
---–

1
3
---–

0
1

3

1

3
-------–

a

b

c

a b c+ + 0=
1 0 0

0
1

3

1

3
-------–

a

b

c

= = =

ΨM Ψ 2
Mα Ψ 2

Mβ+=

ϑ Fieldsin
ΨMβ
ΨMd
-----------=

ϑ Fieldcos
ΨMα
ΨMd
-----------=

d

q

ϑ Fieldcos ϑ Fieldsin

ϑFieldsin– ϑ Fieldcos
α
β

=

Digital Control of PM Synchronous Motor

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 17
Preliminary

Figure 3-8 Establishing the d-q Coordinate System (Park Transformation)

The backward (Inverse Park) transformation (from d-q to α, β) is:

EQ. 3-29

3.3.4 PMSM Vector Control and Field-Weakening Controller

This section describes the control regarding the required stator current vectors isd, isq.

There are two speed ranges (shown in Figure 3-9), which differ by controlled current vector:

• Control in Normal Operating Range, control mode used when a speed is required below nominal motor
speed

• Control in Field-Weakening Range, control mode used when a speed is required above nominal motor
speed

3.3.4.1 Control in Normal Operating Range

Assume an ideal PMSM with constant stator reluctance: Ls = constant. EQ. 3-17, EQ. 3-18 and EQ. 3-19 can
then be written as:

EQ. 3-30

As demonstrated from the PMSM equations, the maximum efficiency of the ideal PMSM is obtained when
maintaining the current flux-producing component, isd, at zero. Therefore, in the drive from Figure 3-6, the
Field-Weakening Controller sets isd = 0 in the normal operating range. The speed regulator controls the current
torque-producing component, isq.

βMΨ ϑField

αMΨ

MΨ

α

βq

d

α
β

ϑFieldcos ϑ Fieldsin–

ϑ Fieldsin ϑ Fieldcos
d

q
=

uSq RSiSq LS td
d

iSq ωF LSiSd ΨM+()+ +=

Target Motor Theory

3-Phase PMSM Motor Vector Control, Rev. 3

18 Freescale Semiconductor
Preliminary

A real 3-phase power inverter has voltage and current rating limitations:

1. The absolute value of stator voltage us is physically limited according to DCBus voltage to a limit of
u_sdq_max

2. The absolute value of the stator current is should be maintained below a limit of I_SDQ_MAX, given by the
maximum current rating

In the normal operating range, the current torque-producing component, isq, can be set up to I_SDQ_MAX,
since isd = 0.

Due to the voltage limitation, the maximum speed in the normal motor operating range is limited for isd = 0, to
a nominal motor speed, as shown in Figure 3-9 and EQ. 3-30.

Figure 3-9 Normal Operation and Field-Weakening

3.3.4.2 Control in Field-Weakening Range

The field-weakening technique must be used where a higher maximum motor speed is required, which is
provided by maintaining the flux-producing current component, isd, in the field-weakening range, as shown in
Figure 3-9.

Due to the limitation of absolute current value, the current torque-producing component, isq, must be
maintained below a limited value.

EQ. 3-31

One possibility to maintain the flux-producing current component, isd, for field weakening is to use a look-up
table.

A more-progressive method uses a Field-Weakening Controller, which generates a negative current
flux-producing component, isq, whenever the absolute value of stator voltage exceeds u_S_max_FWLimit. The
field-weakening limit, u_S_max_FWLimit, is set to be close to the maximum voltage limit of the 3-phase
power inverter, u_sdq_max, with some reserve for regulation. Since the DCBus voltage determines the

Field-Weakening
Range

Speed

Nominal Speed

Stator Voltage us

Stator Current id

u_sdq_max

0
Normal Operating

Range
Field-Weakening

Range
Speed

Nominal Speed

Stator Voltage us

Stator Current id

u_sdq_max

0
Normal Operating

Range

iSq I_SDQ_MAX2
iSd
2–<

System Specification

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 19
Preliminary

u_sdq_max limit, the u_S_max_FWLimit is set according to the DCBus. The u_S_max_FWLimit can be a
constant or it can be calculated from a measured DCBus voltage. The Field-Weakening controller is described
in Section 6.2.5.4.

4. System Concept

4.1 System Specification
The motor control system is designed to drive a 3-phase PM Synchronous Motor (PMSM) in a speed
closed-loop. The application meets the following performance specifications:

• Vector control of PMSM using the Quadrature Encoder as a position sensor

• Targeted for a 56F80xEVM or 56F83xxEVM plus Legacy Motor Daughter Card (LMDC)

• Runs on a 3-phase PMSM control development platform at a variable line voltage, 110 - 230V AC

• Control technique incorporates:

— Vector control with speed closed-loop and field-weakening

— Rotation in both directions

— Motoring and generator mode with brake

— Start from any motor position with rotor alignment

— Minimum speed of 50rpm

— Maximum speed of 3000rpm at input power line 230V AC

— Maximum speed of 1500rpm at input power line 115V AC

• Manual interface

— RUN / STOP switch

— UP / DOWN push button control

— LED indicator)

• PC master software control interface

— Motor start / stop

— Speed set-up

• PC master software remote monitor

• Power stage board identification

• Fault protection against:

— Overvoltage

— Undervoltage

— Overcurrent

— Overheating

System Concept

3-Phase PMSM Motor Vector Control, Rev. 3

20 Freescale Semiconductor
Preliminary

The PM synchronous drive introduced here is designed to power a high-voltage PM synchronous motor with a
Quadrature Encoder. Specifications are detailed in Table 4-1.

4.2 Vector Control Drive Concept
A standard system concept is used with this drive; see Figure 4-1. The system incorporates the following
hardware parts:

• Three-phase PMSM high-voltage development platform

• Feedback sensors for:

— Position (Quadrature Encoder)

— DCBus voltage

— Phase currents

— DCBus overcurrent detection

— Temperature

• Evaluation Modules:

— 56F80xEVM (56800 Core)

— 56F83xxEVM (56800E Core)

The drive can be controlled in two operating modes:

• In the Manual operating mode, the required speed is set by the RUN / STOP switch and the
UP/DOWN push buttons

• In the PC master software operating mode, the required speed and RUN / STOP switch are set by the
PC

Table 4-1 High Voltage Hardware Set Specifications

Motor Characteristics Motor Type Six poles, 3-phase,
star connected, BLDC motor

Speed Range 2500rpm (at 310V DCBus)

Maximum Electrical Power 150W

Phase Voltage 3*220V

Phase Current 0.55A

Drive Characteristics Speed Range < 3000rpm

Input Voltage 310V DC

Maximum DCBus Voltage 380V

Control Algorithm Speed Closed-Loop Control

Optoisolation Required

Vector Control Drive Concept

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 21
Preliminary

Figure 4-1 Drive Concept

The control process follows:

When the Start command is accepted (using the RUN / STOP Switch or PC master software command), the
required speed is calculated according to the UP / DOWN push buttons or PC master software commands. The
required speed proceeds through an acceleration / deceleration ramp, and a reference command is put to the
speed controller. The actual speed is calculated from the pulses of the Quadrature Encoder. The comparison
between the required speed command and the actual measured speed generates a speed error. Based on the
error, the speed controller generates a current, Is_qReq, which corresponds to torque. A second part of stator
current Is_dReq, which corresponds to flux, is given by the Field-Weakening Controller. Simultaneously, the
stator currents Is_a, Is_b, and Is_c are measured and transformed from instantaneous values into the stationary
reference frame α, β, and consecutively into the rotary reference frame d-q (Park - Clarke transformation).
Based on the errors between required and actual currents in the rotary reference frame, the current controllers
generate output voltages Us_q and Us_d (in the rotary reference frame d-q). The voltages Us_q and Us_d are
transformed back into the stationary reference frame α, β and, after DCBus ripple elimination, are recalculated
to the 3-phase voltage system, which is applied to the motor.

56F80x / 56F8300 plus LMDC

START
STOP

UP DOWN
PC Master
Software

3-phase BLDC Power Stage

PWM
Li

ne
 A

C

LOAD

Fault Protection

Forward Clark
Transformation

a, b, c -> alpha, beta

Current
Sensing

Processing

Forward Park
Transformation

alpha, beta -> d, q

Speed
Controller

Current q
PI

Controller

Sinus
Waveform
Modulation

Inverse Park
Transformation

d, q -> alpha, beta

ADCPWM

Current d
PI

Controller

SCI

Quadrature
Encoder

DCBus
Ripple

Compensation

Break
ControlApplication

Control

Is_a_comp

Us_alpha

Us_beta

Is_b_comp

Is_c_comp

Is_beta

Is_alpha

Is_q

Is_d

Us_q

Us_d

Is_q_Req

AC

DC

Us_alpha_comp
Us_beta_comp

Quad
Timer

Isa Isb Isc
Temperature

Omega_Req

Is_a
Is_b
Is_c

Omega_Req

U_dcb

Duty Cycle A
Duty Cycle B
Duty Cycle C

Omega_actual_mech

U_dcb

GPIO Driver
GPIO Driver

PWM Driver
ADC Driver QT Driver

6PMSM

D
ec

ou
pl

in
g

(B
ac

k-
E

M
F

 fe
ed

fo
rw

ar
d)

Position
&

Speed
Sensing

theta_actual_elsin
cos

SCI
Driver

GPIO

Faults

U_Dc bus

O
m

eg
a_

ac
tu

al
_m

ec
h

Sector

PWM

PWM Driver

GPIO

F
ie

ld
-

W
ea

ke
ni

ng

C
on

tr
ol

le
r

Us_q Us_d

56F80x / 56F8300 plus LMDC

START
STOP

UP DOWN
PC Master
Software

3-phase BLDC Power Stage

PWM
Li

ne
 A

C

LOAD

Fault Protection

Forward Clark
Transformation

a, b, c -> alpha, beta

Current
Sensing

Processing

Forward Park
Transformation

alpha, beta -> d, q

Speed
Controller

Current q
PI

Controller

Sinus
Waveform
Modulation

Inverse Park
Transformation

d, q -> alpha, beta

ADCPWM

Current d
PI

Controller

SCI

Quadrature
Encoder

DCBus
Ripple

Compensation

Break
ControlApplication

Control

Is_a_comp

Us_alpha

Us_beta

Is_b_comp

Is_c_comp

Is_beta

Is_alpha

Is_q

Is_d

Us_q

Us_d

Is_q_Req

AC

DC

Us_alpha_comp
Us_beta_comp

Quad
Timer

Isa Isb IscIsa Isb Isc
Temperature

Omega_Req

Is_a
Is_b
Is_c

Omega_Req

U_dcb

Duty Cycle A
Duty Cycle B
Duty Cycle C

Omega_actual_mech

U_dcb

GPIO Driver
GPIO Driver

PWM Driver
ADC Driver QT Driver

6PMSM6PMSM

D
ec

ou
pl

in
g

(B
ac

k-
E

M
F

 fe
ed

fo
rw

ar
d)

Position
&

Speed
Sensing

theta_actual_elsin
cos

SCI
Driver

GPIO

Faults

U_Dc bus

O
m

eg
a_

ac
tu

al
_m

ec
h

Sector

PWM

PWM Driver

GPIO

F
ie

ld
-

W
ea

ke
ni

ng

C
on

tr
ol

le
r

Us_q Us_d

System Concept

3-Phase PMSM Motor Vector Control, Rev. 3

22 Freescale Semiconductor
Preliminary

In addition to the main control loop, the DCBus voltage, DCBus current and power stage temperature are
measured during the control process. They are used to protect the drive from overvoltage, undervoltage,
overcurrent and overheating. Undervoltage and overheating protection is performed by software, while the
overcurrent and overvoltage fault signals utilize a fault input of the hybrid controller.

If any of the previously mentioned faults occur, the motor control PWM outputs are disabled in order to protect
the drive, and the fault state of the system is displayed by the on-board LED.

4.3 System Blocks Concept
This section explains the system block concept for targeting the 56F83xxEVM.

4.3.1 Position and Speed Sensing

All members of Freescale’s 56F8300 family have a Quadrature Decoder. This peripheral is commonly used for
position and speed sensing. The Quadrature Decoder position counter counts each edge of Phase A and Phase
B signals up or down according to its order. On each revolution, the position counter is cleared by an index
pulse; see Figure 4-2.

Figure 4-2 Quadrature Encoder Signals

Because the position counter is cleared on each revolution by an index pulse, the zero position is linked with
the index pulse, but vector control requires the zero position, where the rotor is aligned to the d axis; see
Section 4.3.1.3. Therefore, using a Quadrature Decoder to decode the encoder’s signal requires either the
calculation of an offset which aligns the Quadrature Decoder position counter with the aligned rotor position
(zero position), or the coupling of the zero rotor position with the index pulse of a Quadrature Encoder. To
avoid the calculation of the rotor position offset, the Quadrature Decoder is not used in this application. The
decoder’s digital processing capabilities are then free to be used by another application.

In addition to the Quadrature Decoder, the input signals (Phase A, Phase B and Index) are connected to Quad
Timer B. The Quad Timer module consists of four Quad Timers. Due to the wide variability of Quad Timer
modules, it is possible to use this module to decode Quadrature Encoder signals, sense position, and speed. A
configuration of the Quad Timer module is shown in Figure 4-3.

Phase A

Phase B

Index

0 1

40
95

40
94 2

Position Counter Values

One Revolution

0 1

40
95

40
94 2

System Blocks Concept

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 23
Preliminary

Figure 4-3 Quad Timer B Configuration

4.3.1.1 Position Sensing

The position and speed sensing algorithm uses all of the timers in module B and an additional timer as a time
base. Timers B0 and B1 are used for position sensing. Timer B0 permits connection of three input signals to
the Quad Timer B1, even if Timer B1 has only two inputs (primary and secondary), accomplished by using
Timer B0 as a Quadrature Decoder only. It is set to count in the quadrature mode, count to zero, and then
reinitialize. This timer setting is used to decode quadrature signals only. Timer B1 is connected to Timer B0 in
cascade mode, in which the information about counting up or down is connected internally to Timer B1,
freeing the secondary input of Timer B1 to be used for the index pulse. Counter B1 is set to count to
+/- ((4*number of pulses per revolution) - 1) and reinitialize after compare. The value of Timer B1 corresponds
to the rotor position.

QTimer B0

Primary source

Secondary source

Quadrature Decoder

QTimer B1

Primary source

Secondary source

Position Counter

QTimer B2

Primary source

Secondary source

Impulses Counter

QTimer B3

Primary source

Secondary source

Period Timer

QTimer D0

Primary source

Secondary source

Time Base

System clock / 4

System clock / 4

In
te

rn
al

 d
ig

ita
l f

ilt
er

C
as

ca
de

 m
od

e

Phase A

Phase B

Index

Not used

System Concept

3-Phase PMSM Motor Vector Control, Rev. 3

24 Freescale Semiconductor
Preliminary

The position of the index pulse is sensed to avoid the loss of some pulses under the influence of noise during
extended motor operation, which can result in incorrect rotor position sensing. If some pulses are lost, a
different position of the index pulse is detected, and a position sensing error is signaled. If a check of the index
pulse is not required, Timer B1 can be removed and Timer B0 set as the position counter B1. The resulting
value of Timer B1 is scaled to range <-1; 1), which corresponds to <-π; π).

4.3.1.2 Speed Sensing

There are two common ways to measure speed. The first method measures the time between two following
edges of the Quadrature Encoder, and the second method measures a position difference (a number of pulses)
per constant period. The first method is used at low speed. When the measured period is so short that the speed
calculation is not precise, the speed calculation algorithm switches to the second method.

The proposed algorithm combines both methods. The algorithm simultaneously measures the number of
Quadrature Encoder pulses per constant period, and an accurate time interval between the first and last pulse is
counted during that constant period. The speed can then be expressed as:

EQ. 4-1

where:

The algorithm requires two timers for counting pulses and measuring their period, and a third timer as a time
base; see Figure 4-3. Timer B2 counts the pulses of the Quadrature Encoder, and Timer B3 counts a system
clock divided by 4 (system clock / 4). The values in both timers can be captured by each edge of the Phase A
signal. The time base is provided by timer D0, which is set to call the speed processing algorithm every 900µs.
An explanation of how the speed processing algorithm works follows.

First, the new captured values of both timers are read. The difference in the number of pulses and their accurate
time interval are calculated from actual and previous values. The new values are then saved for the next period,
and the capture register is enabled. From that moment, the first edge of Phase A signal captures the values of
both Timer B2 and Timer B3, and the capture register is disabled. This process is repeated on each call of the
speed processing algorithm; see Figure 4-4.

speed = Calculated speed

k = Scaling constant

N = Number of pulses per constant period

T = Accurate period of N pulses

speed
k N⋅

T
-----------=

System Blocks Concept

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 25
Preliminary

Figure 4-4 Speed Processing

4.3.1.2.1 Minimum and Maximum Speed Calculation

The minimum speed is calculated with the following equation:

EQ. 4-2

Where:

In the application, the Quadrature Encoder has 1024 pulses per revolution and a calculation period of 900µs
was chosen on the basis of a motor mechanical constant. Thus, EQ. 4-2 calculates the minimum speed as
16.3rpm.

The maximum speed can be expressed as:

EQ. 4-3

Where:

ωmin = Minimum obtainable speed [rpm]

N = Number of pulses per revolution [1 / rev]

Tcalc = Period of speed measurement (calculation period) [s]

ωmax = Maximum obtainable speed [rpm]

N = Number of pulses per revolution [1 / rev]

TclkT3 = Period of input clock to Timer B3 [s]

System Clock / 4

Phase A

Phase B

Timer B2

Timer B3

Timer D0

New values captured

Accurate time period

Speed processing

ωmin
60

4NTcalc
-------------------=

ωmax
60

4NTclkT3
----------------------=

System Concept

3-Phase PMSM Motor Vector Control, Rev. 3

26 Freescale Semiconductor
Preliminary

Substitution in EQ. 4-3 for N and TclkT3 (Timer B3 input clock = system clock 30MHz / 2) yields a maximum
speed of 219726rpm. As demonstrated, the algorithm can measure speed across a wide range. Because such
high speed is not practical, the maximum speed can be reduced to a required range by the constant k in EQ.
4-1. The constant k can be calculated as:

EQ. 4-4

Where:

In this application, the maximum measurable speed is limited to 6000rpm.

Notes: To ensure an accurate speed calculation, you must choose the input clock of Timer B3 so that the
calculation period of speed processing (in this case, 900µs) is represented in Timer B3 as a value lower
than 0x7FFFH (900.10-6/TclkT2<=0x7FFFH).

4.3.1.3 Position Reset with Rotor Alignment

After reset, the rotor position is unknown, because a Quadrature Encoder does not give an absolute position
until the index pulse arrives. As shown in Figure 4-5, the rotor position must be aligned with the d axis of the
d-q coordinate system before a motor begins running. The alignment algorithm is shown in Figure 4-6 First,
the position is set to zero, independent of the actual rotor position. (The value of the Quadrature Encoder does
not affect this setting). Then the Id current is set to alignment current. The rotor is now aligned to the required
position. After rotor stabilization, the encoder is reset to the zero position, then the Id current is set back to zero,
and alignment is finished. The alignment is executed only once during the first transition from the Stop to the
Run state of the RUN / STOP switch.

k = Scaling constant in EQ. 4-1

ωmax = Maximum of the speed range [rpm]

N = Number of pulses per revolution [1 / rev]

TclkT3 = Period of input clock toTimer B3 [s]

k
60

4NTclkT3ωmax
-----------------------------------=

System Blocks Concept

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 27
Preliminary

Figure 4-5 Rotor Alignment

Figure 4-6 Rotor Alignment Flow Chart

4.3.2 Current Sensing

Phase currents are measured by a shunt resistor in each phase. A voltage drop on the shunt resistor is amplified
by an operational amplifier, and shifted up by 1.65V. The resulting voltage is converted by an A/D converter;
see Figure 4-7 and Figure 4-8.

0=FieldϑMΨ

α

β

q

d

Unknown Rotor Position
(not aligned)

Zero Rotor Position
(aligned)

0=FieldϑMΨ

α

β

q

d

Unknown Rotor Position
(not aligned)

Zero Rotor Position
(aligned)

Alignment

Iq = 0
Id = IAlignment

End

Set fixed position (0°)

Wait for rotor
stabilization

Iq = 0
Id = 0

Reset encoder
position

Set position from
encoder

System Concept

3-Phase PMSM Motor Vector Control, Rev. 3

28 Freescale Semiconductor
Preliminary

Figure 4-7 Current Shunt Resistors

Figure 4-8 Current Amplifier

As shown in Figure 4-7, the currents can only be measured in certain circumstances. For example, the current
flows through Phase A (and shunt resistor R1) only if transistor Q2 is switched on. Likewise, the current in
Phase B can be measured if transistor Q4 is switched on, and the current in Phase C can be measured if
transistor Q6 is switched on. A voltage shape analysis must be performed to get a moment of current sensing.

The voltage shapes of two different PWM periods are shown in Figure 4-11 The voltage shapes correspond to
center-aligned PWM sinewave modulation. As shown, the best moment of current sampling is in the middle of
the PWM period, where all bottom transistors are switched on.

To set the exact moment of sampling, the 56F8300 family offers the ability to synchronize ADC and PWM
modules via the SYNC signal. This exceptional hardware feature, patented by Freescale, is used for current
sensing. The PWM outputs a synchronization pulse, which is connected as an input to the synchronization
module TC3 (Quad Timer C, counter / timer 3). A high-true pulse occurs for each reload of the PWM,
regardless of the state of the LDOK bit. The intended purpose of TC3 is to provide a user-selectable delay
between the PWM SYNC signal and the updating of the ADC values. A conversion process can be initiated by
the SYNC input, which is an output of TC3. The time diagram of the automatic synchronization between PWM
and ADC is shown in Figure 4-9

Q5
SKB04N60

Gate_CB

Q4
SKB04N60

Phase_A Phase_B

Gate_BB

Source_AB

I_sense_B2

Q1
SKB04N60

Gate_AB

I_sense_C2

I_sense_C1

I_sense_A2

sense

sense

R2

0.1 1%

Phase_C

Q3
SKB04N60

I_sense_B1

Gate_CT

sense

sense

R3

0.1 1%

I_sense_A1

Gate_AT Gate_BT

Source_CB

sense

sense

R1

0.1 1%

Q2
SKB04N60

Q6
SKB04N60

Source_BB

R321 10k-1%

+

C306
3.3uF/10V

I_sense_C1

C307
100nF

+3.3V_A
1.65V ref

GNDA
U304
LM285M

8

5

4

R320 10k-1%

R323 390

R318 75k-1%

R325
33k-1%

1.65V +/- 1.65V @ +/- Imax

R324
100k-1%

+

-

U301B
MC33502D

5

6
7 I_sense_C

I_sense_C2

GNDA

R322
75k-1%

System Blocks Concept

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 29
Preliminary

Figure 4-9 Time Diagram of PWM and ADC Synchronization

However, all three currents cannot be measured from one voltage shape. The PWM period II illustrated in
Figure 4-11 shows a moment when the bottom transistor of Phase A is switched on for a very short time. If the
time on is shorter than a critical time, the current can not be accurately measured. The critical time is given by
hardware configuration (transistor commutation times, response delays of the processing electronics, etc.).
Therefore, only two currents are measured and a third current is calculated from the following equation:

EQ. 4-5

PWM
COUNTER

PWM SYNC

PWM
GENERATOR
OUTPUTS 0, 1

PWM
PINS 0, 1

POWER
STAGE
VOLTAGE

TC3
COUNTER

TC3
OUTPUT

ADC
CONVERSION

ADC ISR

Dead Time Dead Time

Dead Time / 2 Dead Time / 2

t1

t2

t1

t2

0 iA iB iC+ +=

System Concept

3-Phase PMSM Motor Vector Control, Rev. 3

30 Freescale Semiconductor
Preliminary

Figure 4-10 Voltage Shapes of Two Different PWM Periods

Figure 4-11 3-Phase Sinewave Voltages and Corresponding Sector Value

A decision must now be made about which phase current should be calculated. The simplest technique is to
calculate the current of the most positive voltage phase. For example, Phase A generates the most positive
voltage within section 0 to 60°, Phase B within section 60° to 120°, and so on; see Figure 4-11

In this case, the output voltages are divided into six sectors, as shown in Figure 4-11 The current calculation is
then made according to the actual sector value.

Sectors 1 and 6:

EQ. 4-6

PHASE_A

PHASE_B

PHASE_C

PWM PERIOD

ADC sampling point
critical pulse width

PWM RELOAD

I. II.

0 60 120 180 240 300 360
0

0.2

0.4

0.6

0.8

1

Phase A
Phase B
Phase C

angle

du
ty

 c
yc

le
 ra

tio
s

0 60 120 180 240 300 3600 60 120 180 240 300 360
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Phase A
Phase B
Phase C

Phase A
Phase B
Phase C

angle

du
ty

 c
yc

le
 ra

tio
s

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

II. I.

iA iB– iC–=

System Blocks Concept

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 31
Preliminary

Sectors 2 and 3:

EQ. 4-7

Sectors 4 and 5:

EQ. 4-8

Notes: The sector value is used for current calculation only, and has no other meaning in the sinewave
modulation. But if we use any type of space vector modulation, we can get the sector value as part of
space vector calculation.

4.3.3 Voltage Sensing

The DCBus voltage sensor is represented by a simple voltage divider. The DCBus voltage does not change
rapidly. It is nearly constant, with the ripple given by the power supply structure. If a bridge rectifier is used for
rectification of the AC line voltage, the ripple frequency is twice the AC line frequency. If the power stage is
designed correctly, the ripple amplitude should not exceed 10% of the nominal DCBus value.

The measured DCBus voltage must be filtered to eliminate noise. One of the easiest and fastest techniques is
the first order filter, which calculates the average filtered value recursively from the last two samples and
coefficient C:

EQ. 4-9

To speed up the initialization of the voltage sensing (the filter has exponential dependency with constant of 1/N
samples), the moving average filter, which calculates the average value from the last N samples, can be used
for initialization:

EQ. 4-10

4.3.4 Power Module Temperature Sensing

The power module temperature measured is used for thermal protection The hardware realization is shown in
Figure 4-12. The circuit consists of four diodes connected in series, a bias resistor, and a noise suppression
capacitor. The four diodes have a combined temperature coefficient of 8.8mV/οC. The resulting signal,
Temp_sense, is fed back to an A/D input, where software can be used to set safe operating limits. In this
application, the temperature, in Celsius, is calculated according to the conversion equation:

EQ. 4-11

Where:

temp = Power module temperature in centigrade

Temp_sense = Voltage drop on the diodes, which is measured by ADC [V]

a = Diodes-dependent conversion constant (a = -0.0073738)

b = Diodes-dependent conversion constant (b = 2.4596)

iB iA– iC–=

iC iB– iA–=

uDCBusFilt n 1+() CuDCBusFilt n 1+() CuDCBusFilt n()–() u– DCBusFilt n()=

uDCBusFilt uDCBus n()
n 1=

N–
∑=

temp
Temp_sense b–

a
--------------------------------------=

Hardware Implementation

3-Phase PMSM Motor Vector Control, Rev. 3

32 Freescale Semiconductor
Preliminary

Figure 4-12 Temperature Sensing

5. Hardware Implementation

5.1 Hardware Set-Up
This section explains the hardware set-up for targeting a 56F83xxEVM.

The application can run on Freescale’s motor control hybrid controllers using the 56F83xxEVM, Freescale’s
3-Phase AC / BLDC high voltage power stage, and the BLDC high voltage motor with a Quadrature Encoder
and integrated brake. All components are an integral part of Freescale’s embedded motion control development
tools. Application hardware set-up is shown in Figure 5-1

The system hardware set-up for a particular hybrid controller varies only by the EVM used. The application
level of the software is identical for all hybrid controllers. The EVM and chip differences are handled by the
off-chip software drivers for the particular hybrid controller EVM.

Detailed application hardware set-up can be found in the Targeting Freescale 56F83xx Platform manual for
the specific device being implemented.

C1
100nF

D1
BAV99LT1

R1
2.2k - 1%

D2
BAV99LT1

Temp_sense

+3.3V_A

Hardware Set-Up

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 33
Preliminary

Figure 5-1 High-Voltage Hardware System Configuration

All system parts are supplied and documented in these references:

• U1 - Controller Board for 56F83xx

— Supplied as 56F83xxEVM

— Described in the 56F83xx Evaluation Module Hardware User’s Manual for the specific device
being implemented

• U2 - Legacy Motor Daughter Card (LMDC)

— Supplies limited; please contact your Freescale representative

• U3 - 3-phase AC / BLDC High-Voltage Power Stage

— Supplied in a kit with the In-Line Optoisolation Box, Freescale Part #ECINLHIVACBLDC

— Described in the 3-Phase AC BLDC High-Voltage Power Stage User’s Manual

• U4 - In-Line Optoisolation Box

— Supplied in a kit with the 3-Phase AC BLDC High-Voltage Power Stage, Freescale Part
#ECINLHIVACBLDC

Or

— Supplied by itself, Freescale Part #ECOPTINL

— Described in the In-Line Optoisolation Box Manual

WARNING: To avoid potential damage to the development equipment, the use of an In-line Optoisolation
Box is strongly recommended during development.

56F83xxEVM

RS-232 JTAG

P2 P1

U1 U2 U3

MB1 U4

J1

J2

P1

P2

LMDC

J1 J14

3-phase
AC/BLDC
High-Voltage
Power Stage

J13.2

40w flat ribbon cable

In-line
Optoisolation Box

J3

SM40V SG40N

Motor Brake

R
ed

W
hi

te

B
la

ck

W
hi

te

R
ed

B
la

ck

J11.1

J11.2

L

N

ECINLHIVACBLDC

ECMTRHIVBLDC

ECOPTINL
RS-232 to PC JTAG to PC

100-240VAC
49-61Hz

J13.1 J13.3

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

34 Freescale Semiconductor
Preliminary

• MB1 Motor-Brake SM40V + SG40N

Notes: The application software is targeted for a PM Synchronous Motor with sinewave Back-EMF shape. In
this demonstration application, a BLDC motor is used instead, due to the availability of the BLDC
motor (MB1). Although the Back-EMF shape of this motor is not an ideal sinewave, it can be
controlled by the application software. The drive parameters will be ideal, with a PMSM motor with an
exact sinewave Back-EMF shape.

A detailed description of the individual board can be found in the appropriate 56F80x Evaluation Module
User’s Manual or 56F83xx Evaluation Module User Manual, or on the Freescale web site:
www.freescale.com

The Users Manual includes the schematic of the board, description of individual function blocks, and a bill of
materials. The individual boards can be ordered from Freescale as standard products.

6. Software Design
This section explains the software design for targeting a 56F83xxEVM and describes the design of the drive’s
software blocks. The software description comprises these topics:

• Main software flow chart

• Data flow

• State diagram

For more information on the system blocks used, refer to Section 4.3.

6.1 Main Software Flow Chart
The main software flow chart incorporates the Main routine entered from Reset (see Figure 6-1) and Interrupt
states (see Figure 6-2, and Figure 6-3). The Main routine includes the initialization of the hybrid controller
and the main loop.

The software consist of processes:

• The Application Control process is the highest software level and precedes settings for other software
levels. Inputs for this level are the RUN / STOP switch, UP / DOWN buttons for manual control, and
PC master software (via the registers shown in Section 6.2). This process is handled by Application
Control Processing called from Main; see Figure 6-1.

• The PM Synchronous Motor (PMSM) Control process provides most of the motor control
functionality. It is split into:

— Current Processing, which is called from ADC Complete Interrupt (see Figure 6-2) once per two
PWM reloads, with a period 125µs. It can also be set to each PWM reload (62.5µs), but the PC
master software recorder pcmasterdrvRecorder() must be removed from the code.

— Speed Processing, which is called from the Quadrature Timer D0 Interrupt (see Figure 6-3) with
the period PER_TMR_POS_SPEED_US (900µs). The advantage of splitting the current and the
speed control processes is that current control can be executed with a high priority and frequency
of calls, while the execution of the speed control is not that highly prioritized.

• The Analog Sensing process handles sensing, filtering and correction of analog variables (phase
currents, temperature, DCBus voltage). It is provided by Analog Sensing Processing (see Figure 6-2)

Main Software Flow Chart

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 35
Preliminary

and Analog Sensing ADC Phase Set, split from Analog Sensing Processing because it sets ADC
according to the svmSector variable, calculated after PMSM Control Current Processing.

• Position and Speed Measurement processes are provided by hardware Timer modules and the
functions giving the actual speed and position; see Section 4.3.1

• LED Indication processing is called from Quadrature Timer D0 Interrupt, which provides the time
base for the LEDs’ flashing

• The Fault Control process is split into:

— Background (see Figure 6-1), which checks the Overheating, Undervoltage and Position Sensing
Faults

— PWM Fault ISR (see Figure 6-2) takes care of Overvoltage and Overcurrent Faults, which cause
a PWM B Fault interrupt

• The Brake Control process is dedicated to the brake transistor control, which maintains the DCBus
voltage level. It is called from Main (see Figure 6-1).

• The UP / DOWN Button and Switch Control processes are subprocesses of Application Control and
are described in Section 7.4.

The Up / Down Button processes are split into:

— Button Processing Interrupt, called from Quadrature Timer D0 Interrupt (see Figure 6-3)

— Button Processing Background, called from ApplicationControlProcessing

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

36 Freescale Semiconductor
Preliminary

Figure 6-1 Software Flow Chart - General Overview I

• The Switch process is split into:

— Switch Filter Processing, called from Quad Timer D0 Interrupt (see Figure 6-3

— Switch Get State, called from Application Control processing, which handles:

— Manual switch control

— Switch Get State: “PC master software” (in PC master application operating mode)

Reset

Hybrid Controller Initialization

Application Control - Processing:
according to appOpMode:

{control/check switch
set omega_required_mech}

according to appState:
{trigger appState Run/Stop/Init/
set PMSM Control Run/Stop
set Fault Control status
set Brake Control Run/Stop
set LED Indication}

Fault Control - Background:
if faultCtrlStatus - AnalogFaultEnbl

{check Undervoltage, Overheating
faults}

if Position sensing,Overvoltage,
Overcurrent faults

{set appFaultStatus
trigger beginning of Fault State}

Brake Control - Processing:
if u_dc_bus_filt > U_DCB_ON_BRAKE_SYSU

{Brake On}
if u_dc_bus_filt < U_DCB_OFF_BRAKE_SYSU

{Brake Off}

Main Software Flow Chart

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 37
Preliminary

Figure 6-2 Software Flow Chart - General Overview II

Interrupt
ADC Complete

Return

Analog Sensing- Processing
according to anSensingCtrlStatus
sensing / initialization:

{sense Temperature
calculate Filtered Temperature
sense, correct 2 Phase Currents
calculate 3 Phase Currents
sense Voltage
correct Voltage
calculate Filtered Voltage}

sin cos generation:
get position from Position Mea-
surement
sin (theta_actual_el)
cos (theta_actual_el)

Current Control:
Currents Transformation (a,b,c to d-q)
(Field-Weakening Controller)
Current d Regulator
Current q Regulator
Voltages Transformation (d-q to α,β)
DCBus Ripple Compensation
Space Vector Module sets pwmABC

PMSM Control
-Current Processing:
proceeds according to pmsmCtrlStatus

Analog Sensing-ADC Phase Set
set ADC converter phase current
samples - two (easily measured)
phases

PWM:
set duty cycles to pwmABC

Return

Fault Control - PWM Fault ISR part:
if Overcurrent or Overvoltage:

{set appFaultStatus = Overvoltage /
Overcurrent

triggers beginning of Fault State (disable PWM...)}

Interrupt
PWM B Fault

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

38 Freescale Semiconductor
Preliminary

Figure 6-3 S/W Flow Chart - General Overview III

Speed Control:
Software Timer
if Timeout:

{Field-Weakening Controller
Speed Regulator
Speed Ramp}

Return

Alignment:
Software Timer
if Timeout

{PMSM Control - End Alignment}

Speed Measurement Processing

pmsmCtrlStatus?

AlignFlag RunFlag
others

PMSM Control
Speed, Alignment Processing:
proceeds according to its status

get speed from Speed Measurement

LED Indication Processing

Switch Filter Processing

Button Processing - Interrupt part
decrements debounceCounterUp(Down)

Interrupt
D0 QTimer

Data Flow

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 39
Preliminary

6.2 Data Flow
The PMSM Vector Control Drive Control Algorithm is described in the data flow charts shown in Figure 6-4
and Figure 6-5. The variables and constants described should be clear from their names.

Figure 6-4 Data Flow - Part 1

PHASEA, PHASEB, INDEX

theta_actual_el

Position, Speed
Measurement

PMSM
Control

omega_actual_mech
svmSector

Pwm_AT Pwm_AB Pwm_BT Pwm_BB Pwm_CT Pwm_CB

PWM Generation

PWM Outputs

pwmABC

omega_reqPCM_mech, appState

pmsmCtrlStatus

RUN / STOP Switch

PC
Master Software

UP / DOWN
Buttons

Application
Control

appFaultStatus omega_required_mech

reloadSWtmrAlignment

Analog Sensing
(Temperature, DCBus volt.

i_Sa, i_Sb, i_Sc
u_dc_bus

Phase Currents a, b, c)

temperature

i_Sabc_comp

temperature_filt

u_dc_bus

 u_dc_bus_filt

anSensingCtrlStatus

Green LED

brakeCtrlStatusfaultCtrlStatus

theta_align_el_C i_Sd_Alignment

reloadSWtmrSpeedControl

appPcmCtrlStatus

LED
Indication

appOpMode

I_SDQ_MAX

SVM_INV_INDEX,
u_Reserve_FW

SVM_INV_INDEX,
u_OverMax

coefBEMF, coefBEMFShift

PC
Master

Software

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

40 Freescale Semiconductor
Preliminary

Figure 6-5 Data Flow - Part 2

The data flows consist of the processes described in the following sections.

6.2.1 Application Control Process

The Application Control process is the highest software level, which precedes settings for other software
levels.

The process state is determined by the variable appState.

The application can be controlled either:

• Manually

• From PC master software

The Manual or PC master application operating mode is determined by the setting of appOpMode.

For Manual control, the input of this process is the RUN / STOP switch and UP / DOWN buttons.

PWMEN bit

PWM Faults
(Overvoltage/Overcurrent)

Brake
Control

IO_BRAKE

u_dc_bus_on_brake
Fault Control

temperature_filt

u_dc_bus_filt

u_dc_bus_off_brake

Pwm_AT Pwm_AB Pwm_BT Pwm_BB Pwm_CT Pwm_CB

PWM Generation
PWM Outputs

i_Sabc_comp

appFaultStatus

u_dc_bus_min_fault_C

TEMPERATURE_MAX_F16

faultCtrlStatus

pmsmCtrlStatus

brakeCtrlStatus

PC
Master

Check Index
Position

Software

Data Flow

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 41
Preliminary

The PC master software communicates via:

• omega_reqPCM_mech, which is the required angular speed from PC master software

• appPcmCtrlStatus, which consists of the flags StartStopCtrl for START / STOP

• RequestCtrl for changing the application’s operating mode appOpMode to Manual or PC control

• appFaultStatus, which indicates faults

The other processes are controlled by setting:

• pmsmCtrlStatus

• omega_required_mech

• appPcmCtrlStatus

• brakeCtrlStatus

• faultCtrlStatus

6.2.2 LED Indication Process

This process controls the LEDs’ flashing according to appState.

6.2.3 Analog Sensing Process

The Analog Sensing process handles:

• Sensing

• Filtering

• Correction of analog variables:

— Phase currents

— Temperature

— DCBus voltage

6.2.4 Position and Speed Measurement Process

The Position and Speed Measurement process gives:

• Mechanical angular speed, omega_actual_mech

• Electrical position, theta_actual_el

6.2.5 PM Synchronous Motor (PMSM) Control Process

The PMSM Control process provides most of the motor control functionality.

Figure 6-6 shows the data flow inside the PMSM Control process, including essential subprocesses:

• Sine

• Cosine Transformations

• Current Control

• Speed

• Alignment Control

• Field-Weakening

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

42 Freescale Semiconductor
Preliminary

The Sine and Cosine Transformations generate sinCos_theta_el with the components sine, cosine according to
electrical position theta_actual_el. It is provided in a look-up table.

Figure 6-6 Data Flow - PMSM Control

6.2.5.1 Current Control Process

The data flow inside the Current Control process is detailed in Figure 6-7 The measured phase currents
i_Sabc_comp are transformed into i_SDQ_lin using sinCos_theta_el; see Section 3.3.3. Both d and q
components are regulated by independent Proportional Integrational (PI) regulators to i_SDQ_desired values.
The outputs of the regulators are u_SDQ_lin.

theta_actual_el

omega_desired_mech

pmsmCtrlStatus

Speed, Align
Control

Current
Control

svmSector
i_Sabc_comp

i_SDQ_desired

I_SDQ_MAX_F16

Sin, Cos

omega_actual_mech

sinCos_theta_el

pwmABC

q_axis
i_SDQ_desired

d_axis

Field-Weakening

PIRegParams_omega_mech.
PositivePILimit

u_S_max_FWLimit

i_Sd_Alignment I_SDQ_MAX

 u_dc_bus_filt

SVM_INV_INDEX,
u_Reserve_FW

SVM_INV_INDEX,
u_OverMax

Transformation

u_SDQ

Speed Ramp
Control

omega_required_mech

 theta_align_el_C

coefBEMF, coefBEMFShift

reloadSWtmrAlignment reloadSWtmrSpeedControl

Data Flow

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 43
Preliminary

Figure 6-7 Data Flow - PMSM Control - Current Control

Current q
Regulator

Current Transformation
a,b,c -> d-q

i_SDQ.d_axis

i_Sabc_comp

Current d
Regulator

i_SDQ.q_axis

u_SDQ_lin.d_axisu_SDQ_lin.q_axis

Feed Forward

Voltage Transformation
d-q -> alpha, beta

u_SAlphaBeta

 u_dc_bus_filt

Scaling
DCBus Ripple

Space Vector
Modulation

u_Salpha_RipElim

i_SDQ_desired.q_axis i_SDQ_desired.d_axis

sinCos_theta_el

svmSector

omega_actual_mech

pmsmCtrlStatus

SVM_INV_INDEX/2*

I_SDQ_MAX_F16

pwmABC

Compensation

u_LimitF16

u_SDQ

SVM_INV_INDEX,

*u_dc_bus_filt +
+u_OverMax

u_OverMax

u_LimitF16
sinCos_theta_el

coefBEMF, coefBEMFShift

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

44 Freescale Semiconductor
Preliminary

The Feed Forward process provides the following calculations:

EQ. 6-1

EQ. 6-2

The u_SDQ voltages are transformed into u_SAlphaBeta (see Section 3.3.3) by the Voltage Transformation
process. The Scaling DCBus Ripple Compensation block scales u_SAlphaBeta (according u_dc_bus_filt) to
u_Salpha_RipElim, described in the svmlimDcBusRip function in the Motor Control Library. The space vector
modulation process generates duty cycle pwmABC and svmSector according to u_Salpha_RipElim.

The u_LimitF16 is a voltage limit for current controllers. The u_OverMax constant is used to increase the
limitation of u_SDQ voltages over maximum SVM_INV_INDEX / 2 * u_dc_bus_filt determined by the DCBus
voltage and space vector modulation. Although the pwmABC will be limited by the space vector modulation
process functions, the reserve is used for field-weakening controller dynamics. In the stable state, the u_SDQ
voltages vector will not exceed u_S_max_FWLimit; see Section 6.2.5.4.

6.2.5.2 Speed Ramp

This process generates angular speed omega_desired_mech from angular speed omega_required_mech with a
linear ramp. The speed ramp is implemented so as not to saturate the speed regulator during acceleration.

6.2.5.3 Speed, Alignment Control Process

The process controls the i_SDQ_desired.q_axis current according to the PMSM Control Process Status.

For Alignment status, it sets i_SDQ_desired.d_axis to i_Sd_Alignment and i_SDQ_desired.q_axis to 0.

For Run status, it controls the omega_actual_mech speed to omega_desired_mech by calculation of the PI
regulator with i_SDQ_desired.q_axis output.

6.2.5.4 Field-Weakening Process

The Field-Weakening process provides control of i_SDQ_desired.d_axis in order to achieve higher motor
speeds by the field-weakening technique. The control algorithm is shown in Figure 6-8 The
u_S_max_FWLimit is computed from u_dc_bus_filt. To maintain voltage reserve, the u_Reserve_FW is
subtracted from the maximum SVM_INV_INDEX / 2 * u_dc_bus_filt, determined by DCBus voltage and space
vector modulation. The reserve is used for field-weakening controller dynamics; in the stable state, the u_SDQ
voltages vector will not exceed u_S_max_FWLimit.

This process also provides voltage limitation i_SDQ_desired.d_axis2 + i_SDQ_desired.q_axis2 <
(I_SDQ_MAX_F16)2 by setting:

EQ. 6-3

EQ. 6-4

u_SDQ.q_axis coefBEMF 2
coefBEMFShft

omega_actual_mech⋅ ⋅ u_SDQ_lin.q_axis+=

u_SDQ.d_axis u_SDQ_lin.d_axis=

PIRegParams_omega_mech.PositivePILimit I_SDQ_MAX_F16
2

i_SDQ_desired.d_axis
2

–=

PIRegParams_omega_mech.NegativePILimit I_SDQ_MAX_F16
2

i_SDQ_desired.d_axis
2

––=

Data Flow

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 45
Preliminary

Figure 6-8 Field-Weakening Controller

6.2.6 Brake Control Process

The Brake Control process maintains DCBus voltage level via the IO_BRAKE driver, which controls the brake
switch. The voltage comparison levels are:

• u_dc_bus_on_brake, which is initialized according to mains voltage with either:

— U_DCB_ON_BRAKE_MAINS230_F16

— U_DCB_ON_BRAKE_MAINS115_F16

• u_dc_bus_off_brake, initialized with either:

— U_DCB_OFF_BRAKE_MAINS230_F16

— U_DCB_OFF_BRAKE_MAINS115_F16

6.2.7 PWM Generation Process

The PWM Generation process controls the generation of PWM signals, driving the 3-phase inverter.

The input is pwmABC, with three PWM components scaled to the range <0,1> of type Frac16. The scaling
(according to PWM module setting) and the PWM module control (on the hybrid controller) is provided by the
PWM driver.

6.2.8 Fault Control Process

The Fault Control process checks these faults:

• Overheating

• Undervoltage

• Overvoltage

• Overcurrent

• Position Sensing

PI regulator

maximum
limit

minimum
limit(d_axis2+q_axis2)1/2

 u_SD.d_axis +
 -

 0 I_SDQ_MAX_F16
u_S_max_FWLimit

 i_SDQ_desired.d_axis

 u_SD.q_axis

 u_dc_bus_filt SVM_INV_INDEX u_Reserve_FW

SVM_INV_INDEX/2*u_dc_bus_filt-u_Reserve_FW

-

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

46 Freescale Semiconductor
Preliminary

Overheating and Undervoltage are checked by the comparisons:

• temperature_filt < TEMPERATURE_MAX_F16

• u_dc_bus_filt < u_dc_bus_min_fault_C, where u_dc_bus_min_fault_C is initialized with
U_DCB_MIN_FAULT_MAINS230_F16 or U_DCB_MIN_FAULT_MAINS115_F16.

The Position Sensing fault is checked with the Check Index Position process.

The Overvoltage and Overcurrent faults are set in the PWMA Fault interrupt.

6.3 State Diagram
The software can be split into the processes shown in Section 6.2.

These processes are described in the following sections:

• Hybrid Controller Initialization

• Application Control State Diagram

• PMSM Control State Diagram

• Fault Control State Diagram

• Analog Sensing State Diagram

All processes start with the Hybrid Controller Initialization state after Reset.

6.3.1 Hybrid Controller Initialization

The hybrid controller Initialization state:

• Initializes:

— PWM

— Application control

— PM Synchronous Motor (PMSM) Control

— Analog sensing

— Brake control

— Fault control

— LED indication

— Button control

• Sets manual application operating mode

• Enables masked interrupts

• Sets “Application Control: Initialization Triggers”, which sets all affected processes to the Begin
Application Initialization state

6.3.2 Application Control State Diagram

The Application Control process is detailed in Figure 6-9

State Diagram

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 47
Preliminary

Figure 6-9 State Diagram - Application Control

After reset, the Hybrid Controller Initialization state is entered. The peripherals and variables are initialized in
this state, and the application operating mode appOpMode is set to Manual Control.

When the state is finished, the Application Control Init state follows. As shown in Figure 6-9:

• appState = APP_INIT

• All subprocesses requiring initialization are proceeding

• PCB identification is provided

• The PWM is disabled, so no voltage is applied on motor phases

If the appPcmCtrlStatus.RequestCtrl flag is set from PC master software, the application operating mode
appOpMode is toggled and the application operating mode can only be changed in this state. If the
switchState = Stop, Application Control enters the Stop state.

The switchState is set according to the manual switch on the EVM or PC master software register
AppPcmCtrlStatus.StartStopCtrl, depending on the application’s operating mode.

Application Control:
Init

Application Control:
StopApplication Control:

Fault Begin
Application Control:

Begin Run

Fault Control:
switchState = Run

switchState = Stop

Application Control:
Run

Application Control:
Begin Stop

done

done

clear pmsmCtrlStatus.RunFlag

Hybrid Controller
Initialization

Reset

Application Control:
Fault

done

Fault Control: faults cleared

switchState = Stop &

switchState = Stop &

Initializations proceeding

Fault Control: Begin Fault

done

appState = APP_INIT

appState = APP_STOP

Init Fault Control (pcb identification)

set appState = APP_RUN

Begin Fault

appPcmCtrlStatus.
RequestCtrl = 1

set appOpMode

set appState = APP_STOP

appState = APP_RUN

initializations finished

clear pmsmCtrlStatus.AlignFlag
set appState = APP_FAULT

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

48 Freescale Semiconductor
Preliminary

In the Stop state:

• appState = APP_STOP

• The PWM is disabled, so no voltage is applied on motor phases

When switchState = Run, the Begin Run state is processed. If there is a request to change application operating
mode, appPcmCtrlStatus.RequestCtrl = 1, the application Init is entered and the application operating mode
request can only be accepted in the Init or Stop state by transition to the Init state.

In the Begin Run state, all the processes provide settings to the Run state.

In the Run state:

• The PWM is enabled, so voltage is applied on motor phases

• The motor is running according to the state of all subprocesses

• If switchState = Stop, the Stop state is entered.

If a fault is detected, the Begin Fault state is entered, which is a subprocess of Fault control.

• It sets appState = APP_FAULT

• The PWM is disabled

• The subprocess PMSM Control is set to Stop

The Fault state can only move onto the Init state when switchState = Stop, and the Fault Control subprocess
has successfully cleared all faults.

6.3.3 PMSM Control State Diagram

A state diagram of the PMSM Control process is illustrated in Figure 6-10.

State Diagram

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 49
Preliminary

Figure 6-10 State Diagram - PMSM Control

When Application Control initializes, the PMSM Control subprocess initialization state is entered.

• The AlignInitDoneFlag is cleared, which means that alignment can proceed.

• The next PMSM Control state is Begin Stop or Fault.

• RunFlag and AlignFlag are cleared and the Stop or Fault state is entered.

• When “Application Control” equals “Begin Run”, the PMSM Control subprocess enters the Begin
Alignment or Begin Run state, depending on whether or not the alignment initialization has already
proceeded (flagged by AlignInitDoneFlag)

The alignment state is necessary for setting the zero position of position sensing; see Section 4.3.1.3. In the
state Begin Alignment:

The Alignment current and duration are set

The alignment is provided by setting desired current for d_axis to i_Sd_Alignment and for q_axis to 0.

PMSM Control:
Stop or Fault

PMSM Control:

PMSM Control:
Initialization

Application Control: Begin Running

Alignment Timeout

PMSM Control:
Begin Alignment

set Alignment current

Application Control: Begin Stop/Fault

done

done

Application Control: Init

PMSM Control:
Run

PMSM Control:
Begin Run

done

PMSM Control:
Begin Stop or Fault

pmsmCtrlStatus.AlignInitDoneFlag = No

clear AlignInitDoneFlag

Begin Running
AlignInitDoneFlag = 1

set RunFlag PMSM Control:
End Alignment

done Set Zero Position

set Alignment timeout

clear RunFlag
clear AlignFlag

timeout search
Current ramp

set AlignInitDoneFlag
clear AlignFlag

set AlignFlag

done

Alignment

Software Design

3-Phase PMSM Motor Vector Control, Rev. 3

50 Freescale Semiconductor
Preliminary

The alignment state provides current control and time out search. When alignment time out occurs, End
Alignment is entered. In that state, the Position Sensing Zero Position is set, so the position sensor is aligned
with the real vector of the rotor flux. When the End Alignment state ends, the PMSM Control enters a regular
Run state, where the motor is running at the required speed. If the Application Control state is set to Begin Stop
or Begin Fault, the PMSM Control enters the Begin Stop or Fault, then the Stop or Fault state.

6.3.4 Fault Control State Diagram

The state diagram of the Fault Control subprocess is illustrated in Figure 6-11 After the initialization, the fault
conditions are searched. If any fault occurs, the appFaultStatus variable is set according to detected error;
PWM is switched on (PWMEN bit = 0); the Fault state is entered. This state also causes Application Control:
Fault state. If the faults are successfully cleared, this is signaled to the Application Control process. The Fault
state is left when the Application Control Init state is entered.

Figure 6-11 State Diagram Fault Control

Fault Control:
Application Initialization

Application Control: Init

clear appFaultStatus

Fault Control:
No Fault

searching faults

Fault Control:
Begin Fault

Application Control Begin Fault
setting of appFaultStatus

Fault Control:
Fault

clear/test faults

Fault:
Undervoltage (filtered)
Overheating (filtered)
Overcurrent (fault pin)
Overvoltage (fault pin)

done

Fault Control:
Hybrid Controller Initialization

Position Sensing fault

pcb identification

Reset

done

PWMEN bit = 0

Scaling of Quantities

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 51
Preliminary

6.3.5 Analog Sensing State Diagram

The state diagram of the Analog Sensing subprocess is shown in Figure 6-12 The Hybrid Controller
Initialization state initializes hardware modules such as ADC, synchronization with PWM, etc. In Begin Init,
Initialization is started, so the variables for initialization sum and the InitDoneFlag are cleared. In the Init
Proceed state, the temperature, DCBus voltage and phase current samples are sensed and summed. After
required analog sensing, Init samples are sensed, and the Init Finished state is entered. The samples’ average is
calculated from the sum divided by the number of analog sensing Init samples. According to the phase
currents’ average value, the phase current offsets are initialized.

All variable sensing is initialized and the state Init Done is entered, so the variables from analog sensing are
valid for other processes. In this state, temperature and DCBus voltage are filtered in first order filters.

Figure 6-12 State Diagram - Analog Sensing

7. Implementation Notes
This section explains implementation notes for targeting a 56F83xxEVM.

7.1 Scaling of Quantities
The PMSM Vector Control application uses a fractional representation for all real quantities except time.

The N-bit signed fractional format is represented using 1.[N-1] format (1 sign bit, N-1 fractional bits). Signed
fractional numbers (SF) lie in the following range:

EQ. 7-1

Analog Sensing:
Begin Init

Analog Sensing
Init Done,

Analog Sensing
Init. Proceed:

Analog Sensing
Hybrid Controller Initialization

Reset

clear variables

Application Control: Begin Init

samples counter =

Application Control: Begin Init

clear InitDoneFlag

Analog Sensing
Init Finished:

samples average

done

done

set current offsets

sense and sum samples

count samples

analog sensing init samples

set InitDoneFlag

normal operation:

1.0– SF +1.0 -2 N 1–[]–≤ ≤

Implementation Notes

3-Phase PMSM Motor Vector Control, Rev. 3

52 Freescale Semiconductor
Preliminary

For words and long-word signed fractions, the most negative number that can be represented is -1.0, whose
internal representation is $8000 and $80000000, respectively. The most positive word is $7FFF or 1.0 - 2-15,
and the most positive long-word is $7FFFFFFF or 1.0 - 2-31.

The following equation shows the relationship between the real and fractional representations:

EQ. 7-2

Where:

The C language standard does not have any fractional variable type defined. Therefore, fractional operations
are provided by CodeWarrior intrinsics functions (e.g. mult_r()). As a substitution for the fractional type
variables, the application uses types Frac16 and Frac32. These are in fact defined as integer 16-bit signed
variables and integer 32-bit signed variables. The difference between Frac16 and pure integer variables is that
Frac16 and Frac32 declared variables should only be used with fractional operations (intrinsics functions).

A recalculation from real to a fractional form and Frac16, Frac32 value is made with the following equations:

EQ. 7-3

for Frac16 16-bit signed value and:

EQ. 7-4

for Frac32 32-bit signed value:

EQ. 7-5

Fractional form, a conversion from Fraction Value to Frac16 and Frac32 Value, can be provided by the C
language macro.

7.1.1 Voltage Scaling

Voltage scaling results from the sensing circuits of the hardware used; for details, see the 3-Phase AC BLDC
High-Voltage Power Stage User’s Manual.

Fractional Value = The fractional representation of the real value [Frac16]

Real Value = The real value of the quantity [V, A, RPM, etc.]

Real Quantity
Range Max

= The maximum of the quantity range, defined in the application [V, A, RPM, etc.]

Fractional Value
Real Value

Real Quantity Range Max
--=

Frac16 Value 32768
Real Value

Real Quantity Range Max
--⋅=

Frac32 Value 231 Real Value
Real Quantity Range Max
--⋅=

Fractional Value
Real Value

Real Quantity Range Max
--=

Scaling of Quantities

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 53
Preliminary

Voltage quantities are scaled to the maximum measurable voltage, which is dependent on the hardware. The
relationship between real and fractional representations of voltage quantities is:

EQ. 7-6

Where:

In the application, the VOLT_RANGE_MAX value is the maximum measurable DCBus voltage:

VOLT_RANGE_MAX = 407V

All application voltage variables (u_dc_bus; u_dc_bus_filt; u_SAlphaBeta; u_SDQ, u_SAlphaBeta; and so on)
are scaled in the same way.

7.1.2 Current Scaling

Current scaling also results from the sensing circuits of the hardware used; for details, see the 3-Phase AC
BLDC High-Voltage Power Stage User’s Manual.

The relationship between real and fractional representation of current quantities is:

EQ. 7-7

Where:

In the application, the CURR_RANGE_MAX value is the maximum measurable current:

CURR_RANGE_MAX = 5.86A

All application current variables (components of i_Sabc_comp; i_SAlphaBeta; i_SDQ; i_SDQ_desired;
i_Sd_Alignment; and so forth) are scaled in the same way.

Notes: As shown in 3-Phase AC BLDC High-Voltage Power Stage User’s Manual, the current sensing
circuit provides measurement of the current in the range from CURR_MIN = -2.93A to
CURR_MAX = +2.93A, giving the voltage for the ADC input ranges from 0 to 3.3V with 1.65V offset.
The 56F80x’s ADC converter is able to automatically cancel (subtract) the offset. The fractional
representation of the measured current is then in the range <-0.5, 0.5), while the possible

uFrac = Fractional representation of voltage quantities [-]

uReal = Real voltage quantities in physical units [V]

VOLT_RANGE_MAX = Defined voltage range maximum used for scaling in physical units [V]

iFrac = Fractional representation of current quantities [-]

iReal = Real current quantities in physical units [A]

CURR_RANGE_MAX = Defined current range maximum used for scaling in physical units [A]

uFrac

uReal

VOLT_RANGE_MAX
--=

iFrac

iReal

CURR_RANGE_MAX∫
--=

Implementation Notes

3-Phase PMSM Motor Vector Control, Rev. 3

54 Freescale Semiconductor
Preliminary

representation of a fractional value is <-1,1), as shown in EQ. 7-3. Therefore, CURR_RANGE_MAX is
calculated according to the following equation:

EQ. 7-8

7.1.3 Speed Scaling

Speed quantities are scaled to the defined speed range maximum, which should be set lower than all speed
variables in the application, so it was set higher than the maximum mechanical speed of the drive. The
relationship between real and fractional representation of speed quantities is:

EQ. 7-9

where:

In the application, the OMEGA_RANGE_MAX value is defined as:

OMEGA_RANGE_MAX = 6000rpm

Other speed variables (omega_reqPCM_mech; omega_desired_mech; omega_required_mech;
omega_reqMAX_mech; omega_reqMIN_mech; omega_actual_mech) are scaled in the same way

The relation between speed scaling and speed measurement with encoder is described in Section 4.3.1.2. In the
final software, the constant OMEGA_SCALE is identical with the scaling constant k in equations EQ. 4-1 and
EQ. 4-4, and OMEGA_RANGE_MAX is ωMax.

7.1.4 Position Scaling

Position Scaling is described in Section 4.3.1.1

7.1.5 Temperature Scaling

As shown in Section 4.3.4, the temperature variable does not have a linear dependency.

7.2 PI Controller Tuning
The application consists of four PI controllers. Two controllers are used for the Id and Iq currents, one for speed
control and the other for field-weakening. The controller’s constants are given by simulation in Matlab and
were experimentally specified. A detailed description of controller tuning is beyond the scope of this
application note.

ωFrac = Fractional representation of speed quantities [-]

ωReal = Real speed quantities in physical units [rpm]

OMEGA_RANGE_MAX = Defined speed range maximum used for scaling in physical units [rpm]

CURR_RANGE_MAX CURR_MAX-CURR_MIN 2 CURR_MAX⋅= =

ωFrac

ωReal

OMEGA_RANGE_MAX
--=

RUN / STOP Switch and Button Control

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 55
Preliminary

7.3 Subprocesses Relation and State Transitions
As shown in Section 6.2 and Section 6.3, the software is split into subprocesses according to functionality.
The application code is designed to be able to extract individual processes, such as Analog Sensing, and use
them for customer applications. The C language functions dedicated for each process are located in one place
in the software, so they can be easily used for other applications. Function naming usually starts with the name
of the process, for example, AnalogSensingInitProceed().

As Section 6.3 shows, the processes’ or subprocesses’ state transients have some mutual relations. For
example, “Application Control: Begin Initialization” is a condition for transient of the “Analog Sensing
process: Init Done” to Begin Init state. In the code, the interface between processes is provided via “trigger”
functions. The naming convention for these functions is: <ProcessName><State>Trig().

The functionality is explained in following example:

The “trigger” function, Process1StateTrig(), is called from process1. The transient functions of process2,
process3,etc., which must be triggered by Process1State, are put inside Process1StateTrig().

7.4 RUN / STOP Switch and Button Control
The RUN / STOP switch is connected to the GPIOE5 pin. The state of the RUN / STOP switch can be read
directly from the GPIO Data Register.

User buttons are also connected to GPIO pins. The state of buttons are read periodically from the GPIO Data
Register. The EVM boards do not resolve button contact bouncing, which may occur while pushing and
releasing the button, so this issue must be resolved by software.

The reading of buttons is masked by software methods. The following algorithm is used to check the state of
the desired GPIO pins.

The level of a GPIO may be LOW or HIGH. When the button is pressed, the logical level LOW is applied on
the GPIO pin and the scanning routine detects the low level and sets the corresponding buttonStatus bit; see
Figure 7-1. Due to contact bounces, the routine disables the scanning process and sets the debounce counter to
a predefined value just after the low level is detected. The variable buttonStatus represents the interrupt flag.
Using the 56F83xx’s software timer, the ButtonProcessingInterrupt function is periodically called, as shown in
Figure 7-1. The function ButtonProcessingInterrupt decrements the debounce counter and if the counter is 0,
the reading of GPIO pins is again enabled. The button press is checked by the ButtonEdge function; see
Figure 7-2. When the variable buttonStatus is set, the ButtonEdge function returns “1” and clears buttonStatus.
When the variable buttonStatus is not set, the ButtonEdge function returns “0”.

According to the ButtonProcessing calling period, the value of the debounce counter should be set close to
180ms. This value is sufficient to prevent multiple sets of buttonStatus bits, due to contact bounces.

Implementation Notes

3-Phase PMSM Motor Vector Control, Rev. 3

56 Freescale Semiconductor
Preliminary

Figure 7-1 Button Control - ButtonProcessingBackground and ButtonProcessingInterrupt

Figure 7-2 Button Control - ButtonEdge

ButtonProcessing
Background

debouncecounter =
0

Read data from
GPIO pin

Data from GPIO =
Low

Return

ButtonProcessing
Interrupt

Return

No

No

Yes

Yes

Yes

No

Set buttonStatusSet buttonStatus

debounceCounter =
DEBOUNCE_VALUE

debouncecounter >
0

Decrement debounce
counter

ButtonEdge

buttonStatus = 1

Clear buttonStatus

Return 1

No

Yes

Return 0

Interrupts

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 57
Preliminary

8. Processor Expert (PE) Implementation
PE is a collection of beans; APIs; libraries; services; rules; and guidelines. This software infrastructure is
designed to let a 56F80x or 56F8300 software developer create high-level, efficient, portable code. This
chapter describes how the PMSM Vector Control application is written under PE.

8.1 Beans and Library Functions
The PMSM Vector Control application uses the following beans:

• ADC bean

• Quad Timer bean

• Quadrature Decoder bean

• PWM bean

• PC master software bean

The PMSM Vector Control application uses the following motor control functions:

• cptrfmClarke (Clarke transformation, MC_ClarkePark bean)

• cptrfmPark (Park transformation, MC_ClarkePark bean)

• cptrfmParkInv (Inverse Park transformation, MC_ClarkePark bean)

• mcElimDcBusRip (DC bus ripple elimination, MC_SpaceVectorMod bean)

• mcPwmIct (3-phase sinewave modulation, MC_SpaceVectorMod bean)

• rampGetValue (ramp generation, MC_Ramp library)

• controllerPItype1_asmSc (PI controller, MC_Controller bean)

8.2 Beans Initialization
Each peripheral on the hybrid controller or on the EVM board is accessible through a bean. This section
describes the bean initialization of all peripherals used. For a more detailed description of drivers, see the
Targeting Freescale MC56F83xx Platform manual.

To use a bean, follow these steps:

• Add the required bean:

— Right click Beans under the Processor Expert tab in the project window and select Add Beans

— When PE’s Bean Selector window opens, select the desired bean

• Configure the added bean

• Call the bean’s init function or use PE initialization, by selecting Call init in the CPU init code

Access to individual driver functions is provided from PESL support by the ioctl or PESL function call. To
enable access to these functions, PESL support should be enabled in the CPU bean used.

8.3 Interrupts
When configuring a bean in PE, the user defines the callback functions called during interrupts.

Processor Expert (PE) Implementation

3-Phase PMSM Motor Vector Control, Rev. 3

58 Freescale Semiconductor
Preliminary

8.4 PC Master Software
PC master software was designed to provide a debugging, diagnostic and demonstration tool for development
of algorithms and applications. It consists of components running on PCs and components running on the
target hybrid controller, connected by an RS-232 serial port. A small program is resident in the hybrid
controller that communicates with the PC master software to parse commands, return status information to the
PC, and process control information from the PC. The PC master software executing on a PC uses Microsoft
Internet Explorer as a user interface to the PC.

To enable the PC master software operation on the hybrid controller target board application, add the
PC_Master bean to the application. The PC_Master bean is located under CPU External Devices -> Display in
PE’s Bean Selector.

The PC master bean automatically includes the SCI driver and installs all necessary services. This means there
is no need to install SCI driver because the PC_Master bean encapsulates its own SCI driver.

The default baud rate of the SCI communication is 9600 and is set automatically by the PC master software
driver.

A detailed PC master software description is provided in the PE documentation.

The 3-Phase PMSM Vector Control utilizes PC master software for remote control from a PC. It enables the
user to:

• Control the PC master software

• Control the motor’s Start / stop

• Set motor speed

Variables read by the PC master software as a default and displayed to the user are:

• Required motor speed

• Actual motor speed

• Application status

— Init

— Stop

— Run

— Fault

• DCBus voltage level

• Identified line voltage

• Fault Status

— No_Fault

— Overvoltage

— Overcurrent

— Undervoltage

— Overheating

The profiles of required and actual speeds, together with the desired Id and Iq currents, can be seen in the Speed
Scope window.

PC Master Software

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 59
Preliminary

The course of quickly-changing variables can be observed in the Recorder windows, displayed by the PC
master’s Speed Scope. The Recorder can only be used when the application is running from External RAM,
due to the limited on-chip memory. The length of the recorded window may be set in Recorder Properties =>
bookmark Main => Recorded Samples. The dedicated memory space is defined in the appconfig.h file of the
ExtRAM target. The recorder samples are taken every 125µsec.

The following records can be captured:

• Required speed

• Actual speed

• Desired Id current

• Desired Iq current

The PC master software Control Page is illustrated in Figure 8-1 The profiles of the required and actual speeds
can be seen in the Speed Scope window.

Figure 8-1 PC Control Window

Hybrid Controller Memory Use

3-Phase PMSM Motor Vector Control, Rev. 3

60 Freescale Semiconductor
Preliminary

9. Hybrid Controller Memory Use
Table 9-1 shows how much memory is needed to run the 3-phase PMSM Vector Control drive using the
Quadrature Encoder. A part of the hybrid controller memory is still available for other tasks.

10. References
[1] Design of Brushless Permanent-magnet Motors, J.R. Hendershot JR and T.J.E. Miller, Magna Physics

Publishing and Clarendon Press, 1994

[2] Brushless DC Motor Control using the MC68HC708MC4, AN1702, Freescale Semiconductor, Inc.

[3] 56F80x Evaluation Module Hardware User’s Manual, DSP56F80xEVMUM, Freescale Semiconductor,
Inc.

[4] 3-Phase AC BLDC High-Voltage Power Stage User’s Manual, MEMC3PBLDCPSUM/D, Freescale
Semiconductor, Inc.

[5] 56800 Family Manual, DSP56F800FM, Freescale Semiconductor, Inc.

[6] DSP56F800 User Manual, DSP56F801-7UM, Freescale Semiconductor, Inc.

[7] 56F8300 Peripheral User Manual, MC56F8300UM, Freescale Semiconductor, Inc.

[8] 56F805 Evaluation Module Hardware User’s Manual, DSP56F805EVMUM, Freescale Semiconductor,
Inc.

[9] 56F83xx Evaluation Module Hardware User’s Manual for the specific device being implemented,
MC56F83xxEVMUM, Freescale Semiconductor, Inc.

[10] Evaluation Motor Board User’s Manual, MEMCEVMBUM/D, Freescale

[11] User Manual for PC master software; see PE documentation

[12] Sensorless Vector and Direct Torque Control, P. Vas (1998), Oxford University Press, ISBN
0-19-856465-1, New York.

[13] Elektricke pohony, Caha, Z.; Cerny, M. (1990), SNTL, ISBN 80-03-00417-7, Praha.

[14] Freescale web page: www.freescale.com

Table 9-1 RAM and FLASH Memory Use by PE 2.94 and CodeWarrior 6.1.2

Memory
(in 16-bit Words)

Available for 56F8300
Hybrid Controller

Application Used + Stack Application Used without
PC Master Software, SCI

Program Flash 64K 9009 4546

Data Flash 4K 4373 4360

Program RAM 2K 0 0

Data RAM 4K 2580 + 512 stack 396 + 512 stack

PC Master Software

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 61
Preliminary

References

3-Phase PMSM Motor Vector Control, Rev. 3

62 Freescale Semiconductor
Preliminary

PC Master Software

3-Phase PMSM Motor Vector Control, Rev. 3

Freescale Semiconductor 63
Preliminary

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
This product incorporates SuperFlash® technology licensed from SST.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

AN1931
Rev. 3
1/2005

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

	1. Introduction
	2. Advantages and Features of Freescale’s Hybrid Controller
	2.1 56F805, 56800 Core Family
	2.2 56F8346, 56800E Core Family
	2.3 Peripheral Description

	3. Target Motor Theory
	3.1 Permanent Magnet Synchronous Motor (PMSM)
	Figure�3-1 Cross Section of a PM Synchronous Motor

	3.2 Mathematical Description of PM Synchronous Motor
	3.2.1 Space Vector Definition
	Figure�3-2 Stator Current Space Vector and Its Projection
	Figure�3-3 Application of the General Reference Frame

	3.3 Digital Control of PM Synchronous Motor
	Figure�3-4 3- Phase Inverter
	Figure�3-5 Pulse Width Modulation
	3.3.1 Vector Control of PM Synchronous Motor
	3.3.2 Block Diagram of Vector Control
	Figure�3-6 Block Diagram of PM Synchronous Motor Vector Control

	3.3.3 Vector Control Transformations
	Figure�3-7 Clarke Transformation
	Figure�3-8 Establishing the d-q Coordinate System (Park Transformation)

	3.3.4 PMSM Vector Control and Field-Weakening Controller
	Figure�3-9 Normal Operation and Field-Weakening

	4. System Concept
	4.1 System Specification
	4.2 Vector Control Drive Concept
	Figure�4-1 Drive Concept

	4.3 System Blocks Concept
	4.3.1 Position and Speed Sensing
	Figure�4-2 Quadrature Encoder Signals
	Figure�4-3 Quad Timer B Configuration
	Figure�4-4 Speed Processing
	Figure�4-5 Rotor Alignment
	Figure�4-6 Rotor Alignment Flow Chart

	4.3.2 Current Sensing
	Figure�4-7 Current Shunt Resistors
	Figure�4-8 Current Amplifier
	Figure�4-9 Time Diagram of PWM and ADC Synchronization
	Figure�4-10 Voltage Shapes of Two Different PWM Periods
	Figure�4-11 3-Phase Sinewave Voltages and Corresponding Sector Value

	4.3.3 Voltage Sensing
	4.3.4 Power Module Temperature Sensing
	Figure�4-12 Temperature Sensing

	5. Hardware Implementation
	5.1 Hardware Set-Up
	Figure�5-1 High-Voltage Hardware System Configuration

	6. Software Design
	6.1 Main Software Flow Chart
	Figure�6-1 Software Flow Chart - General Overview I
	Figure�6-2 Software Flow Chart - General Overview II
	Figure�6-3 S/W Flow Chart - General Overview III

	6.2 Data Flow
	Figure�6-4 Data Flow - Part 1
	Figure�6-5 Data Flow - Part 2
	6.2.1 Application Control Process
	6.2.2 LED Indication Process
	6.2.3 Analog Sensing Process
	6.2.4 Position and Speed Measurement Process
	6.2.5 PM Synchronous Motor (PMSM) Control Process
	Figure�6-6 Data Flow - PMSM Control
	Figure�6-7 Data Flow - PMSM Control - Current Control
	Figure�6-8 Field-Weakening Controller

	6.2.6 Brake Control Process
	6.2.7 PWM Generation Process
	6.2.8 Fault Control Process

	6.3 State Diagram
	6.3.1 Hybrid Controller Initialization
	6.3.2 Application Control State Diagram
	Figure�6-9 State Diagram - Application Control

	6.3.3 PMSM Control State Diagram
	Figure�6-10 State Diagram - PMSM Control

	6.3.4 Fault Control State Diagram
	Figure�6-11 State Diagram Fault Control

	6.3.5 Analog Sensing State Diagram
	Figure�6-12 State Diagram - Analog Sensing

	7. Implementation Notes
	7.1 Scaling of Quantities
	7.1.1 Voltage Scaling
	7.1.2 Current Scaling
	7.1.3 Speed Scaling
	7.1.4 Position Scaling
	7.1.5 Temperature Scaling

	7.2 PI Controller Tuning
	7.3 Subprocesses Relation and State Transitions
	7.4 RUN / STOP Switch and Button Control
	Figure�7-1 Button Control - ButtonProcessingBackground and ButtonProcessingInterrupt
	Figure�7-2 Button Control - ButtonEdge

	8. Processor Expert (PE) Implementation
	8.1 Beans and Library Functions
	8.2 Beans Initialization
	8.3 Interrupts
	8.4 PC Master Software
	Figure�8-1 PC Control Window

	9. Hybrid Controller Memory Use
	10. References

