AN11120

Application and soldering information for the PCA2129 automotive TCXO RTC

Rev. 1 — 25 October 2011

Application note

Document information

Info	Content
Keywords	PCA2129 soldering, application, timekeeping, timestamp
Abstract	This application note gives additional information about soldering and application configuration of the PCA2129 automotive TCXO RTC

Application and soldering information for the PCA2129 TCXO RTC

Revision history

Rev	Date	Description
v.1	20111025	new application note, initial release

Contact information

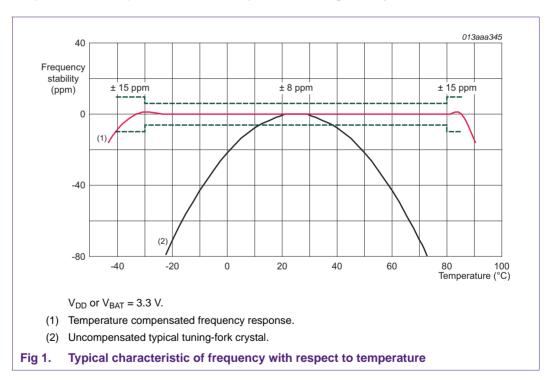
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Application and soldering information for the PCA2129 TCXO RTC

1. Introduction

This application note provides additional information on the PCA2129.


The accuracy of time given by an RTC¹ is mostly depending on the accuracy of the crystal used. For example a tuning fork crystal resonates at room temperature at its nominal frequency but will slow down when the temperature deviates (see graph no. 2 in Figure 1).

The PCA2129 is a CMOS Real Time Clock (RTC) and calendar IC with an integrated Temperature Compensated crystal (Xtal) Oscillator (TCXO) based on an integrated 32.768 kHz tuning fork quartz crystal optimized for very high accuracy and very low power consumption. It compensates automatically for temperature dependent frequency deviations (see graph no. 1 in Figure 1).

For further information (e.g. pinning diagram and register organisation), refer to the appropriate data sheet Ref. 5 "PCA2129".

2. Frequency stability and time accuracy

<u>Figure 1</u> shows the typical frequency stability of the PCA2129 with respect to the temperature in comparison to an uncompensated tuning fork crystal.

Remark:

For V_{DD} or V_{BAT} other than 3.3 V, a frequency shift of ±1 ppm/V has to be expected.

AN11120

^{1.} The definition of the abbreviations and acronyms used in this document can be found in Section 6.

Application and soldering information for the PCA2129 TCXO RTC

- The switching from the main power supply V_{DD} to the backup battery V_{BAT} may cause that - depending on the voltage difference - the internal clock stops just after the transition and then recovers again. A voltage transition of 0.3 V from V_{DD} and V_{BAT} or vice versa may typically cause a loss of 10 ms. One incident per 24 h would therefore lead to a deviation of -0.1 ppm.
- For information about frequency correction, see Section 4.4.

3. Frequency measurement

The frequency stability can be evaluated by measuring the frequency of the square wave signal available at the output pin CLKOUT.

The frequency signal at pin CLKOUT is controlled by the COF[2:0] control bits in register CLKOUT_ctl (0Fh) according to Table 1.

Table 1. CLKOUT frequency selection

	,	
COF[2:0]	CLKOUT frequency (Hz)	Typical duty cycle ^[1]
000	32768	60 : 40 to 40 : 60
001	16384	50 : 50
010	8192	50 : 50
011	4096	50 : 50
100	2048	50 : 50
101	1024	50 : 50
110	1	50 : 50
111	CLKOUT = high-Z	-

^[1] Duty cycle definition: % HIGH-level time : % LOW-level time.

The selection of $f_{CLKOUT} = 32.768$ kHz (COF[2:0] = 000, default value) leads to inaccurate measurements. It is therefore recommended to select a frequency other than the default value of 32.768 kHz for accurate frequency measurements. The most accurate frequency measurement occurs when 1 Hz is selected.

Furthermore, for accurate evaluation of the frequency stability over temperature, it is important that the frequency measurement is executed when the temperature is stable and the PCA2129 performed the temperature measurement. The PCA2129 measures the temperature immediately after power-on and then periodically with a period set by the temperature conversion rate bits TCR[1:0] in register CLKOUT ctl (0Fh):

Table 2. Temperature measurement interval

TCR[1:0]	Temperature measurement interval
00[1]	4 min
01	2 min
10	1 min
11	30 seconds

^[1] Default value.

Application and soldering information for the PCA2129 TCXO RTC

Once the temperature is set and is stable, it is necessary to wait until the PCA2129 has performed the temperature measurement, then the frequency can be measured at the CLKOUT pin. To perform quicker measurements it is recommended to select the temperature measurement period of 30 seconds (TCR[1:0] = 11).

In summary, for an accurate evaluation of the frequency stability the following operating flow is recommended:

- Power-on with V_{DD} = 3.3 V
- Wait until the 32.768 kHz signal is available at the CLKOUT pin
- Program a COF[2:0] value other than the default, for example COF[2:0] = 110, which corresponds to f_{CLKOUT} = 1 Hz
- Program TCR[1:0] = 11, which corresponds to a temperature measurement period equal to 30 seconds
- Set the target temperature
- Wait until temperature is stable
- Wait until the temperature measurement is executed (~30 seconds after the temperature is stable)
- Measure the frequency at the CLKOUT pin.

4. Reflow soldering

4.1 Introduction to reflow soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs) to form electrical circuits. The soldered joint provides both, the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one Printed Circuit Board (PCB); however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

The PCA2129 is intended for use in a reflow soldering process.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures than a SnPb process, thus reducing the process window

Application and soldering information for the PCA2129 TCXO RTC

- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile (see <u>Figure 2</u>); this profile includes preheat (T_s), reflow (in which the board is heated to the peak temperature (T_p)) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged.

For further information on reflow soldering IC, refer to Ref. 1 "AN10365".

4.2 Reflow soldering of PCA2129

The PCA2129 is intended for use in a lead-free reflow soldering process, classified in accordance with the Ref. 3 "IPC/JEDEC J-STD-020".

<u>Figure 2</u> shows the reflow soldering temperature profile according <u>Ref. 3 "IPC/JEDEC</u> <u>J-STD-020"</u> used for the qualification of the PCA2129.

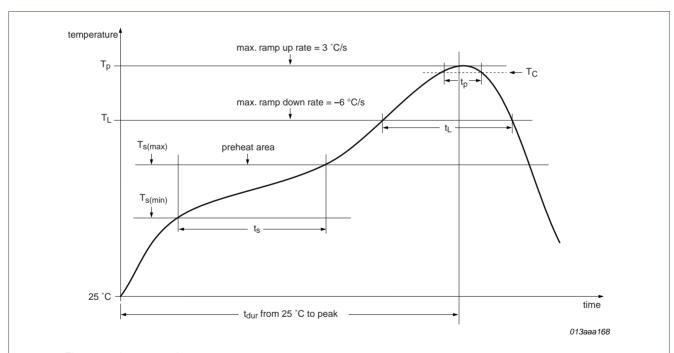


Figure not drawn to scale.

The appropriate values for this graph are shown in Table 3.

Remark: The reflow profile in this document is for classification/preconditioning and not meant to specify board assembly profiles. Actual board assembly profiles should be developed based on specific process needs and board designs, but must not exceed the parameters shown in Table 3.

Fig 2. Reflow temperature profile

Application and soldering information for the PCA2129 TCXO RTC

Table 3. Values of reflow temperature profile

All temperatures refer to the center of the package, measured on the package body surface that is facing up during the reflow soldering process.

Symbol	Value	Unit	
Tp	260	°C	
TL	217	°C	
$\frac{T_{C}}{T_{s(max)}}$	255	°C	
T _{s(max)}	200	°C	
T _{s(min)}	150	°C	
t _p	30	S	
t _L	60 to 150	S	
t _s	60 to 120	s	
t _{dur}	max 480	S	

Recommendations:

- 1. The reflow soldering profile shown in <u>Figure 2</u> is recommended. A full convection reflow system, capable of maintaining the reflow profile of <u>Figure 2</u>, is recommended.
- 2. The peak temperature (T_p) of the reflow soldering process must not exceed 260 °C. If the temperature exceeds 260 °C, the characteristics of the crystal oscillator will be degraded or even the device may be damaged.
- The time, while the PCA2129 is heated above T_C = 255 °C, must not exceed 30 s (t_p), otherwise the characteristics of the crystal oscillator will be degraded or even the device may be damaged.

4.3 Effect of reflow soldering on the frequency characteristics

The reflow soldering process is typically generating a negative frequency shift.

After one-time reflow soldering, processed in accordance with the recommended temperature profile shown in <u>Figure 2</u> and <u>Table 3</u>, a frequency shift of -5 ppm is typical. Any other reflow temperature profile or multiple soldering may cause a different frequency shift after soldering. The frequency shift after soldering can be reduced by lowering the peak temperature T_p and shortening the time t_p of the soldering process (see <u>Figure 2</u> and <u>Table 3</u>).

4.4 Frequency correction after reflow soldering

In order to compensate for a shift in frequency due to reflow soldering, a frequency offset can be programmed through bits AO[3:0] of register address 19h. In the typical case and under consideration of the temperature profile as given in Figure 2, an offset of +5 ppm is considered to be most suitable. However, this may vary on a per case basis and in dependence of the actual soldering profile used.

Application and soldering information for the PCA2129 TCXO RTC

Table 4. Typical frequency correction at 25 °C

AO[3:0]		ppm
Decimal	Binary	
0	0000	+8
1	0001	+7
2	0010	+6
3	0011	+5
4	0100	+4
5	0101	+3
6	0110	+2
7	0111	+1
8	1000[1]	0
9	1001	-1
10	1010	-2
11	1011	-3
12	1100	-4
13	1101	- 5
14	1110	-6
15	1111	-7

^[1] Default value.

Remark:

- 1. The typical frequency shift of –5 ppm, that occurs after a one-time reflow soldering processed in accordance with the recommended temperature profile shown in Figure 2 and Table 3, can be corrected by programming AO[3:0] = 0011.
- 2. A frequency measurement (see <u>Section 3</u>) should be performed after the final assembly of the board if
 - the soldering was processed multiple times,
 - the soldering was not made according to the recommended temperature profile,
 - the best result in accuracy should be achieved.

Then the offset with the appropriate value given in <u>Table 4</u> should be programmed into AO[3:0]. Deviations caused by assembly steps or due to production tolerances can be compensated with it.

Application and soldering information for the PCA2129 TCXO RTC

5. Application information

5.1 Assembly recommendations

It is recommended to

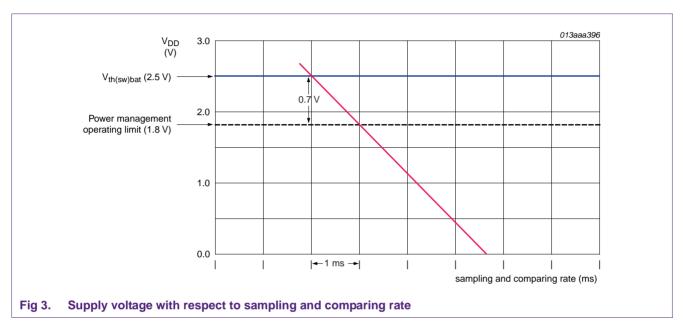
- take precautions when using the PCA2129 with general-purpose mounting equipment in order to avoid excessive shocks that could damage the integrated quartz crystal
- avoid ultrasonic cleaning that could damage the integrated quartz crystal
- avoid in the board layout running signal traces under the package unless a ground plane is placed between the package and the signal line.

5.2 General application information

In general it can be said that

- the integration of the quartz crystal in the same package as the RTC has the following advantages:
 - elimination of crystal procurement issues
 - elimination of concerns regarding the crystal parameters matching those of the RTC
 - no more crystal PCB layout issues
- the IFS pin must be connected to ground (VSS) to select the SPI-bus
- the IFS pin must be connected to the BBS pin to select the I²C-bus
- a backup battery can be attached to the V_{BAT} pin to enable the battery switch-over when the main power V_{DD} fails. If V_{BAT} is not used, it has to be connected to ground
- the battery backed voltage V_{BBS} can be used to supply an external RAM to retain RAM data in battery backup mode. A low leakage decoupling capacitor should be connected from BBS to V_{SS}: suggested value is 1 nF, max 100 nF. If BBS is not used to supply an external IC the decoupling capacitor between the BBS and V_{SS} pins must always be connected
- CLKOUT and INT are open-drain, active LOW outputs which require external pull-up resistors: maximum pull-up voltage is 5.5 V
- the timestamp input pin $\overline{\text{TS}}$ can be connected to a push button for tamper detection (see Section 5.4).

5.2.1 Current consumption


Current consumption is reduced if the power management functions are disabled (PWRMNG[2:0] = 111). In that case the

- battery switch-over function is disabled
- battery low detection is disabled
- only one power supply (V_{DD}) is used.

Application and soldering information for the PCA2129 TCXO RTC

5.3 Battery switch-over applications

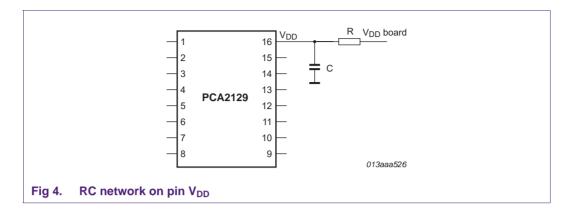
The functionality of the battery switch-over is limited by the fact that the power supply V_{DD} is monitored every 1 ms in order to save power consumption. Considering that the battery switch-over threshold value ($V_{th(sw)bat}$) is typically 2.5 V, the power management operating limit ($V_{DD(min)}$) is 1.8 V and that V_{DD} is monitored every 1 ms, the battery switch-over works properly in all cases where V_{DD} falls with a rate lower than 0.7 V/ms, as shown in Figure 3:

In an application, where during power-down, the current consumption on pin V_{DD} is

- in the range of a few μA a capacitor of 100 nF on pin V_{DD} is enough to allow a slow power-down and the proper functionality of the battery switch-over²
- in the range of a few hundreds of μA, the value of the capacitor on pin V_{DD} must be increased to force a falling gradient of less than 0.7 V/ms on pin V_{DD} to assure the proper functionality of the battery switch-over³
- higher than some mA it is recommended to add an RC network on the V_{DD} pin, as shown in Figure 4.

A series resistor of 330 Ω and a capacitor of 6.8 μ F assure the proper functionality of the battery switch-over even with very fast V_{DD} slope.

Note that:

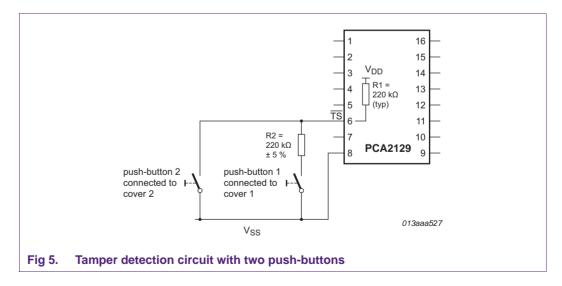

- it is not suggested to assembly a series resistor higher than 1 $k\Omega$ because it would cause a big voltage drop
- lower values of capacitors are possible, depending on the V_{DD} slope in the application.

AN11120

^{2.} Like in the case of no interface activity and/or early power fail detection functions that allow the microcontroller to perform early backup operations and to set power-down modes.

^{3.} Like in the case of interface activity.

Application and soldering information for the PCA2129 TCXO RTC


5.4 Timestamp applications

The most common application of the timestamp function is tamper detection: date and time are stored when the cover of the equipment is opened. A push-button is attached to the cover in such a way, that when the cover is opened, the button is pushed (mechanical connection); the button is connected to the timestamp input pin so that when the button is pushed, the timestamp circuit detects the event, sets a flag and stores the date and time in internal registers.

The timestamp function integrated in the PCA2129 allows double tamper detection in an application, although with a single timestamp input pin: two push-buttons can be connected to the timestamp input pin. Time and date will be stored when one of the push-buttons will be pushed.

A typical application is an electrical meter, where one cover protects the terminal (terminal case) and another cover protects the electronics (electronic case) and an opening of each of them should be registered.

Figure 5 shows the double tamper detection application.

Application and soldering information for the PCA2129 TCXO RTC

When cover 1 is opened, the push-button 1 is closed and the $\overline{\text{TS}}$ pin is driven to the intermediate level $V_{TS_n} = \frac{R2}{RI + R2} \times V_{DD} \cong \frac{V_{DD}}{2}$. For proper functionality R2 = 220 k Ω with a maximum variation of ± 5 %, and a low resistive push-button must be used.

Event 1: TSF1 is set, date and time is registered.

 When cover 2 is opened, the push-button 2 is closed and the TS pin is driven to ground.

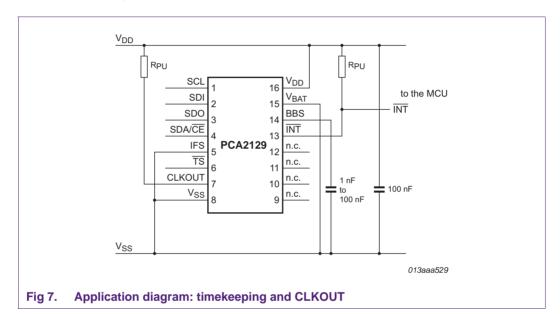
Event 2: TSF1 and TSF2 are both set, date and time is registered.

5.5 Timekeeping applications

PCA2129 used for the time keeping function (see Figure 6):

- CLKOUT is disabled (COF[2:0] = 111)
- The power management functions are disabled (PWRMNG[2:0] = 111) and pin V_{BAT} is tied to ground
- The timestamp detection is disabled (TSOFF = 1)

Timekeeping is very accurate due to the temperature compensation. The power consumption is minimized.



Application and soldering information for the PCA2129 TCXO RTC

5.6 Timekeeping and CLKOUT

PCA2129 used for timekeeping and CLKOUT functions (see Figure 7):

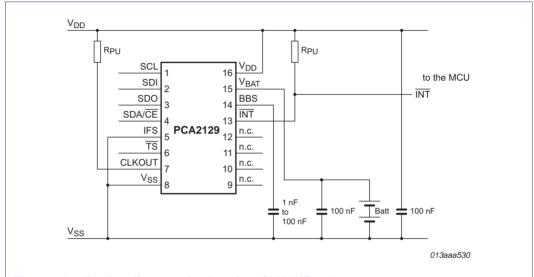
- CLKOUT is connected to V_{DD} using a pull-up resistor
- CLKOUT is enabled at 32.768 kHz by default after start-up (COF[2:0] = 000)
- The power management functions are disabled (PWRMNG[2:0] = 111) and pin V_{BAT} is tied to ground
- The timestamp detection is disabled (TSOFF = 1)

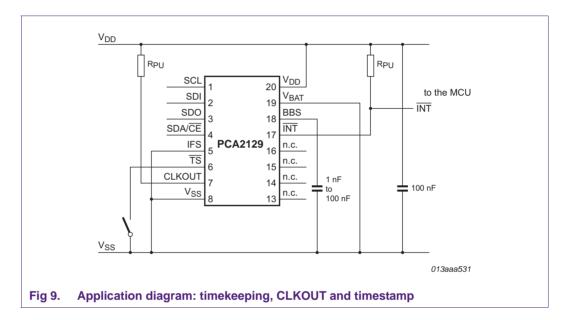
Application and soldering information for the PCA2129 TCXO RTC

5.7 Timekeeping, CLKOUT and power management

PCA2129 used for timekeeping and power management functions (see Figure 8):

- CLKOUT is connected to V_{DD} using a pull-up resistor
- CLKOUT is enabled at 32.768 kHz by default after start-up (COF[2:0] = 000)
- A battery is attached to the V_{BAT} pin
- The battery switch-over and the battery low detection functions are enabled by default (PWRMNG[2:0] = 000)
- The timestamp detection is disabled (TSOFF = 1)




Fig 8. Application diagram: timekeeping, CLKOUT and power management

Application and soldering information for the PCA2129 TCXO RTC

5.8 Timekeeping, CLKOUT and timestamp

PCA2129 used for timekeeping, CLKOUT and timestamp functions (see Figure 9):

- CLKOUT is connected to V_{DD} using a pull-up resistor
- CLKOUT is enabled at 32.768 kHz by default after start-up (COF[2:0] = 000)
- The power management functions are disabled (PWRMNG[2:0] = 111) and pin V_{BAT} is tied to ground
- The timestamp detection is enabled by default (TSOFF = 0)

15 of 22

Application and soldering information for the PCA2129 TCXO RTC

5.9 Timekeeping, CLKOUT, power management and timestamp

PCA2129 used for timekeeping, power management, CLKOUT and timestamp functions (see Figure 10):

- CLKOUT is connected to V_{DD} using a pull-up resistor
- CLKOUT is enabled at 32.768 kHz by default after start-up (COF[2:0] = 000)
- A battery is attached to the V_{BAT} pin
- The battery switch-over and the battery low detection functions are enabled by default (PWRMNG[2:0] = 000)
- The timestamp detection is enabled by default (TSOFF = 0)

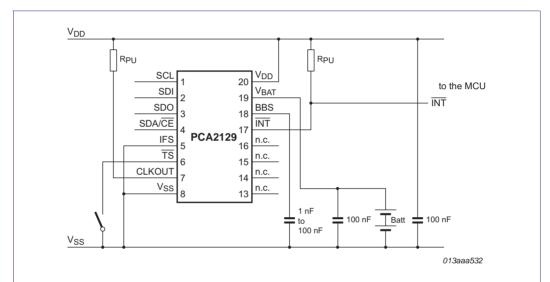


Fig 10. Application diagram: timekeeping, CLKOUT, power management and timestamp

Application and soldering information for the PCA2129 TCXO RTC

5.10 Timekeeping, CLKOUT, power management, timestamp, battery connected and supply of an external device

PCA2129 used for timekeeping, power management, CLKOUT with a battery connected and supplying an external device (see Figure 11):

- CLKOUT is connected to V_{DD} using a pull-up resistor
- CLKOUT is enabled at 32.768 kHz by default after start-up (COF[2:0] = 000)
- A battery is attached to the V_{BAT} pin
- The battery switch-over and the battery low detection functions are enabled by default (PWRMNG[2:0] = 000)
- The timestamp detection is enabled by default (TSOFF = 0)
- BBS supplies an external device (SRAM)

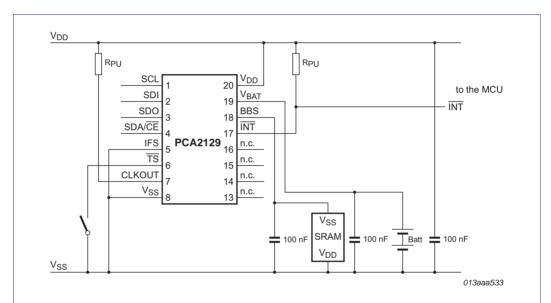


Fig 11. Application diagram: timekeeping, CLKOUT, power management, timestamp, battery connected and supply of an external device

PCA2129 used for timekeeping, power management, CLKOUT with a battery connected and supplying a microcontroller (see Figure 12):

- CLKOUT is connected to V_{DD} using a pull-up resistor
- CLKOUT is enabled at 32.768 kHz by default after start-up (COF[2:0] = 000)
- A battery is attached to the V_{BAT} pin
- The battery switch-over and the battery low detection functions are enabled by default (PWRMNG[2:0] = 000)
- The timestamp detection is enabled by default (TSOFF = 0)
- BBS supplies a microcontroller (see Figure 12)

Application and soldering information for the PCA2129 TCXO RTC

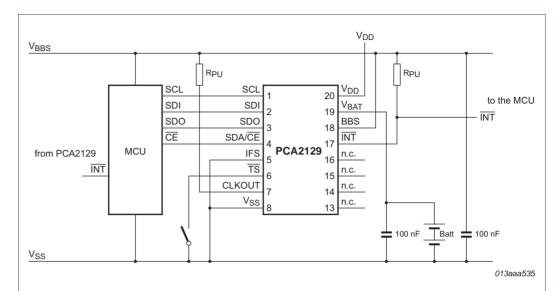


Fig 12. Application diagram: timekeeping, CLKOUT, power management, timestamp, battery connected and supply of a microcontroller

18 of 22

Application and soldering information for the PCA2129 TCXO RTC

6. Abbreviations

Table 5. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
I ² C	Inter-Integrated Circuit
IC	Integrated Circuit
MCU	Microcontroller Unit
PCB	Printed-Circuit Board
PPM	Parts Per Million
RAM	Random Access Memory
RTC	Real Time Clock
SMD	Surface Mount Device
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
TCXO	Temperature Compensated Xtal Oscillator
Xtal	crystal

Application and soldering information for the PCA2129 TCXO RTC

7. References

- [1] AN10365 Surface mount reflow soldering description
- [2] IEC 61340-5 Protection of electronic devices from electrostatic phenomena
- [3] IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
- [4] **JESD625-A** Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices
- [5] PCA2129 Integrated automotive RTC, TCXO and quartz crystal, Data Sheet
- [6] NX3-00092 NXP store and transport requirements
- [7] UM10204 I²C-bus specification and user manual
- [8] UM10301 User Manual for NXP Real Time Clocks PCF85x3, PCA8565 and PCF2123, PCA2125

Application and soldering information for the PCA2129 TCXO RTC

8. Legal information

8.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

8.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Application and soldering information for the PCA2129 TCXO RTC

9. Contents

1	Introduction 3
2	Frequency stability and time accuracy 3
3	Frequency measurement 4
4	Reflow soldering 5
4.1	Introduction to reflow soldering 5
4.2	Reflow soldering of PCA2129 6
4.3	Effect of reflow soldering on the frequency
	characteristics
4.4	Frequency correction after reflow soldering 7
5	Application information 9
5.1	Assembly recommendations 9
5.2	General application information 9
5.2.1	Current consumption 9
5.3	Battery switch-over applications 10
5.4	Timestamp applications
5.5	Timekeeping applications
5.6	Timekeeping and CLKOUT
5.7	Timekeeping, CLKOUT and power
	management
5.8	Timekeeping, CLKOUT and timestamp 15
5.9	Timekeeping, CLKOUT, power management and
- 40	timestamp
5.10	Timekeeping, CLKOUT, power management,
	timestamp, battery connected and supply of an external device
^	
6	Abbreviations
7	References
8	Legal information
8.1	Definitions
8.2	Disclaimers
8.3	Trademarks
9	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.