
AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU
Rev. 1 — 18 January 2024 Application note

Document information
Information Content

Keywords AN14191, MCXN947, SmartDMA

Abstract This application note describes the parallel interface for the camera solution in MCXN947. It
includes the introduction of camera interface, features, API routines, and demo.

https://www.nxp.com

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

1 Introduction

This application note describes the parallel interface for the camera solution in MCXN947. It includes the
introduction of camera interface, features, API routines, and demo. MCXN947 contains a coprocessor
SmartDMA, which can be used to implement the camera interface.

2 Target applications

The camera interface can be used as an important part of camera usage for the following:

• Object detection

• Gesture recognition

• Color recognition

• QR code scanning

3 Introduction of camera interfaces

A typical camera interface supports at least one parallel interface, although nowadays many camera interfaces
begin to support the MIPI CSI interface.

The camera parallel interface consists of the following lines:

• Data line (D[0:7]): These parallel data lines carry pixel data. The data transmitted on these lines change with
every Pixel Clock (PCLK).

• Horizontal Sync (HSYNC): This is a special signal that goes from the camera sensor. An HSYNC indicates
that one line of the frame is transmitted.

• Vertical Sync (VSYNC): This signal is transmitted after the entire frame is transferred. This signal is often a
way to indicate that one entire frame is transmitted.

• Pixel Clock (PCLK): This pixel clock changes on every pixel.

This application note only focuses on the Digital-Video-Port (DVP) interface which is a parallel interface.

4 Introduction of MCX Nx4x MCU

The MCX Nx4x MCU has up to 2 MB flash, up to 512 kB SRAM, 150 MHz system clock, SmartDMA FlexIO,
QSPI interface, and I2C interface. The SmartDMA can be used to transfer data from the camera interface to the
internal RAM. The FlexIO can be used to transfer the data in RAM to an LCD interface. The QSPI can be used
to extend the memory to store the frame data. The internal SRAM can be used to store the temporary frame
data. The I2C interface can be used to configure the camera module.

The application note focuses on camera implementation. For the FlexIO implemented LCD interface, see Using
FlexIO to Drive 8080 Bus Interface LCD Module (document AN5313).

5 Features of camera interface

The supported formats are:

• RGB565.
• The maximum image transfer rate is 30 fps for VGA (640x480). For small RAM parts, reduce the image size

and frame rate.
• OV7670 is the tested camera module.

AN14191 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 18 January 2024
2 / 10

http://www.nxp.com/doc/AN5313

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

• Other camera modules can be supported if they provide the same signal timing.

6 Function description

This chapter describes the functions.

6.1 How to work for SmartDMA
The SmartDMA can access the GPIO in a single system cycle. It reads the data from the camera and stores the
data in the RAM. After that, the FlexIO can send the data to an LCD screen.

Some configurations must be made before using the SmartDMA. They include the pin configuration, clock
enable, dedicated processor enable, interrupt enable, and so on.

The SmartDMA shares the system clock with the Arm core. To speed up the processing time, the system clock
has better to be configured to 150 MHz.

6.2 Camera clock source
The camera needs a roughly 6-MHz clock source, which is provided by the CLKOUT signal from the MCU.
Different clock sources can get a different frame-rate output.

6.3 MCU8080 LCD interface
The FlexIO can implement an LCD interface. See Using FlexIO to Drive 8080 Bus Interface LCD Module
(document AN5313).

6.4 I2C interface
The camera is configured through an I2C interface in the MCU. Before the camera runs, it must be configured
by the Arm core through the I2C peripheral.

6.5 Memory usage
In this application note, the resolution of the LCD screen is 480x320. The OV7670 camera module output
resolution is 640x480.The SmartDMA can crop the size of the image output and only store the frame size with
a resolution of 480x320 in the RAM to adapt to the size of the LCD. This is the flexibility of the SmartDMA.
Therefore, the required memory space is 300 kB of RAM.

To implement the sampling of different sizes, use different API functions implemented by the SmartDMA.

A ping-pong buffer can be used to store the partial frame data. This requires timely processing of data to not
affect the subsequent data storage.

Additionally, the instruction code of the camera engine must run in the RAM for high performance. This solution
uses the SRAMX to store the camera engine code. Because the implementation of SmartDMA is related to
the RAM address where the running code is located, the running address must be fixed at the start position of
SRAMX. If running SmartDMA code at other RAM addresses, regenerate the code array.

6.6 Other supported camera modules
Other camera modules can be supported if they provide the same signal timing.

1. The camera module must be configured in the RGB565 mode with the timing diagram shown in Figure 1.

AN14191 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 18 January 2024
3 / 10

http://www.nxp.com/doc/AN5313

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

Figure 1. Timing diagram
2. The resolution can be configured as VGA (640x480), QVGA (320x240), QQVGA (160x120), and so on. The

SmartDMA code must be modified to adapt to different resolutions.

7 Pin description

This chapter describes the pins.

7.1 Interface connection
The SmartDMA can access 32 GPIO pins in MCXN947 and use 8 GPIO pins in parallel to read the camera
data. The MCU uses I2C to configure the camera. The VSYNC, HREF, PCLK, and PWDN signals can be
controlled by SmartDMA. The camera module can be powered by the MCU board with 3.3 V.

7.2 Interface requirements
The D0-D7 should be connected to SmartDMA D0-D7 for the byte reading of data. SIOC and SIOD should be
connected to the I2C interface of the MCU for configuration. VSYNC, HREF, and PCLK should be connected to
the pins of Port0 to trigger SmartDMA. XCLK should be connected to the clock output pin of the MCU.

AN14191 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 18 January 2024
4 / 10

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

Figure 2. Interface requirements

8 Software

This chapter describes the software.

8.1 Demo code
This application note comes with the software code named "frdm_mcxn947_SmartDMA_camera". It is
generated using the MCUXpresso IDE.

8.2 SmartDMA code array
As a reduced-instruction-set core, the SmartDMA must execute assembly instructions to perform tasks. To
reduce the difficulty of user study, the SmartDMA code is presented in a data-array form in this application.
Simply set the SmartDMA address of the array and the task can be executed. Since there are absolute address
jumps instructions, the code array must be placed at a specified RAM address. The code array can be easily
integrated in Keil IDE, MCUXpresso IDE, and IAR IDE. In the software code of this application note, the name
of this array is "s_smartdmaCameraFirmware".

8.3 API routine
The main purposes of the API routines include the following:

• Enable the SmartDMA clock.
• Configure the IO as a camera interface function.
• Initialize the I2C interface.
• Enable the interrupt of SmartDMA to tell that the Arm core data is ready.
• Initialize and start the SmartDMA.
• LCD initialization.
• LCD refresh.

AN14191 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 18 January 2024
5 / 10

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

8.4 API routine description

Routine Description

SMARTDMA_InitWithoutFirmware Initialize the SmartDMA

SMARTDMA_InstallFirmware Install the firmware

SMARTDMA_InstallCallback Install the complete callback function

SMARTDMA_Boot Boot the SmartDMA to run a program

SMARTDMA_Deinit Deinitialize the SmartDMA

SMARTDMA_Reset Reset the SmartDMA

SMARTDMA_HandleIRQ SmartDMA IRQ

SmartDMA_camera_callback SmartDMA interrupt callback

lcd_impl_init LCD driver initialization

st7796_lcd_init LCD initialization

st7796_lcd_load LCD refresh

Ov7670_Init Camera module initialization

Table 1. API routine

8.5 Detailed code description
This section describes the code in detail.

8.5.1 System clock

SmartDMA needs limited time to store the data when every pixel edge comes. If the clock frequency of the
engine is higher, the time cost is shorter. In this solution, the system clock must be set to 150 MHz when the
engine is running. The code to configure the system clock is as follows:

BOARD_BootClockPLL150M();

8.5.2 I2C interface

For MCXN947, "flexcomm7" is used as the I2C function to initialize the camera.

8.5.3 Pin function

MCXN947 Function number Input/output Description

P1_4 7 (camera function) Input Camera engine function
DATA0

P1_5 7 (camera function) Input Camera engine function
DATA1

P1_6 7 (camera function) Input Camera engine function
DATA2

P1_7 7 (camera function) Input Camera engine function
DATA3

Table 2. Pin function

AN14191 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 18 January 2024
6 / 10

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

MCXN947 Function number Input/output Description

P3_4 7 (camera function) Input Camera engine function
DATA4

P3_5 7 (camera function) Input Camera engine function
DATA5

P1_10 7 (camera function) Input Camera engine function
DATA6

P1_11 7 (camera function) Input Camera engine function
DATA7

P0_4 0 (GPIO function) Input GPIO as VSYNC input

P0_11 0 (GPIO function) Input GPIO as HSYNC input

P0_5 0 (GPIO function) Input GPIO as pixel clock input

P2_2 CLKOUT function Output Clock input to camera

P3_2(FLEXCOM7) I2C function Input/output I2C_SDA

P3_3(FLEXCOM7) I2C function Output I2C_SCL

Table 2. Pin function...continued

Note: The camera function mode is 7 in the PORT register.

8.5.4 LCD function

The LCD is used to display the video of camera in real time. FlexIO and DMA are used to drive the LCD. When
SmartDMA completes storing the camera data in the buffer, it gives an interrupt trigger to the Arm core. In the
Arm core interrupt, the complete flag is set. Once the flag is set, the "st7796_lcd_load" route is called to refresh
the LCD. For the LCD implementation, see the other application notes.

8.5.5 SmartDMA_camera_callback

As the other peripheral handler, the SmartDMA handler is implemented by the Arm core when SmartDMA
finishes the storage operation.

In the initialization stage, the callback route of the handler is installed. In the callback routine, a flag is set to 1.
In the "1" routine, the refreshing operation can be allowed when the flag turns to logic one.

8.5.6 Data buffer

There must be 300 kB of RAM space for one frame of video (480x320 resolution) and MCXN947 has about 512
kB of RAM. A double buffer is not possible for the whole frame mode. Only one buffer is used. Because the LCD
refresh time (16 ms) is shorter than the data storage time (66 ms), Arm always reads the data for LCD refresh
earlier than it is stored by SmartDMA. The LCD always displays the previous frame based on the data stored in
RAM. Therefore, the media data is not lost.

8.5.7 Timing

The LCD always displays the previous frame data from the camera. Before displaying, the data stored must be
optimized by the coprocessor for exchanging the high and low bytes of every pixel. Because the speed of the
LCD module displaying is higher than the speed of the camera interface reading the data, a single data buffer is
used in this application. While the current frame data is stored, the LCD displays the previous frame data.

AN14191 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 18 January 2024
7 / 10

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

Figure 3. Timing

8.5.8 Demo

1. Build and compile the project.
2. Plug one side of the USB cable to the PC USB port and the other side to the debug link port in the FRDM-

MCXN947 board and then download the firmware into the MCU. Disconnect the cable from the FRDM-
MCXN947 board.

3. Connect the camera to the MCU by referring to the connection of interface in Figure 4.
4. Connect the LCD panel to the FlexIO LCD port on the FRDM-MCXN947 board.
5. The LCD displays the video frame from the camera, as shown in Figure 4.

Figure 4. Demo

9 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

AN14191 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 18 January 2024
8 / 10

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

10 Revision history

Table 3 summarizes the changes done to this document.

Revision number Release date Description

1 18 January Initial external release.

Table 3. Revision history

AN14191 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 18 January 2024
9 / 10

NXP Semiconductors AN14191
How to Use SmartDMA to Implement Camera Interface in MCXN MCU

Contents
1 Introduction .. 2
2 Target applications .. 2
3 Introduction of camera interfaces2
4 Introduction of MCX Nx4x MCU 2
5 Features of camera interface2
6 Function description 3
6.1 How to work for SmartDMA3
6.2 Camera clock source ...3
6.3 MCU8080 LCD interface 3
6.4 I2C interface .. 3
6.5 Memory usage ...3
6.6 Other supported camera modules 3
7 Pin description ...4
7.1 Interface connection .. 4
7.2 Interface requirements4
8 Software ..5
8.1 Demo code .. 5
8.2 SmartDMA code array5
8.3 API routine ...5
8.4 API routine description 6
8.5 Detailed code description 6
8.5.1 System clock ... 6
8.5.2 I2C interface .. 6
8.5.3 Pin function ..6
8.5.4 LCD function ..7
8.5.5 SmartDMA_camera_callback 7
8.5.6 Data buffer ...7
8.5.7 Timing .. 7
8.5.8 Demo ... 8
9 Note about the source code in the

document ..8
10 Revision history ...9

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 18 January 2024
Document identifier: AN14191

	1 Introduction
	2 Target applications
	3 Introduction of camera interfaces
	4 Introduction of MCX Nx4x MCU
	5 Features of camera interface
	6 Function description
	6.1 How to work for SmartDMA
	6.2 Camera clock source
	6.3 MCU8080 LCD interface
	6.4 I2C interface
	6.5 Memory usage
	6.6 Other supported camera modules

	7 Pin description
	7.1 Interface connection
	7.2 Interface requirements

	8 Software
	8.1 Demo code
	8.2 SmartDMA code array
	8.3 API routine
	8.4 API routine description
	8.5 Detailed code description
	8.5.1 System clock
	8.5.2 I2C interface
	8.5.3 Pin function
	8.5.4 LCD function
	8.5.5 SmartDMA_camera_callback
	8.5.6 Data buffer
	8.5.7 Timing
	8.5.8 Demo

	9 Note about the source code in the document
	10 Revision history
	Contents

