
1 Introduction
Glow is a machine learning compiler that accelerates the performance of neural network frameworks on different hardware
platforms. The compiler takes in machine learning frameworks such as PyTorch and Tensorflow and produces optimized code
for accelerators. Glow requires the machine learning model to be in specific formats (that is, ONNX, Caffe2, and TFLite) for
conversion. Users should review Glow documentation to verify supported formats.

PyTorch is an open source machine learning framework developed by Facebook. The API used by PyTorch is seamlessly
integrated into Python which allows for an easier coding experience. PyTorch also has built-in support for ONNX (an open format
for ML models). ONNX allows easy transition between models from different frameworks and tools.

This application note describes the process to generate a model with PyTorch for the Cifar10 dataset. It also elaborates how to
deploy it on an i.MX RT1060-EVK board using the Glow Library provided by eIQ software environment.

2 Overview
This application note demonstrates the process of creating a simple image recognition neural network written in PyTorch and
trained on the CIFAR-10 dataset. The neural network is exported in ONNX format for compatibility with Glow. Glow tools created
object files from the model to run on the i.MXRT1060 platform.

Machine Learning concepts are introduced and PyTorch layers are explained to familiarize the user with ideas used during model
creation and training in PyTorch.

2.1 Machine Learning concepts
Some common terms used in machine learning are referred throughout the document. These are described below.

1. Convolutional Layer:

In machine learning, a convolutional layer (or a convolution) is created by passing a moving filter along the input matrix or
other convolutional layers. This applied filter extracts features from the data (image) and creates a feature map (matrix) as
the output. When stacking convolutional layers, the filter is applied to the extracted features of the previous layer. The act
of convolution also reduces the shape of the model.

2. Channels:

In convolutional neural networks, channels correspond to the amount of feature maps created from the convolutional layer.
When relating to images, channels correspond to the total color channels used. In CIFAR-10, the dataset is in RGB (Red
Green Blue) format, which means the input image has 3 channels.

3. Activation Function:

An activation function is a non-linear function that is used to introduce non-linear properties to the model. The addition of a
non-linear activation function between convolutional layers allows for more complex relationships to be mapped between
the input and output.

4. Fully Connected Layer:

The fully connected layer allows the result of convolutional layers to be output as a linear classifier. Before the fully
connected layer, the result of the convolutional layers should be flattened to a 1D array.

5. Optimizer:

AN13331
Glow with PyTorch Model for Embedded Deployment Using eIQ
Rev. 0 — 06-Sep-2021 Application Note

The optimizer is an algorithm used during training that updates weights to minimize the loss. The optimizer is needed in the
training process to allow neural networks to learn efficiently. How the optimizer updates the weights or learning rates in the
model is dependent on the optimizer chosen.

6. Epoch:

Epoch defines the number of times the user traverses through the entire training dataset. By increasing this value, the model
weights have more chances to learn the important features to extract. When too many epochs are used, the training might
cause your model to overfit the training dataset.

7. Learning Rate:

Learning rate determines how much the weights are adjusted when the model updates. The value is a very small positive
value in the range of (0,1). The learning rate also affects how the model can find a solution. When a learning rate is too
small, the training process takes longer and can potentially get stuck during training. When the learning rate is too large,
the training can result in a suboptimal solution.

8. Batch Size:

Batch size during training refers to the number of examples from the dataset included in 1 iteration/step. The number of
iterations used in 1 epoch is given by:

• iterations = (training dataset size) / (batch size).

9. Larger batch sizes can allow for more parallelization (less training time per epoch) if CPU memory allows for it. Typically,
smaller batch sizes allow for a more generalized model and larger batch sizes allow for a larger learning rate.

3 Software and hardware installation
This section describes the steps required to install the eIQ software and PyTorch on your computer system.

3.1 Glow installation
1. Install MCUXpresso IDE 11.2.0 or later.

2. Install a terminal program like TeraTerm.

3. Download and install the Glow package from eIQ™ for Glow Neural Network Compile website. This installs the Glow
compiler and helper programs into C:\NXP\Glow.

4. Add the installation path (" C:\NXP\Glow") to your environment variables.

3.2 ML tools installation
1. Download and install Python 3.7.0 (64-bit) from https://www.python.org/downloads/. Note: The 64-bit edition is required.

Using a later version of python might cause problems with the imported packages.

2. Open a command prompt and verify that the Python command corresponds to Python 3.x. You must use “python3” for
all the commands instead of “python”.

python -V

If the command does not find Python, turn off Python in ‘Manage app execution aliases’ in the Settings tab. Update
the python installer tools:

 NOTE

3. Use the commands below:

python -m pip install -U pip
python -m pip install -U setuptools

NXP Semiconductors
Software and hardware installation

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 2 / 34

https://www.nxp.com/design/software/development-software/eiq-ml-development-environment/eiq-for-glow-neural-network-compiler:eIQ-Glow?tab=Design_Tools_Tab
https://www.python.org/downloads/

4. Install Python packages used in training scripts:

python -m pip install numpy==1.18.5
python -m pip install bokeh==2.1.1

5. Install torch and torchvision packages to use PyTorch. To perform this step via command line, visit the PyTorch
website (https://PyTorch.org/). Then, select your preferences in the “Quick Start Locally” section to receive an install
command.

Setup used for this exercise

• Build: Stable

• Your OS: Windows

• Package: Pip

• Language: Python

• Cuda: None (CPU)

Note: Without CUDA enabled, PyTorch packages run on the CPU. Problems might occur if a CUDA variant is used on a
system without a GPU driver installed.

6. The “Cifar10 Pytorch” directory structure contains a training directory, a dataset directory, and a saved model
directory. Below is a summary of the scripts and important files in each directory.

• Dataset

— Cifar-10-python.tar.gz: Pickled file containing Cifar-10 training and testing dataset.

• PyTorch Models

— Cifar.onnx: Pretrained model using the training described in this document.

• Training

— Train_Cifar.py: Trains ML model from scratch and exports in ONNX format.

— Train_TransferLearning.py: Trains ML model from scratch and exports in .pth format.

— Retrain.py: Uses .pth model input to continue training and export in .pth format.

— Convert_Pth_to_ONNX.py: Converts .pth model to .ONNX format for embedded deployment.

The Train_Cifar.py is the primary script used to train the neural network from scratch. The next chapter describes the behavior of
this script.

4 PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment
Using eIQ

4.1 Layer and training description of the model
This section shows the different layers and training options that can be considered when making a model of your own.
When the layers have multiple parameters the descriptions will show how to call this layer with PyTorch and what each
parameter represents.

2D Convolution: Conv2d(input channels, output channels, kernel size, padding)

Performs 2D convolution on input image to create N output channels that will be trained to extract N features from the image. This
convolution is performed by moving a matrix referred to as the kernel across the input image matrix.

When deciding on kernel size, always consider the input size of the image and the amount of details in the image. Generally,
smaller kernels will extract more details whereas larger kernels allow for a loss of information. Another trend in image recognition is
to use a square shaped kernel with an odd number as the kernel size. A square shaped kernel is more commonly used when there
is no preference of which direction a rectangular pattern can be detected. An odd filter size is preferred due to the symmetry around

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 3 / 34

https://pytorch.org/

a center pixel. With an even filter size, the model would have to account for distortions across layers. The kernel size parameter
is commonly set to smaller values such as 3 or 5 and assumes a square shape (3x3 or 5x5) from an int.

To ensure that the shape of the model does not reduce from convolution, padding is included, using the following equations:

Figure 1. Equation 1

Figure 2. Equation 2

Where

• Hin= input height (before convolution)

• Hout= output height (after convolution)

• Win= input width (before convolution)

• Wout= output width (after convolution)

• Dilation= spacing between kernel elements (default=1)

• Kernel_size= shape of matrix to perform convolution

• Padding = zero-padding added to both sides of the input (column and row)

For more detailed information about the parameters, visit PyTorch’s nn.Conv2d Documentation.https://pytorch.org/docs/master/
generated/torch.nn.Conv2d.html

Activation function

There are a variety of activation functions that can be chosen at the output. However, this application note implements the most
common functions, which are ReLU, LeakyReLU, Sigmoid, Tanh, and Softmax.

The below figures depict the graphical representations of the non-linear activation function.

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 4 / 34

https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/master/generated/torch.nn.Conv2d.html

Figure 3. ReLU

Figure 4. Leaky ReLU

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 5 / 34

Figure 5. Sigmoid Vs. Tanh

Softmax is calculated by using the equation below:

Figure 6. Softmax calculation

This is similar to the sigmoid function in that the range of values is between 0 and 1, but the denominator is used to
make the values span from [0,1] and sum to 1 (similar to probabilities). From this information, a single-variable (2d)
plot is not shown because it is a multi-variable function. Softmax is mainly used at the output of a model to convert
the output model values into a probability used later for confidence.

 NOTE

Key differences:

As seen in the activation, ReLU, and LeakyReLU plots only differ for inputs x < 0. When using ReLU, a problem might arise (Dying
ReLU Problem), where certain weights can update such that they will always be 0. This mainly occurs when the learning rate is
too high. LeakyReLU attempts to fix the problem by adjusting x < 0 activations to instead have a very small slope (PyTorch uses
the slope .01).

Tanh is a rescaled and shifted Sigmoid with the equation: tanh(x) = 2sigmoid(2x) – 1.

The main differences in these functions is the steepness of the gradient of tanh compared to sigmoid and the range of
output values.

• Batch Normalization: BatchNorm2d(num_features)

Effectively, this technique converts outputs between layers into a standardized format. This allows the future layers to more
efficiently process the outputs of previous layers. The main parameter for this call is named num_features, which corresponds
to the amount of channels in the previous connecting layer. The use of this function allows for higher learning rates and faster
training speeds.

• Pooling: Maxpool2d(kernel_size = 2, stride = 2)

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 6 / 34

Pooling scales down the image by a factor of 2. In this case, we use max pooling by taking the max value in each 2x2 kernel. This
effectively reduces the amount of calculations needed in the model and provides the ability to generalize inputs. With the addition
of pooling, the model (conv2d) can afford more channels/calculations in deeper layers of the network.

• Dropout: dropout(p=.5)

Reduces the chance of overfitting by shutting down parts of the neural network at random during training. The parameter p is
the probability that a specific neuron in the model will be zeroed out. By default it is set to a 50% probability but can be adjusted.
While this helps in preventing overfitting it increases the amount of training time needed for convergence. For the purposes of the
application note dropout will not be included in the model.

• Linear Layer: Linear(input_channels, output_channels)

The Linear Layer/fully connected layer is used to interpret the data to output as a classifier. Input_channels correspond to
the shape of the image multiplied by the amount of channels in the previous layer (ex: 32 * 32 * channels). Output_channels
correspond to the intended size of the 1-Dimensional output. In this document output_channels shapes the output to fit into 10
categories to allow for classifying images (ex: CIFAR-10 has 10 animal categories therefore output_channels=10).

• Optimizer: Commonly used optimizers include the following:

— SGD: optim.SGD(model.parameters(), learning_rate, momentum)

— Adam: optim.Adam(model.parameters(), learning_rate)

• SGD: optim.SGD(model.parameters(), learning_rate, momentum)

SGD utilizes the gradients of each sample image to update the model. In PyTorch when uploading the data via DataLoader(), if
batch size > 1, the optimizer is considered a mini-batch SGD. This means the optimizer will update weights for each batch/iteration
of the epoch. SGD faces the issue of getting stuck in a local minimal while finding the optimal solution. Although the model may
occasionally be able to make progress again, training resources are inefficiently used.

Momentum combats this by using an exponentially weighted average of past gradients to update weights instead of relying solely
on the current batch. This accelerates the learning in a contextually relevant and optimal direction. Momentum effectively reduces
the training time needed for convergence.

• Adam: optim.Adam(model.parameters(), learning_rate)

Adam utilizes the advantages of RMSProp optimization to compute adaptive learning rates and momentum to speed up training.
From RMSProp, Adam utilizes recent gradients instead of all past gradients to avoid aggressively decreasing the calculated
learning rate. Keep in mind, the learning rate hyperparameter remains constant and learning rate refers to the adjusted learning
rate calculated by the optimizer.

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 7 / 34

4.2 Model definition and visuals

Figure 7. Model visualization in Netron

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 8 / 34

Figure 8. PyTorch Model definition and forward pass

nn.Sequential is a container class used by PyTorch, which is a useful way of stacking layers to have a more
readable forward pass through the model. The container class is used when initializing the neural network object
(as seen in the figure above) and allows for the functions to be called in the order listed.

 NOTE

The initial channel size of 32 is chosen because it was increased until the increase in model quality was less
noticeable. This isn’t the most accurate model but is intended to optimize size and accuracy.

 NOTE

Structure of layers

Through experimentation, the highest accuracy was achieved by using the following layer structure:

Due to the input image size of 32x32, pooling is used in each layer with a maximum of 3 layers to make an output
shape of 4x4. Further pooling is not used to avoid oversimplifying the features that were extracted. To increase
the accuracy of the model, this layer structure is added to the start of the first layer without pooling. In different
dataset cases or while using larger channels, pooling to a shape of that size may potentially cause a loss of
information/accuracy.

 NOTE

High Level Model Visual

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 9 / 34

Figure 9. Visual of the model architecture and the image processing through the layers

The images in front of the layers are extracted from the intermediate layers of the model by using PyTorch. As the image of the
plane traverses through the model, the images extracted become less readable. This is most apparent toward the final layers as
the shape of the image gets reduced by pooling.

Although stacked together, it is the Conv2d layer that learns to filter the image in different ways. The BatchNorm2d and ReLU
layers prepare the data as intermediate steps for later convolutions.

4.3 Model/training experimentation
The measurements taken during this experiment are run in PyTorch. The test accuracy percentage is measured from the
performance of the model on CIFAR-10 validation set (comprising 10,000 images). The test loss is calculated by calculating the
average of the cross-entropy loss over the validation set. Some measurements were taken 2 to 3 times to verify the consistency
of the training parameters used. Settings that resulted in accuracy below 50% were taken only once because they were shown
not viable to the solution.

The items highlighted in bold font yield the best results from training. The highlighted items will be used to update the setup for
future tests and the final version of the model.

Current setup:

• Epoch: 5

• Batch Size: 64

• Learning Rate: 0.001

• Optimizer: Adam

Activation functions:

Table 1. Activation functions:

Activation Functions Test Accuracy Test Loss

ReLU 77.1% - 77.9% 0.65 - .071

ReLU + Softmax output 70% - 71.5% 0.6 - 0.65

Sigmoid 52.94% - 58.42% 1.1918 - 1.5617

LeakyReLU 76.3%-77.81% 0.66 - 0.7435

Tanh 71.8% - 72.24% 0.7856

Conclusion

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 10 / 34

Sigmoid and Softmax at the output underperformed in training. The most accurate and consistent of the tested functions are ReLU
and LeakyReLU. Although LeakyReLU combats the 'Dying ReLU' problem, it does not result in a notable increase in performance.
Due to more consistent accuracies and loss, the ReLU activation function is chosen for this model.

Keep in mind the utility of Softmax as the last layer is to allow for the output to be in terms of probability. When
running the model on the board, this is interpreted as the confidence of the prediction. Without this function, the
confidence values have a larger range and must be converted at runtime to get an accurate reading of confidence.

 NOTE

Optimizer

When deciding to build your model, it is important to consider the optimizer that directly impacts the training of your model.

Table 2. Optimizer functions:

Optimizer Test Accuracy Test Loss

Adam 77.1% -77.9% 0.6 - 0.65

SGD 16.43% 2.29

SGD + Momentum (.9) 42.48% 1.6277

SGD + Momentum(.99) 70% - 71.32% 0.8435 - 0.87

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 11 / 34

Figure 10. Training progression using SGD with Momentum 0.9 and 0.99.

Figure 11. Training progression using Adam Optimizer

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 12 / 34

Conclusion:

The Figure 10 visualizes how SGD can get stuck during training. As momentum is increased, the use of SGD with momentum is
more viable. Therefore, the main consideration for this application note is between Adam and SGD with a large (.99) momentum
value. As shown in the training results,

• Adam optimizer allows for a higher accuracy and lower loss. In Figure 11, the Adam optimizer can be seen adapting to the
solution at a quicker rate than SGD in this figure.

• Adam also has the advantage of requiring less tuning because the default optimizer is effective in many instances. On the
other hand, SGD requires more experimentation to find the optimal use of the optimizer.

Due to the performance of Adam over SGD, Adam is used as the optimizer of choice for this model.

Batch Size and Learning Rate

Table 3. Batch Size with Learning Rate 0.01

Batch size Test Accuracy Test Loss

16 77.2% - 77.6% .6435

32 76.21%-77.12% .6496 - .6644

64 76.39%-77.1% .6591 - .6674

128 76.19% - 76.8% .667 - .696

256 75.2% - 75.8% .71 - .7386

Batch Size with Learning Rate 0.001

Table 4. Batch Size with Learning Rate 0.001

Batch size Test accuracy Test loss

16 77.3% - 78.5% .59-.64

32 76.51%-77.8% .6121 - .6694

64 76.6-77.1% .6332 - .6721

128 75.2% - 75.7% .6863 - .6919

256 74.1% - 74.8% .7216 - .7421

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 13 / 34

Figure 12. Training progression for batch sizes 16 and 128 respectively using a learning rate of .01.

The smaller batch size yields the highest accuracy but has the noisiest training progress. This is due to how
sensitive the batch accuracies are for small batches (training accuracy = correct/16 vs training accuracy =
correct/128).

 NOTE

Conclusion:

Increasing the batch size value also decreases the total amount of iterations needed for 1 epoch.

Consider the example with a CIFAR10 training dataset of 50,000 images. The test used a batch size of 64 results in 782 steps
(50,000/64 = 781.25) and a batch size of 256 results in 196 steps.

Since the model updates after each batch, smaller batches provide more generalized (but noisy) loss calculations and update
the model more frequently. It can be inferred from the data that a batch size of 16 with a learning rate of 0.001 yields the most
optimal results.

Using a batch size of 16 results in 240 seconds per epoch. Depending on CPU memory, training time per epoch
can decrease by increasing the batch size.

 NOTE

Table 5. Epoch experimentation results

Epoch Test Accuracy Test Loss

5 77.3%-78.5% 0.59 - 0.65

10 80.5%-81.95% 0.55 - 0.62

15 82.51% - 82.9% 0.5112 - 0.5176

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 14 / 34

Conclusion:

During epoch experimentation, the largest epoch yields the highest accuracy. The increase from 5 to 15 epochs increases the
accuracy by ~4% but lengthens the training time from 20 to 60 minutes. Larger epoch values can be used but can face the risk
of overfitting by learning the noise in images as important features.

Final Model:

• Optimizer: Adam

• Activation Function: ReLU

• Epoch: 15

• Batch Size: 16

• Learning Rate: 0.001

• Test Accuracy: 82.51% - 82.9%

• Test Loss: 0.5112 - 0.5176

Now we can train the model and export it in ONNX format so that Glow can compile it. Follow the steps below.

1. The training script Train_Cifar.py can be found at \Cifar10_Pytorch\Training. Running this script trains the model from
scratch and exports it in ONNX format.

2. Users can modify the training parameters.

3. Code Snippet of Train_Cifar.py where training parameters can be set is shown below:

4. Run the PyTorch training script in your Python editor/IDE.

5. You should see the output in the console begin by downloading the CIFAR10 dataset then displaying training
characteristics after model updates like as shown below:

NXP Semiconductors
PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 15 / 34

Figure 13. Display of training characteristics on console

6. Once the ONNX model is in your \PyTorch Models directory, the model is ready to be prepared for inferencing.

5 Exporting PyTorch model in ONNX format
PyTorch has built-in support for exporting models in ONNX format that can be used while building your model from scratch. It is
recommended to specify input/output node names if you plan to reference these nodes later.

The following code snippet is used at the end of scripts to export the model in ONNX format. The code is expanded to clarify the
variables being used.

Exporting PyTorch model in ONNX format

 # Save the model with input shape of the image for inferencing

Batch Size = 1 #Corresponds to the amount of images to inference on
in_channels = 3 #The input channel size based on image (RGB = 3, GrayScale = 1)
imgHeight = 32 # Input image dimensions
imgWidth = 32 # Input image dimensions
input_shape = torch.randn(Batch size, in_channels, imgHeight, imgWidth)
torch.onnx.export(model, input_shape, model_save_path + 'Model.onnx', input_names= ['input'],
output_names= ['output'])

Be careful not to include certain special characters in node names to avoid problems when exporting the model to
other programming languages.

 NOTE

Importing ONNX format models into PyTorch

PyTorch currently does not support importing models in ONNX format. So optionally the model can be exported in a .pth format
to allow for model reuse in further training or analysis.

NXP Semiconductors
Exporting PyTorch model in ONNX format

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 16 / 34

Pytorch ONNX Pytorch ONNX

Pytorch Pth Pytorch ONNX
Export Import Export

Figure 14. Visualizing PyTorch model conversions

If the model is exported as a .pth file, the model can be imported with the following code:

model = NeuralNet()
state_dict = torch.load(MODEL_LOAD + "Cifar_model.pth")
model.load_state_dict(state_dict)

#Training or analysis
#Export in ONNX format

The above code shows importing models in .pth format allows for model reuse in PyTorch.

6 Creating Glow files
To setup the environment for the below commands please install the “Glow Cifar10” directory (Here). These commands are run
in the \GlowCifar10 directory in the command prompt. The figure below shows the folder structure of GlowCifar10 directory:

Figure 15. GlowCifar10 directory structure

• Dataset-tuning: Contains 30 images per class named “ClassName_XXXX” and a .csv containing the labels

• Images: Contains 10 folders (1 per classification) each with 100 32x32 images of the respective class

• Models: Contains PyTorch model in ONNX format

• Source: Output directory for Glow files

• Glow_process_image.py: Converts image to C array for inference

NXP Semiconductors
Creating Glow files

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 17 / 34

https://nxp1-my.sharepoint.com/personal/kaleb_belete_2_nxp_com/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fkaleb%5Fbelete%5F2%5Fnxp%5Fcom%2FDocuments%2F%5BGlow%5D%5BPytorch%5D%2FGlowCifar10

Figure 16. Folder structure of the Images directory

The model specific arguments are elaborated below. For more information on the hardware/quantization arguments and the
functionality of the tools visit the “eIQ: Glow for RT1060 Lab”.

6.1 Creating a quantization profile
Quantization profile is generated with example images using image-classifier. This tool generates a profile.yml file that can be
used to optimize quantization when compiling the model.

This should be one long continuous line:

image-classifier
images\airplane\0001.png
images\automobile\0001.png
images\bird\0001.png
images\cat\0001.png
images\deer\0001.png
images\dog\0001.png
images\frog\0001.png
images\horse\0001.png
images\ship\0001.png
images\truck\0001.png
-image-mode=neg1to1
-image-layout=NCHW
-image-channel-order=RGB
-model=models\Cifar.onnx
-model-input-name=input
-dump-profile=profile.yml

where the parameters are described below:

images\class\XXXX.png

• Images to perform the profiling on (1 image from each class).

image-mode=neg1to1

NXP Semiconductors
Creating Glow files

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 18 / 34

• The value for all PyTorch tensors are in range [0,1], this model normalizes images using .5 for each color channel which
changes the range to [-1,1] (neg1to1).

-image-layout=NCHW

• Corresponds to Num, Channels, Height, Width. This is the image shape syntax used when exporting to ONNX format

-image-channel-order=RGB

• Specifies the channel order of images (Red-Green-Blue)

-model=models\Cifar.onnx

• Onnx model filename.

-model-input-name=input

• Name of input layer of the model. Specified when exporting PyTorch model to ONNX format.

-dump-profile=profile.yml

• Loads the quantization profile yielded in previous step.

-dump-tuned-profile=profile_tuned.yml

• File to upload tuned profiling to.

-target-accuracy=.9

• Stops tuning when accuracy has reached 90% from provided images.

6.2 Tuning quantization profile
The quantization profile can be further tuned to provide better accuracy. The model-tuner tool will take images from \dataset-tuning
and the labeled dataset file in \dataset-tuning\Labels.csv. The optimized quantization profile is output as profile_tuned.yml to
differentiate it from the previous quantization profile.

model-tuner
-dataset-file=dataset-tuning\Labels.csv
-dataset-path=dataset-tuning
-image-mode=neg1to1
-image-layout=NCHW
-image-channel-order=RGB
-model=models\Cifar.onnx
-model-input=input,float,[1,3,32,32]
-load-profile=profile.yml
-dump-tuned-profile=profile_tuned.yml
-backend=CPU
-quantization-precision=Int8
-quantization-schema=symmetric_with_power2_scale
-target-accuracy=.9

This should be one long continuous line:

Where:

• -dataset-file=dataset-tuning\Labels.csv

is the CSV containing image file names and labels

NXP Semiconductors
Creating Glow files

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 19 / 34

• airplane_0001.png, 0,

• automobile_0001.png, 1,

• -dataset-path=dataset-tuning

is the Path to directory with images specified in CSV file. 30 images per class used to tune profiling (300 total).

• -load-profile=profile.yml

Loads the quantization profile yielded in previous step.

• -dump-tuned-profile=profile_tuned.yml: It is the file to upload tuned profiling to.

• -target-accuracy=.9: Stops tuning when accuracy has reached 90% from provided images

6.3 Creating source files
Using the profile created in the model-tuner tool, the model-compiler tool generates the compiled Glow executable.

This should be one long continuous line:

model-compiler
-model=models\Cifar.onnx
-model-input=input,float,[1,3,32,32]
-emit-bundle=source
-backend=CPU
-target=arm
-mcpu=cortex-m7
-float-abi=hard
-load-profile=profile_tuned.yml
-quantization-schema=symmetric_with_power2_scale
-quantization-precision-bias=Int8
-use-cmsis
-network-name=cifar

• -load-profile=profile_tuned.yml

Using the tuned profile this argument tells model-compiler to quantize the model

• -networkname=cifar

Name for generated source files. “cifar” will be referred to later in MCUXpresso steps.

6.4 Image processing for interference
To test the accuracy of the model on an embedded system the input image must be converted to a C array to be used for inference
on the board. The glow_process_image.py script outputs the converted image to the same directory as the Glow executable
files: \GlowCifar10\source

python glow_process_image.py
-image-path=images\horse\0001.png
-output-path=source\input_image_test.inc
-image-mode=neg1to1
-image-layout=NCHW
-image-channel-order=RGB

The same image arguments as in previous steps are used.

 NOTE

NXP Semiconductors
Creating Glow files

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 20 / 34

7 Running Glow on RT1060
After the Glow files have been generated, the next step is to use them in the MCUXpresso IDE project using Glow and run it on
the i.MXRT1060 board.

1. Open up MCUXpresso IDE and select a new workspace.

2. Download the current public SDK release that includes the glow packages needed. Visit the MCUXpresso SDK Builder,
select the RT1060 board to build the SDK. Ensure to include eIQ middleware for the Glow packages.

3. Install the Glow RT1060 SDK into the “Installed SDKs” tab by dragging-and-dropping the SDK_2.8.0_EVK-
MIMXRT1060.zip into the installed SDK window. The dialog box shown below is displayed. Click OK to continue the
import.

Figure 17. Importing the SDK

4. It will look like the following when complete:

Figure 18. Installed SDKs

5. In the Quickstart Panel on the lower left corner, click Import SDK example(s)….

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 21 / 34

https://mcuxpresso.nxp.com/en/select

Figure 19. Importimg SDK example(s)

6. Select the RT1060 board and click Next.

7. Expand the eiq_examples category and select the glow_cifar10 example. Click Finish.

Figure 20. Selecting the example

8. Click the evkmimxrt1060_glow_cifar10 project name and then in the menu bar, click on Project->Properties.

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 22 / 34

Figure 21. Editing Project properties

9. Then in the Resources category, in the Location field, click the Open icon. This displays a Windows Explorer view of
that directory location.

Figure 22. Viewing the directory

10. Find the cifar.h, cifar.o, cifar.weights.txt and input_image_test.inc files from the Glow source directory made in the
Creating Glow Files section.Copy these files into the evkmimxrt1060_glow_cifar10/source directory. Remember that
the “cifar” name comes from the “-network-name” argument, which you gave while running model-compiler.

Input_image_test.inc comes from the python script to generate the data to do the inferencing on.

It looks like the following when done:

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 23 / 34

Figure 23. Viewing the selected source files

11. Now go back to MCUXpresso IDE.

12. Change the project to the Release settings that have highest compile optimization, by going to Project->Build
Configurations->Set Active->Release (Release build).

Figure 24. Changing the Release settings

13. Next, open up the Project Properties by right clicking on the project name again and select Properties.

14. In the Properties window, select the C/C++ Build->Settings->MCU Linker->Miscellaneous screen and double click the
item in “Other Objects” to change the object file to the one that was just added:

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 24 / 34

Figure 25. Updating Build settings

15. Click Workspace. Then, navigate to the source folder and select “cifar.o”. Click OK.

Figure 26. Selecting the source file

16. Then, click “Apply and Close” to close the Properties dialog box.

17. Next, you need to modify main.c to use the new file names. If you had chosen to use “-network-name=cifar10” then
these changes are not necessary since the original name and the old name would match up in the source code. On the
other hand, using the new network name “cifar” has the benefit that a user can walk through the structure of the code.

18. Everywhere in the main.c file that cifar10 is used, it should be changed to just “cifar” and use the new variable names
created by the generated files. This includes:

• Line 23 to include the generated header file “cifar.h”.

• Lines 26-27 for the new Glow variable names (Replace CIFACIFARR10 with).

• Line 28 to include the generated weights file: “cifar.weights.txt”.

• Lines 32-37 to use the new Glow variable names.

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 25 / 34

• Line 40 should set the inputAddr pointer to the network name plus the name of the model’s input layer
(CIFAR_input in this example). This name was specified during exporting the model in ONNX format.

• Line 43 should set the outputAddr pointer to the network name plus the name of the model’s output layer
(CIFAR_output in this example). This name was specified during exporting the model in ONNX format.

• Line 47 should be set to the input size of the model (Height*Width*Channels).

• Line 50 should be set to the number of classes of the model.

• Line 55 to include the generated test image “input_image_test.inc”.

• Line 94, which starts the inference by calling “cifar(constantWeight, mutableWeight, activations)”.

The image shown below is for reference purpose only. The line numbers may vary slightly depending on the SDK
version used.

 NOTE

Figure 27. Updating main.c file

19. To have the confidence output as a probability, we will implement a softmax function in the project to the output of the
model. To implement the Softmax function, be sure to add the following to main.c:

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 26 / 34

• In the #include section near line 12, add #include <math.h>

• Above the main function, add the following code to implement the softmax function:

 static void softmax(float *input, size_t input_len) {
 float m = input[0];
 for (size_t i = 1; i < input_len; i++)
{
 if (input[i] > m) {
 m = input[i];
 }
 }
 float sum = 0.0;
 for (size_t i = 0; i < input_len; i++)
{
 sum += expf(input[i] - m);
 }
float offset = m + logf(sum);
for (size_t i = 0; i < input_len; i++) {
input[i] = expf(input[i] - offset);
}
}

• Add the following function call before the model output is traversed for the correct prediction around line 122:

softmax(out_data, 10);

The images used below clarify where to include the above code.

 NOTE

Figure 28. Adding the function call to the code

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 27 / 34

Figure 29. Softmax function

20. Now you can build the project. However, because new Glow files were copied into the project, you must do a clean
first. Failing to do a clean could cause the newly imported weight data to become misaligned in memory, and cause
accuracy errors during the inferencing. This is only required when new Glow files are copied into the project. Click on
“Clean” in the Quickstart Panel first.

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 28 / 34

Figure 30. Cleaning the project

21. Build the project by clicking “Build” in the Quickstart Panel.

Figure 31. Building the project

22. Plug the micro-B USB cable into the board at J28.

23. Open TeraTerm or other terminal program, and connect to the COM port that the board enumerated as. Use 115200
baud, 1 stop bit, no parity.

24. Debug the project by clicking on “Debug” in the Quickstart Panel.

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 29 / 34

Figure 32. Selecting 'Debug'

25. Select the debug interface of your board (that is, CMSIS-DAP) and click OK.

Figure 33. Selecting the debug interface

26. The debugger will download the firmware and open up the debug view. Click on the Resume button to start running the
application.

NXP Semiconductors
Running Glow on RT1060

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 30 / 34

Figure 34. Running the application

27. You should see the output on the console:

Figure 35. Console output

28. This is the memory footprint of the model on the RT1060 and the RT685 using the M33 chip and using the Hifi4 DSP.
These values are taken from the MCUXpresso console after building the project.

Table 6. Memory footprint of the model

Flash SRAM Confidence Inference Time (ms)

RT1060 157460 211532 .999 56

RT685 (M33) 157336 225616 .999 205

RT685 (DSP) 831248 226008 .999 15

As seen in the preceding table, RT1060 and RT685 have similar memory footprints when using the M33 chip. When using the
Hifi4 DSP, the inference time significantly decreases. However, the size of the DSP NN library is quite large as shown in the
QSPI_Flash. There is also an extra 667 KB of RAM that is not reported by the compiler. This extra RAM consists of copying the
DSP library to the board memory.

8 Retraining the model (optional)
As an optional step, users can train the model in Train_TransferLearning.py to train and export the model in .pth format for further
reuse. The only difference between this training script and Train_Cifar.py is the model is exported in .pth format instead of ONNX
format. Running Train_TransferLearning.py does the following:

• Train the model from scratch.

NXP Semiconductors
Retraining the model (optional)

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 31 / 34

• Export the final model with .pth extension (allows user to re-upload the model file for further training or model
visualization).

Running the retrain.py training script, the model can continue training where it left off. With the path of the saved model the user
can run retrain.py to:

1. Extract model weights from the .pth file.

2. Continue training process. Or Retrain the model on a different dataset (To preserve model and convolutional
dimensions the input image should have 3 channels (for example, RGB), 32x32 pixels and the dataset needs 10
separate classes).

3. Export the model in .pth format.

Figure 36. Loading and saving model in retrain.py

Be sure to specify the correct .pth model when loading. All the models are stored in the same directory. Hence,
to ensure each model is saved and not overwritten, specify or differentiate the naming of the models between
these scripts.

 NOTE

The last step is to run Convert_Pth_to_Onnx.py to convert your .pth model in a format readable by Glow.

Figure 37. Conversion of model in Convert_Pth_to_Onnx.py

Once the model is in ONNX format, the steps described in Running Glow on RT1060 can be applied for deploying the model.

9 Conclusion (points to note)
In the initial stages, while porting the ideas and learning from other models, dropout is a common way to prevent overfitting by
randomly choosing nodes to disconnect from the network. While this is true, keep in mind that it also increases the amount of
training time needed for the model to find its most optimal solution. This was useful in simpler datasets such as the MNIST dataset
(Handwritten Digit Recognition). The reason is that the model very quickly finds its solution and dropout makes sure further training
will not cause overfitting.

Dropout is less effective on the CIFAR10 dataset due to the fixed amount of training time used for this application note.
Theoretically, if you are training the model to convergence (much larger than 5 epochs), dropout would be more useful. The
removal of dropout increased the model accuracy from ~74% to ~78% on CIFAR-10 validation set.

NXP Semiconductors
Conclusion (points to note)

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 32 / 34

Using the optional Retraining Model section, the .pth extension was used to visualize the layers of the neural network. Identifying
and isolating certain layers allowed to see the input image in different stages of the model. This was used to create the model visual
in Model definition and visuals. If an input image is not supplied, the visualization of the convolutional layers show what filter is
being applied to the image in different channels.

10 Revision history
The table below summarizes revisions to this document.

Table 7. Document revision history

Revision Date Topic cross-reference Substantive change

0 06-Sep-2021 - Initial release

NXP Semiconductors
Revision history

Glow with PyTorch Model for Embedded Deployment Using eIQ, Rev. 0, 06-Sep-2021
Application Note 33 / 34

How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that
best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless
of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 06-Sep-2021
Document identifier: AN13331

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	1 Introduction
	2 Overview
	2.1 Machine Learning concepts

	3 Software and hardware installation
	3.1 Glow installation
	3.2 ML tools installation

	4 PyTorch model with CIFAR-10 Dataset and Glow for Embedded Deployment Using eIQ
	4.1 Layer and training description of the model
	4.2 Model definition and visuals
	4.3 Model/training experimentation

	5 Exporting PyTorch model in ONNX format
	6 Creating Glow files
	6.1 Creating a quantization profile
	6.2 Tuning quantization profile
	6.3 Creating source files
	6.4 Image processing for interference

	7 Running Glow on RT1060
	8 Retraining the model (optional)
	9 Conclusion (points to note)
	10 Revision history

