
Exception and fault checking on S32K1xx

by: NXP Semiconductors

1. Introduction

The S32K1xx product series further extends the highly

scalable portfolio of ARM® Cortex®-M0+/M4F MCUs

in the automotive industry. It builds on the legacy of the

KEA series, while introducing higher memory options

alongside a richer peripheral set extending capability

into a variety of automotive applications. With a 2.70-

5.5 V supply and focus on automotive environment

robustness, S32K product series devices are well suited

to a wide range of applications in electrically harsh

environments, and are optimized for cost-sensitive

applications offering low pin-count options. The S32K

product series offers a broad range of memory,

peripherals, and package options. It shares common

peripherals and pin counts, allowing developers to

migrate easily within a MCU family or among the MCU

families to take advantage of more memory or feature

integration. This scalability allows developers to use the

S32K product series as the standard for their platforms,

maximizing hardware and software reuse and reducing

time to market.

2. Cortex-M4 Processor core
registers

The processor has the following 32-bit registers:

• 13 general-purpose registers, r0-r12

NXP Semiconductors Document Number: AN12201

Application Notes Rev. 0 , 07/2018

Contents

1. Introduction .. 1

2. Cortex-M4 Processor core registers 1

3. Stack’s structure and selection ... 4

4. Case examples .. 7

5. Conclusion ... 8

6. Reference ... 8

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

Cortex-M4 Processor core registers

Exception and fault checking on S32K1xx, Rev. 0, 07/2018

2 NXP Semiconductors

• Stack Pointer (SP) alias of banked registers, PSP and MSP

• Link Register (LR), r14

• Program Counter (PC), r15

• Special-purpose Program Status Registers, (xPSR).

• Exception mask registers

• CONTROL register

Figure 1. Processor register set

The general-purpose registers r0-r12 have no special architecturally-defined uses. Most instructions that

can specify a general-purpose register can specify r0-r12.

Table1. General purpose registers

Low registers Registers r0-r7 are accessible by all instructions that specify a general-purpose register.

High registers

Registers r8-r12 are accessible by all 32-bit instructions that specify a general-purpose

register.

Registers r8-r12 are not accessible by all 16-bit instructions.

Registers r13, r14, and r15 have the following special functions:

Cortex-M4 Processor core registers

Exception and fault checking on S32K1xx, Rev. 0, 07/2018

NXP Semiconductors 3

Table 2. SP LR and PC registers

Stack pointer Register r13 is used as the Stack Pointer (SP). Because the SP ignores writes to bits

[1:0], it is auto-aligned to a word, four-byte boundary.

Handler mode always uses MSP, but you can configure Thread mode to use either

MSP or PSP.

Link register Register r14 is the subroutine Link Register (LR).

The LR receives the return address from PC when a Branch and Link (BL) or Branch

and Link with Exchange (BLX) instruction is executed.

The LR is also used for exception return.

At all other times, you can treat r14 as a general-purpose register.

Program counter Register r15 is the Program Counter (PC).

Bit [0] is always 0, so instructions are always aligned to word or halfword boundaries.

For other registers, the details are as below.

Table 3. Special registers

Program Status Register Application Program Status Register (APSR)

Interrupt Program Status Register (IPSR)

Execution Program Status Register (EPSR).

Priority Mask Register PRIMASK register prevents activation of all exceptions with configurable

priority

Fault Mask Register FAULTMASK register prevents activation of all exceptions except for Non-

Maskable Interrupt (NMI)

Base Priority Mask

Register

BASEPRI register defines the minimum priority for exception processing.

When BASEPRI is set to a nonzero value, it prevents the activation of all

exceptions with the same or lower priority level as the BASEPRI value.

CONTROL register The CONTROL register controls the stack used and the privilege level for

software execution when the processor is in Thread mode and, if

implemented, indicates whether the FPU state is active.

The processor supports two modes of operation, Thread mode and Handler mode:

• Thread mode: Used to execute application software. The processor enters Thread mode when it

comes out of reset.

Stack’s structure and selection

Exception and fault checking on S32K1xx, Rev. 0, 07/2018

4 NXP Semiconductors

• Handler mode: Used to handle exceptions. The processor returns to Thread mode when it has

finished all exception processing.

The privilege levels for software execution are:

Unprivileged: The software:

• has limited access to the msr and mrs instructions, and cannot use the cps instruction

• cannot access the system timer, NVIC, or system control block

• might have restricted access to memory or peripherals.

 Unprivileged software executes at the unprivileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or

unprivileged. In Handler mode, software execution is always privileged.

Privileged:

• The software can use all the instructions and has access to all resources.

• Privileged software executes at the privileged level.

The processor enters Thread mode on Reset, or as a result of an exception return. Privileged and

Unprivileged code can run in Thread mode. The processor enters Handler mode as a result of an

exception. All codes are privileged in Handler mode.

Code can execute as privileged or unprivileged. Unprivileged execution limits or excludes access to

some resources. Privileged execution has access to all resources. Handler mode is always privileged.

Thread mode can be privileged or unprivileged.

3. Stack’s structure and selection

The MSP is the default stack pointer and is initialized at reset by loading the value from the first word of

the memory. For simple applications, MSP is used at all the time. In this case, there is only one stack

region. For systems with higher reliability requirements, usually an embedded OS is involved and

multiple stack regions are defined.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving

exception, the processor pushes information into the current stack. The structure of eight data words is

known as stack frame. The stack frame includes the return address. This is the address of the next

instruction in the interrupted program. This value is restored to the PC at exception return. So that the

interrupted program could be resumed. In parallel to the stacking operation, the processor performs a

vector fetch that reads the exception handler start address from the vector table. When Stacking is

complete, the processor starts executing the exception handler. At the same time, the processor writes an

EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack frame and

what operation mode the processor was in before the entry occurred.

Stack’s structure and selection

Exception and fault checking on S32K1xx, Rev. 0, 07/2018

NXP Semiconductors 5

Figure 2. Stack frame

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on

this value to detect when the processor has completed an exception handler. The lowest five bits of this

value provide the information on the return stack and process mode.

Stack’s structure and selection

Exception and fault checking on S32K1xx, Rev. 0, 07/2018

6 NXP Semiconductors

Figure 3. Exception return behavior

The switching of stack pointer is selected by software or exception’s entry or exit.

Figure 4. Switching of stack pointer selection by software or exception entry/exit

Case examples

Exception and fault checking on S32K1xx, Rev. 0, 07/2018

NXP Semiconductors 7

4. Case examples

Based on above introduction, two cases are assumed and made the workaround.

Case 1: Record the number of executing interrupt

Default interrupt handlers are typically implemented as an infinite loop. If an application ends up in such

a default handler, it is necessary to determine which interrupt is being executed actually.

The code below shows how to add a few instructions to a default infinite loop handler to load the

number of the executing interrupt into r2 before the infinite loop is entered. Interrupt numbers read from

the NVIC in this way are relative to the start of the vector table.

Case 2: Record the address which trigger the fault

Sometimes, faults would be generated in application. If no process on these faults, program will be

dead-locked. Robust design will add overtime mechanism to check the status of dead-lock. Another

method could also be used, like to record the fault address for future checking and overleap the address

which generates the faults.

The ARM Cortex-M core implements a set of fault exceptions, as below.

Each exception relates to an error condition. If the error occurs, the ARM Cortex-M core stops executing

the current instruction and branches to the exception's handler function. This mechanism is just like that

used for interrupts, where the ARM Cortex-M core branches to an interrupt handler when it accepts an

interrupt.

The code below shows how to add a few instructions to hard fault handler and modify the value which

stores at the position of LR in stack. After hard fault handler executes and pop the frame, the PC will

point to the next instruction after the one which generates the hard fault. User could add variable in it to

record the address which generates the fault.

Reference

Exception and fault checking on S32K1xx, Rev. 0, 07/2018

8 NXP Semiconductors

5. Conclusion

The S32K1xx product series are the highly scalable portfolio of ARM Cortex-M0+/M4F MCUs in the

automotive industry. This document explains the registers of Cortex-M0+/M4F with stack mechanism.

Skills are also introduced for exception and fault handler which also could increase the robust of design.

6. Reference

• S32K1xx Series Reference Manual (Rev.6)

• Cortex-M4 Device: Generic User Guide

https://www.nxp.com/docs/en/reference-manual/S32K-RM.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf

Reference

Exception and fault checking on S32K1xx, Rev. 0, 07/2018

NXP Semiconductors 9

Document Number: AN12201
Rev. 0

07/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer's applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,

ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,

POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Cortex-M4 Processor core registers
	3. Stack’s structure and selection
	4. Case examples
	5. Conclusion
	6. Reference

