
by: NXP Semiconductors

1 Introduction
This application note describes an example use of FreeRTOS in a motor
control application. It is primarily targeted as an addendum to AN12235 [1],
describing the design of the MCSPTE1AK144 development kit [2], but it can
be used as a general guideline for any motor control application.

As a non-OS motor control application is normally interrupt-driven (as described in [1]), application task function execution is
usually tied to a periodical interrupt that is synchronous to the PWM signal driving the motor, e.g. ADC interrupt. Application tasks
are then executed directly inside the interrupt service routine and in the main function endless loop.

The complexity of an application increases with the number of task functions being used in the application. This may result in an
extended number of interrupts and an extended duration of interrupt service routines (ISR) where the application tasks are
executed, or in a too complex and time-wasting polling of state variables in the main function endless loop.

FreeRTOS offers powerful tools to manage application tasks without the need to use peripheral interrupts, including priority pre-
emption mechanisms.

2 Motor control application tasks
A typical motor control application can be divided into the following tasks:

• Peripheral configuration

• User input detection

• Application fault detection

• MOSFET pre-driver fault detection

• Feedback quantities acquisition

• Motor control state machine

• LED indication

• External communication processing (e.g. CAN, LIN, FreeMASTER)

• FreeMASTER recorder

2.1 Non-OS based application
In a non-OS based motor control application, tasks are normally distributed between the main function and an ADC or PWM
interrupt service routine. The distribution is summarized in the following table.

Table 1. Non-OS based application task function distribution

Application task Executed in

Peripheral configuration main()

Table continues on the next page...

Contents

1 Introduction.. 1

2 Motor control application tasks.............. 1

3 Conclusion... 7

4 References.. 7

AN12881
Motor Control Using FreeRTOS
Rev. 0 — May, 2020 Application Note

https://www.nxp.com/design/development-boards/automotive-motor-control-solutions/arm-based-solutions-/mcspte1ak144-s32k144-development-kit-for-bldc-and-pmsm-motor-control:MCSPTE1AK144?utm_medium=AN-2021

Table 1. Non-OS based application task function distribution (continued)

Application task Executed in

MOSFET pre-driver fault detection
main() endless loop

External communication processing

User input detection

ADC interrupt service routine

Feedback quantities acquisition

Fault detection

Motor control state machine

LED indication

FreeMASTER recorder

A typical timing of the main() function and an ADC interrupt in a non-OS based motor control application with a 100 μs fast current-
control loop is shown in the following figure. Every nth ADC ISR execution time is longer as the slow speed loop is also processed.

ADC Interrupt

main()

Time(n x 100) μs
100 μs

Figure 1. Non-OS application task timing

As a fast reaction to the ADC interrupt is required for precise motor control, timing-critical tasks are executed in the ISR instead
of respective peripheral register flag polling in the main() function endless loop.

2.2 FreeRTOS based application
To minimize time spent in an ISR, deferred interrupt handling is supported by FreeRTOS. The following example uses application
controlled deferred interrupt handling as it allows control over deferred processing task priority, and offers reduced latency
compared to centralized deferred interrupt handling [3].

The following table summarizes distribution of application tasks in respective FreeRTOS tasks.

Table 2. FreeRTOS based application task function distribution

Application task FreeRTOS task / CPU interrupt FreeRTOS task priority1

Peripheral configuration Init Task 4

MOSFET pre-driver fault detection
Main Task 2

External communication processing

Feedback quantities acquisition ADC Interrupt Service Routine -

Table continues on the next page...

NXP Semiconductors
Motor control application tasks

Motor Control Using FreeRTOS, Rev. 0, May, 2020
Application Note 2 / 8

Table 2. FreeRTOS based application task function distribution (continued)

Application task FreeRTOS task / CPU interrupt FreeRTOS task priority1

Fault detection

Motor control state machine
State Machine Task 7 = (configMAX_PRIORITIES - 1)

FreeMASTER recorder

User input detection
RTOS Daemon Task (software timer callback) 3 = configTIMER_TASK_PRIORITY

LED indication

1. The maximum FreeRTOS task priority is defined by configMAX_PRIORITIES value in FreeRTOSConfig.h.

The timing of the FreeRTOS based application tasks is shown in the following figure.

RTOS Daemon
Task enters
Blocked state.

RTOS Daemon
Task processes
the “start
timer”
command.

RTOS Daemon
Task executes
callback
function.

ISR executes,
clears the
interrupt, and
notifies State
Machine Task.

ISR returns
directly to the
highest
priority State
Machine Task.

RTOS Daemon
Task enters
Blocked state
until SW timer
expires again.

Daemon Task (3)

ADC Interrupt

State Machine Task (7)
(deferred processing task)

Main Task (2)

Init Task (4)

Init Task
deletes itself.

Time(n x 100) μs
100 μs

State Machine
Task enters
Blocked state,
waiting for
notification.

Figure 2. Free-RTOS based application timing

2.2.1 FreeRTOS task creation
A FreeRTOS task can be created by the xTaskCreate() API function. The prototype of the function is the following:

BaseType_t xTaskCreate
(
 TaskFunction_t pxTaskCode,
 const char *const pcName,
 const configSTACK_DEPTH_TYPE usStackDepth,
 void *const pvParameters,
 UBaseType_t uxPriority,
 TaskHandle_t *const pxCreatedTask
)

The following table lists the input parameters of the xTaskCreate() function.

NXP Semiconductors
Motor control application tasks

Motor Control Using FreeRTOS, Rev. 0, May, 2020
Application Note 3 / 8

Table 3. xTaskCreate() input parameters

xTaskCreate() input parameter Description

pxTaskCode Pointer to a function that implements the task.

pcName Name of the task. The length of the task name including NULL terminator is limited
by configMAX_TASK_NAME_LEN value defined in FreeRTOSConfig.h

usStackDepth Task stack size in the number of words the stack can hold (e.g. number of 4 byte
words on Cortex-M4).

pvParameters Task function input parameter of type (void *). The value assigned to the parameter
will be passed into the function implementing the task.

uxPriority Task priority in the range of 0, which is the lowest priority, to
(configMAX_PRIORITIES - 1) which is the highest priority.

pxCreatedTask Pointer for passing out the task handle which can be used to reference the task in
API calls.

2.2.2 Init task
The Init Task (initialization task) is created in the main() function before the FreeRTOS scheduler is started by the
vTaskStartScheduler() API function call.

• Example 1: Init Task Creation

/* Create Init Task */
ret = xTaskCreate(pmsm_init,"pmsm_init_tsk",256u,NULL,4u,NULL);

/* Start FreeRTOS scheduler */
vTaskStartScheduler();

The Init Task is used to perform peripheral configuration, create the Main Task and State Machine Task, and initialize the
software timer. Once the Main Task is created by the Init Task, it enters the Ready state, but as it has lower priority
compared to the Init Task in the Running state, it remains in the Ready state.

• Example 2: Main Task creation

/* Main Task function prototype */
void pmsm_main(void* pvParameters);

BaseType_t ret;

/* Create Main Task for fault checking and external communication processing */
ret = xTaskCreate(pmsm_main, "pmsm_main_tsk", 128u, NULL, 2u, NULL);

Once the State Machine Task is created by the Init Task, it immediately pre-empts Init Task as it has the higher priority. It
starts executing an assigned task function where it enters the Blocked state after calling the ulTaskNotifyTake() function,
releasing control back to the Init Task. The State Machine Task is further described in section State Machine Task.

• Example 3: State Machine Task creation

/* State Machine Task function prototype */
void pmsm_state(void* pvParameters);

TaskHandle_t PmsmStateHandle;

NXP Semiconductors
Motor control application tasks

Motor Control Using FreeRTOS, Rev. 0, May, 2020
Application Note 4 / 8

BaseType_t ret;

/* Create State Machine Task (ADC ISR will defer to) */
ret = xTaskCreate(pmsm_state, "pmsm_state_tsk", 128u, NULL, (configMAX_PRIORITIES – 1),
 &PmsmStateHandle);

The software timer is created by xTimerCreate() and started by the xTimerStart() function call which sends the “start timer”
command to the timer command queue, causing the RTOS Daemon task to transition from the Blocked to Ready state
every millisecond. The Daemon Task is further described in section RTOS Daemon Task.

• Example 4: FreeRTOS software timer initialization example

/* Software timer callback function prototype */
void PeriodicalTimerCbk(TimerHandle_t xTimer);

TimerHandle_t PeriodicalTimer;
BaseType_t ret;

/* Create 1ms periodical software timer with PeriodicalTimerCbk() callback function */
PeriodicalTimer = xTimerCreate("PeriodicalTimer", pdMS_TO_TICKS(1), pdTRUE, (void *)0,
 PeriodicalTimerCbk);

/* Start software timer with no block time specified */
ret = xTimerStart(PeriodicalTimer, 0);

Once all necessary tasks and the software timer is created, Init Task deletes itself by calling the vTaskDelete(NULL) API
function.

2.2.3 RTOS daemon task
The RTOS daemon task is a standard task that is automatically created by the FreeRTOS when the scheduler is started by the
vTaskStartScheduler() function call. The daemon task is created with a priority of configTIMER_TASK_PRIORITY and a stack
size of configTIMER_TASK_STACK_DEPTH defined in FreeRTOSConfig.h. These are then common for all software timers
created.

The daemon task is used to service software timer commands that are being sent from the calling task into the daemon task
using a timer command queue. In this application, the software timer periodically executes a callback function responsible for
user input detection and LED control.

As shown in Figure 2, a software timer is created and enabled by the Init Task. As the daemon task has lower priority than the
Init Task, it processes the “start timer” command in the timer command queue once the Init Task deletes itself by a
vTaskDelete(NULL) function call, allowing the daemon task to transition from the Ready to Running state. After processing the
“start timer” command, the daemon task enters the Blocked state.

Once the software timer expires, the daemon task enters the Ready state again. If it is currently the highest priority task in the
Ready state and there is no higher priority task in the Running state, it enters the Running state and executes the
PeriodicalTimerCbk() callback function. Otherwise, it must wait for the higher priority task to enter the Block state first.

The software timer is a suitable FreeRTOS feature to trigger periodical events with the minimum of system
resources spent. However, in the use of multiple software timers, all configured timers rely on the RTOS daemon
task with its own priority. If separate priority levels are desired by the application, the use of separate OS tasks,
although with a higher final resource cost, is recommended instead.

 NOTE

2.2.4 ADC interrupt
State variable acquisition is performed in the ADC ISR which also services the ADC interrupt. Motor control application fault
detection is also handled in the ISR to minimize any potential fault reaction time. The ADC ISR then defers directly to the highest
priority State Machine Task, releasing control to the FreeRTOS scheduler.

NXP Semiconductors
Motor control application tasks

Motor Control Using FreeRTOS, Rev. 0, May, 2020
Application Note 5 / 8

To defer the ISR directly in the State machine task, the task notification feature is used in the application. The
vTaskNotifyGiveFromISR() API function sends a notification directly to a task, incrementing its notification value, and thus setting
its notification state to pending, if it’s not in the pending state already. See Example 4 for a task notification code example.

Once vTaskNotifyGiveFromISR() exits, it sets xHigherPriorityTaskWoken to pdTRUE, letting the subsequent
portYIELD_FROM_ISR() call know to perform a context switch.

• Example 5: State machine task notification

BaseType_t xHigherPriorityTaskWoken;

/* Defer to State Machine Task: */
/* Initialize xHigherPriorityTaskWoken variable */
xHigherPriorityTaskWoken = pdFALSE;
/* Send notification to State Machine Task, update xHigherPriorityTaskWoken variable value */
vTaskNotifyGiveFromISR(PmsmStateHandle, &xHigherPriorityTaskWoken);
/* Perform context switch based on xHigherPriorityTaskWoken variable value, to ensure that the
interrupt returns directly to the highest priority task */
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

To successfully notify the State machine task, its handle must be stored in a TaskHandle_t variable type when creating the State
machine task by the xTaskCreate() API function (see PmsmStateHandle variable in Example 3).

2.2.5 State machine task
After the State machine task is created by the Init Task and enters the Running state, it enters the Blocked state during the
ulTaskNotifyTake() function call, waiting for the notification, since the task notification value is zero. Once the notification is sent
to the State machine task by the ADC ISR, the task notification value is incremented, causing the State machine task to enter
the Ready state. The ISR returns directly to the State machine task which is currently the highest priority task in the Ready state.

As the task notification value is now not equal to zero, ulTaskNotifyTake() zeroes the notification value and exits. The state
machine function including the FreeMASTER recorder is then executed.

After the state machine and FreeMASTER recorder are processed in the task, the State machine task switches back to the
Blocked state during the subsequent ulTaskNotifyTake() function call, waiting for the next notification to be received, since the
notification value is zero again.

• Example 6: State Machine Task function

void pmsm_state(void* pvParameters)
{
 while(1)
 {
 /* Wait for notification from ADC ISR in blocked state indefinitely, zero task
 notification value on exit */
 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
 /* State machine function */
 StateMachine();
 }
}

The first parameter of the ulTaskNotifyTake() function specifies the calling task notification value should be decremented
(pdFALSE), by implementing a counting semaphore, or zeroed (pdTRUE), by implementing a binary semaphore [3].

The second parameter of the ulTaskNotifyTake() function specifies how long should the calling task wait for the notification to be
received. It is set to wait indefinitely by the portMAX_DELAY parameter value in Example 6.

NXP Semiconductors
Motor control application tasks

Motor Control Using FreeRTOS, Rev. 0, May, 2020
Application Note 6 / 8

2.2.6 Main task
The lowest priority Main Task is being run in the background, continuously polling for MOSFET pre-driver faults via interrupt pin
level detection. The external communication processing function is continuously called here to ensure the fastest response to
the received data.

Where continuous external communication processing is not required, pre-driver faults can be polled not continuously, but
periodically, leaving room for potential lower priority task(s). This can be achieved by blocking the Main task until a specific RTOS
tick count, using e.g. the vTaskDelayUntil() FreeRTOS function, or by using a software timer (see [3] for more details).

3 Conclusion
To minimize the time spent in the ISR of the ADC or the PWM interrupt source, FreeRTOS offers deferred interrupt handling.
Deferring from the ISR into an OS task using task notification, and therefore spending the minimum possible time in the ISR,
reduces the latency of other interrupts that might be required in the application.

The utilization of FreeRTOS software features in the motor control application described in this application note are examples
only. In most cases, more than one option on how to achieve the desired functionality is offered by FreeRTOS.

4 References
1. 3-phase Sensorless PMSM Motor Control Kit with S32K144, AN12235, Rev. 1, 05/2020

2. MCSPTE1AK144: S32K144 Development Kit for BLDC and PMSM motor control

3. Mastering the FreeRTOS™ Real Time Kernel, 161204, www.FreeRTOS.org

NXP Semiconductors
Conclusion

Motor Control Using FreeRTOS, Rev. 0, May, 2020
Application Note 7 / 8

http://nxp.com/pages/mcspte1ak144-s32k144-development-kit-for-bldc-and-pmsm-motor-control:MCSPTE1AK144

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: May, 2020
Document identifier: AN12881

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Motor control application tasks
	2.1 Non-OS based application
	2.2 FreeRTOS based application
	2.2.1 FreeRTOS task creation
	2.2.2 Init task
	2.2.3 RTOS daemon task
	2.2.4 ADC interrupt
	2.2.5 State machine task
	2.2.6 Main task

	3 Conclusion
	4 References

