

 AN11351
Implementing a UART using SGPIO on LPC4300
Rev. 1 — 15 April 2013 Application note

Document information

Info Content

Keywords LPC4300, SGPIO, UART

Abstract This application note describes how to implement UART transmission
and reception function via SGPIO on NXP’s LPC43xx. The UART
implemented in this application note operates in half and full duplex mode
with 8 data bits, no parity, 1 stop bit, no flow control. The supported baud
rates are 9600bps/19200bps/38400bps/57600bps/115200bps

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 2 of 13

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

1 20130415 Initial version.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 3 of 13

1. Introduction
NXP’s LPC43xx ARM Cortex-M4 based microcontrollers for embedded applications
include an ARM Cortex-M0 coprocessor, up to 1 MB of flash, up to 264 kB of SRAM, and
advanced configurable peripherals such as the Serial General Purpose I/O (SGPIO)
interface. The LPC43xx devices operate at CPU frequencies of up to 204 MHz.

This application note describes how to implement UART transmission and reception
functions (hereafter called TX and RX) via SGPIO on the LPC43xx with UART operations
in half and full duplex mode. Following sections are included in this application note:

• SGPIO peripheral introduction
• Development and test environment
• Driver implementation
• Demonstration and test result

The UART protocol implemented is: 8 data bits, no parity, 1 stop bit, no flow control. The
supported baud rates include 9600bps, 19200bps, 38400bps, 57600bps and 115200bps.

The sample software is tested on Keil’s MCB4300 evaluation board with UART0; TX and
RX pins can be configured via SGPIO output and input pins respectively.

2. SGPIO peripheral introduction
SGPIO is a new peripheral available on the LPC43XX devices from NXP.

SGPIO offers standard GPIO functionality enhanced with features to accelerate serial
data stream processing. The enhanced features are realized with slices.

There are 16 SGPIO slices and 16 SGPIO IO pins. A slice is a section of hardware that
handles the data processing when sending or receiving serial data.

A slice consists of a 32-bit FIFO that is used to clock data in or out, a data shadow
register, and a clock divider to generate a clock for the slice. Slices also have several
interrupt capabilities. Please refer to user manual UM10503 for details on the interrupt
functionality of a slice. The basic operation of one slice is shown in Fig 1.

Fig 1. Basic operation of one slice

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 4 of 13

3. Development environment

3.1 Hardware
This project uses a Keil MCB4300 evaluation board with UART for quick hardware set up
and software development.

The TX/RX pins (P2_0/P2_1) of UART0 on the MCB4300 board are configured as an
SGPIO function. Jumpers J16 and J13 should be selected for UART0.

A UART cable connects UART0 on MCB4300 to the COM port on a PC.

Keil ULINK2 is the debugger used in this development.

The connection diagram of the target board is shown in Fig 2.

Fig 2. Connection diagram

3.2 Software
Keil uVision4 (V4.5) is used for the development IDE.
Putty is the recommended serial communication software on the PC, however, any other
terminal program will work as well.

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 5 of 13

4. Driver implementation
The SGPIO peripheral emulates the UART protocol to send and receive data via SGPIO.
It includes:

• SGPIO clock configuration for providing the required baud rate for UART
communications

• SGPIO pin initialization and slice configuration for UART TX and RX function
• Emulate sending and receiving of data frames conforming to UART protocol via

SGPIO
• Implement sending and receiving multiple bytes of data in UART half and full duplex

mode

A waveform showing the UART protocol is shown in Fig 3:

The implemented protocol is: start bit + data (8 bits) + no parity + stop bit

Fig 3. UART waveform

The SGPIO slice and pin mapping for the UART emulation is shown in Fig 4.

Fig 4. UART slice and pin mapping

The following steps describe how to implement the driver.

The driver implementation is contained in files sgpio_uart.c and sgpio_uart.h.

4.1 SGPIO clock configuration
To ensure optimum performance, the SGPIO peripheral input clock (SGPIO_CLK) should
be the same as system clock. It is configured to generate the shift clock and swap clock
for serial data communication.

The shift clock frequency is equal to UART baud rate which samples once for each bit;
the swap clock is designed as the cycle time of a frame.

Table 1. SGPIO clock control setting
Register Slice C Slice K Function description
SLICE_MUX_CFG 0<<2 | 0<<6 0<<2 | 0<<6 (1) Use clock internally generated by

COUNTER
(2) Shift 1 bit per clock

SGPIO_MUX_CFG 0<<5 0<<5 Qualifier enable for clock

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 6 of 13

For additional details please refer to function SGPIO_UART_setclk() in sgpio_uart.c file.

4.2 SGPIO initialization
SGPIO needs to be initialized for UART TX and RX to function. The pin for TX should be
configured as an SGPIO output slice and all of the data bits in data and shadow registers
should be “1” to set the UART to idle mode (see Table 2).

Table 2. SGPIO TX initialization setting
Register Slice C Function description
OUT_MUX_CFG 0 | 0<<4 (1) 1-bit mode

(2) state set by GPIO_OEREG

GPIO_OEREG 1<<2 Enable output for TX

REG/ REG_SS 0xFFFFFFFF Keep idle state before sending valid data

For RX, besides setup of input mode, it should be ready to match the start bit of UART
RX. The setting of SGPIO is shown in Table 3:

Table 3. SGPIO RX initialization setting
Register Slice K Function description
GPIO_OEREG 0<<2 Enable input for RX

SLICE_MUX_CFG 1<<0 Match data mode

REG 0xFFFFFFFF To match the data in REG_SS

REG_SS 0x1FFFFFFF To sample 3 times for start bit

Refer to the related source code for more details regarding initialization.

4.3 Send data frame
According to the UART protocol (1 start bit, 8 data bits, no parity, 1 stop bit), emulation of
sending the serial data frame is shown in Fig 5:

Fig 5. Send data frame

The data frame will be swapped with the shadow register when the previous frame has
been shifted out completely.

4.4 Receive data frame
Reception of the start bit uses the pattern match functionality of a slice. When the start bit
is received, the SGPIO is configured to capture the serial data that follows. First, the
pattern match is switched off to capture data, then the swap clock is started and a
capture interrupt is enabled for frame data reception. For implementation details please
refer to the function SGPIO_UART_Rx_Capture().

After all bits of a data frame are captured via the SGPIO interface, the 8-bit data is
extracted by software:

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 7 of 13

4.4.1 Oversampling
To improve the reliability of received data, each bit is sampled 3 times. The oversampling
clock should be configured as described in Section 4.1. When using oversampling for the
RX signal, extra lines of code should be added to restore each data bit before returning
the received data. The way to restore a bit is to compare the three sampled values to
each other and then choose the one that occurs two or more times. For more detail,
please refer to the function SGPIO_UART_ReceiveByte() in sgpio_uart.c.

The OVER_SAMPLING and OVERSAMPLING_NUM for oversampling are defined in
sgpio_uart.c.

Fig 7. Define oversampling function

4.5 Driver APIs
When a user wants to implement an application program using the drivers directly, the
following driver API functions can be called.

Table 4. API introductions
Prototype Input Return Description
SGPIO_UART_setclk SGPIO_Txslice: SGPIO slice for UART

TX
SGPIO_Rxslice: SGPIO slice for UART
RX
UART_ConfigStruct : Pointer to a
UART_CFG_Type structure that contains
the configuration information for UART

SUCCESS or
ERROR

Set the SGPIO UART
clock according to the
specified parameters in
the UART_ConfigStruct.

SGPIO_UART_Tx_Init SGPIO_TxPin: SGPIO pin for UART TX
SGPIO_slice: SGPIO slice for UART TX

None Initialize the SGPIO pin as
UART TX

SGPIO_UART_Rx_Init SGPIO_RxPin: SGPIO pin for UART RX
SGPIO_slice: SGPIO slice for UART RX

None Initialize the SGPIO pin as
UART RX

SGPIO_UART_Setmode SGPIO_slice: SGPIO slice for UART
TX/RX
NewState: New State of transfer

None Start/Stop transfer
(TX/RX) on SPGIO slice

Fig 6. Extract 8 bit data

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 8 of 13

Prototype Input Return Description
function, should be:
- ENABLE: start TX/RX
- DISABLE: stop TX/RX

SGPIO_UART_Enter_SendIdle SGPIO_slice: SGPIO slice for UART TX None Enter idle state in TX
SGPIO_UART_SendByte SGPIO_slice: SGPIO slice for UART TX

Data: Data to transmit (must be 8-bit
long)

None Transmit a single byte via
SGPIO UART

SGPIO_UART_ReceiveByte SGPIO_slice: SGPIO slice for UART RX 8 bit Data
received

Receive a single byte via
SGPIO UART

Generally, an application program will need to send and receive multiple bytes of data.
This project provides example of sending and receiving multiple byte data in half duplex
and full duplex mode in sgpio_uart.c.

5. Demonstration

5.1 Environment
This demonstration is tested on the Keil MCB4300 evaluation board with the UART
configured as detailed above.

5.2 Demonstration
To demonstrate the UART communication via SGPIO, this example is designed to
operate in both half duplex and full duplex mode.

In half duplex mode, ASCII code is received and sent back to the PC COM port one
direction at a time. The simple functions to send and receive multi bytes of data are
implemented in block mode. Please refer to SGPIO_UART_Send() and
SGPIO_UART_Receive() in sgpio_uart.c.

In full duplex mode, ASCII code is received and sent back to the PC COM port
simultaneously. The simple functions to send and receive multiple bytes of data are
implemented in non-block mode. Please refer to SGPIO_UART_Send() and
SGPIO_UART_Receive() in sgpio_uart.c.

In this application note, baud rates of 9600bps, 19200bps, 38400bps, 57600bps and
115200bps are supported configurations.

The project in the example can run in internal RAM and internal flash (for LPC43xx parts
with on-chip flash).

5.3 Test result
Open Putty on the PC and configure the serial line to: 9600bps baud, 8 bits data, no
parity, 1 stop bit, no flow control.

Connect the UART cable between UART0 on the board and COM on the PC after
preparing the test environment described in Section 3. Connect the Keil ULINK2 between
the target board and PC. Open the project SGPIO_Uart.uvproj and start ‘debug’ after
building OK in internal RAM mode.

The following is printed on the screen when running the demo:

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 9 of 13

Fig 8. UART output via SGPIO

Press ‘1’ on the keyboard of PC to enter half duplex test mode, then press any number or
letter keys, such as ‘1’,’2’,’3’,’4’,’a’,’b’,’c’,’d’,’e’,’f’,’g’ which then will be printed:

Fig 9. UART communication in half duplex mode

Press ESC to exit half duplex mode and wait for a new mode selection:

Fig 10. Operation mode selection

Press ‘2’ to enter full duplex mode. It will keep sending serial data and will not exit until
any key is pressed (should be letter or number key). Below is an example print out on the
Putty terminal.

Fig 11. UART communicate in full duplex mode

The ‘k’ is received after pressing it at any time while continuously sending “Sending...
Press any key to receive data while sending”, and the sending is continued to end a
whole line. This indicates reception and transmission can be done at the same time.

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 10 of 13

5.4 Performance
As mentioned above, only the following UART protocol is supported in this application
note:

Start bit + 8 data bits + no parity + stop bit + no flow control

The following baud rates can be supported: 9600bps, 19200bps, 38400bps, 57600bps
and 115200bps.

Communication at 115200bps baud rate was tested in both half and full duplex mode
using oversampling and the results were good.

6. Conclusion
This application note describes how to implement half and full duplex UART transmission
and reception using the SGPIO peripheral on the NXP LPC43xx microcontroller.

Although the demonstration code is simple, it is a good reference solution to implement
one or more UART channels via SGPIO in a user’s application.

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300 on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 11 of 13

7. References
[1] LPC43xx User Manual UM10503, Rev. 1.6, NXP Semiconductors, 25 January 2013.

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300

AN11351 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Application note Rev. 1 — 15 April 2013 12 of 13

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

8.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11351
 Implementing a UART using SGPIO on LPC4300

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2013. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 April 2013
Document identifier: AN11351

9. Contents
1. Introduction ... 3
2. SGPIO peripheral introduction 3
3. Development environment 4
3.1 Hardware .. 4
3.2 Software ... 4
4. Driver implementation .. 5
4.1 SGPIO clock configuration 5
4.2 SGPIO initialization .. 6
4.3 Send data frame ... 6
4.4 Receive data frame .. 6
4.4.1 Oversampling ... 7
4.5 Driver APIs ... 7
5. Demonstration ... 8
5.1 Environment ... 8
5.2 Demonstration .. 8
5.3 Test result .. 8
5.4 Performance ... 10
6. Conclusion ... 10
7. References ... 11
8. Legal information .. 12
8.1 Definitions .. 12
8.2 Disclaimers ... 12
8.3 Trademarks .. 12
9. Contents ... 13

	1. Introduction
	2. SGPIO peripheral introduction
	3. Development environment
	3.1 Hardware
	3.2 Software

	4. Driver implementation
	4.1 SGPIO clock configuration
	4.2 SGPIO initialization
	4.3 Send data frame
	4.4 Receive data frame
	4.4.1 Oversampling

	4.5 Driver APIs

	5. Demonstration
	5.1 Environment
	5.2 Demonstration
	5.3 Test result
	5.4 Performance

	6. Conclusion
	7. References
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

	9. Contents

