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The Cadence Xtensa HiFi 4 Audio DSP engine is a highly optimized audio processor designed especially for efficient execution
of audio and voice codecs and pre- and post-processing modules.See Section “2”

2 HiFi 4 Development in i.MX RT600

The highlights of HiFi 4 DSP are
* Up to 600 MHz
» Four 32x32-bits MACs per cycle
* Some support for 72-bit accumulators
 Limited ability to support eight 32x16-bit MACs
» Dual issue two 64-bit loads per cycle

» Four single-precision IEEE floating point MACs per cycle

3 Software Architecture

The “audio player” software architecture is shown in Figure 1 .

Arm Cortex M33 and Cadence HiFi4 DSP are running each program. At Arm Cortex M33 side, “Audio Player” application is based
on i.MX RT600 MCUXpresso SDK, using FreeRTOS; At Cadence HiFi4 DSP side, “Audio Player” DSP handler is designed to
handle requests from Arm, using XOS, a RTOS from Cadence. Besides XOS, “Audio Player” demo also uses “Nature DSP”,
“Audio Framework” and “MP3 decoder” from Cadence, all software is free for i.MX RT600 users. As to open source software,
LibFlac from https://xiph.org/flac/ is used from FLAC decoding. LibFlac is under BSD license.
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Figure 1. “Audio Player” software archtechture

Figure 1 shows software used in “Audio Player” demo application.

4 |Implementation

4.1 Device initialization

In “Audio Player” demo, HS USB, USDHC, and HiFi 4 DSP are used in Arm firmware. HS USB mess storage with file system
support is for media file storing; SDCard with file system support is for media retrieving. DSP is for audio decoding and playback.
Thus, HS USB, SDCard, and DSP should be configured and initialized when Arm firmware is booted.

Before USB device is configured, HS USB RAM should be powered, peripheral clock should be attached and enabled, and
peripheral reset should be released. HS USB PHY uses external OSC as clock source, the internal USB PLL can boost the
frequency to 480 MHz.

Similar to HS USB device initialization, SDHC RAM, clock, and reset should be ready before SD host controller is initialized. Aux0
PLL clock@396MHz is attached for SDIO controller. SDMMC stack must be initialized in an RTOS task context. File system must
be initialized after SDMMC stack is initialized as file system is using SD card for its physical media.

DSP is initialized in below procedures:
1. Enable DSP PLL clock
2. Enable DSP TCM and Cache power, enable DSP clock, release DSP reset
3. Arm copy DSP firmware to DSP TCM RAM and system RAM for execution
4. Initialize message unit for dual-core communication
5. Start DSP execution by clear SYSCTLO->DSPSTALL
Audio playback is implemented at DSP side. DMA1, 12S, and audio codec are initialized in DSP firmware.

Both Arm firmware and DSP firmware are using MCUXpresso SDK for peripheral initialization.

4.2 ARM-DSP communication

The Message Unit (MU), Inter-Processor Interrupt and shared RAM support ARM-DSP communication. AN12749 elaborates the
mechanism and implementation of RPMSG, which is software middleware based on MU and Inter-Processor Interrupt for inter-
processor communication.

In the demo, RPMSG enables the command channels between Arm and DSP for audio player control. Both Arm and DSP can
initial the communication, application messages are designed for audio player creation and control, these commands are listed
in Table 1.
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Table 1. Audio player creation and control commands

Direction Usage

SRTM_REQUEST_ADEV_OPEN Arm->DSP Arm sends commands to DSP to set up audio player, see
4.3 DSP Audio Player Creation

SRTM_REQUEST_COMP_CREATE Arm->DSP
SRTM_REQUEST_COMP_DELETE Arm->DSP
SRTM_REQUEST_ADEV_CLOSE Arm->DSP
SRTM_REQUEST_START Arm->DSP Arm informs DSP to start audio playback
SRTM_REQUEST_STOP Arm->DSP Arm informs DSP to stop audio playback
SRTM_REQUEST_B_MOREDATA DSP->Arm DSP asks Arm to transmit new audio encoded data

For data channel, an application-specific share buffer starting at 0x202D0000 is used.

4.3 DSP Audio Player

Figure 2 shows a typical setup for an audio player, which consists of audio source, audio decoder, audio sink, and optional pre-
processing modules and post-processing modules. These components can be integrated as a pipeline in an audio framework,
and the data flow routes from audio source to audio sink.

. ' Audio : : Audio : o
Audio Source —)‘: Pre-processing -—)- Decoder —)‘: Post-processing -—)- Audio Sink

Figure 2. Typical audio player setup

“Audio Player” demo which omits the “audio pre-processing” and “audio post-processing” module implements a minimum audio
player which is shown in Figure 3. Audio source, decoder, and audio sink are chained in HiFi4 DSP firmware. The “Audio Player”
in under consumer-producer design pattern. There are two consumer-producer pairs in the system. One is audio sink(consumer)
and decoder(producer), other is decoder(consumer) and audio source.

Y

Audio Source Decoder Audio Sink

Figure 3. Audio Player” audio chain

The audio source retrieves encoded stream and send it to decoder. Storage and network are typical audio source in audio player.
In the demo, Arm reads encoded audio file and write the data to shared RAM between Arm and HiFi4 DSP. From HiFi4 DSP
point of view, the encoded audio stream is from Arm, therefore Arm is audio source in “Audio Player” demo.

The demo supports two audio decoders, MP3 and FLAC. For Cadence MP3 decoder, “MP3 Decoder Programmer’s Guide”
introduces more information. For LibFlac, https://xiph.org/flac/ has more details.

Decoded audio data is sent to the audio sink for playback. In the demo, the audio DAC WM8904 is the audio sink. DMA1 transmits
the decoded audio data to audio DAC via 12S-bus.
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lllustrated in Figure 4, Arm sends requests to DSP to create “audio device”, then create “audio source”, “decoder” and “audio
sink” components. After DSP creates components, Arm send DSP_REQUEST_START command to start the player. Next, DSP
can request encoded data in period until audio data is over.

Figure 4. Audio Player” messages
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4.4 Playback Control

As shown in Figure 5, “Audio Player” is implemented as a state machine. There are 3 states initialized, prefetching, and playing.
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Figure 5. Audio Player” State machine

When “Audio Player” is set up, it is in initialized state, and it goes prefetching state. In prefetching state, decoder is working and
keeps putting decoded audio data into a ring buffer, no data consumer for ring buffer at prefetching state. The data level in buffer
is monitored. “Audio Player” goes to playing state once data level is higher than %% of ring buffer size. In playing state, 12S DMA
starts, Audio sink is the consumer for ring buffer, the data level in buffer is monitored still, keep the data level is Y2 of buffer size,
when its level is below %2, decode operation is executed and decoded data are stuffed.

4.5 Audio DMA

There are two DMA controllers in i.MX RT600. In “Audio Player” demo, DMA1 is used at HiFi4 DSP side for I2S DMA. There is
no limitation to DMA usage between processors, that meant user can use DMAQO as well if it is not used.

However, there are differences to use DMA and DMA interrupt in HiFi 4 DSP, notes are below.
1. DMA to DSP interrupt must be configured in INPUTMUX
2. DSP interrupt should be registered and enabled in XOS or XTOS
3. DMA descriptor, DMA source address, and DMA destination address should be non-cacheable.

In “Audio Player” demo, DMA1 interrupt is assigned to DSP interrupt slot XCHAL_EXTINT19_NUM, interrupt handler
“‘DMA_IRQHandle” is registered to XOS.

Ping-pong 12S DMA buffer is allocated at 0x20040000 and 0x20050000, which is non-cacheable. DMA device driver in
MCUXpresso SDK declared a non-cache section “NonCacheable” for DMA descriptors, this section should be placed in the non-
cache memory which address is above 0x20000000.

5 Revision history
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