4\ Freescale Semiconductor

Application Note

AN1828/D
Rev. 1, 2/2002

Flash Programming via CAN

by Ross McLuckie
East Kilbride, Scotland.

1 Introduction

With the introduction, and growing use of Flash based microcontrollers (MCU),
new opportunities exist to extend the capabilities of the Controller Area
Network (CAN). One such opportunity would be to use the CAN to examine,
modify or reprogram the memory contents of any MCU connected to the
network from a single, easily accessible point within the system.

The more traditional methods of providing in-circuit programming of an
Electronic Control Module (ECM) are based upon either the Universal
Asynchronous Receiver / Transmitter (UART) or an MCU specific interface,
such as the single wire interfaces found on Motorola’s HC08 (Monitor mode)
and HC12 (BDM) products. Using this approach requires dedicated hardware
on each ECM and assumes that accessibility to each module is readily
available.

From a design point of view, the added cost of dedicated hardware for a
diagnostic / development feature and the restrictions placed upon the ECM to
meet the accessibility requirements are undesirable to say the least. At this
point it easy to understand the benefits of utilizing CAN to provide the desired
functionality, each ECM has a CAN connection as part of the standard system,
therefore no additional hardware is required, and connection to any node
allows communication to all other nodes via CAN.

This concept offers benefits throughout the products’ life span, from the
development phase through to in-field upgrades, servicing and diagnostic
capabilities. During development and testing any module connected to the
network could be reprogrammed in-circuit, saving time and effort as well as
minimizing the dependencies between product assembly and software
development. In-field system upgrades, servicing and diagnostic reports could
all be easily achieved, and potential high cost product recalls could be handled
much quicker and cheaper with field maintenance.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

freescale”

For More Information On This Prodt semiconductor
Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

Freescale Semiconductor, Inc.

AN1828/D

2 Scope

A considerable amount of additional functionality can be added by
implementing some or all of these features, whilst requiring limited effort during
the software development cycle.

3 Objective

The purpose of this paper is to focus on the specific features necessary to
enable the reader to include the desired functionality into their system. It is
assumed the reader is familiar with the use of CAN and Flash memory
technology, therefore the discussion will not enter into any great detail on either
the CAN specification or device specific Flash programming algorithms. There
are numerous other publications which describe in detail the CAN specification,
whilst Flash programming algorithms are technology / device specific and
although a working example is shown for Motorola’'s HC12 Flash memory, the
principles discussed could be easily extended to any other Flash technology.

It is the intention of this application note to identify and illustrate the key
features required, allowing the reader to incorporate the additional functionality,
discussed in the introductory section, into their system. In addition to outlining
the requirements of the basic ‘skeleton’ system, some topics will also discuss
potential extensions and enhancements that the reader may wish to consider
when customizing and tailoring the system to their individual needs.

Although the principles discussed could be applied to any CAN based system
incorporating MCUs with either embedded or external Flash memory, for the
purpose of illustration, the remainder of this document will describe how to build
a demonstration system based on Motorola’'s M6BEVB912BC32.

Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AN1828/D

V -«
Veo 32-KBYTE FLASH EEPROM Vo, Vo
\\//DDA <~ xDDA
ssA | Vssa
1-KBYTE RAM
ANO <— PADO
768-BYTE EEPROM ANL (<— PADL
ATD AN2 [«—| a|<— PAD2
CONVERTER AN3 f_‘ < PAD3
CPU12 AN4 |e—— % <—— PAD4
AN5 & [«— PAD5
AN6 <« PADS
BKGD =< SMODN/TAGHI PERIODIC INTERRUPT AN7 < PAD7
SINGLEWIRE COP WATCHDOG —
- 10CO |« <> PT0
BACKGROUND CLOCK MONITOR 1001 |l<» < » PT1
DEBUG MODULE BREAK POINTS 10C2 |es e P2
EXTAL —> TIMER AND I0C3 |e>|E | =l«> PT3
XTAL < PULSE O joc4 |«»| S| S|«—> P4
RESET <> ACCUMULATOR 10C5 |« & e PT5
PEO. —> XRg priibae I
PE1 —> IRQVpp g
PE2 <> RIW
PE3 = LSTRB/TAGLO LITE sCl RxD [« <> PSO
PE4 <>} % ECLK INTEGRATION XD [« j«—> PS1
PE5 < @ [« IPIPEO/MODA MODULE 10 > <> PS2
PEG <> <> IPIPE1/MODB (LIM) Ilo o f>lg | > PS3
PE7 <> DBE & &
SDIMISO || 2 | & [«—» PS4
SDO/MOS| | <> PS5
SPI _SCK > <> PS6
A A A A CSISS |« <«—>» PS7
YYYYVVYY y
MULTIPLEXED ADDRESS/DATA BUS PWO > l«—> PPO
TTATA T PUM w2 [an DS
Y Y Y Y Y PW3 |e—» & & « » PP3
DDRA DDRB a g
0 |« 2| &« pps
PORT A PORT B o | < > PP
1o 10 |a— l«—>» PP
0 (e <> PP7
TLRIRIIT DRARIBDIDR
DLCTX |« -
BN TShe LOLITONDO PoLCE
rrrxrocxd ook oo o0 & ol9
oao0QoQ00QQ lafaYafalalafalal 110 > g | ©|«<> PDLC2
e I<<<<<<< o
L Nmmsm s 0 || | & [«> PDLC3
! I IRRC R T R ''Nouw o —do ! Iio o ==t 8 PDLC4
Jwoe | EEEEEEZE REE IR Vo <> <> PDLCS
BUS ' S3IZZZ5%5 SSSSZ55% o <= <> PDLCS
' TeeIIII Vpp X2 —» Vppx X2 —»
'EEEEEEEE !
' S888385888 Vss X 2 | Vssx x 2 |
. NARROW BUS . POWER FOR POWER FOR
"""""""" INTERNAL 1/0 DRIVERS
CIRCUITRY
Figure 1. MC68HC912BC32 block diagram
Flash Programming via CAN 3

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

AN1828/D

In order to provide this additional functionality, the following key features must
be taken into consideration when planning and designing the overall system.
* Provide ‘maintenance’ access to the MCU via the CAN interface.
» Device specific Flash modifying routines.
* A'‘smart cable’ to interface between a PC and the target ECM.
* An API capable of transferring data to the ‘smart cable’.

The following sections will take a closer look at each of these topics and
illustrate, through example, the minimum requirements needed to accomplish
each task. In addition, each section will discuss ways to enhance and extend
the overall performance of the system, allowing the designer to meet their
system’s unique requirements.

4 MCU maintenance access via CAN

There is very seldom a single solution to any given design requirement and it
is important to determine an appropriate strategy from the offset. For this
particular application it would be just as easy to embed the Flash modifying
algorithms into the user software and activate them via a CAN message, but
this approach comes with many limiting factors. Having Flash algorithms in
MCU memory at all times could result in permanent damage if at any time code
runaway occurred, less memory would be available for application code and
additional functionality would be limited to what was coded in the original
application.

A more flexible approach would be to utilize a CAN Load Ram And Execute
(LRAE) routine. Flash algorithms would only be loaded into the MCU at the
appropriate time, it would be possible to write a very small routine (under 100
bytes) to accomplish the task and only MCU ram size restricts additional
functionality.

The basic requirement for the LRAE routine is to implement a CAN protocol
which allows data transfer into ram and program execution from ram. Although
several CAN protocol definitions already exist, such as CCP (CAN Calibration
Protocol), CANopen and SDS™ (Smart Distributed System)l, for the purpose
of demonstration, a simplified custom protocol was adopted.

The flowchart in Figure 2 explains the operation of the LRAE routine, while
Table 1 explains how the CAN protocol functions.

1. SDS™ isatrademark of Honeywell Inc.

4 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN1828/D
Wait for
CAN message |
Begin Execution Execute

from RAM instruction

Address Set address _

instruction pointer -

Data Transfer data to
instruction _ RAMand >
increment pointer
Figure 2. CAN load ram and execute process flow
Table 1. CAN message Rx buffer contents
CAN Rx Address Data Execute

Buffer Instruction Instruction Instruction
DSRO 0 2 4
DSR1 Address MSB Data Byte 1 Address MSB
DSR2 Address LSB (Data Byte 2) Address LSB
DSR3 — (Data Byte 3) —
DSR4 — (Data Byte 4) —
DSR5 — (Data Byte 5) —
DSR6 — (Data Byte 6) —
DSR7 — (Data Byte 7) —

The address instruction initializes a pointer to RAM, where subsequent data
bytes are incrementally stored until a new address or execute instruction is
received. The data instruction may contain up to seven bytes of data. On
receiving the execute instruction, program execution jumps to the address
location contained in the execute command.

Listing 1 provides a coded example of how to implement the CAN LRAE
protocol shown in Figure 2 and Table 1.

Flash Programming via CAN 5

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

AN1828/D

Listing 1 CAN LRAE routine

rhkkkhkhkhkkhkhkhkkhkhkhhkhkhhhkhhhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhdrhdrhrrdrrhrx*k
’

; A load RAM and execute routine via the CAN network
; Witten to run on an MC68HC912BC32

rhkkkhkhkhkkhkhkhkkhhkhhkhkhhkhkhhkhkhkhhhkhhhkdhhhdhhhdhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhdrhdrhrrdrrhrx*k
’

rhkkkhkhkhkkhkhkhkkhkhkhhkhkhhkhkhhhkhkhhhkhhhkhhhhhhdhhhhhhhhhhhhhhhhhhhdhhhdhhdhhdrhdrhrrdrrhrx*k
’

; Register definitions
EE R S R R S R I S I R S S kR S R
L

COPCTL: EQU $16
CMCRO: EQU $0100

rhkkkhkhkhkkhkhkhkkhhkhhkhkhhkhkhhhkhkhhhhhhhhhhhhdhhhhhhhhhhhhhhhhdhhhdhhhdhhddhddrhdhhrrdrrhrx*k
’

; Bit definitions for the CMCRO register

EEE I b I R R O O O R S S b O R I S S R S R R I b
’

CSWAI : EQU $20

SYNCH: EQU $10

TLNKEN: EQU $08

SLPAK: EQU $04

SLPRQ EQU $02

SFTRES: EQU $01
;***
CBTRO: EQU $0102

CRFLG EQU $0104

EEE I R R S S S b R SRR I O S I R R I I R
’

; Bit definitions for the CRFLG register

rhkkkhkhkhkkhkhkhkkhhkhhkhkhhkhkhhkhkhkhhhkhhhkhhhhhhdhhhhhhhhhhhhhhhhdhhhdhhhdhhdhhdrhdrhrrdrrhrx*k

WUPI F: EQU $80
RWRNI F: EQU $40
TWRNI F: EQU $20
RERRI F: EQU $10
TERRI F: EQU $08
BOFFI F: EQU $04
OVRI F: EQU $02
RXF: EQU $01

EEE R I R R R O S O R S S b R I O R S S S R I O R O b
’

CTCR: EQU $0107
Cl DVRO: EQU $0114
Cl DVR2: EQU $0116
RXDSRO: EQU $0144
RXDSR1: EQU $0145
RXDLR: EQU $014C
6 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.

EEE I R R I S S S R I S b R R I O O R O R I S R IR b b
’

; Standard equates

rhkkkhkhkhkkhkhkhkkhhkhhkhkhhkhkhhhkhkhhhkhhhdhhhdhhhdhhhhhhhhhhhhhhhhhhhhdhhhdhhddhhddrhdrhrrdrrhrx*k
’

St ackTop: EQU $0BFF
Pr ot ect edBl ock: EQU $FC00
Reset Vect or: EQU $FFFE
CBT: EQU $C749
Lastlnstr: EQU $04

ORG Pr ot ect edBl ock

khkkkhhkhkkhhkhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhhhhhhhhhdhhhdhhhddhddhhddhrrhrrkdrx*k

; Initialization routine

EEE I R I O O R S S b O R I I O R R R R I b b
’

I rae:
LDS #St ackTop ;initialize stack pointer
CLR COPCTL ;switch of f COP wat chdog

EEE R b R R R I O S R I A I R I b O R G o R IR O b b
’

; Setup the CAN nodul e

rhkkkhkhkhkkhkhkhkkhhkhhkhkhhhkhhkhkhkhhhkhhhhhhhhhdhhhhhhhhhhhhhhhhdhhhdhhhdhhhddhhddhhdrhrrdrrhrx*k
’

BSET CMCRO, #SFTRES ; pl ace CAN nmodul e in reset

MOVW #CBT, CBTRO ;set up CAN bit timng

CLR CTCR

MOVW #$FFFF, Cl DVRO

MOVW #$FFFF, Cl DVR2 ;set up nodule to receive all nessage

BCLR CMCRO, #SFTRES ; take CAN nmodul e out of reset
canSynch:

BRCLR CMCRO, #SYNCH, * ; synchroni ze nmodul e with CAN bus

rhkkkhkhkhkkhkhkhkkhhkhhkhkhhkhkhhhkhkhhhkhhhkhhhhhhdhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhdrhdrhrrdrrhrx*k
’

; Wait for CAN nessage

EEE R b R R R O O O R R R S b I R R R S S S R R I I O
’

wai t For Msg:
BRCLR CRFLG, #RXF, * ;wait for CAN nessage

BRSET RXDSRO, #$01 , wai t For Next Msg
LDAB RXDSRO
CMPB #lLastlnstr

BHI wai t For Next Msg ;ignore invalid instructions

CLRA ;junmp to appropriate routine, dependi
JwmP [D, PC] ;on instruction val ue

DC. W addresslinstr ;(0) initialize RAM pointer

DC. W datalnstr ;(2) load data into RAM

AN1828/D

S

ng

Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

AN1828/D

DC. W executelnstr ; (4) begin execution at given address

EEE I b R I R O O R I S b I R R I O R I S R O R R
’

; Setup RAM poi nter

EEE I O R S S b O R I O R R O R R I R
’

addresslnstr:
LDX RXDSR1 ; point to RAM address in RXDSR1: 2
BRA wai t For Next Msg

EEE R I I R R O I S S R R I S b R SRR I O S O R I S O R
’

;. Transfer data i nto RAM

EEE I I I I R T S S R R O S R R I b b O R I S R R I b b
’

dat al nstr:
LDAB RXDLR ; number of bytes transmitted
LDY #RXDSR1 ;start of transmitted data
next Dat aByt e:
DECB ;ignore conmand byte
BEQ endCf Dat a ;stop at end of data
MOVB 1, Y+, 1, X+ ;1 oad data into RAM

BRA next Dat aByt e
endOf Dat a:
BRA wai t For Next Msg

EEE R I I R R I S R I S b R R I O O R R I S O I R
’

; Clear CAN Rx flag and begin program execution fromnew | ocation

rhkkkhkhkhkkhkhkhkkhkhkhhkhkhhkhkhhhkhkhhhhhhkhhhdhhhdhhhhhhhhhhhhhhhhdhhhdhhhdhhddhhdrhdrhrrhrrhrx*k
’

executelnstr:

MOVB #RXF, CRFLG ;clear Rx flag
LDX RXDSR1
JMP X ; begi n program execution from RXDSRL: 2

rhkkkhkhkhkkhkhkhkkhkhkhhkhkhhkhkhhhkhkhhhkhhhhhhhhhdhhhhhhhhhhhhhdhhhdhhhdhhhdhhddhhddhhdrhrrdrrhrx*k
’

; Clear CAN Rx flag and wait for next message

EEE I b I R R O O O R S S S S S SRR b O O R R S R R I b
’

wai t For Next Msg:
MOVB #RXF, CRFLG ;clear Rx flag
BRA wai t For Msg

khkhkkhhkhkhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhhhhhdhhhdhhhdhhddhddhddhrrdrrkdrx*k

; Define reset vector

EEE I R R O O O R S S I b I R O R I S R O O R b
’

ORG Reset Vect or
DCW I rae

EEE I R O O R R R S b R R I o S R R Rk R b
’

8 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AN1828/D

Since the LRAE function provides the platform from which the complete system
is built upon, then it is also the area where most of the system enhancements
and extensions should be added.

Implementing a specific CAN protocol could provide additional functionality,
whilst adding a level of security, through message handshaking when
establishing a connection to the target MCU. If required, a more complex,
custom handshaking protocol could be added, in an attempt to prevent any
unauthorized access to the MCU.

The coded example, shown in Listing 1, accepts all CAN messages and is
intended for use in a point to point (2-node network) application only. By either
adopting a more complex protocol, or utilizing a dedicated CAN filter / identifier
for each node on the network, a multiple node network could be easily
supported.

From Table 1, it can be seen that the LRAE example sends both the instruction
ID and its associated data in the CAN data segment registers (DSRO0-7). If it
was required to optimize the bandwidth of the CAN bus, the instruction ID could
be embedded into the CAN identifier, allowing transmission of up to eight data
bytes at a time. The potential improvement on system performance depends
upon the number of possible instruction ID’s and the overall size of the data
transfer.

It is important to consider the effect of a system failure whilst attempting to
modify Flash memory, if for example, a power failure occurred after erasing, but
before programming was complete, then the end result would be an erased or
partially programmed target MCU. The resultant ‘dead’ node would most likely
have to be replaced, which may require significant cost and effort. There are
several approaches that could be undertaken to prevent, or at least minimize
the risk from this kind of failure. An auxiliary power supply could be
incorporated into the maintenance equipment, utilizing the protected memory
area of the MCU in order to guarantee a minimal functionality, such as the CAN
LRAE routines or in the case of the HC12, provide an appropriate BDM
interface. Although it is not possible to eliminate the risk of this type failure
entirely, the amount of preventative action taken should depend upon the
potential consequences arising from a failure of this nature.

There are many more topics that could be discussed here, and the required
functionality will vary from system to system, but it is important to realize when
defining the specification for the LRAE routine, the part it plays in limiting the
overall system.

Flash Programming via CAN 9

For More Information On This Product,
Go to: www.freescale.com

A 4
4\

Freescale Semiconductor, Inc.

AN1828/D

5 Device specific Flash modifying, via CAN, routines

With the exception of a few minor differences, the basic requirement for the

Flash modifying routine is the same as the LRAE routine. A CAN protocol
capable of transferring data into a ram buffer and the ability to both erase and
program Flash. Despite the fact that there are numerous Flash technologies,
even Motorola’s HC08 and HC12 products have different Flash modules, the
same basic principles are applicable to them all. The coded example that
follows was written for use with the MC68HC912BC32 Flash module.

$0000]

$8000

$F000
$FF00
$FFCO

$FFFF

$0000

$01FH

$0200

$03FH

______ '////IIII 7

VECTORS | VECTORS |

EXPANDED SINGLE CHIP
NORMAL

VECTORS

$0800

$0BFH

$0D00

$OFFH

REGISTERS
512 BYTES RAM
MAP TO ANY 2K SPACE

REGISTER FOLLOWING
SPACE
512 BYTES RAM

1-KBYTE RAM
MAP TO ANY 2K SPACE

768 BYTES EEPROM
MAP TO ANY 4K SPACE

$0000

$7FFF

$FF00

$FFFR

FLASH EEPRO
MAP WITH MAPROM

IN MISC REGISTE

TO $0000 — $7F
OR $8000 — $FF

BDM
(IF ACTIVE)

$8000

M

BIT
R
FF
FF

$FFFF

SINGLE CHIP
SPECIAL

Figure 3. Motorola’s MC68HC912BC32 memory map

The biggest difference in functionality from the LRAE routine is the introduction
of CAN message handshaking, which gives the target MCU the ability to return
status messages after each command request. Although not an essential
requirement, the ability to return status information greatly increases the
capabilities of the overall system.

10

Flash Programming via CAN

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
AN1828/D

An initial status message is sent to indicate that the Flash modifying routines
are now running and have control of the target MCU, subsequent status
messages are sent after each request to modify Flash memory is received. The
status returned is used to determine if the programming voltage was present,
or whether or not the attempted modification was successful.

The flowchart in Figure 4 explains the operation of the Flash modifying routine,
while Table 2 explains how the CAN protocol functions.

Transmit
connection
established

message

!

Wait for
CAN message

Reset RAM
buffer pointer

~ Reset
instruction

\

Transfer data to
RAM and
increment pointer

Load data
instruction

\

Start programming
sequence and
return status
message

_Program
instruction

\

Start erase
sequence and
return status
message

~ Erase
instruction

\

Figure 4. Flash modifying process flow

Flash Programming via CAN 11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN1828/D

Table 2. CAN message Rx buffer contents

CAN Rx Reset Load Data Program Erase
Buffer Instruction Instruction Instruction Instruction
DSRO 0 2 4 6
DSR1 — Data Byte 1 Address MSB | Address MSB
DSR2 — (Data Byte 2) | Address LSB | Address LSB
DSR3 — (Data Byte 3) No of Bytes Word MSB
DSR4 — (Data Byte 4) (Page No) Word LSB
DSR5 — (Data Byte 5) — —
DSR6 — (Data Byte 6) — —
DSR7 — (Data Byte 7) — —

The reset instruction initializes a pointer to the start of a RAM buffer, where
subsequent data bytes are incrementally stored until a new reset instruction is
received. The data instruction may contain up to seven bytes of data. On
receiving the program instruction, an attempt is made to program the specified
number of bytes from the start of the RAM buffer into Flash, starting at the
address sent in the instruction. The page number is optional and is included to
provide support for S2 Records (> 64K). The erase command contains the
starting address and word size of the flash block that has to be erased, this is
required in order to allow verification of the erase process. Both the program
and erase instructions return a status message, which provides information on
the outcome of any attempt to modify Flash memory, whilst also providing a
mechanism for data flow control to the target ECM.

Listing 2 provides a coded example of how to implement the Flash modifying
via CAN protocol shown in Figure 4 and Table 2.

12

Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.

Listing 2 Flash modifying via CAN routine

khkhkkhhkhkhhkhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhhhhhhhhdhhhdhhddhdhhdrhrrdrrhrx*k

; A bootl oader routine to program 1.5T Flash via CAN
; Witten to run on an MC68HC912BC32

khkkkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhhhhhhhhhhdhhhdhhhddhddhhddhrrhrrkdrx*k

EEE I R R A T O O R S S S b R SRR I O O S O R I S O O R
’

; Register definitions
EE R S R R S R I R S R S R S S R
1

COPCTL: EQU $16
TI OS: EQU $80

EEE I I R T O S O R R R I b R SRR I O I S S R I I O I R b
’

; Bit definitions for the TIOS register

rhkkkhkhkhkkhkhkhkhkhkhhkhkhhkhkhhkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhhdhhrrdrrhrx*k
’

| OS7: EQU $80
| OS6: EQU $40
| OS5: EQU $20
| OS4: EQU $10
| OS3: EQU $08
| 0S2: EQU $04
| OS1: EQU $02
| OS0: EQU $01
;***
TCNTH: EQU $84
TSCR: EQU $86

EEE I I A O O S R R S b O R I R R Rk S O R
’

; Bit definitions for the TSCR register

EEE I R I R I S R S S b R I R R S I S R R I I b
’

TEN: EQU $80
TSWAI EQU $40
TSBCK: EQU $20
TFFCA: EQU $10

EEE I I R O I R S b R SRR I O O R O R I S O O R b
’

TVBK2: EQU $8D

EEE R b I I R O O R O R S S I S S SRR S b O O R I R R I b b
’

; Bit definitions for the TMSK2 register

EEE I b I I R I O R R R R S b R R I I I S R R I R I R
’

TO : EQU $80
PUPT: EQU $20
RDPT: EQU $10
TCRE: EQU $08
PR2: EQU $04

AN1828/D

Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

13

4\ Freescale Semiconductor, Inc.

AN1828/D

PRL: EQU $02
PRO: EQU $01

rhkkkhkhkhkkhkhkhkkhhkhhkhkhhhkhhhkhkhhhkhhhkdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhdhdhhddrhdrhrrdrrhrx*k
’

TFLGL: EQU $8E

EEE I I R I R T S R I b I R R I O O O O R O I R b
’

; Bit definitions for the TFLGL register

EEE I I R O O A R R S S S b R R I O S R I I O R O b
’

CTF: EQU $80
CBF: EQU $40
C5F: EQU $20
CAF: EQU $10
C3F: EQU $08
C2F: EQU $04
CLF: EQU $02
COF: EQU $01

rhkkkhkhkhkkhkhkhkkhkhkhhkhkhkhkhkhhhkhkhhhhhhkhhhdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhdhhdrhdrhrrdrrhrx*k
’

TCOH: EQU $90
FEEMCR: EQU $F5

EEE I I R R R O I S S R R R O R I I S R IR R b b b
’

; Bit definitions for the FEEMCR regi ster

EEE R I R I R O S S O R S b I R I O R I S R O R R
’

BOOTP: EQU $01

EEE R I R I R T O S O R I S S b R SRR I b O O R S S S R I b b
’

FEECTL: EQU $F7

EEE I R I R I O R S I I b O O R S S R I b b
’

; Bit definitions for the FEECTL regi ster

EEE I R I R I O O R S S S b O R R I S O R O R O O R
’

FEESWAI : EQU $10
SVFP: EQU $08
ERAS: EQU $04
LAT: EQU $02
ENPE: EQU $01

EEE I R R R O O R S b I R O R I S R I S R kO b b
’

CMCRO: EQU $0100

14 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.

EEE I R R I S S S R I S b R R I O O R O R I S R IR b b
’

; Bit definitions for the CMCRO register

EEE R I I I R I O S R R S S S b R R O R R I S O R R I b b
’

CSWAI : EQU $20
SYNCH: EQU $10
TLNKEN: EQU $08
SLPAK: EQU $04
SLPRQ EQU $02
SFTRES: EQU $01

EEE I R I R O O R S b S R SRR I I O R I S O R
’

CBTRO: EQU $0102
CRFLG EQU $0104

rhkkkhkhkhkkhkhkhkkhhkhhkhkhkhkhkhhkhkhkhhhhhhkhhhdhhhdhhhhhhhhhhhhhhhhhhhhdhhhdhhhddhhddrhdrhrrdrrhrx*k
’

; Bit definitions for the CRFLG register

EEE I I A O I kO R R S R R b I R O O R R R R I b

WUPI F: EQU $80

RWRNI F: EQU $40
TWRNI F: EQU $20
RERRI F: EQU $10
TERRI F: EQU $08
BOFFI F: EQU $04
OVRI F: EQU $02
RXF: EQU $01

EEE I b I I I O I R R S S R b R R I I R IR R b b
’

CTFLG EQU $0106

EEE I R R R O S R R S S S SRR S b O O R I S R I b b
’

; Bit definitions for the CTFLG register

rhkkkhkkhkkhkhkhkkhhkhhkhkhhkhkhhhkhkhhhhhhkhhhdhhhhhhdhhhhhhhhhhhhhhhhhdhhhdhhhdhhddhhdhhhrdrrhrx*k
’

ABTAK2: EQU $40
ABTAK1: EQU $20
ABTAKO: EQU $10
TXE2: EQU $04
TXEL: EQU $02
TXEO: EQU $01

EEE R I R R R O I R R R S S b I R R I O R R S b S R R b O
’

CTCR: EQU $0107
Cl DMVRO: EQU $0114
Cl DMVR2: EQU $0116
RXDSRO: EQU $0144
RXDSRL: EQU $0145
RXDSR3: EQU $0147
RXDLR: EQU $014C

AN1828/D

Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

15

Freescale Semiconductor, Inc.

AN1828/D

TXO0I DRO:
TXODSRO:
TXODLR:
TXOPRI :

EQU $0150
EQU $0154
EQU $015C
EQU $015D

EEE I I R I R T S R I b I R R I O O O O R O I R b
’

; Standard equates

EEE I I R O O A R R S S S b R R I O S R I I O R O b
’

St ackTop:
St ar t OF RAM

CBT:
Connect edMsg:
Lastlnstr:

EC ock:

Prescal eBy32:
ns10:
msl:

Prescal eByl:
us22:
usll:

MaxPr ogPul ses:
MaxEr asePul ses:

EQU $0BFF

EQU $0800

EQU $C749

EQU $55

EQU $06

EQU 8000000 ; E-cl ock frequency in Hz

EQU 5 ;generate nsec del ays based on 8MHz bus

EQU EC ock/ 3200
EQU ECl ock/ 32000

EQU 0 ;generate usec del ays based on 8MHz bus

EQU ((ECl ock/ 10000) *22) / 100
EQU ((ECl ock/ 10000) *11) / 100

EQU 50
EQU 5

ORG St art OF RAM

EEE I I S R R S I R I O R R S I S R R I O O R R
’

; Declare vari abl es

rhkkkhkhkhkkhkhkhkkhhkhhkhkhhkhkhhhkhkhhhkhhhkhhhdhhhdhhhhhhhhhhhhhhhhhhhhdhhhdhhhddhhddrhddrhrrdrrhrx*k
’

pul seTot al : DS. B 1 ;tracks progrant erase pul ses applied
mar gi nFl ag: DS. B 1 ;indicates if prog or margin pul ses
byt esTot al : DS. B 1 ; number of bytes to be programred

16 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
AN1828/D

EEE I R R I S S S R I S b R R I O O R O R I S R IR b b
’

; Initialization routine

EEE R I I I R I O S R R S S S b R R O R R I S O R R I b b
’

boot | oader:

LDS #St ackTop ;initialize stack pointer

CLR COPCTL ;switch of f COP wat chdog

BSET TSCR, #(TEN+TFFCA) ; enable timer, allow fast flag clears
BSET Tl CS, #| OSO ;set channel 0 to output conpare

BCLR FEEMCR, #BOOTP ;enabl e erasure of protected bl ock

EEE I b I I A O O S O R S S S b R I O S R S R O b b
’

; Setup the CAN nodul e

rhkkkhkhkhkkhkhkhkkhkhkhkhkhkhhkhkhhhkhkhhhkhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhddhhdrhrrdrrhrx*k
’

BSET CMCRO, #SFTRES ; pl ace CAN nmodul e in reset

MOVW #CBT, CBTRO ;set up CAN bit timng

CLR CTCR

MOVW #$FFFF, Cl DVRO

MOVW #$FFFF, Cl DVR2 ;set up nodule to receive all nessages

MOVW #3$0000, TX0l DRO ;stanard I D (0 val ue)

MOVB #$01, TXODLR ;single byte status nmessage

CLR TXOPRI ;set status nessage registers

BCLR CMCRO, #SFTRES ; take CAN nmodul e out of reset
canSynch:

BRCLR CMCRO, #SYNCH, * ;synchroni ze nmodul e with CAN bus

MOVB #Connect edMsg, TXODSRO
JSR canTx ;transmit connected status nmessage
EE R S O R R S S R R S R S S R

; Wait for CAN nessage

EEE R I R R R I S A S R I O R S I S R R I I b
’

wai t For Msg:
BRCLR CRFLG, #RXF, * ;wait for CAN nessage

BRSET RXDSRO, #3$01, wai t For Next Msg
LDAB RXDSRO
CMPB #lLastlnstr

BHI wai t For Next Msg ;ignore invalid instructions
CLRA ;junmp to appropriate routine, depending
JwP [D, PC] ;on instruction val ue
DC. W setupBuffer ;(0) reset RAM ptr
Flash Programming via CAN 17

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.
AN1828/D
DC. W | oadBuffer ;(2) load buffer up to a max 256 bytes
DC. W progranFl ash ;(4) programflash with buffer contents
DC. W eraseFl ash ;(6) erase flash array

EEE I R R O S R S S b R I I O O R S S R I b b
’

; Setup buffer pointer

rhkkkhkhkhkkhkhkhkkhkhkhhkhkhhkhkhhhkhkhhhkhhhkhhhhhhdhhhhhhhhhhhhhhhhdhhhdhhhdhhhddhhddrhdrdhrrhrrhrx*k
’

set upBuf f er:
LDX #ranBuf f er
BRA wai t For Next Msg

EEE I b R R R O O R R R S S b I R I O R R I S R I b b
’

;. Transfer data into buffer
EEE R I I I I I I I I I I R I I I I I I I I I R I I I I I I R I I I I I I A I I A A I I I I I S I I I I I b
1

| oadBuffer:
LDAB RXDLR ; number of bytes transmitted
LDY #RXDSR1 ;start of transmitted data
next Dat aByt e:
DECB ;ignore conmand byte
BEQ endCf Dat a ;stop at end of data
MOVB 1, Y+, 1, X+ ;store data in RAM buffer

BRA next Dat aByt e
endOf Dat a:
BRA wai t For Next Msg

rhkkkhkhkhkkhkhkhkkhkhkhhkhkhhkhkhhkhkhkhhhhhhkhhhhhhdhhhhhhhhhhhhhhhhhdhhhdhhhdhhhddhddrhdrhrrdrrhrx*k
’

; Programram buffer contents into flash nenory
EE R S R S R I R R kR S R I R S R S S S R Ik

progr anfFl ash:
BSR begi nPr ogr ammi ng
JSR canTx ;transmit status/flow control nessage
BRA wai t For Next Msg

EEE I I A O O S R R S b O R I R R Rk S O R
’

; Erase flash nmenory bl ock

EEE I I R I S R R R S S b R SRR I O O R I S O R
’

er aseFl ash:
JSR begi nEr asi ng
JSR canTx ;transimt status/flow control nessage

18 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN1828/D

EEE I R R I S S S R I S b R R I O O R O R I S R IR b b

; Clear CAN Rx flag and wait for next message
EE R S O R S R S I R S R S R S I R R S S

wai t For Next Msg:

MOVB
BRA

#RXF, CRFLG
wai t For Msg

;clear Rx flag
;normal operation

EEE R I R I R O S R R R R S b R R I O R R I b O
’

; Flash programm ng al gorithm
EE R S R R S S S I I R S S R S S R S
1

begi nPr ogr ammi ng:

LDX
LDY

CLR

LDAB
BEQ
STAB
BRCLR

I NC
MOVB

pr ogNext Locat i on:

progPul seLoop:

CLR
CLR

BCLR
BSET
MOVB

BSET

LDD
ADDD
STD
BRCLR

BCLR

LDD
ADDD
STD
BRCLR

#r amBuf f er
RXDSR1

TXODSRO
RXDSR3

pr ogSt at us
byt esTot a

;point to the start of the RAM buffer
;point at location(s) to be programed

;indicates result of program procedure
; number of bytes to be programred

;check for zero bytes to be programed
; store nunber of bytes to program

FEECTL, #SVFP, pr ogSt at us

TXODSRO
#Prescal eByl, TMSK2

pul seTot al
mar gi nFl ag

FEECTL, #ERAS
FEECTL, #LAT
YXYYY

FEECTL, #ENPE

#us22
TCNTH
TCOH
TFLGL, #COF, *

FEECTL, #ENPE

#usll
TCNTH
TCOH
TFLGL, #COF, *

;check Vfp leve
; (1) indicate that Vfp is present

;setup timer prescalar for usec del ays

;reset pulse total and margin flag
;configure flash array for programm ng
;enabl e addr/data | at ches

;wite data to flash address

;switch on Vfp onto array

;generate 22 usec del ay

;switch off Vfp fromarray

;generate 11 usec del ay

Flash Programming via CAN 19

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

AN1828/D

TST mar gi nFl ag ;are margin pul ses being applied ?
BNE progMargi n

I NC pul seTot al ; updat e pul se count
BRA progCheck
progMar gi n:
DEC pul seTot al ;apply the sanme nunmber of margin pul ses
BNE progPul seLoop ;as there were progranmm ng pul ses
pr ogCheck
LDAB Y ;read | ocation being programred
CwvPB , X ; conmpare agai nst intended val ue
BNE pr ogFai
TST pul seTot al ;if O then margin pul ses have been done
BEQ progSuccess ; byte has been progranmed
I NC mar gi nFl ag ;set margin flag if byte programred
BRA progPul seLoop ;and apply margin pul ses
progFail :
LDAA pul seTot al ;if O then margin pul ses have been done
BEQ progSt at us ;and program has failed, TXOIDR = 1
CVPA #MaxPr ogPul ses ;i1 f max program pul ses have been applied
BEQ progSt at us ;no need to apply margi n pul ses
BRA progPul seLoop ;continue applying program pul ses
progSuccess:
CLR FEECTL ;rel ease LAT bit
I NX ;point to next data byte
I NY ;point to next flash |ocation

DEC byt esTot a
BNE progNext Location ;programall bytes

I NC TXODSRO ; (2) program successfu
progSt at us:

CLR FEECTL ;rel ease LAT bit

RTS
20 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN1828/D

EEE I R R I S S S R I S b R R I O O R O R I S R IR b b

; Flash erase al gorithm

EEE R I I I R I O S R R S S S b R R O R R I S O R R I b b

begi nEr asi ng:

er asePul seLoop:

eraseMar gi n:

er aseCheck

LDX

CLR
BRCLR

I NC
MOVB

CLR
CLR

BSET

STAA

BSET

LDD
ADDD
STD
BRCLR

BCLR

LDD
ADDD
STD
BRCLR

TST
BNE

I NC
BRA

DEC
BNE

LDX
LDY
LDD

RXDSR1

TXODSRO

; (DSR1: 2) start address of array
; (DSR3:4) size of array (in words)
;indicates result of erase procedure

FEECTL, #SVFP, er aseSt at us

TXODSRO

;check Vfp leve
; (1) indicate that Vfp is present

#Prescal eBy32, TMSK2

pul seTot al
mar gi nFl ag

FEECTL, #(LAT+ERAS)

, X
FEECTL, #ENPE

#nms10
TCNTH
TCOH
TFLGL, #COF, *

FEECTL, #ENPE

#nmsl

TCNTH

TCOH

TFLGL, #COF, *

mar gi nFl ag
eraseMar gi n

pul seTot al
er aseCheck

pul seTot al
erasePul seLoop

RXDSRL
RXDSR3
#$FFFF

;setup timer prescalar for nmsec del ays

;reset pulse total and margin flag

;enabl e addr/data | atches and erase bit
;wite to valid location in array
;switch on Vfp onto array

;generate 10 msec del ay

;switch off Vfp fromarray

;generate 1 nsec del ay

;are margin pul ses being applied

; updat e pul se count

;apply the sane nunber of margin pul ses
;as there were progranm ng pul ses
;start of array

;word size of array
;erased state of word

Flash Programming via CAN 21

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

AN1828/D

er aseCheckLoop:
CPD 2, X+ ;check all array entries are erased
BNE er aseFai
DBNE Y, er aseCheckLoop

TST pul seTot al ;if O then margin pul ses have been done
BEQ eraseSuccess ;array has been erased
I NC mar gi nFl ag ;set margin flag if array erased
BRA erasePul seLoop ;and apply margin pul ses

eraseFail :
LDAA pul seTot al ;if O then margin pul ses have been done
BEQ eraseSt at us ;and erase has failed, TX0IDR = 1

CVPA #MaxEr asePul ses
;i f max erase pul ses have been applied

BEQ eraseSt at us ;no need to apply margi n pul ses

BRA erasePul seLoop ;continue applying erase pul ses
eraseSuccess:

I NC TXODSRO ;(2) array is erased
eraseSt at us:

CLR FEECTL ;rel ease LAT and ERAS bits

RTS

EEE I I R T S S O R S S S R S I S I O O S R R I I R R
’

; CAN status/flow control nessage transnmit routine
EE R S Rk S I R R R I R S kR Sk

canTx:
BRCLR CTFLG #TXEO, * ;wait until Tx buffer is available
MOVB #TXEO, CTFLG ;transimt status/flow control nessage
RTS

rhkkkhkhkhkkhkhkhkkhkhkhhkhkhhkhkhhkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhddhhdrhdrhrrhrrhrx*k
’

; Label pointing to first available ramlocation after bootl oader for buffer
ESE R I I S I Rk S I S kS S S R I S

ranBuffer:

khkhkkhkhkkhhkhkhhkhhhhhhhhhkhhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhhhhhhhhhhhdhhhddhddhrdhrrhrrhdrx*k

22 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AN1828/D

When considering potential improvements to this part of the system, it is worth
noting that most will be technology and / or device dependent, although by
extending the CAN protocol it should be possible to support most, if not all, of
the potential enhancements. For instance, the CAN protocol could be modified
to include support for paged memory devices, such as Motorola's
MC68HC912DG128, as shown in Table 2. The protocol could also be used to
provide access control to protected memory areas or extend the capabilities of
the status messaging, e.g. return failing address information.

However, there are some extensions that need more than just a modification of
the CAN protocol, for example, to include eeprom support would require the
inclusion of device specific program and erase routines. In the case of the
HC12 family, an external 12 volt programming voltage is required, but in order
to limit the programming interface to just the CAN wires, additional hardware
(i.e. 12 volt charge pump) must be included on the PCB. The charge pump itself
could be enabled by one of the MCU output pins, which in turn could be
controlled through the CAN protocol or directly from the Flash modifying
algorithms. The HCO08 family includes an onboard charge pump and as such
does not require the inclusion of any additional hardware.

Flash Programming via CAN 23

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

AN1828/D

6 A ‘smart cable’ to interface between a PC and the target ECM

If you consider that the minimal requirement for this part of the system is to
provide the hardware to convert an S-Record into a stream of CAN messages,
suitable for use with the protocol described in Table 2, purchasing one of the
many commercially available CAN PC interface cards is all that is required.
However this approach requires much more effort during the software
development of a suitable API, it is also less portable, with each PC or Laptop
requiring the appropriate piece of hardware to be installed before it can be used
as part of the system.

An alternative approach is to develop an additional piece of hardware that
provides a CAN interface to the target ECM and either a serial or parallel
interface to the PC or Laptop. A prototype system was built using the
M68EVB912BC32, which has all the necessary hardware requirements, e.g.
RS232 and CAN physical interfaces.

Having an MCU based 'smart cable' provides the ability to add a lot of additional
functionality, meeting each system's individual requirements. The prototype
system included a lot of extra features, which although not necessary
enhanced the performance of the overall system.

Data flow control between the PC and the target ECM is essential and can be
handled by the smart cable. System parameters, including baud rate, smart
cable operating frequency, CAN bit timing, LRAE maintenance identifier and
target MCU details are all stored in the cables non-volatile memory. Each of
these parameters can be modified and, in case of error, restored to a set of
default values, some changes do not take effect until the smart cable itself is
reset.

Error handling can also be included, validating S-Records, verifying target
device memory mapping, reporting system errors and failures during Flash
modifying routines.

The flowchart in Figure 5 explains the operation of the prototype smart cable.

24 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN1828/D
Initialise
routine
and display
system details
Wait for B
| > : command N
IRQ entry Display Display o
request requested details |
Y
Restore default
parameter settings
v Modify Modify system o
request parameter "
< IRQ exit >
Download
bootloader
Yes No
- Program =
@‘ Flash -
Figure 5. Smart cable process flow (Sheet 1 of 3)
25

Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

AN1828/D

Initialise CAN
module

!

Receive

S-record

Transmit
execute command

Y

Wait for connection
established message

Valid
addresses

Transmit S-record

via CAN protocol

Transmit
erase command

Connection
established

Y

Wait for status o Display
message Status

Figure 5. Smart cable process flow (Sheet 2 of 3)

26 Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AN1828/D

onnection
established

Receive
S-record

Valid
S-record

S9
record

Valid
addresses

Transmit S-record
via CAN protocol

L]

Transmit
program command

L]

Wait for status
message

N(/\(es
GA - Valid -

- status

Figure 5. Smart cable process flow (Sheet 3 of 3)

The smart cable receives either commands or S-Records from the PC, each

command is processed and the appropriate action taken. On receiving an S-
Record, the cable validates and performs a range check, based on the target
MCU specified, and if appropriate translates it into a suitable CAN format for

communication to the target ECU.

The actual features included on the smart cable can be modified to suit the
individual needs of each system. It could be used to supply the programming
voltage, when appropriate, it could be optimized for speed (e.g. parallel
communication), provide an additional level of security or include some
diagnostic capabilities.

Flash Programming via CAN 27

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN1828/D

7 An API capable of transferring data to the ‘smart cable’

The actual requirements for this part of the system are dependent upon the
approach taken in the previous section, by developing the 'smart cable' concept
the minimal requirements for the API are greatly simplified.

The prototype smart cable was designed to accept either S-Records or ASCI|
text strings via a serial interface. To successfully process a stream of S-
Records, the cable transmits a pace character to inform the API it is ready to
receive new data.

A terminal emulator, that supports the pace character flow control method,
provides all the necessary functionality required when using the prototype
system.

Developing a custom API could be used to provide additional features, simplify
the user interface or improve the overall look of the product.

8 Additional information

The Flash programming algorithm shown in section 5 utilizes a very simple data
transfer scheme, it receives and stores data from a single S-Record into a ram
buffer, the buffer data is then used to program the Flash array before a request
for new data is issued. Using this method results in an overall operating time
eqgual to total transmission time plus total programming time.

The following example provides a comparison of programming time versus
transmission time and makes the following assumptions:

» Assume the command byte is encoded into the CAN ID, allowing
transmission of up to 8 data bytes per CAN message

» CAN transmission at 125Kbits/s, using extended ID’s and ignoring bit

stuffing

— Buffer reset command (0 data bytes / 64 bits) takes 0.512
milliseconds

— Load buffer command (8 data bytes / 128 bits) takes 1.024
milliseconds

— Program buffer command (4 data bytes / 96 bits) takes 0.768
milliseconds

28

Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
AN1828/D

» Each S-Record contains 32 bytes of data requiring
— One buffer reset command
— Four load buffer commands
— One program buffer command

» Require to program all 32,768 bytes of the MC68HC912BC32
— 1024 S-Records needed in total

Therefore,

Total transmission time = 1,024 x (0.512 + (4 x 1.024) + 0.768) msecs
= 5.505 seconds

By assuming the average number of programming and margin pulses to be 5
in total, a programming pulse of 25 microseconds and a time to verify of 15
microseconds,

Total programming time = 32,768 x (5 x (25 + 15)) usecs
= 6.554 seconds

At first glance, an overall operating time of approximately 12 seconds might be
considered acceptable, but if the target device is changed to an
MC68HC912DG128, the total time jumps to nearly 50 seconds. Another
consideration, although not part of the subject matter of this paper, is the
possibility that another, slower, serial protocol could be used to transfer data,
such as J1850 or a UART based system. With transmission rates dropping as
low as 10 Kbits/s, suddenly transmission time becomes the biggest influence
on the overall operating time.

The benefits to be gained by optimizing programming algorithms for speed vary
from convenience, during the development cycle, to cost savings in a
production environment. There are several techniques that can be used to
reduce operating time, with varying degrees of success, i.e. using the CAN
identifier to encode an additional three bytes of data reduces the number load
buffer commands from 4096 to 2979, saving over a second in the previous
example.

However the biggest return in time saving comes about through the adoption of
a parallel programming algorithm, i.e. data is continually received into a circular
buffer whilst programming is carried out simultaneously from the same buffer.

When employing this method care has to be taken to avoid an over run
condition between the load and program operations, but in return the overall
operating time should be limited to the larger of the two values, total
transmission time or total programming time.

Flash Programming via CAN 29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN1828/D

9 Conclusion

By including the CAN LRAE feature to a system specification, the potential
benefits that can be gained outweighs the effort required in meeting that
specification.

However, care should be taken when identifying the exact system
requirements, as the LRAE function provides the backbone that defines each
system's limitations.

It is also apparent that a great deal of flexibility exists when defining the
additional tools required to support this application. By developing custom
hardware it is possible to significantly reduce the work involved in producing a
suitable API, whereas selecting a readily available piece of hardware increases
the work required on the API. This flexibility enables designers to develop a
system best suited to the available skill set at their disposal.

By designing the LRAE routine to be compatible with one of the existing CAN
standards, such as CCP, it may be possible to purchase a commercially
available product, capable of providing both the smart cable and API
functionality. Although this approach only requires the development of the
LRAE section, it restricts the amount of customization that could otherwise be
achieved.

A basic implementation of the complete system is possible with surprisingly
little effort, with the amount of additional work required dependent upon the
level of customization undertaken to meet the overall system specification.

30

Flash Programming via CAN

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.
AN1828/D

This Page Has Been Intentionally Left Blank

Flash Programming via CAN 31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

freescalew

semiconductor

AN1828/D

For More Information On This Product,
Go to: www.freescale.com

rxzb30
freescalecolorjpeg

rxzb30
disclaimer

rxzb30
hibbertleft

	1 Introduction
	2 Scope
	3 Objective
	4 MCU maintenance access via CAN
	5 Device specific Flash modifying, via CAN, routines
	6 A ‘smart cable’ to interface between a PC and the target ECM
	7 An API capable of transferring data to the ‘smart cable’
	8 Additional information
	9 Conclusion

