
S32K1xx Bootloader
by: NXP Semiconductors

1. Introduction

The following document describes the architecture and

usage of the S32K1xx bootloader in S32K1 MCUs.

This bootloader supports Universal Asynchronous

Receiver/Transmitter (UART) as communication

interfaces and can be easily modified to support other

kinds of communication interfaces.

2. Architecture description

The bootloader is organized in three layers:

• Bootloader – is incharge of starting the user

application and polling for incoming data.

• Communication handling / Memory handling – is

incharge of processing the received data and

handling the writes to non-volatile memory.

• Microcontroller drivers – is in charge of handling

all the low-level communication with the actual

peripherals available on the microcontroller.

NXP Semiconductors Document Number: AN12218

Application Notes Rev. 1 , 10/2018

Contents

1. Introduction ... 1

2. Architecture description ... 1

2.1. Bootloader workflow overview 3

2.2. Communication handling overview 5

3. Building compatible applications 8

4. Using the bootloader .. 8

4.1. UART interface ... 9

5. Appendix A .. 12

5.1. On S32DS: ... 12

6. Revision History .. 14

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

Architecture description

S32K1xx Bootloader, Rev. 1, 10/2018

2 NXP Semiconductors

The following image showcases a diagram of the architecture of the bootloader:

Figure 1. Bootloader architecture

The bootloader is placed in the D-Flash section. The application should be placed in the P-Flash section.

The idea behind storing the bootloader into D-Flash section is to allow application to use the whole P-

Flash without reserving a section for the bootloader. The following figure showcases the memory layout

that the bootloader has and the application must follow.

UART

Architecture description

S32K1xx Bootloader, Rev. 1, 10/2018

NXP Semiconductors 3

Figure 2. Memory layout

2.1. Bootloader workflow overview

The bootloader workflow can be observed in the image below.

Architecture description

S32K1xx Bootloader, Rev. 1, 10/2018

4 NXP Semiconductors

Figure 3. Bootloader workflow

The first step is to initialize the available communication channels, in this instance only is available, but

if another communication channel is required its initialization routine should be called here.

To select the communication channel to be used simply modify ‘sources/drivers/inc/comm.h’ in line 11

to select the communication interface to use. Setting the preprocessor directive to 0 disables the

communication interface and setting it to 1 enables it.

/* Define communication interfaces to use, 0-> Disable 1-> Enable */

#define UART_COMM 1

Communication interfaces can be enabled to work simultaneously, but since the bootloader is optimized

for size, the bootloader’s linker file would have to be modified to accommodate the generated code.

Therefore, it is recommended to use only one kind of communication at a time. If both interfaces are

needed, the first one to detect activity in the bus will be used to download the application, by default the

bootloader is set to work with UART communication only.

Architecture description

S32K1xx Bootloader, Rev. 1, 10/2018

NXP Semiconductors 5

The second step is to initialize the timeout mechanism. After a reset, the microcontroller will poll the

selected communication channel, if no activity was detected during the time allowed by the timeout

mechanism the device will attempt to execute the last application loaded, if the device hasn’t received an

application it will get stuck in a loop. In order to attempt the download of an application another reset is

required.

The timeout value is configurable and it is set by default to five seconds. Only one second multiples can

be selected, in order to change the timeout value simply set the desired value in

‘sources/drivers/inc/timeout.h’ line 14.

/* Define timeout value, the base is 1s */

#define TIMEOUT_VAL 5

Once the timeout mechanism has been initialized the device starts polling for activity in the

communication channel for the time allotted by the timeout value. If activity is detected in the

communication channel the bootloader starts downloading the application via the selected

communication channel (e.g. UART).

If a timeout occurs or an application is flashed to the device, the bootloader disables and sets all the

registers that were modified to its reset state, this step is required to ensure the application starts

executing on an environment close to out of reset state.

Once the registers have been set to its reset state the device attempts to jump to the user application.

2.2. Communication handling overview

The first step carried out by the communication handling routine is to obtain an SREC ‘phrase’ through

the selected channel. A phrase is simply a line of the SREC file. Two lines (phrase) of an SREC file can

be found below:

S00F000068656C6C6F202020202000003C

S11F00007C0802A6900100049421FFF07C6C1B787C8C23783C6000003863000026

 Record type Byte count Address Data Checksum

The structure of an SREC line can be seen below:

S Type Byte Count Address Data Checksum

The first two characters are sent in ASCII format, ‘S’ and SREC type (e.g. ‘0’, ‘1’…’9’), the remaining

data is converted to its hexadecimal representation and sent (instead of sending ‘0’ and ‘F’ 0x0F is sent).

For a detailed description of an SREC format please refer to the following webpage.

The phrase is received and stored in the following structure:

https://en.wikipedia.org/wiki/SREC_(file_format)

Architecture description

S32K1xx Bootloader, Rev. 1, 10/2018

6 NXP Semiconductors

typedef union
{
 uint8_t Byte[MAX_PHSIZE_BP]; /* Byte level access to the Phrase */
 struct
 {
 char PhraseType; /* Type of received record (e.g. S0, S1, S5, S9...) */
 uint8_t PhraseSize; /* Phrase size (address + data + checksum) */

/* Address, depending on the type of record it might vary */
 uint8_t PhraseAddress[MAX_ADDRESS_BP]__attribute__ ((aligned (32)));

/* Maximum 32 data bytes */
 uint8_t PhraseData[MAX_DATA_BP]__attribute__ ((aligned (32)));
 uint8_t PhraseCRC; /* Checksum of size + address + data */
 }F;

}BootPhraseStruct;

This structure holds all the information provided by the SREC phrase, such as record type, byte count,

address, data and cyclic redundancy check (CRC).

Once the structure has been populated it is checked to verify that it contains a valid record type (i.e.

within ‘0’ and ‘9’), that its size is within the SREC maximum and also the CRC is computed with the

received data and compared with the CRC that was received. If any of these conditions is not met, i.e.

invalid record type, invalid record size or CRC does not match, an ERR_CRC (0x41) signal is sent back

to the device that is sending the data. If everything is received without issues the received data is

processed and an ERR_OK (0x45) signal is sent as an acknowledge.

If the type of record received carries the data to write to the microcontroller (either ‘1’, ‘2’ or ‘3’) then

the data is processed and written by the memory handling layer.

This process is repeated until the termination record is received (either ‘7’, ‘8’ or ‘9’), once this record is

received the communication handling routine ends and returns to the bootloader.

Architecture description

S32K1xx Bootloader, Rev. 1, 10/2018

NXP Semiconductors 7

Figure 4. Communication handling workflow

2.2.1. UART communication

When using UART communication to receive, the following data flow is expected:

1. First an ‘S’ (0x53) must be send to signal the beginning of an SREC phrase.

2. The next expected byte signals the type of SREC to be received, this is also send in ASCII

format, e.g. ‘0’ (0x30), ‘1’ (0x31), ‘2’ (0x32), …’9’ (0x39).

3. The rest of the SREC phrase (byte count, address, data and checksum) is converted from ASCII

to its hexadecimal representation, e.g. from “AF” (0x41 and 0x46) to 0xAF. Once this is

Using the bootloader

S32K1xx Bootloader, Rev. 1, 10/2018

8 NXP Semiconductors

performed the data is sent over UART and the get_phrase routine stops until it has received all

the bytes signaled by the “byte count” field on the SREC phrase.

4. As a final step the received data is verified and an error signal is sent back to signal if the data

was received correctly, The ERR_CRC (0x41) signal is sent if an error was detected and the

ERR_OK (0x45) signal is sent otherwise.

a. If the master receives:

i. An ERR_OK signal, the next SREC phrase is sent.

ii. An ERR_CRC signal, the same SREC phrase is sent again until the slave receives

it correctly.

After this process the device is ready to receive the next SREC phrase until the end of the file has been

reached.

3. Building compatible applications

The application should start at 0x1000 (4 kB) of flash and its vector table should be placed at this

address.

An easy and quick way to compile an application compatible with this bootloader is to simply add an

offset of 4 kB to the memory section of the linker file, some examples on two IDEs are shown below.

On S32DS

/* Specify the memory areas */
MEMORY
{
 /* Flash */
 m_interrupts (RX) : ORIGIN = 0x00001000, LENGTH = 0x00000400
 m_flash_config (RX) : ORIGIN = 0x00001400, LENGTH = 0x00000010
 m_text (RX) : ORIGIN = 0x00001410, LENGTH = 0x0017EBF0

 /* SRAM_L */
 m_data (RW) : ORIGIN = 0x1FFE0000, LENGTH = 0x00020000

 /* SRAM_U */
 m_data_2 (RW) : ORIGIN = 0x20000000, LENGTH = 0x0001F000

}

4. Using the bootloader

The example software contained in this application note is for the S32K148 EVB. However, it can be

easily migrated to other S32K1xx devices. The bootloader expects the image to load in SREC format,

for instructions on how to generate an SREC file on S32DS please refer to Appendix A. Precompiled

example SREC file is available within this application note package. It is a simple routine expected to

run on the S32K148EVB

Using the bootloader

S32K1xx Bootloader, Rev. 1, 10/2018

NXP Semiconductors 9

NOTE:

Some IDE’s place the name of the project in the first SREC phrase (S0),

this can cause issues with the bootloader whenever the project name

exceeds 27 characters. The maximum data per phrase is 32 bytes, but the

IDE appends the string ‘.srec’ to the project name, hence the 27 characters

as maximum allowed.

The bootloader supports one communication channel:

• UART

4.1. UART interface

While using the UART interface simply open the java application located in ‘Java interface/’ and follow

these steps:

1. Select communication port.

2. Select baudrate, the default baudrate is 19200.

3. Select SREC file to send.

4. Click download, and the SREC file will be sent line after line.

NOTE

Java JRE 8 32-bit version must be installed before trying to use the

interface.

Using the bootloader

S32K1xx Bootloader, Rev. 1, 10/2018

10 NXP Semiconductors

Figure 5. UART Bootloader Interface steps

Once the whole SREC file has been sent the java interface will close the port and the application should

start execution on the target board.

Appendix A

S32K1xx Bootloader, Rev. 1, 10/2018

NXP Semiconductors 11

Figure 6. UART Bootloader Interface complete

Appendix A

S32K1xx Bootloader, Rev. 1, 10/2018

12 NXP Semiconductors

5. Appendix A

5.1. On S32DS:

Appendix A

S32K1xx Bootloader, Rev. 1, 10/2018

NXP Semiconductors 13

Revision History

S32K1xx Bootloader, Rev. 1, 10/2018

14 NXP Semiconductors

6. Revision History

Revision Number Date Substantive changes

0 07/2018 Initial release

1 10/2018 Added associated software

Document Number: AN12218
Rev. 1

10/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer's applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,

ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,

POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Architecture description
	2.1. Bootloader workflow overview
	2.2. Communication handling overview
	2.2.1. UART communication

	3. Building compatible applications
	4. Using the bootloader
	4.1. UART interface

	5. Appendix A
	5.1. On S32DS:

	6. Revision History

