NXP Semiconductors Document Number: AN12193
Application Notes Rev. 0, 05/2018

Using S32K148 QuadSPI Module

by: NXP Semiconductors

1.Introduction

Contents
This application note describes the QuadSPI module on 1. INErOAUCTION. .. e
the S32K148 devices. It provides a description of how 2. QUadSPI Protocol............cccccceeeecuciivrvvvivvveeeiiiiiissssssseeeeeee
3. S32Kxxx QuadSPI implementationccccccevvevierenenne.

the module is implemented on these devices,
specifically focusing on setting up LUT sequences,
using commands to interface with an external memory
and using the AHB interface. More details about the
QuadSPI module can be found in the devices respective
reference manual.

3.1 Side Aand Side B.......ccooviiiiiiiic
Look-up Table (LUT) Functionalitycccccuevveiviiinrinns
Peripheral bus (Commands) interface...........ccccceevviveriennnn
AHB INErface.......ccoooviiiiiiieie e
Software EXampleccooeveieiiiiiiieie e
REFEIENCE ... e

N OA

The application note is supported by two software
examples, a bare metal example code and an SDK
example. The bare metal example can be found in the
attached zip file, while the SDK example is part of the
SDK release.

2.QuadSPI protocol

Quad Serial Peripheral Interface (QuadSPl) is a
communications protocol used for communications
between a microcontroller and external flash memory. It
is based on the popular Serial Peripheral Interface (SPI).
Whereas an SP1 makes use of up to four connections —
Data In, Data Out, Clock, and Chip Select (used to
signify that a transmit or receive is active) — QuadSPI
uses Clock, up to six Chip Select channels, and up to
four bi-directional data channels. This extra
connectivity allows for data to be read from the flash in
a prompt manner, making QuadSPI an excellent choice
for using additional off-chip memory

-
P

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

S32K148 QuadSPI implementation

Due to the smaller number of pins, requests for reads/writes/erases are carried out by sending commands
across the bus. For example, to read data from flash memory the “Read Data (0xEB)” command is sent,
followed by the 24-bit address to be read. The data is then sent to the microcontroller. The figure below
shows a typical read instruction using four data lines.

(A

ss# |\ [

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2

SCK
|~ Instruction (EBh) -»je- Address & Mode -#|e-Dummy-»je- Data -»|

A21.16 A58 A7 Byte ! Byto2

Figure 1. Read command (QuadSPI frame)

There are several suppliers of QuadSPI-compatible memory, such as Winbond, Spansion, Macronix, and
Numonyx. The examples provided in this application note will focus on the Macronix devices as the
external memory populated on the S32K148 EVB is a Macronix chip. Like SPI1 before it, QuadSPI does
not adhere to a set standard, but as a rule different manufacturers’ devices interface via a similar
command set.

3. 532K 148 QuadSPI implementation

The following section will describe a couple of features of the QuadSP1 module that only applies on the
S32K 148 due to the way It was implemented on these

3.1. Side A and side B

The QuadSPI module is divided into two “sides.” A and B, mainly due to the limited amount of high
speed pads available in the device, each side has its advantages and disadvantages so it is up to the
application to select between them.

The main advantage of side A is speed, it supports up to 80 MHz. However, it does not support DDR,
neither Hyperbus functionality.

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

2 NXP Semiconductors

Look-up Table (LUT) functionality

On the other hand, Side B operates slower, up to 20 MHz, but it does support DDR and Hyperbus
protocol for HyperRAM devices.

It is important to clarify that even though there are two “sides” of the QuadSPI module, It does not mean
that it can be implemented as if there were two separate instances of the QuadSPI module. One side can
only be used at the same time.

PTD14] 41 High Drive Pads - 20MHz
PTD13| 42 Fast Pads - 80MHz
prete| 43
FTE1S 44
W o~ 8o O Mmoo iadE e o & ~NoMm T W WD | o S e
< < < & < wn M O v o B OB B L w0 W W W W8 W O W D P~ =
S83szo0BB88EE & EEEEEEEEEEE
EEEEEEEEEEEEEE EEEEEEEEEEETE
a
£ b £
o m — = W K~
HyperRAM (QSPI_B) O ©09 oY) 823885 &
m oD M @ A
g oo o a gogogooao o
:Lﬁm-— Nc:-ﬁ
Serial Flash (QSPI_A) oeg SO n
L < < < <L <
Qg oQoQg

Figure 2. S32K148 Pinout: QuadSPI module side A and side B

4.Look-up Table (LUT) functionality

The Look-up table also known as LUT is the mechanism used by the QuadSPI module to communicate
with the external memory. It is used for either sending commands, reading, writing or waiting. This
device consists of a total of 64 LUT register, and these 64 registers are divided into groups of four
registers that make a valid sequence. Therefore, QSPI_LUTI[0], QSPI_LUT[4], QSPI_LUT][8] till
QSPI_LUTI[60] are the starting registers of a valid sequence.

The following table lists some of the most common commands for LUT operations. For the complete list
go to Table 34-14 Instruction set of reference manual:

Tablel. Common LUT commands

CMD 0x01
ADDR 0x02
DUMMY 0x03
MODE 0x04

Using S32K148 QuadSPI Module, Rev. 0, 05/2018
NXP Semiconductors 3

Look-up Table (LUT) functionality

READ 0x07
WRITE 0x08
STOP 0x00

As a safety mechanism, the LUT table is locked by default. Therefore, the first step to start using the
LUT is to unlock it. To unlock it, the key must be written into the LUTKEY register. The key value is
Ox5AF05AFQ, then a value of 0x02 must be written into the Lock configuration register. The LUT must
be unlocked at this point. The following code snip shows how this looks on the S32K148 device.

.-".-"Ln'_:-:lx* the LUT

QuadsPI -> LUTKEY = @xSAFBSAFG;

QuadsPI -»> LCKCR = @x2; //UNLOCK the LUT

while(((QuadSPI -» LCKCR)&QuadSPI_LCKCR_UNLOCK MASK)>>QuadSPI_LCKCR_UNLOCK_SHIFT == @);

Figure 3. Unlock LUT code

Once the LUT has been unlocked the user can modify the LUT sequences having in consideration that
QSPI_LUTIO0], QSPI_LUT[4], QSPI_LUTI[8] till QSPI_LUT[60] are the starting registers of a valid
sequence. Some of the features of the look-up table are:

e Each instruction-operand unit is 16-bit wide. However, LUT registers are 32-bit wide, so two
instructions can be placed within each LUT register.

e Depending on the complexity of the QSPI transaction, a sequence may consist of a single
instruction-operand set or several of them.

Each LUT instruction-operand has the following structure:

| LUTO [0,3] [—_—]

[LUT1 [4,7] [INSTR IPAD;I OPERAND]

l LUT2 '[.8' 1]] oo " X 8 bits "
™

Figure 4. LUT operand structure

Where the INSTR field represents the LUT commands presented previously in Table 1, the PADs field
represents the amount of data lines used by the command and the operand field varies depending on the
INSTR used, this can be found in Table 34-14 Instruction set of reference manual.

For example, having the value 0x1CO08. If viewed as binary the value is 000001110000001000. If we
divide it into the different fields:

INSTR PADs OPERAND

0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0

INSTR = 0x07 (Read)

Using S32K148 QuadSPI Module, Rev. 0, 05/2018
4 NXP Semiconductors

Table%201

Peripheral bus (commands) interface

PADs = 0x00 (1 PAD)
OPERAND = 0x08 (8 bytes)
When this sequence is launch the module will read 8 bytes of data through 1 data line.

Once all the LUT sequences had been filled the LUT table must be locked again. The sequence to
locking down the LUT is very similar to unlocking it. The key must be written into the LUTKEY
register. The key value is OX5AF05AFO0, then a value of 0x01 must be written into the Lock
configuration register. The following code snip shows how this looks on the S32K148 device.
//Lock the LUT

QuadsPI -»> LUTKEY = @xSAFBSAFG;

QuadSPI -> LCKCR = @xl; //LOCK the LUT
while(((QuadSPI -> LCKCR)&QuadSPI_LCKCR LOCK MASK)>>QuadSPI_LCKCR_LOCK SHIFT == @);

Figure 5. Lock LUT code

5. Peripheral bus (commands) interface

The QSPI module offer two different paths to communicate with an external memory Peripheral Bus
(left side of the figure below) or AHB bus (left side of the figure below). In this section the Pheripheral
Bus interface will be explained in more detail.

Peripheral Bus AHB Bus
=)) o
Eﬁ =| = % 3| _
gls sl 3| o8 oS
glg |8 <¢|2 gl 2|2
IP_Control | DMA and interrupt control ‘ AHB_Control
: AHB
Registers _> et bufter
TX RX T
bufter | | buffer fetch ,
IP_Cirl : (addr, size, received
LUT command_build : type) (data)
& buffer control
3 3 A
. g
§§ s gﬁ g
. g & = o o = 3 o
T| g | = T 2 =
ges| g 8| 3| € g25| 5| 8| ©

QSPI_IC_SFM
L
y

Clock domain crosser

Figure 6. QSPI block diagram

Using S32K148 QuadSPI Module, Rev. 0, 05/2018
NXP Semiconductors 5

Peripheral bus (commands) interface

If they user wants to write, erase or change the configuration of the external memory the only option is
the Peripheral bus interface. It uses the LUT table sequences to communicate with the external memory.
Once the LUT table has been filled out with the required LUT sequences the user can simple launch the
desired sequence. For example, suppose that the LUT is filled out as the following figure:

C)
SEQO
Read Memory Status
|\ J
4)
SEQ1

Erase Sector

Figure 7. Example LUT

Sequence 0 contains the necessary commands to read the status of the memory, sequence 1 the
necessary commands to erase a selected sector, and the sequence 2 the necessary commands to write the
whole page of the memory. If for example, the user would like to erase one sector of the memory, it
would be as simple of calling out the sequence 1 of the LUT as many times as the application needs. The
following code snip exemplifies how simple is to call out a sequence of the LUT table.

vold lawnch_loot{uint2 t loot index){

QuadSPI->IPCR = (loot index»>2) << 24;
while(QuadSPI->SR & QuadSPI_SR_BUSY MASK);

Figure 8. Launch LUT sequence code

Even tough launching a LUT sequence will execute the necessary commands to communicate with the
memory, some actions such as reading or writing require the use of other registers to correctly receive or
send the data. For example, when reading the MCU stores the data in an internal data buffer accessed
through the RBDR[0-31] registers, it also requires the user specify the address to be read in the SFAR
register and clearing up the CLR_RXF flag. The following code snip shows a function that is able to
read a configurable amount of bytes from an specified address.

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

6 NXP Semiconductors

Peripheral bus (commands) interface

void quad quadspi_read{unsigned long address, unsigned long *dest, unsigned long size)

int i,7j;

QuadsPI->SFAR = address;

size = size/32;

for(i = @; i<size; i++)

1
QuadsPI->MCR |= QuadSPI_MCR_CLR RXF_MASK;
QuadSPI->FR = @x1008;

/* launch guad read command */
launch_loot(QUAD READ);

while({((QuadSPI->RBSR & QuadSPT_RBSR_RDBFL_MASK)>>QuadSPI_RESR_RDBFL_SHIFT)!=32);
//RX buffer size is 32 words
for(j = 8; j<32; j++)
{
*dest++ = QuadSPI-»RBDR[J];
QuadSPI-»>SFAR = QuadSPI->SFAR + (32%4);

QuadSPI->MCR |= QuadSPT_MCR_CLR_RXF_MASK;

Figure 9. QuadSPI read code

Similar considerations apply for writing data. User must first full a buffer of data, which is then send to
the external memory depending on the amount of data specified in the command. The buffer is filled out
through the TBDR[0-31] registers. Just as the read sequence, user must specify the address to be written
to in the SFAR register. The following snip of code shows a write routine.

for(i=8;i<page_iterations;i++){

quadspi_write_enable();

QuadsPI -> MCR |= QuadSPI_MCR_CLR TXF MASK;

QuadSPI -» FR = BxB5008868;

m = remain_bytes/4; /* TBDR buffer is 4 bytes long */
for(j = 8; j<m; j++)

QuadSPI->TEDR = *data++;

}

//=et address
QuadsPI-»>5FAR = base;

/* Launch Page Program commmand */
launch_loot (PAGE_PROGRAM) ;

quadspi_wait_while_flash_busy(); {/check status, wait to be done
base += FLASH_PGSZ;
if(size » FLASH PGSZ){

remain_bytes = FLASH_PGSZ;

size = size - FLASH_PGSZ;

b
else{

remain_bytes = size;
b

Figure 10. QuadSPI page program code

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

NXP Semiconductors

AHB interface

6. AHB interface

The AHB block diagram is shown in the right side of Figure 6. Differently from the Peripheral Bus
Access, the AHB interface only allows read operations. However, the main advantage of the AHB
access is that it allows to see the external memory as if it was mapped to an internal memory address of
the device, meaning that the user does not need to perform any LUT sequence launch. In the S32K148,
the QuadSPI AHB region is 128 MB long, it is mapped to starting address 0x68000000. For example, if
the user tries to access address 0x000000 of the memory using peripheral bus access, then a certain LUT
sequence would need to be launched and the user would need to read the Rx buffer of QuadSPI to get
the data. On the other hand, when using AHB the user could simply access memory address 0x68000000
(start address for QuadSPI) and get the data. The following figure shows the memory accessed through
the debugger after the QuadSPI was programmed with some data, as it can be noticed, the data is read as
internal memory.

Address @ - 3 4 - 7 8 - B C -F

63000000 [l BALABAAE Bo94Cas4Dn BE4ERB4F
Goeoeale Bod4cB946 BA4GBE4E BC468648 85460648

Goeaea2e 58478648 88476266 BEFeB4FE FEE7@a28
Goeaea3a BooEREER Bareal2e 45888868 75888868
Gaeaeads FFF7FEBF SeB4eBAF Ba4B894A S5ABBB74E
c8ee8ase SBoBBG4EB 42F22812 1A68644B5 4FFEFF72
coeeeace SAcBED4G 5DFB8476 7e4788EF aa2ea548
coeeaaye 20052809 deB48B68 BBAF3B4B 366238486
c8eeaase 7Bo1384B FEGA384B FE&1384B 36613846

c8eeease BBEcB384B BBE61384B 7Bee3a44 38459442
coeaaare 15DBBEZ3 JB628AER 2D4ATBBA 52FB2328
coeaeane - 2A497BGA 41F82328 7B6ABL33 7B62294B
coeaaaCa 9BBETAGA 9A42EFD3 AFFBEBZ3 234AC3F8
coeeaale B520B4ER AFFBEB23 214AC3F8 as2Dasce
c8eeeace VBo9L1ATE 3BEA1ATE 3B6ABL33 36627869

ciepeara B1337B61 FAGBT7BGY 9442F1D1 BOE@3B6Y
cogpeles 1AVSFGEGS 1A7BFBGS B133FB6L 36698133
coeeelle SECL1BAGS 36699442 F1D1e5Ee BEGoBa22
cogpel2e 1AVEEGEGS 81336661 JAGBBEGS 9A42F501L
cogeelia 2C37BD40 SDF8e476 7a47eaBr Baa4FELF
cogeelds 1CEZEEG6S 1Ce2eecd Bae4FELF 1Cazeansd
cogeelse 1CBZE8635 gRoRee2e Baoaea2e BaaaFELF
cogpelon pobooooe BRa4aeee San4eanr B7458844
coeeelve SACBEGCAE 4FFBFF72 SAGRE44E 4FF4E452
cogpelse 1AGEBED4G SDF8e476 7a47eaBr Ba2eas4a

coeeeloe 28052509 geE58208 BaAFBRZ3 7BEAFFF
cogeelAR ESFFED4E 4FFagedz C3F83421 BE4ABEAE
coeeelbe SEoD43F4 88735365 89448945 5B6943F4

Figure 11. QuadSPI memory region

AHB access uses LUT sequence 0 as its default read sequence. Therefore, user must make sure to
program sequence 0 with a valid read command before trying to use AHB access, by default sequence 0
is programmed with typical values for a simple (one data line) read.

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

8 NXP Semiconductors

Figure%206

Reference

It is important to notice that data read from external memory would be accessed significantly slower
than from internal memory, due to the following factors:

e Data from external memory is retrieved at the QuadSPI clock frequency, while the internal data
IS accessed at core frequency.

e Internal memory data is within cache range, QuadSPI region is not.

e QuadSPI AHB buffer can be configured up to 4 KB, accessing data outside those 4 KB will
require the QuadSPI to retrieve data from external memory, increasing the delay.

Another benefit of using AHB access is that it allows the execution of code from external memory,
considering that it would be significantly slower as stated above.

7. Software example

This application note is accompanied by software. The software project can be open in the S32DS and
runs over the S32K148 EVB using the MX25L6433F external memory available on the board. The
example uses routines for both types of accesses, AHB and peripheral bus, it programs the external
memory with a pre-compiled application and verifies that it was correctly written by reading it, both
actions using peripheral bus access. Once it was verified, the program executes the application using
AHB access. The application is a simple red LED toggling.

8. Reference
e ANb5412, Quad Serial Peripheral Interface (QuadSPI) Module Updates
e ANA4186, Using the QuadSPI Module on MPC56XXS
e ANS5244, How to use QuadSPI on KL8x Series

Using S32K148 QuadSPI Module, Rev. 0, 05/2018
NXP Semiconductors 9

https://www.nxp.com/docs/en/application-note/AN4512.pdf?fsrch=1&sr=1&pageNum=1
https://www.nxp.com/docs/en/application-note/AN4186.pdf?fsrch=1&sr=2&pageNum=1
https://www.nxp.com/docs/en/application-note/AN5244.pdf?fsrch=1&sr=1&pageNum=1

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further
notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in NXP data sheets and/or specifications can and do
vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions
of sale, which can be found at the following address: nxp.com/Sales TermsandConditions.

‘While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer's applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I12C BUS, ICODE, JCOP, LIFE VIBES,
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the
Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the
SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,
CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,
Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and pVision are registered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,
ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,
POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org.

@INTRXLNIVYD R \/

Document Number: AN12193
Rev. 0
05/2018

\r
4\

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. QuadSPI protocol
	3. S32K148 QuadSPI implementation
	3.1. Side A and side B

	4. Look-up Table (LUT) functionality
	5. Peripheral bus (commands) interface
	6. AHB interface
	7. Software example
	8. Reference

